linux/mm/swap.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * This file contains the default values for the operation of the
   9 * Linux VM subsystem. Fine-tuning documentation can be found in
  10 * Documentation/sysctl/vm.txt.
  11 * Started 18.12.91
  12 * Swap aging added 23.2.95, Stephen Tweedie.
  13 * Buffermem limits added 12.3.98, Rik van Riel.
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/swap.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/pagevec.h>
  23#include <linux/init.h>
  24#include <linux/export.h>
  25#include <linux/mm_inline.h>
  26#include <linux/percpu_counter.h>
  27#include <linux/percpu.h>
  28#include <linux/cpu.h>
  29#include <linux/notifier.h>
  30#include <linux/backing-dev.h>
  31#include <linux/memcontrol.h>
  32#include <linux/gfp.h>
  33#include <linux/uio.h>
  34#include <linux/hugetlb.h>
  35#include <linux/page_idle.h>
  36
  37#include "internal.h"
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/pagemap.h>
  41
  42/* How many pages do we try to swap or page in/out together? */
  43int page_cluster;
  44
  45static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  46static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  47static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
  48
  49/*
  50 * This path almost never happens for VM activity - pages are normally
  51 * freed via pagevecs.  But it gets used by networking.
  52 */
  53static void __page_cache_release(struct page *page)
  54{
  55        if (PageLRU(page)) {
  56                struct zone *zone = page_zone(page);
  57                struct lruvec *lruvec;
  58                unsigned long flags;
  59
  60                spin_lock_irqsave(&zone->lru_lock, flags);
  61                lruvec = mem_cgroup_page_lruvec(page, zone);
  62                VM_BUG_ON_PAGE(!PageLRU(page), page);
  63                __ClearPageLRU(page);
  64                del_page_from_lru_list(page, lruvec, page_off_lru(page));
  65                spin_unlock_irqrestore(&zone->lru_lock, flags);
  66        }
  67        mem_cgroup_uncharge(page);
  68}
  69
  70static void __put_single_page(struct page *page)
  71{
  72        __page_cache_release(page);
  73        free_hot_cold_page(page, false);
  74}
  75
  76static void __put_compound_page(struct page *page)
  77{
  78        compound_page_dtor *dtor;
  79
  80        /*
  81         * __page_cache_release() is supposed to be called for thp, not for
  82         * hugetlb. This is because hugetlb page does never have PageLRU set
  83         * (it's never listed to any LRU lists) and no memcg routines should
  84         * be called for hugetlb (it has a separate hugetlb_cgroup.)
  85         */
  86        if (!PageHuge(page))
  87                __page_cache_release(page);
  88        dtor = get_compound_page_dtor(page);
  89        (*dtor)(page);
  90}
  91
  92/**
  93 * Two special cases here: we could avoid taking compound_lock_irqsave
  94 * and could skip the tail refcounting(in _mapcount).
  95 *
  96 * 1. Hugetlbfs page:
  97 *
  98 *    PageHeadHuge will remain true until the compound page
  99 *    is released and enters the buddy allocator, and it could
 100 *    not be split by __split_huge_page_refcount().
 101 *
 102 *    So if we see PageHeadHuge set, and we have the tail page pin,
 103 *    then we could safely put head page.
 104 *
 105 * 2. Slab THP page:
 106 *
 107 *    PG_slab is cleared before the slab frees the head page, and
 108 *    tail pin cannot be the last reference left on the head page,
 109 *    because the slab code is free to reuse the compound page
 110 *    after a kfree/kmem_cache_free without having to check if
 111 *    there's any tail pin left.  In turn all tail pinsmust be always
 112 *    released while the head is still pinned by the slab code
 113 *    and so we know PG_slab will be still set too.
 114 *
 115 *    So if we see PageSlab set, and we have the tail page pin,
 116 *    then we could safely put head page.
 117 */
 118static __always_inline
 119void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
 120{
 121        /*
 122         * If @page is a THP tail, we must read the tail page
 123         * flags after the head page flags. The
 124         * __split_huge_page_refcount side enforces write memory barriers
 125         * between clearing PageTail and before the head page
 126         * can be freed and reallocated.
 127         */
 128        smp_rmb();
 129        if (likely(PageTail(page))) {
 130                /*
 131                 * __split_huge_page_refcount cannot race
 132                 * here, see the comment above this function.
 133                 */
 134                VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 135                if (put_page_testzero(page_head)) {
 136                        /*
 137                         * If this is the tail of a slab THP page,
 138                         * the tail pin must not be the last reference
 139                         * held on the page, because the PG_slab cannot
 140                         * be cleared before all tail pins (which skips
 141                         * the _mapcount tail refcounting) have been
 142                         * released.
 143                         *
 144                         * If this is the tail of a hugetlbfs page,
 145                         * the tail pin may be the last reference on
 146                         * the page instead, because PageHeadHuge will
 147                         * not go away until the compound page enters
 148                         * the buddy allocator.
 149                         */
 150                        VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
 151                        __put_compound_page(page_head);
 152                }
 153        } else
 154                /*
 155                 * __split_huge_page_refcount run before us,
 156                 * @page was a THP tail. The split @page_head
 157                 * has been freed and reallocated as slab or
 158                 * hugetlbfs page of smaller order (only
 159                 * possible if reallocated as slab on x86).
 160                 */
 161                if (put_page_testzero(page))
 162                        __put_single_page(page);
 163}
 164
 165static __always_inline
 166void put_refcounted_compound_page(struct page *page_head, struct page *page)
 167{
 168        if (likely(page != page_head && get_page_unless_zero(page_head))) {
 169                unsigned long flags;
 170
 171                /*
 172                 * @page_head wasn't a dangling pointer but it may not
 173                 * be a head page anymore by the time we obtain the
 174                 * lock. That is ok as long as it can't be freed from
 175                 * under us.
 176                 */
 177                flags = compound_lock_irqsave(page_head);
 178                if (unlikely(!PageTail(page))) {
 179                        /* __split_huge_page_refcount run before us */
 180                        compound_unlock_irqrestore(page_head, flags);
 181                        if (put_page_testzero(page_head)) {
 182                                /*
 183                                 * The @page_head may have been freed
 184                                 * and reallocated as a compound page
 185                                 * of smaller order and then freed
 186                                 * again.  All we know is that it
 187                                 * cannot have become: a THP page, a
 188                                 * compound page of higher order, a
 189                                 * tail page.  That is because we
 190                                 * still hold the refcount of the
 191                                 * split THP tail and page_head was
 192                                 * the THP head before the split.
 193                                 */
 194                                if (PageHead(page_head))
 195                                        __put_compound_page(page_head);
 196                                else
 197                                        __put_single_page(page_head);
 198                        }
 199out_put_single:
 200                        if (put_page_testzero(page))
 201                                __put_single_page(page);
 202                        return;
 203                }
 204                VM_BUG_ON_PAGE(page_head != page->first_page, page);
 205                /*
 206                 * We can release the refcount taken by
 207                 * get_page_unless_zero() now that
 208                 * __split_huge_page_refcount() is blocked on the
 209                 * compound_lock.
 210                 */
 211                if (put_page_testzero(page_head))
 212                        VM_BUG_ON_PAGE(1, page_head);
 213                /* __split_huge_page_refcount will wait now */
 214                VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
 215                atomic_dec(&page->_mapcount);
 216                VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
 217                VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
 218                compound_unlock_irqrestore(page_head, flags);
 219
 220                if (put_page_testzero(page_head)) {
 221                        if (PageHead(page_head))
 222                                __put_compound_page(page_head);
 223                        else
 224                                __put_single_page(page_head);
 225                }
 226        } else {
 227                /* @page_head is a dangling pointer */
 228                VM_BUG_ON_PAGE(PageTail(page), page);
 229                goto out_put_single;
 230        }
 231}
 232
 233static void put_compound_page(struct page *page)
 234{
 235        struct page *page_head;
 236
 237        /*
 238         * We see the PageCompound set and PageTail not set, so @page maybe:
 239         *  1. hugetlbfs head page, or
 240         *  2. THP head page.
 241         */
 242        if (likely(!PageTail(page))) {
 243                if (put_page_testzero(page)) {
 244                        /*
 245                         * By the time all refcounts have been released
 246                         * split_huge_page cannot run anymore from under us.
 247                         */
 248                        if (PageHead(page))
 249                                __put_compound_page(page);
 250                        else
 251                                __put_single_page(page);
 252                }
 253                return;
 254        }
 255
 256        /*
 257         * We see the PageCompound set and PageTail set, so @page maybe:
 258         *  1. a tail hugetlbfs page, or
 259         *  2. a tail THP page, or
 260         *  3. a split THP page.
 261         *
 262         *  Case 3 is possible, as we may race with
 263         *  __split_huge_page_refcount tearing down a THP page.
 264         */
 265        page_head = compound_head_by_tail(page);
 266        if (!__compound_tail_refcounted(page_head))
 267                put_unrefcounted_compound_page(page_head, page);
 268        else
 269                put_refcounted_compound_page(page_head, page);
 270}
 271
 272void put_page(struct page *page)
 273{
 274        if (unlikely(PageCompound(page)))
 275                put_compound_page(page);
 276        else if (put_page_testzero(page))
 277                __put_single_page(page);
 278}
 279EXPORT_SYMBOL(put_page);
 280
 281/*
 282 * This function is exported but must not be called by anything other
 283 * than get_page(). It implements the slow path of get_page().
 284 */
 285bool __get_page_tail(struct page *page)
 286{
 287        /*
 288         * This takes care of get_page() if run on a tail page
 289         * returned by one of the get_user_pages/follow_page variants.
 290         * get_user_pages/follow_page itself doesn't need the compound
 291         * lock because it runs __get_page_tail_foll() under the
 292         * proper PT lock that already serializes against
 293         * split_huge_page().
 294         */
 295        unsigned long flags;
 296        bool got;
 297        struct page *page_head = compound_head(page);
 298
 299        /* Ref to put_compound_page() comment. */
 300        if (!__compound_tail_refcounted(page_head)) {
 301                smp_rmb();
 302                if (likely(PageTail(page))) {
 303                        /*
 304                         * This is a hugetlbfs page or a slab
 305                         * page. __split_huge_page_refcount
 306                         * cannot race here.
 307                         */
 308                        VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 309                        __get_page_tail_foll(page, true);
 310                        return true;
 311                } else {
 312                        /*
 313                         * __split_huge_page_refcount run
 314                         * before us, "page" was a THP
 315                         * tail. The split page_head has been
 316                         * freed and reallocated as slab or
 317                         * hugetlbfs page of smaller order
 318                         * (only possible if reallocated as
 319                         * slab on x86).
 320                         */
 321                        return false;
 322                }
 323        }
 324
 325        got = false;
 326        if (likely(page != page_head && get_page_unless_zero(page_head))) {
 327                /*
 328                 * page_head wasn't a dangling pointer but it
 329                 * may not be a head page anymore by the time
 330                 * we obtain the lock. That is ok as long as it
 331                 * can't be freed from under us.
 332                 */
 333                flags = compound_lock_irqsave(page_head);
 334                /* here __split_huge_page_refcount won't run anymore */
 335                if (likely(PageTail(page))) {
 336                        __get_page_tail_foll(page, false);
 337                        got = true;
 338                }
 339                compound_unlock_irqrestore(page_head, flags);
 340                if (unlikely(!got))
 341                        put_page(page_head);
 342        }
 343        return got;
 344}
 345EXPORT_SYMBOL(__get_page_tail);
 346
 347/**
 348 * put_pages_list() - release a list of pages
 349 * @pages: list of pages threaded on page->lru
 350 *
 351 * Release a list of pages which are strung together on page.lru.  Currently
 352 * used by read_cache_pages() and related error recovery code.
 353 */
 354void put_pages_list(struct list_head *pages)
 355{
 356        while (!list_empty(pages)) {
 357                struct page *victim;
 358
 359                victim = list_entry(pages->prev, struct page, lru);
 360                list_del(&victim->lru);
 361                page_cache_release(victim);
 362        }
 363}
 364EXPORT_SYMBOL(put_pages_list);
 365
 366/*
 367 * get_kernel_pages() - pin kernel pages in memory
 368 * @kiov:       An array of struct kvec structures
 369 * @nr_segs:    number of segments to pin
 370 * @write:      pinning for read/write, currently ignored
 371 * @pages:      array that receives pointers to the pages pinned.
 372 *              Should be at least nr_segs long.
 373 *
 374 * Returns number of pages pinned. This may be fewer than the number
 375 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 376 * were pinned, returns -errno. Each page returned must be released
 377 * with a put_page() call when it is finished with.
 378 */
 379int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 380                struct page **pages)
 381{
 382        int seg;
 383
 384        for (seg = 0; seg < nr_segs; seg++) {
 385                if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 386                        return seg;
 387
 388                pages[seg] = kmap_to_page(kiov[seg].iov_base);
 389                page_cache_get(pages[seg]);
 390        }
 391
 392        return seg;
 393}
 394EXPORT_SYMBOL_GPL(get_kernel_pages);
 395
 396/*
 397 * get_kernel_page() - pin a kernel page in memory
 398 * @start:      starting kernel address
 399 * @write:      pinning for read/write, currently ignored
 400 * @pages:      array that receives pointer to the page pinned.
 401 *              Must be at least nr_segs long.
 402 *
 403 * Returns 1 if page is pinned. If the page was not pinned, returns
 404 * -errno. The page returned must be released with a put_page() call
 405 * when it is finished with.
 406 */
 407int get_kernel_page(unsigned long start, int write, struct page **pages)
 408{
 409        const struct kvec kiov = {
 410                .iov_base = (void *)start,
 411                .iov_len = PAGE_SIZE
 412        };
 413
 414        return get_kernel_pages(&kiov, 1, write, pages);
 415}
 416EXPORT_SYMBOL_GPL(get_kernel_page);
 417
 418static void pagevec_lru_move_fn(struct pagevec *pvec,
 419        void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 420        void *arg)
 421{
 422        int i;
 423        struct zone *zone = NULL;
 424        struct lruvec *lruvec;
 425        unsigned long flags = 0;
 426
 427        for (i = 0; i < pagevec_count(pvec); i++) {
 428                struct page *page = pvec->pages[i];
 429                struct zone *pagezone = page_zone(page);
 430
 431                if (pagezone != zone) {
 432                        if (zone)
 433                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 434                        zone = pagezone;
 435                        spin_lock_irqsave(&zone->lru_lock, flags);
 436                }
 437
 438                lruvec = mem_cgroup_page_lruvec(page, zone);
 439                (*move_fn)(page, lruvec, arg);
 440        }
 441        if (zone)
 442                spin_unlock_irqrestore(&zone->lru_lock, flags);
 443        release_pages(pvec->pages, pvec->nr, pvec->cold);
 444        pagevec_reinit(pvec);
 445}
 446
 447static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 448                                 void *arg)
 449{
 450        int *pgmoved = arg;
 451
 452        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 453                enum lru_list lru = page_lru_base_type(page);
 454                list_move_tail(&page->lru, &lruvec->lists[lru]);
 455                (*pgmoved)++;
 456        }
 457}
 458
 459/*
 460 * pagevec_move_tail() must be called with IRQ disabled.
 461 * Otherwise this may cause nasty races.
 462 */
 463static void pagevec_move_tail(struct pagevec *pvec)
 464{
 465        int pgmoved = 0;
 466
 467        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 468        __count_vm_events(PGROTATED, pgmoved);
 469}
 470
 471/*
 472 * Writeback is about to end against a page which has been marked for immediate
 473 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 474 * inactive list.
 475 */
 476void rotate_reclaimable_page(struct page *page)
 477{
 478        if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
 479            !PageUnevictable(page) && PageLRU(page)) {
 480                struct pagevec *pvec;
 481                unsigned long flags;
 482
 483                page_cache_get(page);
 484                local_irq_save(flags);
 485                pvec = this_cpu_ptr(&lru_rotate_pvecs);
 486                if (!pagevec_add(pvec, page))
 487                        pagevec_move_tail(pvec);
 488                local_irq_restore(flags);
 489        }
 490}
 491
 492static void update_page_reclaim_stat(struct lruvec *lruvec,
 493                                     int file, int rotated)
 494{
 495        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 496
 497        reclaim_stat->recent_scanned[file]++;
 498        if (rotated)
 499                reclaim_stat->recent_rotated[file]++;
 500}
 501
 502static void __activate_page(struct page *page, struct lruvec *lruvec,
 503                            void *arg)
 504{
 505        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 506                int file = page_is_file_cache(page);
 507                int lru = page_lru_base_type(page);
 508
 509                del_page_from_lru_list(page, lruvec, lru);
 510                SetPageActive(page);
 511                lru += LRU_ACTIVE;
 512                add_page_to_lru_list(page, lruvec, lru);
 513                trace_mm_lru_activate(page);
 514
 515                __count_vm_event(PGACTIVATE);
 516                update_page_reclaim_stat(lruvec, file, 1);
 517        }
 518}
 519
 520#ifdef CONFIG_SMP
 521static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
 522
 523static void activate_page_drain(int cpu)
 524{
 525        struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 526
 527        if (pagevec_count(pvec))
 528                pagevec_lru_move_fn(pvec, __activate_page, NULL);
 529}
 530
 531static bool need_activate_page_drain(int cpu)
 532{
 533        return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
 534}
 535
 536void activate_page(struct page *page)
 537{
 538        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 539                struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 540
 541                page_cache_get(page);
 542                if (!pagevec_add(pvec, page))
 543                        pagevec_lru_move_fn(pvec, __activate_page, NULL);
 544                put_cpu_var(activate_page_pvecs);
 545        }
 546}
 547
 548#else
 549static inline void activate_page_drain(int cpu)
 550{
 551}
 552
 553static bool need_activate_page_drain(int cpu)
 554{
 555        return false;
 556}
 557
 558void activate_page(struct page *page)
 559{
 560        struct zone *zone = page_zone(page);
 561
 562        spin_lock_irq(&zone->lru_lock);
 563        __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
 564        spin_unlock_irq(&zone->lru_lock);
 565}
 566#endif
 567
 568static void __lru_cache_activate_page(struct page *page)
 569{
 570        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 571        int i;
 572
 573        /*
 574         * Search backwards on the optimistic assumption that the page being
 575         * activated has just been added to this pagevec. Note that only
 576         * the local pagevec is examined as a !PageLRU page could be in the
 577         * process of being released, reclaimed, migrated or on a remote
 578         * pagevec that is currently being drained. Furthermore, marking
 579         * a remote pagevec's page PageActive potentially hits a race where
 580         * a page is marked PageActive just after it is added to the inactive
 581         * list causing accounting errors and BUG_ON checks to trigger.
 582         */
 583        for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 584                struct page *pagevec_page = pvec->pages[i];
 585
 586                if (pagevec_page == page) {
 587                        SetPageActive(page);
 588                        break;
 589                }
 590        }
 591
 592        put_cpu_var(lru_add_pvec);
 593}
 594
 595/*
 596 * Mark a page as having seen activity.
 597 *
 598 * inactive,unreferenced        ->      inactive,referenced
 599 * inactive,referenced          ->      active,unreferenced
 600 * active,unreferenced          ->      active,referenced
 601 *
 602 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 603 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 604 */
 605void mark_page_accessed(struct page *page)
 606{
 607        if (!PageActive(page) && !PageUnevictable(page) &&
 608                        PageReferenced(page)) {
 609
 610                /*
 611                 * If the page is on the LRU, queue it for activation via
 612                 * activate_page_pvecs. Otherwise, assume the page is on a
 613                 * pagevec, mark it active and it'll be moved to the active
 614                 * LRU on the next drain.
 615                 */
 616                if (PageLRU(page))
 617                        activate_page(page);
 618                else
 619                        __lru_cache_activate_page(page);
 620                ClearPageReferenced(page);
 621                if (page_is_file_cache(page))
 622                        workingset_activation(page);
 623        } else if (!PageReferenced(page)) {
 624                SetPageReferenced(page);
 625        }
 626        if (page_is_idle(page))
 627                clear_page_idle(page);
 628}
 629EXPORT_SYMBOL(mark_page_accessed);
 630
 631static void __lru_cache_add(struct page *page)
 632{
 633        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 634
 635        page_cache_get(page);
 636        if (!pagevec_space(pvec))
 637                __pagevec_lru_add(pvec);
 638        pagevec_add(pvec, page);
 639        put_cpu_var(lru_add_pvec);
 640}
 641
 642/**
 643 * lru_cache_add: add a page to the page lists
 644 * @page: the page to add
 645 */
 646void lru_cache_add_anon(struct page *page)
 647{
 648        if (PageActive(page))
 649                ClearPageActive(page);
 650        __lru_cache_add(page);
 651}
 652
 653void lru_cache_add_file(struct page *page)
 654{
 655        if (PageActive(page))
 656                ClearPageActive(page);
 657        __lru_cache_add(page);
 658}
 659EXPORT_SYMBOL(lru_cache_add_file);
 660
 661/**
 662 * lru_cache_add - add a page to a page list
 663 * @page: the page to be added to the LRU.
 664 *
 665 * Queue the page for addition to the LRU via pagevec. The decision on whether
 666 * to add the page to the [in]active [file|anon] list is deferred until the
 667 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 668 * have the page added to the active list using mark_page_accessed().
 669 */
 670void lru_cache_add(struct page *page)
 671{
 672        VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 673        VM_BUG_ON_PAGE(PageLRU(page), page);
 674        __lru_cache_add(page);
 675}
 676
 677/**
 678 * add_page_to_unevictable_list - add a page to the unevictable list
 679 * @page:  the page to be added to the unevictable list
 680 *
 681 * Add page directly to its zone's unevictable list.  To avoid races with
 682 * tasks that might be making the page evictable, through eg. munlock,
 683 * munmap or exit, while it's not on the lru, we want to add the page
 684 * while it's locked or otherwise "invisible" to other tasks.  This is
 685 * difficult to do when using the pagevec cache, so bypass that.
 686 */
 687void add_page_to_unevictable_list(struct page *page)
 688{
 689        struct zone *zone = page_zone(page);
 690        struct lruvec *lruvec;
 691
 692        spin_lock_irq(&zone->lru_lock);
 693        lruvec = mem_cgroup_page_lruvec(page, zone);
 694        ClearPageActive(page);
 695        SetPageUnevictable(page);
 696        SetPageLRU(page);
 697        add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
 698        spin_unlock_irq(&zone->lru_lock);
 699}
 700
 701/**
 702 * lru_cache_add_active_or_unevictable
 703 * @page:  the page to be added to LRU
 704 * @vma:   vma in which page is mapped for determining reclaimability
 705 *
 706 * Place @page on the active or unevictable LRU list, depending on its
 707 * evictability.  Note that if the page is not evictable, it goes
 708 * directly back onto it's zone's unevictable list, it does NOT use a
 709 * per cpu pagevec.
 710 */
 711void lru_cache_add_active_or_unevictable(struct page *page,
 712                                         struct vm_area_struct *vma)
 713{
 714        VM_BUG_ON_PAGE(PageLRU(page), page);
 715
 716        if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
 717                SetPageActive(page);
 718                lru_cache_add(page);
 719                return;
 720        }
 721
 722        if (!TestSetPageMlocked(page)) {
 723                /*
 724                 * We use the irq-unsafe __mod_zone_page_stat because this
 725                 * counter is not modified from interrupt context, and the pte
 726                 * lock is held(spinlock), which implies preemption disabled.
 727                 */
 728                __mod_zone_page_state(page_zone(page), NR_MLOCK,
 729                                    hpage_nr_pages(page));
 730                count_vm_event(UNEVICTABLE_PGMLOCKED);
 731        }
 732        add_page_to_unevictable_list(page);
 733}
 734
 735/*
 736 * If the page can not be invalidated, it is moved to the
 737 * inactive list to speed up its reclaim.  It is moved to the
 738 * head of the list, rather than the tail, to give the flusher
 739 * threads some time to write it out, as this is much more
 740 * effective than the single-page writeout from reclaim.
 741 *
 742 * If the page isn't page_mapped and dirty/writeback, the page
 743 * could reclaim asap using PG_reclaim.
 744 *
 745 * 1. active, mapped page -> none
 746 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 747 * 3. inactive, mapped page -> none
 748 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 749 * 5. inactive, clean -> inactive, tail
 750 * 6. Others -> none
 751 *
 752 * In 4, why it moves inactive's head, the VM expects the page would
 753 * be write it out by flusher threads as this is much more effective
 754 * than the single-page writeout from reclaim.
 755 */
 756static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
 757                              void *arg)
 758{
 759        int lru, file;
 760        bool active;
 761
 762        if (!PageLRU(page))
 763                return;
 764
 765        if (PageUnevictable(page))
 766                return;
 767
 768        /* Some processes are using the page */
 769        if (page_mapped(page))
 770                return;
 771
 772        active = PageActive(page);
 773        file = page_is_file_cache(page);
 774        lru = page_lru_base_type(page);
 775
 776        del_page_from_lru_list(page, lruvec, lru + active);
 777        ClearPageActive(page);
 778        ClearPageReferenced(page);
 779        add_page_to_lru_list(page, lruvec, lru);
 780
 781        if (PageWriteback(page) || PageDirty(page)) {
 782                /*
 783                 * PG_reclaim could be raced with end_page_writeback
 784                 * It can make readahead confusing.  But race window
 785                 * is _really_ small and  it's non-critical problem.
 786                 */
 787                SetPageReclaim(page);
 788        } else {
 789                /*
 790                 * The page's writeback ends up during pagevec
 791                 * We moves tha page into tail of inactive.
 792                 */
 793                list_move_tail(&page->lru, &lruvec->lists[lru]);
 794                __count_vm_event(PGROTATED);
 795        }
 796
 797        if (active)
 798                __count_vm_event(PGDEACTIVATE);
 799        update_page_reclaim_stat(lruvec, file, 0);
 800}
 801
 802/*
 803 * Drain pages out of the cpu's pagevecs.
 804 * Either "cpu" is the current CPU, and preemption has already been
 805 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 806 */
 807void lru_add_drain_cpu(int cpu)
 808{
 809        struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
 810
 811        if (pagevec_count(pvec))
 812                __pagevec_lru_add(pvec);
 813
 814        pvec = &per_cpu(lru_rotate_pvecs, cpu);
 815        if (pagevec_count(pvec)) {
 816                unsigned long flags;
 817
 818                /* No harm done if a racing interrupt already did this */
 819                local_irq_save(flags);
 820                pagevec_move_tail(pvec);
 821                local_irq_restore(flags);
 822        }
 823
 824        pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
 825        if (pagevec_count(pvec))
 826                pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 827
 828        activate_page_drain(cpu);
 829}
 830
 831/**
 832 * deactivate_file_page - forcefully deactivate a file page
 833 * @page: page to deactivate
 834 *
 835 * This function hints the VM that @page is a good reclaim candidate,
 836 * for example if its invalidation fails due to the page being dirty
 837 * or under writeback.
 838 */
 839void deactivate_file_page(struct page *page)
 840{
 841        /*
 842         * In a workload with many unevictable page such as mprotect,
 843         * unevictable page deactivation for accelerating reclaim is pointless.
 844         */
 845        if (PageUnevictable(page))
 846                return;
 847
 848        if (likely(get_page_unless_zero(page))) {
 849                struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
 850
 851                if (!pagevec_add(pvec, page))
 852                        pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 853                put_cpu_var(lru_deactivate_file_pvecs);
 854        }
 855}
 856
 857void lru_add_drain(void)
 858{
 859        lru_add_drain_cpu(get_cpu());
 860        put_cpu();
 861}
 862
 863static void lru_add_drain_per_cpu(struct work_struct *dummy)
 864{
 865        lru_add_drain();
 866}
 867
 868static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 869
 870void lru_add_drain_all(void)
 871{
 872        static DEFINE_MUTEX(lock);
 873        static struct cpumask has_work;
 874        int cpu;
 875
 876        mutex_lock(&lock);
 877        get_online_cpus();
 878        cpumask_clear(&has_work);
 879
 880        for_each_online_cpu(cpu) {
 881                struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 882
 883                if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
 884                    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
 885                    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
 886                    need_activate_page_drain(cpu)) {
 887                        INIT_WORK(work, lru_add_drain_per_cpu);
 888                        schedule_work_on(cpu, work);
 889                        cpumask_set_cpu(cpu, &has_work);
 890                }
 891        }
 892
 893        for_each_cpu(cpu, &has_work)
 894                flush_work(&per_cpu(lru_add_drain_work, cpu));
 895
 896        put_online_cpus();
 897        mutex_unlock(&lock);
 898}
 899
 900/**
 901 * release_pages - batched page_cache_release()
 902 * @pages: array of pages to release
 903 * @nr: number of pages
 904 * @cold: whether the pages are cache cold
 905 *
 906 * Decrement the reference count on all the pages in @pages.  If it
 907 * fell to zero, remove the page from the LRU and free it.
 908 */
 909void release_pages(struct page **pages, int nr, bool cold)
 910{
 911        int i;
 912        LIST_HEAD(pages_to_free);
 913        struct zone *zone = NULL;
 914        struct lruvec *lruvec;
 915        unsigned long uninitialized_var(flags);
 916        unsigned int uninitialized_var(lock_batch);
 917
 918        for (i = 0; i < nr; i++) {
 919                struct page *page = pages[i];
 920
 921                if (unlikely(PageCompound(page))) {
 922                        if (zone) {
 923                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 924                                zone = NULL;
 925                        }
 926                        put_compound_page(page);
 927                        continue;
 928                }
 929
 930                /*
 931                 * Make sure the IRQ-safe lock-holding time does not get
 932                 * excessive with a continuous string of pages from the
 933                 * same zone. The lock is held only if zone != NULL.
 934                 */
 935                if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
 936                        spin_unlock_irqrestore(&zone->lru_lock, flags);
 937                        zone = NULL;
 938                }
 939
 940                if (!put_page_testzero(page))
 941                        continue;
 942
 943                if (PageLRU(page)) {
 944                        struct zone *pagezone = page_zone(page);
 945
 946                        if (pagezone != zone) {
 947                                if (zone)
 948                                        spin_unlock_irqrestore(&zone->lru_lock,
 949                                                                        flags);
 950                                lock_batch = 0;
 951                                zone = pagezone;
 952                                spin_lock_irqsave(&zone->lru_lock, flags);
 953                        }
 954
 955                        lruvec = mem_cgroup_page_lruvec(page, zone);
 956                        VM_BUG_ON_PAGE(!PageLRU(page), page);
 957                        __ClearPageLRU(page);
 958                        del_page_from_lru_list(page, lruvec, page_off_lru(page));
 959                }
 960
 961                /* Clear Active bit in case of parallel mark_page_accessed */
 962                __ClearPageActive(page);
 963
 964                list_add(&page->lru, &pages_to_free);
 965        }
 966        if (zone)
 967                spin_unlock_irqrestore(&zone->lru_lock, flags);
 968
 969        mem_cgroup_uncharge_list(&pages_to_free);
 970        free_hot_cold_page_list(&pages_to_free, cold);
 971}
 972EXPORT_SYMBOL(release_pages);
 973
 974/*
 975 * The pages which we're about to release may be in the deferred lru-addition
 976 * queues.  That would prevent them from really being freed right now.  That's
 977 * OK from a correctness point of view but is inefficient - those pages may be
 978 * cache-warm and we want to give them back to the page allocator ASAP.
 979 *
 980 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 981 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 982 * mutual recursion.
 983 */
 984void __pagevec_release(struct pagevec *pvec)
 985{
 986        lru_add_drain();
 987        release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 988        pagevec_reinit(pvec);
 989}
 990EXPORT_SYMBOL(__pagevec_release);
 991
 992#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 993/* used by __split_huge_page_refcount() */
 994void lru_add_page_tail(struct page *page, struct page *page_tail,
 995                       struct lruvec *lruvec, struct list_head *list)
 996{
 997        const int file = 0;
 998
 999        VM_BUG_ON_PAGE(!PageHead(page), page);
1000        VM_BUG_ON_PAGE(PageCompound(page_tail), page);
1001        VM_BUG_ON_PAGE(PageLRU(page_tail), page);
1002        VM_BUG_ON(NR_CPUS != 1 &&
1003                  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
1004
1005        if (!list)
1006                SetPageLRU(page_tail);
1007
1008        if (likely(PageLRU(page)))
1009                list_add_tail(&page_tail->lru, &page->lru);
1010        else if (list) {
1011                /* page reclaim is reclaiming a huge page */
1012                get_page(page_tail);
1013                list_add_tail(&page_tail->lru, list);
1014        } else {
1015                struct list_head *list_head;
1016                /*
1017                 * Head page has not yet been counted, as an hpage,
1018                 * so we must account for each subpage individually.
1019                 *
1020                 * Use the standard add function to put page_tail on the list,
1021                 * but then correct its position so they all end up in order.
1022                 */
1023                add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1024                list_head = page_tail->lru.prev;
1025                list_move_tail(&page_tail->lru, list_head);
1026        }
1027
1028        if (!PageUnevictable(page))
1029                update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1030}
1031#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1032
1033static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1034                                 void *arg)
1035{
1036        int file = page_is_file_cache(page);
1037        int active = PageActive(page);
1038        enum lru_list lru = page_lru(page);
1039
1040        VM_BUG_ON_PAGE(PageLRU(page), page);
1041
1042        SetPageLRU(page);
1043        add_page_to_lru_list(page, lruvec, lru);
1044        update_page_reclaim_stat(lruvec, file, active);
1045        trace_mm_lru_insertion(page, lru);
1046}
1047
1048/*
1049 * Add the passed pages to the LRU, then drop the caller's refcount
1050 * on them.  Reinitialises the caller's pagevec.
1051 */
1052void __pagevec_lru_add(struct pagevec *pvec)
1053{
1054        pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1055}
1056EXPORT_SYMBOL(__pagevec_lru_add);
1057
1058/**
1059 * pagevec_lookup_entries - gang pagecache lookup
1060 * @pvec:       Where the resulting entries are placed
1061 * @mapping:    The address_space to search
1062 * @start:      The starting entry index
1063 * @nr_entries: The maximum number of entries
1064 * @indices:    The cache indices corresponding to the entries in @pvec
1065 *
1066 * pagevec_lookup_entries() will search for and return a group of up
1067 * to @nr_entries pages and shadow entries in the mapping.  All
1068 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1069 * reference against actual pages in @pvec.
1070 *
1071 * The search returns a group of mapping-contiguous entries with
1072 * ascending indexes.  There may be holes in the indices due to
1073 * not-present entries.
1074 *
1075 * pagevec_lookup_entries() returns the number of entries which were
1076 * found.
1077 */
1078unsigned pagevec_lookup_entries(struct pagevec *pvec,
1079                                struct address_space *mapping,
1080                                pgoff_t start, unsigned nr_pages,
1081                                pgoff_t *indices)
1082{
1083        pvec->nr = find_get_entries(mapping, start, nr_pages,
1084                                    pvec->pages, indices);
1085        return pagevec_count(pvec);
1086}
1087
1088/**
1089 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1090 * @pvec:       The pagevec to prune
1091 *
1092 * pagevec_lookup_entries() fills both pages and exceptional radix
1093 * tree entries into the pagevec.  This function prunes all
1094 * exceptionals from @pvec without leaving holes, so that it can be
1095 * passed on to page-only pagevec operations.
1096 */
1097void pagevec_remove_exceptionals(struct pagevec *pvec)
1098{
1099        int i, j;
1100
1101        for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1102                struct page *page = pvec->pages[i];
1103                if (!radix_tree_exceptional_entry(page))
1104                        pvec->pages[j++] = page;
1105        }
1106        pvec->nr = j;
1107}
1108
1109/**
1110 * pagevec_lookup - gang pagecache lookup
1111 * @pvec:       Where the resulting pages are placed
1112 * @mapping:    The address_space to search
1113 * @start:      The starting page index
1114 * @nr_pages:   The maximum number of pages
1115 *
1116 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1117 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1118 * reference against the pages in @pvec.
1119 *
1120 * The search returns a group of mapping-contiguous pages with ascending
1121 * indexes.  There may be holes in the indices due to not-present pages.
1122 *
1123 * pagevec_lookup() returns the number of pages which were found.
1124 */
1125unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1126                pgoff_t start, unsigned nr_pages)
1127{
1128        pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1129        return pagevec_count(pvec);
1130}
1131EXPORT_SYMBOL(pagevec_lookup);
1132
1133unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1134                pgoff_t *index, int tag, unsigned nr_pages)
1135{
1136        pvec->nr = find_get_pages_tag(mapping, index, tag,
1137                                        nr_pages, pvec->pages);
1138        return pagevec_count(pvec);
1139}
1140EXPORT_SYMBOL(pagevec_lookup_tag);
1141
1142/*
1143 * Perform any setup for the swap system
1144 */
1145void __init swap_setup(void)
1146{
1147        unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1148#ifdef CONFIG_SWAP
1149        int i;
1150
1151        for (i = 0; i < MAX_SWAPFILES; i++)
1152                spin_lock_init(&swapper_spaces[i].tree_lock);
1153#endif
1154
1155        /* Use a smaller cluster for small-memory machines */
1156        if (megs < 16)
1157                page_cluster = 2;
1158        else
1159                page_cluster = 3;
1160        /*
1161         * Right now other parts of the system means that we
1162         * _really_ don't want to cluster much more
1163         */
1164}
1165