linux/mm/percpu-vm.c
<<
>>
Prefs
   1/*
   2 * mm/percpu-vm.c - vmalloc area based chunk allocation
   3 *
   4 * Copyright (C) 2010           SUSE Linux Products GmbH
   5 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
   8 *
   9 * Chunks are mapped into vmalloc areas and populated page by page.
  10 * This is the default chunk allocator.
  11 */
  12
  13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
  14                                    unsigned int cpu, int page_idx)
  15{
  16        /* must not be used on pre-mapped chunk */
  17        WARN_ON(chunk->immutable);
  18
  19        return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
  20}
  21
  22/**
  23 * pcpu_get_pages - get temp pages array
  24 * @chunk: chunk of interest
  25 *
  26 * Returns pointer to array of pointers to struct page which can be indexed
  27 * with pcpu_page_idx().  Note that there is only one array and accesses
  28 * should be serialized by pcpu_alloc_mutex.
  29 *
  30 * RETURNS:
  31 * Pointer to temp pages array on success.
  32 */
  33static struct page **pcpu_get_pages(struct pcpu_chunk *chunk_alloc)
  34{
  35        static struct page **pages;
  36        size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
  37
  38        lockdep_assert_held(&pcpu_alloc_mutex);
  39
  40        if (!pages)
  41                pages = pcpu_mem_zalloc(pages_size);
  42        return pages;
  43}
  44
  45/**
  46 * pcpu_free_pages - free pages which were allocated for @chunk
  47 * @chunk: chunk pages were allocated for
  48 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
  49 * @page_start: page index of the first page to be freed
  50 * @page_end: page index of the last page to be freed + 1
  51 *
  52 * Free pages [@page_start and @page_end) in @pages for all units.
  53 * The pages were allocated for @chunk.
  54 */
  55static void pcpu_free_pages(struct pcpu_chunk *chunk,
  56                            struct page **pages, int page_start, int page_end)
  57{
  58        unsigned int cpu;
  59        int i;
  60
  61        for_each_possible_cpu(cpu) {
  62                for (i = page_start; i < page_end; i++) {
  63                        struct page *page = pages[pcpu_page_idx(cpu, i)];
  64
  65                        if (page)
  66                                __free_page(page);
  67                }
  68        }
  69}
  70
  71/**
  72 * pcpu_alloc_pages - allocates pages for @chunk
  73 * @chunk: target chunk
  74 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
  75 * @page_start: page index of the first page to be allocated
  76 * @page_end: page index of the last page to be allocated + 1
  77 *
  78 * Allocate pages [@page_start,@page_end) into @pages for all units.
  79 * The allocation is for @chunk.  Percpu core doesn't care about the
  80 * content of @pages and will pass it verbatim to pcpu_map_pages().
  81 */
  82static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
  83                            struct page **pages, int page_start, int page_end)
  84{
  85        const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
  86        unsigned int cpu, tcpu;
  87        int i;
  88
  89        for_each_possible_cpu(cpu) {
  90                for (i = page_start; i < page_end; i++) {
  91                        struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
  92
  93                        *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
  94                        if (!*pagep)
  95                                goto err;
  96                }
  97        }
  98        return 0;
  99
 100err:
 101        while (--i >= page_start)
 102                __free_page(pages[pcpu_page_idx(cpu, i)]);
 103
 104        for_each_possible_cpu(tcpu) {
 105                if (tcpu == cpu)
 106                        break;
 107                for (i = page_start; i < page_end; i++)
 108                        __free_page(pages[pcpu_page_idx(tcpu, i)]);
 109        }
 110        return -ENOMEM;
 111}
 112
 113/**
 114 * pcpu_pre_unmap_flush - flush cache prior to unmapping
 115 * @chunk: chunk the regions to be flushed belongs to
 116 * @page_start: page index of the first page to be flushed
 117 * @page_end: page index of the last page to be flushed + 1
 118 *
 119 * Pages in [@page_start,@page_end) of @chunk are about to be
 120 * unmapped.  Flush cache.  As each flushing trial can be very
 121 * expensive, issue flush on the whole region at once rather than
 122 * doing it for each cpu.  This could be an overkill but is more
 123 * scalable.
 124 */
 125static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
 126                                 int page_start, int page_end)
 127{
 128        flush_cache_vunmap(
 129                pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 130                pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 131}
 132
 133static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
 134{
 135        unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
 136}
 137
 138/**
 139 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
 140 * @chunk: chunk of interest
 141 * @pages: pages array which can be used to pass information to free
 142 * @page_start: page index of the first page to unmap
 143 * @page_end: page index of the last page to unmap + 1
 144 *
 145 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 146 * Corresponding elements in @pages were cleared by the caller and can
 147 * be used to carry information to pcpu_free_pages() which will be
 148 * called after all unmaps are finished.  The caller should call
 149 * proper pre/post flush functions.
 150 */
 151static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
 152                             struct page **pages, int page_start, int page_end)
 153{
 154        unsigned int cpu;
 155        int i;
 156
 157        for_each_possible_cpu(cpu) {
 158                for (i = page_start; i < page_end; i++) {
 159                        struct page *page;
 160
 161                        page = pcpu_chunk_page(chunk, cpu, i);
 162                        WARN_ON(!page);
 163                        pages[pcpu_page_idx(cpu, i)] = page;
 164                }
 165                __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 166                                   page_end - page_start);
 167        }
 168}
 169
 170/**
 171 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 172 * @chunk: pcpu_chunk the regions to be flushed belong to
 173 * @page_start: page index of the first page to be flushed
 174 * @page_end: page index of the last page to be flushed + 1
 175 *
 176 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 177 * TLB for the regions.  This can be skipped if the area is to be
 178 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 179 *
 180 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 181 * for the whole region.
 182 */
 183static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
 184                                      int page_start, int page_end)
 185{
 186        flush_tlb_kernel_range(
 187                pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 188                pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 189}
 190
 191static int __pcpu_map_pages(unsigned long addr, struct page **pages,
 192                            int nr_pages)
 193{
 194        return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
 195                                        PAGE_KERNEL, pages);
 196}
 197
 198/**
 199 * pcpu_map_pages - map pages into a pcpu_chunk
 200 * @chunk: chunk of interest
 201 * @pages: pages array containing pages to be mapped
 202 * @page_start: page index of the first page to map
 203 * @page_end: page index of the last page to map + 1
 204 *
 205 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 206 * caller is responsible for calling pcpu_post_map_flush() after all
 207 * mappings are complete.
 208 *
 209 * This function is responsible for setting up whatever is necessary for
 210 * reverse lookup (addr -> chunk).
 211 */
 212static int pcpu_map_pages(struct pcpu_chunk *chunk,
 213                          struct page **pages, int page_start, int page_end)
 214{
 215        unsigned int cpu, tcpu;
 216        int i, err;
 217
 218        for_each_possible_cpu(cpu) {
 219                err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 220                                       &pages[pcpu_page_idx(cpu, page_start)],
 221                                       page_end - page_start);
 222                if (err < 0)
 223                        goto err;
 224
 225                for (i = page_start; i < page_end; i++)
 226                        pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
 227                                            chunk);
 228        }
 229        return 0;
 230err:
 231        for_each_possible_cpu(tcpu) {
 232                if (tcpu == cpu)
 233                        break;
 234                __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
 235                                   page_end - page_start);
 236        }
 237        pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
 238        return err;
 239}
 240
 241/**
 242 * pcpu_post_map_flush - flush cache after mapping
 243 * @chunk: pcpu_chunk the regions to be flushed belong to
 244 * @page_start: page index of the first page to be flushed
 245 * @page_end: page index of the last page to be flushed + 1
 246 *
 247 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 248 * cache.
 249 *
 250 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 251 * for the whole region.
 252 */
 253static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
 254                                int page_start, int page_end)
 255{
 256        flush_cache_vmap(
 257                pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 258                pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 259}
 260
 261/**
 262 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 263 * @chunk: chunk of interest
 264 * @page_start: the start page
 265 * @page_end: the end page
 266 *
 267 * For each cpu, populate and map pages [@page_start,@page_end) into
 268 * @chunk.
 269 *
 270 * CONTEXT:
 271 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
 272 */
 273static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
 274                               int page_start, int page_end)
 275{
 276        struct page **pages;
 277
 278        pages = pcpu_get_pages(chunk);
 279        if (!pages)
 280                return -ENOMEM;
 281
 282        if (pcpu_alloc_pages(chunk, pages, page_start, page_end))
 283                return -ENOMEM;
 284
 285        if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
 286                pcpu_free_pages(chunk, pages, page_start, page_end);
 287                return -ENOMEM;
 288        }
 289        pcpu_post_map_flush(chunk, page_start, page_end);
 290
 291        return 0;
 292}
 293
 294/**
 295 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 296 * @chunk: chunk to depopulate
 297 * @page_start: the start page
 298 * @page_end: the end page
 299 *
 300 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 301 * from @chunk.
 302 *
 303 * CONTEXT:
 304 * pcpu_alloc_mutex.
 305 */
 306static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
 307                                  int page_start, int page_end)
 308{
 309        struct page **pages;
 310
 311        /*
 312         * If control reaches here, there must have been at least one
 313         * successful population attempt so the temp pages array must
 314         * be available now.
 315         */
 316        pages = pcpu_get_pages(chunk);
 317        BUG_ON(!pages);
 318
 319        /* unmap and free */
 320        pcpu_pre_unmap_flush(chunk, page_start, page_end);
 321
 322        pcpu_unmap_pages(chunk, pages, page_start, page_end);
 323
 324        /* no need to flush tlb, vmalloc will handle it lazily */
 325
 326        pcpu_free_pages(chunk, pages, page_start, page_end);
 327}
 328
 329static struct pcpu_chunk *pcpu_create_chunk(void)
 330{
 331        struct pcpu_chunk *chunk;
 332        struct vm_struct **vms;
 333
 334        chunk = pcpu_alloc_chunk();
 335        if (!chunk)
 336                return NULL;
 337
 338        vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
 339                                pcpu_nr_groups, pcpu_atom_size);
 340        if (!vms) {
 341                pcpu_free_chunk(chunk);
 342                return NULL;
 343        }
 344
 345        chunk->data = vms;
 346        chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
 347        return chunk;
 348}
 349
 350static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
 351{
 352        if (chunk && chunk->data)
 353                pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
 354        pcpu_free_chunk(chunk);
 355}
 356
 357static struct page *pcpu_addr_to_page(void *addr)
 358{
 359        return vmalloc_to_page(addr);
 360}
 361
 362static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
 363{
 364        /* no extra restriction */
 365        return 0;
 366}
 367