linux/arch/cris/arch-v32/drivers/axisflashmap.c
<<
>>
Prefs
   1/*
   2 * Physical mapping layer for MTD using the Axis partitiontable format
   3 *
   4 * Copyright (c) 2001-2007 Axis Communications AB
   5 *
   6 * This file is under the GPL.
   7 *
   8 * First partition is always sector 0 regardless of if we find a partitiontable
   9 * or not. In the start of the next sector, there can be a partitiontable that
  10 * tells us what other partitions to define. If there isn't, we use a default
  11 * partition split defined below.
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/kernel.h>
  18#include <linux/init.h>
  19#include <linux/slab.h>
  20
  21#include <linux/mtd/concat.h>
  22#include <linux/mtd/map.h>
  23#include <linux/mtd/mtd.h>
  24#include <linux/mtd/mtdram.h>
  25#include <linux/mtd/partitions.h>
  26
  27#include <asm/axisflashmap.h>
  28#include <asm/mmu.h>
  29
  30#define MEM_CSE0_SIZE (0x04000000)
  31#define MEM_CSE1_SIZE (0x04000000)
  32
  33#define FLASH_UNCACHED_ADDR  KSEG_E
  34#define FLASH_CACHED_ADDR    KSEG_F
  35
  36#define PAGESIZE (512)
  37
  38#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
  39#define flash_data __u8
  40#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
  41#define flash_data __u16
  42#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
  43#define flash_data __u32
  44#endif
  45
  46/* From head.S */
  47extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
  48extern unsigned long romfs_start, romfs_length;
  49extern unsigned long nand_boot; /* 1 when booted from nand flash */
  50
  51struct partition_name {
  52        char name[6];
  53};
  54
  55/* The master mtd for the entire flash. */
  56struct mtd_info* axisflash_mtd = NULL;
  57
  58/* Map driver functions. */
  59
  60static map_word flash_read(struct map_info *map, unsigned long ofs)
  61{
  62        map_word tmp;
  63        tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
  64        return tmp;
  65}
  66
  67static void flash_copy_from(struct map_info *map, void *to,
  68                            unsigned long from, ssize_t len)
  69{
  70        memcpy(to, (void *)(map->map_priv_1 + from), len);
  71}
  72
  73static void flash_write(struct map_info *map, map_word d, unsigned long adr)
  74{
  75        *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
  76}
  77
  78/*
  79 * The map for chip select e0.
  80 *
  81 * We run into tricky coherence situations if we mix cached with uncached
  82 * accesses to we only use the uncached version here.
  83 *
  84 * The size field is the total size where the flash chips may be mapped on the
  85 * chip select. MTD probes should find all devices there and it does not matter
  86 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
  87 * probes will ignore them.
  88 *
  89 * The start address in map_priv_1 is in virtual memory so we cannot use
  90 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
  91 * address of cse0.
  92 */
  93static struct map_info map_cse0 = {
  94        .name = "cse0",
  95        .size = MEM_CSE0_SIZE,
  96        .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
  97        .read = flash_read,
  98        .copy_from = flash_copy_from,
  99        .write = flash_write,
 100        .map_priv_1 = FLASH_UNCACHED_ADDR
 101};
 102
 103/*
 104 * The map for chip select e1.
 105 *
 106 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
 107 * address, but there isn't.
 108 */
 109static struct map_info map_cse1 = {
 110        .name = "cse1",
 111        .size = MEM_CSE1_SIZE,
 112        .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 113        .read = flash_read,
 114        .copy_from = flash_copy_from,
 115        .write = flash_write,
 116        .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
 117};
 118
 119#define MAX_PARTITIONS                  7
 120#ifdef CONFIG_ETRAX_NANDBOOT
 121#define NUM_DEFAULT_PARTITIONS          4
 122#define DEFAULT_ROOTFS_PARTITION_NO     2
 123#define DEFAULT_MEDIA_SIZE              0x2000000 /* 32 megs */
 124#else
 125#define NUM_DEFAULT_PARTITIONS          3
 126#define DEFAULT_ROOTFS_PARTITION_NO     (-1)
 127#define DEFAULT_MEDIA_SIZE              0x800000 /* 8 megs */
 128#endif
 129
 130#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
 131#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
 132#endif
 133
 134/* Initialize the ones normally used. */
 135static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
 136        {
 137                .name = "part0",
 138                .size = CONFIG_ETRAX_PTABLE_SECTOR,
 139                .offset = 0
 140        },
 141        {
 142                .name = "part1",
 143                .size = 0,
 144                .offset = 0
 145        },
 146        {
 147                .name = "part2",
 148                .size = 0,
 149                .offset = 0
 150        },
 151        {
 152                .name = "part3",
 153                .size = 0,
 154                .offset = 0
 155        },
 156        {
 157                .name = "part4",
 158                .size = 0,
 159                .offset = 0
 160        },
 161        {
 162                .name = "part5",
 163                .size = 0,
 164                .offset = 0
 165        },
 166        {
 167                .name = "part6",
 168                .size = 0,
 169                .offset = 0
 170        },
 171};
 172
 173
 174/* If no partition-table was found, we use this default-set.
 175 * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
 176 * likely the size of one flash block and "filesystem"-partition needs
 177 * to be >=5 blocks to be able to use JFFS.
 178 */
 179static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
 180        {
 181                .name = "boot firmware",
 182                .size = CONFIG_ETRAX_PTABLE_SECTOR,
 183                .offset = 0
 184        },
 185        {
 186                .name = "kernel",
 187                .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
 188                .offset = CONFIG_ETRAX_PTABLE_SECTOR
 189        },
 190#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
 191#ifdef CONFIG_ETRAX_NANDBOOT
 192        {
 193                .name = "rootfs",
 194                .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
 195                .offset = FILESYSTEM_SECTOR
 196        },
 197#undef FILESYSTEM_SECTOR
 198#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
 199#endif
 200        {
 201                .name = "rwfs",
 202                .size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
 203                .offset = FILESYSTEM_SECTOR
 204        }
 205};
 206
 207#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 208/* Main flash device */
 209static struct mtd_partition main_partition = {
 210        .name = "main",
 211        .size = 0,
 212        .offset = 0
 213};
 214#endif
 215
 216/* Auxiliary partition if we find another flash */
 217static struct mtd_partition aux_partition = {
 218        .name = "aux",
 219        .size = 0,
 220        .offset = 0
 221};
 222
 223/*
 224 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
 225 * chips in that order (because the amd_flash-driver is faster).
 226 */
 227static struct mtd_info *probe_cs(struct map_info *map_cs)
 228{
 229        struct mtd_info *mtd_cs = NULL;
 230
 231        printk(KERN_INFO
 232               "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
 233               map_cs->name, map_cs->size, map_cs->map_priv_1);
 234
 235#ifdef CONFIG_MTD_CFI
 236        mtd_cs = do_map_probe("cfi_probe", map_cs);
 237#endif
 238#ifdef CONFIG_MTD_JEDECPROBE
 239        if (!mtd_cs)
 240                mtd_cs = do_map_probe("jedec_probe", map_cs);
 241#endif
 242
 243        return mtd_cs;
 244}
 245
 246/*
 247 * Probe each chip select individually for flash chips. If there are chips on
 248 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
 249 * so that MTD partitions can cross chip boundries.
 250 *
 251 * The only known restriction to how you can mount your chips is that each
 252 * chip select must hold similar flash chips. But you need external hardware
 253 * to do that anyway and you can put totally different chips on cse0 and cse1
 254 * so it isn't really much of a restriction.
 255 */
 256extern struct mtd_info* __init crisv32_nand_flash_probe (void);
 257static struct mtd_info *flash_probe(void)
 258{
 259        struct mtd_info *mtd_cse0;
 260        struct mtd_info *mtd_cse1;
 261        struct mtd_info *mtd_total;
 262        struct mtd_info *mtds[2];
 263        int count = 0;
 264
 265        if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
 266                mtds[count++] = mtd_cse0;
 267        if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
 268                mtds[count++] = mtd_cse1;
 269
 270        if (!mtd_cse0 && !mtd_cse1) {
 271                /* No chip found. */
 272                return NULL;
 273        }
 274
 275        if (count > 1) {
 276                /* Since the concatenation layer adds a small overhead we
 277                 * could try to figure out if the chips in cse0 and cse1 are
 278                 * identical and reprobe the whole cse0+cse1 window. But since
 279                 * flash chips are slow, the overhead is relatively small.
 280                 * So we use the MTD concatenation layer instead of further
 281                 * complicating the probing procedure.
 282                 */
 283                mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
 284                if (!mtd_total) {
 285                        printk(KERN_ERR "%s and %s: Concatenation failed!\n",
 286                                map_cse0.name, map_cse1.name);
 287
 288                        /* The best we can do now is to only use what we found
 289                         * at cse0. */
 290                        mtd_total = mtd_cse0;
 291                        map_destroy(mtd_cse1);
 292                }
 293        } else
 294                mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
 295
 296        return mtd_total;
 297}
 298
 299/*
 300 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 301 * and register the partitions with MTD.
 302 */
 303static int __init init_axis_flash(void)
 304{
 305        struct mtd_info *main_mtd;
 306        struct mtd_info *aux_mtd = NULL;
 307        int err = 0;
 308        int pidx = 0;
 309        struct partitiontable_head *ptable_head = NULL;
 310        struct partitiontable_entry *ptable;
 311        int ptable_ok = 0;
 312        static char page[PAGESIZE];
 313        size_t len;
 314        int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
 315        int part;
 316        struct mtd_partition *partition;
 317
 318        /* We need a root fs. If it resides in RAM, we need to use an
 319         * MTDRAM device, so it must be enabled in the kernel config,
 320         * but its size must be configured as 0 so as not to conflict
 321         * with our usage.
 322         */
 323#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
 324        if (!romfs_in_flash && !nand_boot) {
 325                printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
 326                       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
 327                panic("This kernel cannot boot from RAM!\n");
 328        }
 329#endif
 330
 331        main_mtd = flash_probe();
 332        if (main_mtd)
 333                printk(KERN_INFO "%s: 0x%08llx bytes of NOR flash memory.\n",
 334                       main_mtd->name, main_mtd->size);
 335
 336#ifdef CONFIG_ETRAX_NANDFLASH
 337        aux_mtd = crisv32_nand_flash_probe();
 338        if (aux_mtd)
 339                printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
 340                        aux_mtd->name, aux_mtd->size);
 341
 342#ifdef CONFIG_ETRAX_NANDBOOT
 343        {
 344                struct mtd_info *tmp_mtd;
 345
 346                printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
 347                       "making NAND flash primary device.\n");
 348                tmp_mtd = main_mtd;
 349                main_mtd = aux_mtd;
 350                aux_mtd = tmp_mtd;
 351        }
 352#endif /* CONFIG_ETRAX_NANDBOOT */
 353#endif /* CONFIG_ETRAX_NANDFLASH */
 354
 355        if (!main_mtd && !aux_mtd) {
 356                /* There's no reason to use this module if no flash chip can
 357                 * be identified. Make sure that's understood.
 358                 */
 359                printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
 360        }
 361
 362#if 0 /* Dump flash memory so we can see what is going on */
 363        if (main_mtd) {
 364                int sectoraddr;
 365                for (sectoraddr = 0; sectoraddr < 2*65536+4096;
 366                                sectoraddr += PAGESIZE) {
 367                        main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
 368                                page);
 369                        printk(KERN_INFO
 370                               "Sector at %d (length %d):\n",
 371                               sectoraddr, len);
 372                        print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, page, PAGESIZE, false);
 373                }
 374        }
 375#endif
 376
 377        if (main_mtd) {
 378                loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
 379                main_mtd->owner = THIS_MODULE;
 380                axisflash_mtd = main_mtd;
 381
 382
 383                /* First partition (rescue) is always set to the default. */
 384                pidx++;
 385#ifdef CONFIG_ETRAX_NANDBOOT
 386                /* We know where the partition table should be located,
 387                 * it will be in first good block after that.
 388                 */
 389                int blockstat;
 390                do {
 391                        blockstat = mtd_block_isbad(main_mtd, ptable_sector);
 392                        if (blockstat < 0)
 393                                ptable_sector = 0; /* read error */
 394                        else if (blockstat)
 395                                ptable_sector += main_mtd->erasesize;
 396                } while (blockstat && ptable_sector);
 397#endif
 398                if (ptable_sector) {
 399                        mtd_read(main_mtd, ptable_sector, PAGESIZE, &len,
 400                                 page);
 401                        ptable_head = &((struct partitiontable *) page)->head;
 402                }
 403
 404#if 0 /* Dump partition table so we can see what is going on */
 405                printk(KERN_INFO
 406                       "axisflashmap: flash read %d bytes at 0x%08x, data: %8ph\n",
 407                       len, CONFIG_ETRAX_PTABLE_SECTOR, page);
 408                printk(KERN_INFO
 409                       "axisflashmap: partition table offset %d, data: %8ph\n",
 410                       PARTITION_TABLE_OFFSET, page + PARTITION_TABLE_OFFSET);
 411#endif
 412        }
 413
 414        if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
 415            && (ptable_head->size <
 416                (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
 417                PARTITIONTABLE_END_MARKER_SIZE))
 418            && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
 419                                  ptable_head->size -
 420                                  PARTITIONTABLE_END_MARKER_SIZE)
 421                == PARTITIONTABLE_END_MARKER)) {
 422                /* Looks like a start, sane length and end of a
 423                 * partition table, lets check csum etc.
 424                 */
 425                struct partitiontable_entry *max_addr =
 426                        (struct partitiontable_entry *)
 427                        ((unsigned long)ptable_head + sizeof(*ptable_head) +
 428                         ptable_head->size);
 429                unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
 430                unsigned char *p;
 431                unsigned long csum = 0;
 432
 433                ptable = (struct partitiontable_entry *)
 434                        ((unsigned long)ptable_head + sizeof(*ptable_head));
 435
 436                /* Lets be PARANOID, and check the checksum. */
 437                p = (unsigned char*) ptable;
 438
 439                while (p <= (unsigned char*)max_addr) {
 440                        csum += *p++;
 441                        csum += *p++;
 442                        csum += *p++;
 443                        csum += *p++;
 444                }
 445                ptable_ok = (csum == ptable_head->checksum);
 446
 447                /* Read the entries and use/show the info.  */
 448                printk(KERN_INFO "axisflashmap: "
 449                       "Found a%s partition table at 0x%p-0x%p.\n",
 450                       (ptable_ok ? " valid" : "n invalid"), ptable_head,
 451                       max_addr);
 452
 453                /* We have found a working bootblock.  Now read the
 454                 * partition table.  Scan the table.  It ends with 0xffffffff.
 455                 */
 456                while (ptable_ok
 457                       && ptable->offset != PARTITIONTABLE_END_MARKER
 458                       && ptable < max_addr
 459                       && pidx < MAX_PARTITIONS - 1) {
 460
 461                        axis_partitions[pidx].offset = offset + ptable->offset;
 462#ifdef CONFIG_ETRAX_NANDFLASH
 463                        if (main_mtd->type == MTD_NANDFLASH) {
 464                                axis_partitions[pidx].size =
 465                                        (((ptable+1)->offset ==
 466                                          PARTITIONTABLE_END_MARKER) ?
 467                                          main_mtd->size :
 468                                          ((ptable+1)->offset + offset)) -
 469                                        (ptable->offset + offset);
 470
 471                        } else
 472#endif /* CONFIG_ETRAX_NANDFLASH */
 473                                axis_partitions[pidx].size = ptable->size;
 474#ifdef CONFIG_ETRAX_NANDBOOT
 475                        /* Save partition number of jffs2 ro partition.
 476                         * Needed if RAM booting or root file system in RAM.
 477                         */
 478                        if (!nand_boot &&
 479                            ram_rootfs_partition < 0 && /* not already set */
 480                            ptable->type == PARTITION_TYPE_JFFS2 &&
 481                            (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
 482                                PARTITION_FLAGS_READONLY)
 483                                ram_rootfs_partition = pidx;
 484#endif /* CONFIG_ETRAX_NANDBOOT */
 485                        pidx++;
 486                        ptable++;
 487                }
 488        }
 489
 490        /* Decide whether to use default partition table. */
 491        /* Only use default table if we actually have a device (main_mtd) */
 492
 493        partition = &axis_partitions[0];
 494        if (main_mtd && !ptable_ok) {
 495                memcpy(axis_partitions, axis_default_partitions,
 496                       sizeof(axis_default_partitions));
 497                pidx = NUM_DEFAULT_PARTITIONS;
 498                ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
 499        }
 500
 501        /* Add artificial partitions for rootfs if necessary */
 502        if (romfs_in_flash) {
 503                /* rootfs is in directly accessible flash memory = NOR flash.
 504                   Add an overlapping device for the rootfs partition. */
 505                printk(KERN_INFO "axisflashmap: Adding partition for "
 506                       "overlapping root file system image\n");
 507                axis_partitions[pidx].size = romfs_length;
 508                axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
 509                axis_partitions[pidx].name = "romfs";
 510                axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
 511                ram_rootfs_partition = -1;
 512                pidx++;
 513        } else if (romfs_length && !nand_boot) {
 514                /* romfs exists in memory, but not in flash, so must be in RAM.
 515                 * Configure an MTDRAM partition. */
 516                if (ram_rootfs_partition < 0) {
 517                        /* None set yet, put it at the end */
 518                        ram_rootfs_partition = pidx;
 519                        pidx++;
 520                }
 521                printk(KERN_INFO "axisflashmap: Adding partition for "
 522                       "root file system image in RAM\n");
 523                axis_partitions[ram_rootfs_partition].size = romfs_length;
 524                axis_partitions[ram_rootfs_partition].offset = romfs_start;
 525                axis_partitions[ram_rootfs_partition].name = "romfs";
 526                axis_partitions[ram_rootfs_partition].mask_flags |=
 527                        MTD_WRITEABLE;
 528        }
 529
 530#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 531        if (main_mtd) {
 532                main_partition.size = main_mtd->size;
 533                err = mtd_device_register(main_mtd, &main_partition, 1);
 534                if (err)
 535                        panic("axisflashmap: Could not initialize "
 536                              "partition for whole main mtd device!\n");
 537        }
 538#endif
 539
 540        /* Now, register all partitions with mtd.
 541         * We do this one at a time so we can slip in an MTDRAM device
 542         * in the proper place if required. */
 543
 544        for (part = 0; part < pidx; part++) {
 545                if (part == ram_rootfs_partition) {
 546                        /* add MTDRAM partition here */
 547                        struct mtd_info *mtd_ram;
 548
 549                        mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
 550                        if (!mtd_ram)
 551                                panic("axisflashmap: Couldn't allocate memory "
 552                                      "for mtd_info!\n");
 553                        printk(KERN_INFO "axisflashmap: Adding RAM partition "
 554                               "for rootfs image.\n");
 555                        err = mtdram_init_device(mtd_ram,
 556                                                 (void *)(u_int32_t)partition[part].offset,
 557                                                 partition[part].size,
 558                                                 partition[part].name);
 559                        if (err)
 560                                panic("axisflashmap: Could not initialize "
 561                                      "MTD RAM device!\n");
 562                        /* JFFS2 likes to have an erasesize. Keep potential
 563                         * JFFS2 rootfs happy by providing one. Since image
 564                         * was most likely created for main mtd, use that
 565                         * erasesize, if available. Otherwise, make a guess. */
 566                        mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
 567                                CONFIG_ETRAX_PTABLE_SECTOR);
 568                } else {
 569                        err = mtd_device_register(main_mtd, &partition[part],
 570                                                  1);
 571                        if (err)
 572                                panic("axisflashmap: Could not add mtd "
 573                                        "partition %d\n", part);
 574                }
 575        }
 576
 577        if (aux_mtd) {
 578                aux_partition.size = aux_mtd->size;
 579                err = mtd_device_register(aux_mtd, &aux_partition, 1);
 580                if (err)
 581                        panic("axisflashmap: Could not initialize "
 582                              "aux mtd device!\n");
 583
 584        }
 585
 586        return err;
 587}
 588
 589/* This adds the above to the kernels init-call chain. */
 590module_init(init_axis_flash);
 591
 592EXPORT_SYMBOL(axisflash_mtd);
 593