linux/mm/page_io.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/page_io.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, 
   7 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
   8 *  Removed race in async swapping. 14.4.1996. Bruno Haible
   9 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  10 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/gfp.h>
  16#include <linux/pagemap.h>
  17#include <linux/swap.h>
  18#include <linux/bio.h>
  19#include <linux/swapops.h>
  20#include <linux/buffer_head.h>
  21#include <linux/writeback.h>
  22#include <linux/frontswap.h>
  23#include <linux/blkdev.h>
  24#include <linux/uio.h>
  25#include <asm/pgtable.h>
  26
  27static struct bio *get_swap_bio(gfp_t gfp_flags,
  28                                struct page *page, bio_end_io_t end_io)
  29{
  30        struct bio *bio;
  31
  32        bio = bio_alloc(gfp_flags, 1);
  33        if (bio) {
  34                bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
  35                bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  36                bio->bi_end_io = end_io;
  37
  38                bio_add_page(bio, page, PAGE_SIZE, 0);
  39                BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
  40        }
  41        return bio;
  42}
  43
  44void end_swap_bio_write(struct bio *bio)
  45{
  46        struct page *page = bio->bi_io_vec[0].bv_page;
  47
  48        if (bio->bi_error) {
  49                SetPageError(page);
  50                /*
  51                 * We failed to write the page out to swap-space.
  52                 * Re-dirty the page in order to avoid it being reclaimed.
  53                 * Also print a dire warning that things will go BAD (tm)
  54                 * very quickly.
  55                 *
  56                 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  57                 */
  58                set_page_dirty(page);
  59                printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
  60                                imajor(bio->bi_bdev->bd_inode),
  61                                iminor(bio->bi_bdev->bd_inode),
  62                                (unsigned long long)bio->bi_iter.bi_sector);
  63                ClearPageReclaim(page);
  64        }
  65        end_page_writeback(page);
  66        bio_put(bio);
  67}
  68
  69static void end_swap_bio_read(struct bio *bio)
  70{
  71        struct page *page = bio->bi_io_vec[0].bv_page;
  72
  73        if (bio->bi_error) {
  74                SetPageError(page);
  75                ClearPageUptodate(page);
  76                printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
  77                                imajor(bio->bi_bdev->bd_inode),
  78                                iminor(bio->bi_bdev->bd_inode),
  79                                (unsigned long long)bio->bi_iter.bi_sector);
  80                goto out;
  81        }
  82
  83        SetPageUptodate(page);
  84
  85        /*
  86         * There is no guarantee that the page is in swap cache - the software
  87         * suspend code (at least) uses end_swap_bio_read() against a non-
  88         * swapcache page.  So we must check PG_swapcache before proceeding with
  89         * this optimization.
  90         */
  91        if (likely(PageSwapCache(page))) {
  92                struct swap_info_struct *sis;
  93
  94                sis = page_swap_info(page);
  95                if (sis->flags & SWP_BLKDEV) {
  96                        /*
  97                         * The swap subsystem performs lazy swap slot freeing,
  98                         * expecting that the page will be swapped out again.
  99                         * So we can avoid an unnecessary write if the page
 100                         * isn't redirtied.
 101                         * This is good for real swap storage because we can
 102                         * reduce unnecessary I/O and enhance wear-leveling
 103                         * if an SSD is used as the as swap device.
 104                         * But if in-memory swap device (eg zram) is used,
 105                         * this causes a duplicated copy between uncompressed
 106                         * data in VM-owned memory and compressed data in
 107                         * zram-owned memory.  So let's free zram-owned memory
 108                         * and make the VM-owned decompressed page *dirty*,
 109                         * so the page should be swapped out somewhere again if
 110                         * we again wish to reclaim it.
 111                         */
 112                        struct gendisk *disk = sis->bdev->bd_disk;
 113                        if (disk->fops->swap_slot_free_notify) {
 114                                swp_entry_t entry;
 115                                unsigned long offset;
 116
 117                                entry.val = page_private(page);
 118                                offset = swp_offset(entry);
 119
 120                                SetPageDirty(page);
 121                                disk->fops->swap_slot_free_notify(sis->bdev,
 122                                                offset);
 123                        }
 124                }
 125        }
 126
 127out:
 128        unlock_page(page);
 129        bio_put(bio);
 130}
 131
 132int generic_swapfile_activate(struct swap_info_struct *sis,
 133                                struct file *swap_file,
 134                                sector_t *span)
 135{
 136        struct address_space *mapping = swap_file->f_mapping;
 137        struct inode *inode = mapping->host;
 138        unsigned blocks_per_page;
 139        unsigned long page_no;
 140        unsigned blkbits;
 141        sector_t probe_block;
 142        sector_t last_block;
 143        sector_t lowest_block = -1;
 144        sector_t highest_block = 0;
 145        int nr_extents = 0;
 146        int ret;
 147
 148        blkbits = inode->i_blkbits;
 149        blocks_per_page = PAGE_SIZE >> blkbits;
 150
 151        /*
 152         * Map all the blocks into the extent list.  This code doesn't try
 153         * to be very smart.
 154         */
 155        probe_block = 0;
 156        page_no = 0;
 157        last_block = i_size_read(inode) >> blkbits;
 158        while ((probe_block + blocks_per_page) <= last_block &&
 159                        page_no < sis->max) {
 160                unsigned block_in_page;
 161                sector_t first_block;
 162
 163                first_block = bmap(inode, probe_block);
 164                if (first_block == 0)
 165                        goto bad_bmap;
 166
 167                /*
 168                 * It must be PAGE_SIZE aligned on-disk
 169                 */
 170                if (first_block & (blocks_per_page - 1)) {
 171                        probe_block++;
 172                        goto reprobe;
 173                }
 174
 175                for (block_in_page = 1; block_in_page < blocks_per_page;
 176                                        block_in_page++) {
 177                        sector_t block;
 178
 179                        block = bmap(inode, probe_block + block_in_page);
 180                        if (block == 0)
 181                                goto bad_bmap;
 182                        if (block != first_block + block_in_page) {
 183                                /* Discontiguity */
 184                                probe_block++;
 185                                goto reprobe;
 186                        }
 187                }
 188
 189                first_block >>= (PAGE_SHIFT - blkbits);
 190                if (page_no) {  /* exclude the header page */
 191                        if (first_block < lowest_block)
 192                                lowest_block = first_block;
 193                        if (first_block > highest_block)
 194                                highest_block = first_block;
 195                }
 196
 197                /*
 198                 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
 199                 */
 200                ret = add_swap_extent(sis, page_no, 1, first_block);
 201                if (ret < 0)
 202                        goto out;
 203                nr_extents += ret;
 204                page_no++;
 205                probe_block += blocks_per_page;
 206reprobe:
 207                continue;
 208        }
 209        ret = nr_extents;
 210        *span = 1 + highest_block - lowest_block;
 211        if (page_no == 0)
 212                page_no = 1;    /* force Empty message */
 213        sis->max = page_no;
 214        sis->pages = page_no - 1;
 215        sis->highest_bit = page_no - 1;
 216out:
 217        return ret;
 218bad_bmap:
 219        printk(KERN_ERR "swapon: swapfile has holes\n");
 220        ret = -EINVAL;
 221        goto out;
 222}
 223
 224/*
 225 * We may have stale swap cache pages in memory: notice
 226 * them here and get rid of the unnecessary final write.
 227 */
 228int swap_writepage(struct page *page, struct writeback_control *wbc)
 229{
 230        int ret = 0;
 231
 232        if (try_to_free_swap(page)) {
 233                unlock_page(page);
 234                goto out;
 235        }
 236        if (frontswap_store(page) == 0) {
 237                set_page_writeback(page);
 238                unlock_page(page);
 239                end_page_writeback(page);
 240                goto out;
 241        }
 242        ret = __swap_writepage(page, wbc, end_swap_bio_write);
 243out:
 244        return ret;
 245}
 246
 247static sector_t swap_page_sector(struct page *page)
 248{
 249        return (sector_t)__page_file_index(page) << (PAGE_CACHE_SHIFT - 9);
 250}
 251
 252int __swap_writepage(struct page *page, struct writeback_control *wbc,
 253                bio_end_io_t end_write_func)
 254{
 255        struct bio *bio;
 256        int ret, rw = WRITE;
 257        struct swap_info_struct *sis = page_swap_info(page);
 258
 259        if (sis->flags & SWP_FILE) {
 260                struct kiocb kiocb;
 261                struct file *swap_file = sis->swap_file;
 262                struct address_space *mapping = swap_file->f_mapping;
 263                struct bio_vec bv = {
 264                        .bv_page = page,
 265                        .bv_len  = PAGE_SIZE,
 266                        .bv_offset = 0
 267                };
 268                struct iov_iter from;
 269
 270                iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
 271                init_sync_kiocb(&kiocb, swap_file);
 272                kiocb.ki_pos = page_file_offset(page);
 273
 274                set_page_writeback(page);
 275                unlock_page(page);
 276                ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
 277                if (ret == PAGE_SIZE) {
 278                        count_vm_event(PSWPOUT);
 279                        ret = 0;
 280                } else {
 281                        /*
 282                         * In the case of swap-over-nfs, this can be a
 283                         * temporary failure if the system has limited
 284                         * memory for allocating transmit buffers.
 285                         * Mark the page dirty and avoid
 286                         * rotate_reclaimable_page but rate-limit the
 287                         * messages but do not flag PageError like
 288                         * the normal direct-to-bio case as it could
 289                         * be temporary.
 290                         */
 291                        set_page_dirty(page);
 292                        ClearPageReclaim(page);
 293                        pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
 294                                page_file_offset(page));
 295                }
 296                end_page_writeback(page);
 297                return ret;
 298        }
 299
 300        ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
 301        if (!ret) {
 302                count_vm_event(PSWPOUT);
 303                return 0;
 304        }
 305
 306        ret = 0;
 307        bio = get_swap_bio(GFP_NOIO, page, end_write_func);
 308        if (bio == NULL) {
 309                set_page_dirty(page);
 310                unlock_page(page);
 311                ret = -ENOMEM;
 312                goto out;
 313        }
 314        if (wbc->sync_mode == WB_SYNC_ALL)
 315                rw |= REQ_SYNC;
 316        count_vm_event(PSWPOUT);
 317        set_page_writeback(page);
 318        unlock_page(page);
 319        submit_bio(rw, bio);
 320out:
 321        return ret;
 322}
 323
 324int swap_readpage(struct page *page)
 325{
 326        struct bio *bio;
 327        int ret = 0;
 328        struct swap_info_struct *sis = page_swap_info(page);
 329
 330        VM_BUG_ON_PAGE(!PageLocked(page), page);
 331        VM_BUG_ON_PAGE(PageUptodate(page), page);
 332        if (frontswap_load(page) == 0) {
 333                SetPageUptodate(page);
 334                unlock_page(page);
 335                goto out;
 336        }
 337
 338        if (sis->flags & SWP_FILE) {
 339                struct file *swap_file = sis->swap_file;
 340                struct address_space *mapping = swap_file->f_mapping;
 341
 342                ret = mapping->a_ops->readpage(swap_file, page);
 343                if (!ret)
 344                        count_vm_event(PSWPIN);
 345                return ret;
 346        }
 347
 348        ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
 349        if (!ret) {
 350                count_vm_event(PSWPIN);
 351                return 0;
 352        }
 353
 354        ret = 0;
 355        bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
 356        if (bio == NULL) {
 357                unlock_page(page);
 358                ret = -ENOMEM;
 359                goto out;
 360        }
 361        count_vm_event(PSWPIN);
 362        submit_bio(READ, bio);
 363out:
 364        return ret;
 365}
 366
 367int swap_set_page_dirty(struct page *page)
 368{
 369        struct swap_info_struct *sis = page_swap_info(page);
 370
 371        if (sis->flags & SWP_FILE) {
 372                struct address_space *mapping = sis->swap_file->f_mapping;
 373                return mapping->a_ops->set_page_dirty(page);
 374        } else {
 375                return __set_page_dirty_no_writeback(page);
 376        }
 377}
 378