linux/net/sched/sch_fq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   3 *
   4 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
   5 *
   6 *      This program is free software; you can redistribute it and/or
   7 *      modify it under the terms of the GNU General Public License
   8 *      as published by the Free Software Foundation; either version
   9 *      2 of the License, or (at your option) any later version.
  10 *
  11 *  Meant to be mostly used for locally generated traffic :
  12 *  Fast classification depends on skb->sk being set before reaching us.
  13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  14 *  All packets belonging to a socket are considered as a 'flow'.
  15 *
  16 *  Flows are dynamically allocated and stored in a hash table of RB trees
  17 *  They are also part of one Round Robin 'queues' (new or old flows)
  18 *
  19 *  Burst avoidance (aka pacing) capability :
  20 *
  21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  22 *  bunch of packets, and this packet scheduler adds delay between
  23 *  packets to respect rate limitation.
  24 *
  25 *  enqueue() :
  26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  27 *     If non existent flow, create it, add it to the tree.
  28 *     Add skb to the per flow list of skb (fifo).
  29 *   - Use a special fifo for high prio packets
  30 *
  31 *  dequeue() : serves flows in Round Robin
  32 *  Note : When a flow becomes empty, we do not immediately remove it from
  33 *  rb trees, for performance reasons (its expected to send additional packets,
  34 *  or SLAB cache will reuse socket for another flow)
  35 */
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/jiffies.h>
  41#include <linux/string.h>
  42#include <linux/in.h>
  43#include <linux/errno.h>
  44#include <linux/init.h>
  45#include <linux/skbuff.h>
  46#include <linux/slab.h>
  47#include <linux/rbtree.h>
  48#include <linux/hash.h>
  49#include <linux/prefetch.h>
  50#include <linux/vmalloc.h>
  51#include <net/netlink.h>
  52#include <net/pkt_sched.h>
  53#include <net/sock.h>
  54#include <net/tcp_states.h>
  55#include <net/tcp.h>
  56
  57/*
  58 * Per flow structure, dynamically allocated
  59 */
  60struct fq_flow {
  61        struct sk_buff  *head;          /* list of skbs for this flow : first skb */
  62        union {
  63                struct sk_buff *tail;   /* last skb in the list */
  64                unsigned long  age;     /* jiffies when flow was emptied, for gc */
  65        };
  66        struct rb_node  fq_node;        /* anchor in fq_root[] trees */
  67        struct sock     *sk;
  68        int             qlen;           /* number of packets in flow queue */
  69        int             credit;
  70        u32             socket_hash;    /* sk_hash */
  71        struct fq_flow *next;           /* next pointer in RR lists, or &detached */
  72
  73        struct rb_node  rate_node;      /* anchor in q->delayed tree */
  74        u64             time_next_packet;
  75};
  76
  77struct fq_flow_head {
  78        struct fq_flow *first;
  79        struct fq_flow *last;
  80};
  81
  82struct fq_sched_data {
  83        struct fq_flow_head new_flows;
  84
  85        struct fq_flow_head old_flows;
  86
  87        struct rb_root  delayed;        /* for rate limited flows */
  88        u64             time_next_delayed_flow;
  89
  90        struct fq_flow  internal;       /* for non classified or high prio packets */
  91        u32             quantum;
  92        u32             initial_quantum;
  93        u32             flow_refill_delay;
  94        u32             flow_max_rate;  /* optional max rate per flow */
  95        u32             flow_plimit;    /* max packets per flow */
  96        u32             orphan_mask;    /* mask for orphaned skb */
  97        struct rb_root  *fq_root;
  98        u8              rate_enable;
  99        u8              fq_trees_log;
 100
 101        u32             flows;
 102        u32             inactive_flows;
 103        u32             throttled_flows;
 104
 105        u64             stat_gc_flows;
 106        u64             stat_internal_packets;
 107        u64             stat_tcp_retrans;
 108        u64             stat_throttled;
 109        u64             stat_flows_plimit;
 110        u64             stat_pkts_too_long;
 111        u64             stat_allocation_errors;
 112        struct qdisc_watchdog watchdog;
 113};
 114
 115/* special value to mark a detached flow (not on old/new list) */
 116static struct fq_flow detached, throttled;
 117
 118static void fq_flow_set_detached(struct fq_flow *f)
 119{
 120        f->next = &detached;
 121        f->age = jiffies;
 122}
 123
 124static bool fq_flow_is_detached(const struct fq_flow *f)
 125{
 126        return f->next == &detached;
 127}
 128
 129static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 130{
 131        struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 132
 133        while (*p) {
 134                struct fq_flow *aux;
 135
 136                parent = *p;
 137                aux = container_of(parent, struct fq_flow, rate_node);
 138                if (f->time_next_packet >= aux->time_next_packet)
 139                        p = &parent->rb_right;
 140                else
 141                        p = &parent->rb_left;
 142        }
 143        rb_link_node(&f->rate_node, parent, p);
 144        rb_insert_color(&f->rate_node, &q->delayed);
 145        q->throttled_flows++;
 146        q->stat_throttled++;
 147
 148        f->next = &throttled;
 149        if (q->time_next_delayed_flow > f->time_next_packet)
 150                q->time_next_delayed_flow = f->time_next_packet;
 151}
 152
 153
 154static struct kmem_cache *fq_flow_cachep __read_mostly;
 155
 156static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 157{
 158        if (head->first)
 159                head->last->next = flow;
 160        else
 161                head->first = flow;
 162        head->last = flow;
 163        flow->next = NULL;
 164}
 165
 166/* limit number of collected flows per round */
 167#define FQ_GC_MAX 8
 168#define FQ_GC_AGE (3*HZ)
 169
 170static bool fq_gc_candidate(const struct fq_flow *f)
 171{
 172        return fq_flow_is_detached(f) &&
 173               time_after(jiffies, f->age + FQ_GC_AGE);
 174}
 175
 176static void fq_gc(struct fq_sched_data *q,
 177                  struct rb_root *root,
 178                  struct sock *sk)
 179{
 180        struct fq_flow *f, *tofree[FQ_GC_MAX];
 181        struct rb_node **p, *parent;
 182        int fcnt = 0;
 183
 184        p = &root->rb_node;
 185        parent = NULL;
 186        while (*p) {
 187                parent = *p;
 188
 189                f = container_of(parent, struct fq_flow, fq_node);
 190                if (f->sk == sk)
 191                        break;
 192
 193                if (fq_gc_candidate(f)) {
 194                        tofree[fcnt++] = f;
 195                        if (fcnt == FQ_GC_MAX)
 196                                break;
 197                }
 198
 199                if (f->sk > sk)
 200                        p = &parent->rb_right;
 201                else
 202                        p = &parent->rb_left;
 203        }
 204
 205        q->flows -= fcnt;
 206        q->inactive_flows -= fcnt;
 207        q->stat_gc_flows += fcnt;
 208        while (fcnt) {
 209                struct fq_flow *f = tofree[--fcnt];
 210
 211                rb_erase(&f->fq_node, root);
 212                kmem_cache_free(fq_flow_cachep, f);
 213        }
 214}
 215
 216static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 217{
 218        struct rb_node **p, *parent;
 219        struct sock *sk = skb->sk;
 220        struct rb_root *root;
 221        struct fq_flow *f;
 222
 223        /* warning: no starvation prevention... */
 224        if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
 225                return &q->internal;
 226
 227        /* SYNACK messages are attached to a listener socket.
 228         * 1) They are not part of a 'flow' yet
 229         * 2) We do not want to rate limit them (eg SYNFLOOD attack),
 230         *    especially if the listener set SO_MAX_PACING_RATE
 231         * 3) We pretend they are orphaned
 232         */
 233        if (!sk || sk->sk_state == TCP_LISTEN) {
 234                unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 235
 236                /* By forcing low order bit to 1, we make sure to not
 237                 * collide with a local flow (socket pointers are word aligned)
 238                 */
 239                sk = (struct sock *)((hash << 1) | 1UL);
 240                skb_orphan(skb);
 241        }
 242
 243        root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
 244
 245        if (q->flows >= (2U << q->fq_trees_log) &&
 246            q->inactive_flows > q->flows/2)
 247                fq_gc(q, root, sk);
 248
 249        p = &root->rb_node;
 250        parent = NULL;
 251        while (*p) {
 252                parent = *p;
 253
 254                f = container_of(parent, struct fq_flow, fq_node);
 255                if (f->sk == sk) {
 256                        /* socket might have been reallocated, so check
 257                         * if its sk_hash is the same.
 258                         * It not, we need to refill credit with
 259                         * initial quantum
 260                         */
 261                        if (unlikely(skb->sk &&
 262                                     f->socket_hash != sk->sk_hash)) {
 263                                f->credit = q->initial_quantum;
 264                                f->socket_hash = sk->sk_hash;
 265                                f->time_next_packet = 0ULL;
 266                        }
 267                        return f;
 268                }
 269                if (f->sk > sk)
 270                        p = &parent->rb_right;
 271                else
 272                        p = &parent->rb_left;
 273        }
 274
 275        f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 276        if (unlikely(!f)) {
 277                q->stat_allocation_errors++;
 278                return &q->internal;
 279        }
 280        fq_flow_set_detached(f);
 281        f->sk = sk;
 282        if (skb->sk)
 283                f->socket_hash = sk->sk_hash;
 284        f->credit = q->initial_quantum;
 285
 286        rb_link_node(&f->fq_node, parent, p);
 287        rb_insert_color(&f->fq_node, root);
 288
 289        q->flows++;
 290        q->inactive_flows++;
 291        return f;
 292}
 293
 294
 295/* remove one skb from head of flow queue */
 296static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
 297{
 298        struct sk_buff *skb = flow->head;
 299
 300        if (skb) {
 301                flow->head = skb->next;
 302                skb->next = NULL;
 303                flow->qlen--;
 304                qdisc_qstats_backlog_dec(sch, skb);
 305                sch->q.qlen--;
 306        }
 307        return skb;
 308}
 309
 310/* We might add in the future detection of retransmits
 311 * For the time being, just return false
 312 */
 313static bool skb_is_retransmit(struct sk_buff *skb)
 314{
 315        return false;
 316}
 317
 318/* add skb to flow queue
 319 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
 320 * We special case tcp retransmits to be transmitted before other packets.
 321 * We rely on fact that TCP retransmits are unlikely, so we do not waste
 322 * a separate queue or a pointer.
 323 * head->  [retrans pkt 1]
 324 *         [retrans pkt 2]
 325 *         [ normal pkt 1]
 326 *         [ normal pkt 2]
 327 *         [ normal pkt 3]
 328 * tail->  [ normal pkt 4]
 329 */
 330static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 331{
 332        struct sk_buff *prev, *head = flow->head;
 333
 334        skb->next = NULL;
 335        if (!head) {
 336                flow->head = skb;
 337                flow->tail = skb;
 338                return;
 339        }
 340        if (likely(!skb_is_retransmit(skb))) {
 341                flow->tail->next = skb;
 342                flow->tail = skb;
 343                return;
 344        }
 345
 346        /* This skb is a tcp retransmit,
 347         * find the last retrans packet in the queue
 348         */
 349        prev = NULL;
 350        while (skb_is_retransmit(head)) {
 351                prev = head;
 352                head = head->next;
 353                if (!head)
 354                        break;
 355        }
 356        if (!prev) { /* no rtx packet in queue, become the new head */
 357                skb->next = flow->head;
 358                flow->head = skb;
 359        } else {
 360                if (prev == flow->tail)
 361                        flow->tail = skb;
 362                else
 363                        skb->next = prev->next;
 364                prev->next = skb;
 365        }
 366}
 367
 368static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 369{
 370        struct fq_sched_data *q = qdisc_priv(sch);
 371        struct fq_flow *f;
 372
 373        if (unlikely(sch->q.qlen >= sch->limit))
 374                return qdisc_drop(skb, sch);
 375
 376        f = fq_classify(skb, q);
 377        if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 378                q->stat_flows_plimit++;
 379                return qdisc_drop(skb, sch);
 380        }
 381
 382        f->qlen++;
 383        if (skb_is_retransmit(skb))
 384                q->stat_tcp_retrans++;
 385        qdisc_qstats_backlog_inc(sch, skb);
 386        if (fq_flow_is_detached(f)) {
 387                fq_flow_add_tail(&q->new_flows, f);
 388                if (time_after(jiffies, f->age + q->flow_refill_delay))
 389                        f->credit = max_t(u32, f->credit, q->quantum);
 390                q->inactive_flows--;
 391        }
 392
 393        /* Note: this overwrites f->age */
 394        flow_queue_add(f, skb);
 395
 396        if (unlikely(f == &q->internal)) {
 397                q->stat_internal_packets++;
 398        }
 399        sch->q.qlen++;
 400
 401        return NET_XMIT_SUCCESS;
 402}
 403
 404static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 405{
 406        struct rb_node *p;
 407
 408        if (q->time_next_delayed_flow > now)
 409                return;
 410
 411        q->time_next_delayed_flow = ~0ULL;
 412        while ((p = rb_first(&q->delayed)) != NULL) {
 413                struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
 414
 415                if (f->time_next_packet > now) {
 416                        q->time_next_delayed_flow = f->time_next_packet;
 417                        break;
 418                }
 419                rb_erase(p, &q->delayed);
 420                q->throttled_flows--;
 421                fq_flow_add_tail(&q->old_flows, f);
 422        }
 423}
 424
 425static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 426{
 427        struct fq_sched_data *q = qdisc_priv(sch);
 428        u64 now = ktime_get_ns();
 429        struct fq_flow_head *head;
 430        struct sk_buff *skb;
 431        struct fq_flow *f;
 432        u32 rate;
 433
 434        skb = fq_dequeue_head(sch, &q->internal);
 435        if (skb)
 436                goto out;
 437        fq_check_throttled(q, now);
 438begin:
 439        head = &q->new_flows;
 440        if (!head->first) {
 441                head = &q->old_flows;
 442                if (!head->first) {
 443                        if (q->time_next_delayed_flow != ~0ULL)
 444                                qdisc_watchdog_schedule_ns(&q->watchdog,
 445                                                           q->time_next_delayed_flow,
 446                                                           false);
 447                        return NULL;
 448                }
 449        }
 450        f = head->first;
 451
 452        if (f->credit <= 0) {
 453                f->credit += q->quantum;
 454                head->first = f->next;
 455                fq_flow_add_tail(&q->old_flows, f);
 456                goto begin;
 457        }
 458
 459        skb = f->head;
 460        if (unlikely(skb && now < f->time_next_packet &&
 461                     !skb_is_tcp_pure_ack(skb))) {
 462                head->first = f->next;
 463                fq_flow_set_throttled(q, f);
 464                goto begin;
 465        }
 466
 467        skb = fq_dequeue_head(sch, f);
 468        if (!skb) {
 469                head->first = f->next;
 470                /* force a pass through old_flows to prevent starvation */
 471                if ((head == &q->new_flows) && q->old_flows.first) {
 472                        fq_flow_add_tail(&q->old_flows, f);
 473                } else {
 474                        fq_flow_set_detached(f);
 475                        q->inactive_flows++;
 476                }
 477                goto begin;
 478        }
 479        prefetch(&skb->end);
 480        f->credit -= qdisc_pkt_len(skb);
 481
 482        if (f->credit > 0 || !q->rate_enable)
 483                goto out;
 484
 485        /* Do not pace locally generated ack packets */
 486        if (skb_is_tcp_pure_ack(skb))
 487                goto out;
 488
 489        rate = q->flow_max_rate;
 490        if (skb->sk)
 491                rate = min(skb->sk->sk_pacing_rate, rate);
 492
 493        if (rate != ~0U) {
 494                u32 plen = max(qdisc_pkt_len(skb), q->quantum);
 495                u64 len = (u64)plen * NSEC_PER_SEC;
 496
 497                if (likely(rate))
 498                        do_div(len, rate);
 499                /* Since socket rate can change later,
 500                 * clamp the delay to 1 second.
 501                 * Really, providers of too big packets should be fixed !
 502                 */
 503                if (unlikely(len > NSEC_PER_SEC)) {
 504                        len = NSEC_PER_SEC;
 505                        q->stat_pkts_too_long++;
 506                }
 507
 508                f->time_next_packet = now + len;
 509        }
 510out:
 511        qdisc_bstats_update(sch, skb);
 512        return skb;
 513}
 514
 515static void fq_reset(struct Qdisc *sch)
 516{
 517        struct fq_sched_data *q = qdisc_priv(sch);
 518        struct rb_root *root;
 519        struct sk_buff *skb;
 520        struct rb_node *p;
 521        struct fq_flow *f;
 522        unsigned int idx;
 523
 524        while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
 525                kfree_skb(skb);
 526
 527        if (!q->fq_root)
 528                return;
 529
 530        for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 531                root = &q->fq_root[idx];
 532                while ((p = rb_first(root)) != NULL) {
 533                        f = container_of(p, struct fq_flow, fq_node);
 534                        rb_erase(p, root);
 535
 536                        while ((skb = fq_dequeue_head(sch, f)) != NULL)
 537                                kfree_skb(skb);
 538
 539                        kmem_cache_free(fq_flow_cachep, f);
 540                }
 541        }
 542        q->new_flows.first      = NULL;
 543        q->old_flows.first      = NULL;
 544        q->delayed              = RB_ROOT;
 545        q->flows                = 0;
 546        q->inactive_flows       = 0;
 547        q->throttled_flows      = 0;
 548}
 549
 550static void fq_rehash(struct fq_sched_data *q,
 551                      struct rb_root *old_array, u32 old_log,
 552                      struct rb_root *new_array, u32 new_log)
 553{
 554        struct rb_node *op, **np, *parent;
 555        struct rb_root *oroot, *nroot;
 556        struct fq_flow *of, *nf;
 557        int fcnt = 0;
 558        u32 idx;
 559
 560        for (idx = 0; idx < (1U << old_log); idx++) {
 561                oroot = &old_array[idx];
 562                while ((op = rb_first(oroot)) != NULL) {
 563                        rb_erase(op, oroot);
 564                        of = container_of(op, struct fq_flow, fq_node);
 565                        if (fq_gc_candidate(of)) {
 566                                fcnt++;
 567                                kmem_cache_free(fq_flow_cachep, of);
 568                                continue;
 569                        }
 570                        nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
 571
 572                        np = &nroot->rb_node;
 573                        parent = NULL;
 574                        while (*np) {
 575                                parent = *np;
 576
 577                                nf = container_of(parent, struct fq_flow, fq_node);
 578                                BUG_ON(nf->sk == of->sk);
 579
 580                                if (nf->sk > of->sk)
 581                                        np = &parent->rb_right;
 582                                else
 583                                        np = &parent->rb_left;
 584                        }
 585
 586                        rb_link_node(&of->fq_node, parent, np);
 587                        rb_insert_color(&of->fq_node, nroot);
 588                }
 589        }
 590        q->flows -= fcnt;
 591        q->inactive_flows -= fcnt;
 592        q->stat_gc_flows += fcnt;
 593}
 594
 595static void *fq_alloc_node(size_t sz, int node)
 596{
 597        void *ptr;
 598
 599        ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
 600        if (!ptr)
 601                ptr = vmalloc_node(sz, node);
 602        return ptr;
 603}
 604
 605static void fq_free(void *addr)
 606{
 607        kvfree(addr);
 608}
 609
 610static int fq_resize(struct Qdisc *sch, u32 log)
 611{
 612        struct fq_sched_data *q = qdisc_priv(sch);
 613        struct rb_root *array;
 614        void *old_fq_root;
 615        u32 idx;
 616
 617        if (q->fq_root && log == q->fq_trees_log)
 618                return 0;
 619
 620        /* If XPS was setup, we can allocate memory on right NUMA node */
 621        array = fq_alloc_node(sizeof(struct rb_root) << log,
 622                              netdev_queue_numa_node_read(sch->dev_queue));
 623        if (!array)
 624                return -ENOMEM;
 625
 626        for (idx = 0; idx < (1U << log); idx++)
 627                array[idx] = RB_ROOT;
 628
 629        sch_tree_lock(sch);
 630
 631        old_fq_root = q->fq_root;
 632        if (old_fq_root)
 633                fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 634
 635        q->fq_root = array;
 636        q->fq_trees_log = log;
 637
 638        sch_tree_unlock(sch);
 639
 640        fq_free(old_fq_root);
 641
 642        return 0;
 643}
 644
 645static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 646        [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
 647        [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
 648        [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
 649        [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
 650        [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
 651        [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
 652        [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
 653        [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
 654        [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
 655};
 656
 657static int fq_change(struct Qdisc *sch, struct nlattr *opt)
 658{
 659        struct fq_sched_data *q = qdisc_priv(sch);
 660        struct nlattr *tb[TCA_FQ_MAX + 1];
 661        int err, drop_count = 0;
 662        u32 fq_log;
 663
 664        if (!opt)
 665                return -EINVAL;
 666
 667        err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
 668        if (err < 0)
 669                return err;
 670
 671        sch_tree_lock(sch);
 672
 673        fq_log = q->fq_trees_log;
 674
 675        if (tb[TCA_FQ_BUCKETS_LOG]) {
 676                u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 677
 678                if (nval >= 1 && nval <= ilog2(256*1024))
 679                        fq_log = nval;
 680                else
 681                        err = -EINVAL;
 682        }
 683        if (tb[TCA_FQ_PLIMIT])
 684                sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 685
 686        if (tb[TCA_FQ_FLOW_PLIMIT])
 687                q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 688
 689        if (tb[TCA_FQ_QUANTUM]) {
 690                u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 691
 692                if (quantum > 0)
 693                        q->quantum = quantum;
 694                else
 695                        err = -EINVAL;
 696        }
 697
 698        if (tb[TCA_FQ_INITIAL_QUANTUM])
 699                q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 700
 701        if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 702                pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
 703                                    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
 704
 705        if (tb[TCA_FQ_FLOW_MAX_RATE])
 706                q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 707
 708        if (tb[TCA_FQ_RATE_ENABLE]) {
 709                u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 710
 711                if (enable <= 1)
 712                        q->rate_enable = enable;
 713                else
 714                        err = -EINVAL;
 715        }
 716
 717        if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
 718                u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
 719
 720                q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
 721        }
 722
 723        if (tb[TCA_FQ_ORPHAN_MASK])
 724                q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
 725
 726        if (!err) {
 727                sch_tree_unlock(sch);
 728                err = fq_resize(sch, fq_log);
 729                sch_tree_lock(sch);
 730        }
 731        while (sch->q.qlen > sch->limit) {
 732                struct sk_buff *skb = fq_dequeue(sch);
 733
 734                if (!skb)
 735                        break;
 736                kfree_skb(skb);
 737                drop_count++;
 738        }
 739        qdisc_tree_decrease_qlen(sch, drop_count);
 740
 741        sch_tree_unlock(sch);
 742        return err;
 743}
 744
 745static void fq_destroy(struct Qdisc *sch)
 746{
 747        struct fq_sched_data *q = qdisc_priv(sch);
 748
 749        fq_reset(sch);
 750        fq_free(q->fq_root);
 751        qdisc_watchdog_cancel(&q->watchdog);
 752}
 753
 754static int fq_init(struct Qdisc *sch, struct nlattr *opt)
 755{
 756        struct fq_sched_data *q = qdisc_priv(sch);
 757        int err;
 758
 759        sch->limit              = 10000;
 760        q->flow_plimit          = 100;
 761        q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
 762        q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
 763        q->flow_refill_delay    = msecs_to_jiffies(40);
 764        q->flow_max_rate        = ~0U;
 765        q->rate_enable          = 1;
 766        q->new_flows.first      = NULL;
 767        q->old_flows.first      = NULL;
 768        q->delayed              = RB_ROOT;
 769        q->fq_root              = NULL;
 770        q->fq_trees_log         = ilog2(1024);
 771        q->orphan_mask          = 1024 - 1;
 772        qdisc_watchdog_init(&q->watchdog, sch);
 773
 774        if (opt)
 775                err = fq_change(sch, opt);
 776        else
 777                err = fq_resize(sch, q->fq_trees_log);
 778
 779        return err;
 780}
 781
 782static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 783{
 784        struct fq_sched_data *q = qdisc_priv(sch);
 785        struct nlattr *opts;
 786
 787        opts = nla_nest_start(skb, TCA_OPTIONS);
 788        if (opts == NULL)
 789                goto nla_put_failure;
 790
 791        /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
 792
 793        if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 794            nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 795            nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 796            nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 797            nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 798            nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
 799            nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
 800                        jiffies_to_usecs(q->flow_refill_delay)) ||
 801            nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
 802            nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
 803                goto nla_put_failure;
 804
 805        return nla_nest_end(skb, opts);
 806
 807nla_put_failure:
 808        return -1;
 809}
 810
 811static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 812{
 813        struct fq_sched_data *q = qdisc_priv(sch);
 814        u64 now = ktime_get_ns();
 815        struct tc_fq_qd_stats st = {
 816                .gc_flows               = q->stat_gc_flows,
 817                .highprio_packets       = q->stat_internal_packets,
 818                .tcp_retrans            = q->stat_tcp_retrans,
 819                .throttled              = q->stat_throttled,
 820                .flows_plimit           = q->stat_flows_plimit,
 821                .pkts_too_long          = q->stat_pkts_too_long,
 822                .allocation_errors      = q->stat_allocation_errors,
 823                .flows                  = q->flows,
 824                .inactive_flows         = q->inactive_flows,
 825                .throttled_flows        = q->throttled_flows,
 826                .time_next_delayed_flow = q->time_next_delayed_flow - now,
 827        };
 828
 829        return gnet_stats_copy_app(d, &st, sizeof(st));
 830}
 831
 832static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
 833        .id             =       "fq",
 834        .priv_size      =       sizeof(struct fq_sched_data),
 835
 836        .enqueue        =       fq_enqueue,
 837        .dequeue        =       fq_dequeue,
 838        .peek           =       qdisc_peek_dequeued,
 839        .init           =       fq_init,
 840        .reset          =       fq_reset,
 841        .destroy        =       fq_destroy,
 842        .change         =       fq_change,
 843        .dump           =       fq_dump,
 844        .dump_stats     =       fq_dump_stats,
 845        .owner          =       THIS_MODULE,
 846};
 847
 848static int __init fq_module_init(void)
 849{
 850        int ret;
 851
 852        fq_flow_cachep = kmem_cache_create("fq_flow_cache",
 853                                           sizeof(struct fq_flow),
 854                                           0, 0, NULL);
 855        if (!fq_flow_cachep)
 856                return -ENOMEM;
 857
 858        ret = register_qdisc(&fq_qdisc_ops);
 859        if (ret)
 860                kmem_cache_destroy(fq_flow_cachep);
 861        return ret;
 862}
 863
 864static void __exit fq_module_exit(void)
 865{
 866        unregister_qdisc(&fq_qdisc_ops);
 867        kmem_cache_destroy(fq_flow_cachep);
 868}
 869
 870module_init(fq_module_init)
 871module_exit(fq_module_exit)
 872MODULE_AUTHOR("Eric Dumazet");
 873MODULE_LICENSE("GPL");
 874