linux/mm/zbud.c
<<
>>
Prefs
   1/*
   2 * zbud.c
   3 *
   4 * Copyright (C) 2013, Seth Jennings, IBM
   5 *
   6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
   7 *
   8 * zbud is an special purpose allocator for storing compressed pages.  Contrary
   9 * to what its name may suggest, zbud is not a buddy allocator, but rather an
  10 * allocator that "buddies" two compressed pages together in a single memory
  11 * page.
  12 *
  13 * While this design limits storage density, it has simple and deterministic
  14 * reclaim properties that make it preferable to a higher density approach when
  15 * reclaim will be used.
  16 *
  17 * zbud works by storing compressed pages, or "zpages", together in pairs in a
  18 * single memory page called a "zbud page".  The first buddy is "left
  19 * justified" at the beginning of the zbud page, and the last buddy is "right
  20 * justified" at the end of the zbud page.  The benefit is that if either
  21 * buddy is freed, the freed buddy space, coalesced with whatever slack space
  22 * that existed between the buddies, results in the largest possible free region
  23 * within the zbud page.
  24 *
  25 * zbud also provides an attractive lower bound on density. The ratio of zpages
  26 * to zbud pages can not be less than 1.  This ensures that zbud can never "do
  27 * harm" by using more pages to store zpages than the uncompressed zpages would
  28 * have used on their own.
  29 *
  30 * zbud pages are divided into "chunks".  The size of the chunks is fixed at
  31 * compile time and determined by NCHUNKS_ORDER below.  Dividing zbud pages
  32 * into chunks allows organizing unbuddied zbud pages into a manageable number
  33 * of unbuddied lists according to the number of free chunks available in the
  34 * zbud page.
  35 *
  36 * The zbud API differs from that of conventional allocators in that the
  37 * allocation function, zbud_alloc(), returns an opaque handle to the user,
  38 * not a dereferenceable pointer.  The user must map the handle using
  39 * zbud_map() in order to get a usable pointer by which to access the
  40 * allocation data and unmap the handle with zbud_unmap() when operations
  41 * on the allocation data are complete.
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/atomic.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/module.h>
  50#include <linux/preempt.h>
  51#include <linux/slab.h>
  52#include <linux/spinlock.h>
  53#include <linux/zbud.h>
  54#include <linux/zpool.h>
  55
  56/*****************
  57 * Structures
  58*****************/
  59/*
  60 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
  61 * adjusting internal fragmentation.  It also determines the number of
  62 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
  63 * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk
  64 * in allocated page is occupied by zbud header, NCHUNKS will be calculated to
  65 * 63 which shows the max number of free chunks in zbud page, also there will be
  66 * 63 freelists per pool.
  67 */
  68#define NCHUNKS_ORDER   6
  69
  70#define CHUNK_SHIFT     (PAGE_SHIFT - NCHUNKS_ORDER)
  71#define CHUNK_SIZE      (1 << CHUNK_SHIFT)
  72#define ZHDR_SIZE_ALIGNED CHUNK_SIZE
  73#define NCHUNKS         ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
  74
  75/**
  76 * struct zbud_pool - stores metadata for each zbud pool
  77 * @lock:       protects all pool fields and first|last_chunk fields of any
  78 *              zbud page in the pool
  79 * @unbuddied:  array of lists tracking zbud pages that only contain one buddy;
  80 *              the lists each zbud page is added to depends on the size of
  81 *              its free region.
  82 * @buddied:    list tracking the zbud pages that contain two buddies;
  83 *              these zbud pages are full
  84 * @lru:        list tracking the zbud pages in LRU order by most recently
  85 *              added buddy.
  86 * @pages_nr:   number of zbud pages in the pool.
  87 * @ops:        pointer to a structure of user defined operations specified at
  88 *              pool creation time.
  89 *
  90 * This structure is allocated at pool creation time and maintains metadata
  91 * pertaining to a particular zbud pool.
  92 */
  93struct zbud_pool {
  94        spinlock_t lock;
  95        struct list_head unbuddied[NCHUNKS];
  96        struct list_head buddied;
  97        struct list_head lru;
  98        u64 pages_nr;
  99        const struct zbud_ops *ops;
 100#ifdef CONFIG_ZPOOL
 101        struct zpool *zpool;
 102        const struct zpool_ops *zpool_ops;
 103#endif
 104};
 105
 106/*
 107 * struct zbud_header - zbud page metadata occupying the first chunk of each
 108 *                      zbud page.
 109 * @buddy:      links the zbud page into the unbuddied/buddied lists in the pool
 110 * @lru:        links the zbud page into the lru list in the pool
 111 * @first_chunks:       the size of the first buddy in chunks, 0 if free
 112 * @last_chunks:        the size of the last buddy in chunks, 0 if free
 113 */
 114struct zbud_header {
 115        struct list_head buddy;
 116        struct list_head lru;
 117        unsigned int first_chunks;
 118        unsigned int last_chunks;
 119        bool under_reclaim;
 120};
 121
 122/*****************
 123 * zpool
 124 ****************/
 125
 126#ifdef CONFIG_ZPOOL
 127
 128static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle)
 129{
 130        if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
 131                return pool->zpool_ops->evict(pool->zpool, handle);
 132        else
 133                return -ENOENT;
 134}
 135
 136static const struct zbud_ops zbud_zpool_ops = {
 137        .evict =        zbud_zpool_evict
 138};
 139
 140static void *zbud_zpool_create(char *name, gfp_t gfp,
 141                               const struct zpool_ops *zpool_ops,
 142                               struct zpool *zpool)
 143{
 144        struct zbud_pool *pool;
 145
 146        pool = zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL);
 147        if (pool) {
 148                pool->zpool = zpool;
 149                pool->zpool_ops = zpool_ops;
 150        }
 151        return pool;
 152}
 153
 154static void zbud_zpool_destroy(void *pool)
 155{
 156        zbud_destroy_pool(pool);
 157}
 158
 159static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 160                        unsigned long *handle)
 161{
 162        return zbud_alloc(pool, size, gfp, handle);
 163}
 164static void zbud_zpool_free(void *pool, unsigned long handle)
 165{
 166        zbud_free(pool, handle);
 167}
 168
 169static int zbud_zpool_shrink(void *pool, unsigned int pages,
 170                        unsigned int *reclaimed)
 171{
 172        unsigned int total = 0;
 173        int ret = -EINVAL;
 174
 175        while (total < pages) {
 176                ret = zbud_reclaim_page(pool, 8);
 177                if (ret < 0)
 178                        break;
 179                total++;
 180        }
 181
 182        if (reclaimed)
 183                *reclaimed = total;
 184
 185        return ret;
 186}
 187
 188static void *zbud_zpool_map(void *pool, unsigned long handle,
 189                        enum zpool_mapmode mm)
 190{
 191        return zbud_map(pool, handle);
 192}
 193static void zbud_zpool_unmap(void *pool, unsigned long handle)
 194{
 195        zbud_unmap(pool, handle);
 196}
 197
 198static u64 zbud_zpool_total_size(void *pool)
 199{
 200        return zbud_get_pool_size(pool) * PAGE_SIZE;
 201}
 202
 203static struct zpool_driver zbud_zpool_driver = {
 204        .type =         "zbud",
 205        .owner =        THIS_MODULE,
 206        .create =       zbud_zpool_create,
 207        .destroy =      zbud_zpool_destroy,
 208        .malloc =       zbud_zpool_malloc,
 209        .free =         zbud_zpool_free,
 210        .shrink =       zbud_zpool_shrink,
 211        .map =          zbud_zpool_map,
 212        .unmap =        zbud_zpool_unmap,
 213        .total_size =   zbud_zpool_total_size,
 214};
 215
 216MODULE_ALIAS("zpool-zbud");
 217#endif /* CONFIG_ZPOOL */
 218
 219/*****************
 220 * Helpers
 221*****************/
 222/* Just to make the code easier to read */
 223enum buddy {
 224        FIRST,
 225        LAST
 226};
 227
 228/* Converts an allocation size in bytes to size in zbud chunks */
 229static int size_to_chunks(size_t size)
 230{
 231        return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
 232}
 233
 234#define for_each_unbuddied_list(_iter, _begin) \
 235        for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
 236
 237/* Initializes the zbud header of a newly allocated zbud page */
 238static struct zbud_header *init_zbud_page(struct page *page)
 239{
 240        struct zbud_header *zhdr = page_address(page);
 241        zhdr->first_chunks = 0;
 242        zhdr->last_chunks = 0;
 243        INIT_LIST_HEAD(&zhdr->buddy);
 244        INIT_LIST_HEAD(&zhdr->lru);
 245        zhdr->under_reclaim = 0;
 246        return zhdr;
 247}
 248
 249/* Resets the struct page fields and frees the page */
 250static void free_zbud_page(struct zbud_header *zhdr)
 251{
 252        __free_page(virt_to_page(zhdr));
 253}
 254
 255/*
 256 * Encodes the handle of a particular buddy within a zbud page
 257 * Pool lock should be held as this function accesses first|last_chunks
 258 */
 259static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
 260{
 261        unsigned long handle;
 262
 263        /*
 264         * For now, the encoded handle is actually just the pointer to the data
 265         * but this might not always be the case.  A little information hiding.
 266         * Add CHUNK_SIZE to the handle if it is the first allocation to jump
 267         * over the zbud header in the first chunk.
 268         */
 269        handle = (unsigned long)zhdr;
 270        if (bud == FIRST)
 271                /* skip over zbud header */
 272                handle += ZHDR_SIZE_ALIGNED;
 273        else /* bud == LAST */
 274                handle += PAGE_SIZE - (zhdr->last_chunks  << CHUNK_SHIFT);
 275        return handle;
 276}
 277
 278/* Returns the zbud page where a given handle is stored */
 279static struct zbud_header *handle_to_zbud_header(unsigned long handle)
 280{
 281        return (struct zbud_header *)(handle & PAGE_MASK);
 282}
 283
 284/* Returns the number of free chunks in a zbud page */
 285static int num_free_chunks(struct zbud_header *zhdr)
 286{
 287        /*
 288         * Rather than branch for different situations, just use the fact that
 289         * free buddies have a length of zero to simplify everything.
 290         */
 291        return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
 292}
 293
 294/*****************
 295 * API Functions
 296*****************/
 297/**
 298 * zbud_create_pool() - create a new zbud pool
 299 * @gfp:        gfp flags when allocating the zbud pool structure
 300 * @ops:        user-defined operations for the zbud pool
 301 *
 302 * Return: pointer to the new zbud pool or NULL if the metadata allocation
 303 * failed.
 304 */
 305struct zbud_pool *zbud_create_pool(gfp_t gfp, const struct zbud_ops *ops)
 306{
 307        struct zbud_pool *pool;
 308        int i;
 309
 310        pool = kzalloc(sizeof(struct zbud_pool), gfp);
 311        if (!pool)
 312                return NULL;
 313        spin_lock_init(&pool->lock);
 314        for_each_unbuddied_list(i, 0)
 315                INIT_LIST_HEAD(&pool->unbuddied[i]);
 316        INIT_LIST_HEAD(&pool->buddied);
 317        INIT_LIST_HEAD(&pool->lru);
 318        pool->pages_nr = 0;
 319        pool->ops = ops;
 320        return pool;
 321}
 322
 323/**
 324 * zbud_destroy_pool() - destroys an existing zbud pool
 325 * @pool:       the zbud pool to be destroyed
 326 *
 327 * The pool should be emptied before this function is called.
 328 */
 329void zbud_destroy_pool(struct zbud_pool *pool)
 330{
 331        kfree(pool);
 332}
 333
 334/**
 335 * zbud_alloc() - allocates a region of a given size
 336 * @pool:       zbud pool from which to allocate
 337 * @size:       size in bytes of the desired allocation
 338 * @gfp:        gfp flags used if the pool needs to grow
 339 * @handle:     handle of the new allocation
 340 *
 341 * This function will attempt to find a free region in the pool large enough to
 342 * satisfy the allocation request.  A search of the unbuddied lists is
 343 * performed first. If no suitable free region is found, then a new page is
 344 * allocated and added to the pool to satisfy the request.
 345 *
 346 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
 347 * as zbud pool pages.
 348 *
 349 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
 350 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
 351 * a new page.
 352 */
 353int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp,
 354                        unsigned long *handle)
 355{
 356        int chunks, i, freechunks;
 357        struct zbud_header *zhdr = NULL;
 358        enum buddy bud;
 359        struct page *page;
 360
 361        if (!size || (gfp & __GFP_HIGHMEM))
 362                return -EINVAL;
 363        if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
 364                return -ENOSPC;
 365        chunks = size_to_chunks(size);
 366        spin_lock(&pool->lock);
 367
 368        /* First, try to find an unbuddied zbud page. */
 369        zhdr = NULL;
 370        for_each_unbuddied_list(i, chunks) {
 371                if (!list_empty(&pool->unbuddied[i])) {
 372                        zhdr = list_first_entry(&pool->unbuddied[i],
 373                                        struct zbud_header, buddy);
 374                        list_del(&zhdr->buddy);
 375                        if (zhdr->first_chunks == 0)
 376                                bud = FIRST;
 377                        else
 378                                bud = LAST;
 379                        goto found;
 380                }
 381        }
 382
 383        /* Couldn't find unbuddied zbud page, create new one */
 384        spin_unlock(&pool->lock);
 385        page = alloc_page(gfp);
 386        if (!page)
 387                return -ENOMEM;
 388        spin_lock(&pool->lock);
 389        pool->pages_nr++;
 390        zhdr = init_zbud_page(page);
 391        bud = FIRST;
 392
 393found:
 394        if (bud == FIRST)
 395                zhdr->first_chunks = chunks;
 396        else
 397                zhdr->last_chunks = chunks;
 398
 399        if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
 400                /* Add to unbuddied list */
 401                freechunks = num_free_chunks(zhdr);
 402                list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
 403        } else {
 404                /* Add to buddied list */
 405                list_add(&zhdr->buddy, &pool->buddied);
 406        }
 407
 408        /* Add/move zbud page to beginning of LRU */
 409        if (!list_empty(&zhdr->lru))
 410                list_del(&zhdr->lru);
 411        list_add(&zhdr->lru, &pool->lru);
 412
 413        *handle = encode_handle(zhdr, bud);
 414        spin_unlock(&pool->lock);
 415
 416        return 0;
 417}
 418
 419/**
 420 * zbud_free() - frees the allocation associated with the given handle
 421 * @pool:       pool in which the allocation resided
 422 * @handle:     handle associated with the allocation returned by zbud_alloc()
 423 *
 424 * In the case that the zbud page in which the allocation resides is under
 425 * reclaim, as indicated by the PG_reclaim flag being set, this function
 426 * only sets the first|last_chunks to 0.  The page is actually freed
 427 * once both buddies are evicted (see zbud_reclaim_page() below).
 428 */
 429void zbud_free(struct zbud_pool *pool, unsigned long handle)
 430{
 431        struct zbud_header *zhdr;
 432        int freechunks;
 433
 434        spin_lock(&pool->lock);
 435        zhdr = handle_to_zbud_header(handle);
 436
 437        /* If first buddy, handle will be page aligned */
 438        if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
 439                zhdr->last_chunks = 0;
 440        else
 441                zhdr->first_chunks = 0;
 442
 443        if (zhdr->under_reclaim) {
 444                /* zbud page is under reclaim, reclaim will free */
 445                spin_unlock(&pool->lock);
 446                return;
 447        }
 448
 449        /* Remove from existing buddy list */
 450        list_del(&zhdr->buddy);
 451
 452        if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
 453                /* zbud page is empty, free */
 454                list_del(&zhdr->lru);
 455                free_zbud_page(zhdr);
 456                pool->pages_nr--;
 457        } else {
 458                /* Add to unbuddied list */
 459                freechunks = num_free_chunks(zhdr);
 460                list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
 461        }
 462
 463        spin_unlock(&pool->lock);
 464}
 465
 466#define list_tail_entry(ptr, type, member) \
 467        list_entry((ptr)->prev, type, member)
 468
 469/**
 470 * zbud_reclaim_page() - evicts allocations from a pool page and frees it
 471 * @pool:       pool from which a page will attempt to be evicted
 472 * @retires:    number of pages on the LRU list for which eviction will
 473 *              be attempted before failing
 474 *
 475 * zbud reclaim is different from normal system reclaim in that the reclaim is
 476 * done from the bottom, up.  This is because only the bottom layer, zbud, has
 477 * information on how the allocations are organized within each zbud page. This
 478 * has the potential to create interesting locking situations between zbud and
 479 * the user, however.
 480 *
 481 * To avoid these, this is how zbud_reclaim_page() should be called:
 482
 483 * The user detects a page should be reclaimed and calls zbud_reclaim_page().
 484 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
 485 * the user-defined eviction handler with the pool and handle as arguments.
 486 *
 487 * If the handle can not be evicted, the eviction handler should return
 488 * non-zero. zbud_reclaim_page() will add the zbud page back to the
 489 * appropriate list and try the next zbud page on the LRU up to
 490 * a user defined number of retries.
 491 *
 492 * If the handle is successfully evicted, the eviction handler should
 493 * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
 494 * contains logic to delay freeing the page if the page is under reclaim,
 495 * as indicated by the setting of the PG_reclaim flag on the underlying page.
 496 *
 497 * If all buddies in the zbud page are successfully evicted, then the
 498 * zbud page can be freed.
 499 *
 500 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
 501 * no pages to evict or an eviction handler is not registered, -EAGAIN if
 502 * the retry limit was hit.
 503 */
 504int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
 505{
 506        int i, ret, freechunks;
 507        struct zbud_header *zhdr;
 508        unsigned long first_handle = 0, last_handle = 0;
 509
 510        spin_lock(&pool->lock);
 511        if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
 512                        retries == 0) {
 513                spin_unlock(&pool->lock);
 514                return -EINVAL;
 515        }
 516        for (i = 0; i < retries; i++) {
 517                zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru);
 518                list_del(&zhdr->lru);
 519                list_del(&zhdr->buddy);
 520                /* Protect zbud page against free */
 521                zhdr->under_reclaim = true;
 522                /*
 523                 * We need encode the handles before unlocking, since we can
 524                 * race with free that will set (first|last)_chunks to 0
 525                 */
 526                first_handle = 0;
 527                last_handle = 0;
 528                if (zhdr->first_chunks)
 529                        first_handle = encode_handle(zhdr, FIRST);
 530                if (zhdr->last_chunks)
 531                        last_handle = encode_handle(zhdr, LAST);
 532                spin_unlock(&pool->lock);
 533
 534                /* Issue the eviction callback(s) */
 535                if (first_handle) {
 536                        ret = pool->ops->evict(pool, first_handle);
 537                        if (ret)
 538                                goto next;
 539                }
 540                if (last_handle) {
 541                        ret = pool->ops->evict(pool, last_handle);
 542                        if (ret)
 543                                goto next;
 544                }
 545next:
 546                spin_lock(&pool->lock);
 547                zhdr->under_reclaim = false;
 548                if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
 549                        /*
 550                         * Both buddies are now free, free the zbud page and
 551                         * return success.
 552                         */
 553                        free_zbud_page(zhdr);
 554                        pool->pages_nr--;
 555                        spin_unlock(&pool->lock);
 556                        return 0;
 557                } else if (zhdr->first_chunks == 0 ||
 558                                zhdr->last_chunks == 0) {
 559                        /* add to unbuddied list */
 560                        freechunks = num_free_chunks(zhdr);
 561                        list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
 562                } else {
 563                        /* add to buddied list */
 564                        list_add(&zhdr->buddy, &pool->buddied);
 565                }
 566
 567                /* add to beginning of LRU */
 568                list_add(&zhdr->lru, &pool->lru);
 569        }
 570        spin_unlock(&pool->lock);
 571        return -EAGAIN;
 572}
 573
 574/**
 575 * zbud_map() - maps the allocation associated with the given handle
 576 * @pool:       pool in which the allocation resides
 577 * @handle:     handle associated with the allocation to be mapped
 578 *
 579 * While trivial for zbud, the mapping functions for others allocators
 580 * implementing this allocation API could have more complex information encoded
 581 * in the handle and could create temporary mappings to make the data
 582 * accessible to the user.
 583 *
 584 * Returns: a pointer to the mapped allocation
 585 */
 586void *zbud_map(struct zbud_pool *pool, unsigned long handle)
 587{
 588        return (void *)(handle);
 589}
 590
 591/**
 592 * zbud_unmap() - maps the allocation associated with the given handle
 593 * @pool:       pool in which the allocation resides
 594 * @handle:     handle associated with the allocation to be unmapped
 595 */
 596void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
 597{
 598}
 599
 600/**
 601 * zbud_get_pool_size() - gets the zbud pool size in pages
 602 * @pool:       pool whose size is being queried
 603 *
 604 * Returns: size in pages of the given pool.  The pool lock need not be
 605 * taken to access pages_nr.
 606 */
 607u64 zbud_get_pool_size(struct zbud_pool *pool)
 608{
 609        return pool->pages_nr;
 610}
 611
 612static int __init init_zbud(void)
 613{
 614        /* Make sure the zbud header will fit in one chunk */
 615        BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
 616        pr_info("loaded\n");
 617
 618#ifdef CONFIG_ZPOOL
 619        zpool_register_driver(&zbud_zpool_driver);
 620#endif
 621
 622        return 0;
 623}
 624
 625static void __exit exit_zbud(void)
 626{
 627#ifdef CONFIG_ZPOOL
 628        zpool_unregister_driver(&zbud_zpool_driver);
 629#endif
 630
 631        pr_info("unloaded\n");
 632}
 633
 634module_init(init_zbud);
 635module_exit(exit_zbud);
 636
 637MODULE_LICENSE("GPL");
 638MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
 639MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");
 640