linux/arch/mips/kernel/smp-bmips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
   7 *
   8 * SMP support for BMIPS
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/sched.h>
  13#include <linux/mm.h>
  14#include <linux/delay.h>
  15#include <linux/smp.h>
  16#include <linux/interrupt.h>
  17#include <linux/spinlock.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/reboot.h>
  21#include <linux/io.h>
  22#include <linux/compiler.h>
  23#include <linux/linkage.h>
  24#include <linux/bug.h>
  25#include <linux/kernel.h>
  26
  27#include <asm/time.h>
  28#include <asm/pgtable.h>
  29#include <asm/processor.h>
  30#include <asm/bootinfo.h>
  31#include <asm/pmon.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mipsregs.h>
  35#include <asm/bmips.h>
  36#include <asm/traps.h>
  37#include <asm/barrier.h>
  38#include <asm/cpu-features.h>
  39
  40static int __maybe_unused max_cpus = 1;
  41
  42/* these may be configured by the platform code */
  43int bmips_smp_enabled = 1;
  44int bmips_cpu_offset;
  45cpumask_t bmips_booted_mask;
  46unsigned long bmips_tp1_irqs = IE_IRQ1;
  47
  48#define RESET_FROM_KSEG0                0x80080800
  49#define RESET_FROM_KSEG1                0xa0080800
  50
  51static void bmips_set_reset_vec(int cpu, u32 val);
  52
  53#ifdef CONFIG_SMP
  54
  55/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  56unsigned long bmips_smp_boot_sp;
  57unsigned long bmips_smp_boot_gp;
  58
  59static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  60static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  61static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  62static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  63
  64/* SW interrupts 0,1 are used for interprocessor signaling */
  65#define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
  66#define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
  67
  68#define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
  69#define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  70#define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  71#define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
  72
  73static void __init bmips_smp_setup(void)
  74{
  75        int i, cpu = 1, boot_cpu = 0;
  76        int cpu_hw_intr;
  77
  78        switch (current_cpu_type()) {
  79        case CPU_BMIPS4350:
  80        case CPU_BMIPS4380:
  81                /* arbitration priority */
  82                clear_c0_brcm_cmt_ctrl(0x30);
  83
  84                /* NBK and weak order flags */
  85                set_c0_brcm_config_0(0x30000);
  86
  87                /* Find out if we are running on TP0 or TP1 */
  88                boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  89
  90                /*
  91                 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  92                 * thread
  93                 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  94                 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  95                 */
  96                if (boot_cpu == 0)
  97                        cpu_hw_intr = 0x02;
  98                else
  99                        cpu_hw_intr = 0x1d;
 100
 101                change_c0_brcm_cmt_intr(0xf8018000,
 102                                        (cpu_hw_intr << 27) | (0x03 << 15));
 103
 104                /* single core, 2 threads (2 pipelines) */
 105                max_cpus = 2;
 106
 107                break;
 108        case CPU_BMIPS5000:
 109                /* enable raceless SW interrupts */
 110                set_c0_brcm_config(0x03 << 22);
 111
 112                /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
 113                change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
 114
 115                /* N cores, 2 threads per core */
 116                max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
 117
 118                /* clear any pending SW interrupts */
 119                for (i = 0; i < max_cpus; i++) {
 120                        write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
 121                        write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
 122                }
 123
 124                break;
 125        default:
 126                max_cpus = 1;
 127        }
 128
 129        if (!bmips_smp_enabled)
 130                max_cpus = 1;
 131
 132        /* this can be overridden by the BSP */
 133        if (!board_ebase_setup)
 134                board_ebase_setup = &bmips_ebase_setup;
 135
 136        __cpu_number_map[boot_cpu] = 0;
 137        __cpu_logical_map[0] = boot_cpu;
 138
 139        for (i = 0; i < max_cpus; i++) {
 140                if (i != boot_cpu) {
 141                        __cpu_number_map[i] = cpu;
 142                        __cpu_logical_map[cpu] = i;
 143                        cpu++;
 144                }
 145                set_cpu_possible(i, 1);
 146                set_cpu_present(i, 1);
 147        }
 148}
 149
 150/*
 151 * IPI IRQ setup - runs on CPU0
 152 */
 153static void bmips_prepare_cpus(unsigned int max_cpus)
 154{
 155        irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
 156
 157        switch (current_cpu_type()) {
 158        case CPU_BMIPS4350:
 159        case CPU_BMIPS4380:
 160                bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
 161                break;
 162        case CPU_BMIPS5000:
 163                bmips_ipi_interrupt = bmips5000_ipi_interrupt;
 164                break;
 165        default:
 166                return;
 167        }
 168
 169        if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 170                        "smp_ipi0", NULL))
 171                panic("Can't request IPI0 interrupt");
 172        if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 173                        "smp_ipi1", NULL))
 174                panic("Can't request IPI1 interrupt");
 175}
 176
 177/*
 178 * Tell the hardware to boot CPUx - runs on CPU0
 179 */
 180static void bmips_boot_secondary(int cpu, struct task_struct *idle)
 181{
 182        bmips_smp_boot_sp = __KSTK_TOS(idle);
 183        bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
 184        mb();
 185
 186        /*
 187         * Initial boot sequence for secondary CPU:
 188         *   bmips_reset_nmi_vec @ a000_0000 ->
 189         *   bmips_smp_entry ->
 190         *   plat_wired_tlb_setup (cached function call; optional) ->
 191         *   start_secondary (cached jump)
 192         *
 193         * Warm restart sequence:
 194         *   play_dead WAIT loop ->
 195         *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
 196         *   eret to play_dead ->
 197         *   bmips_secondary_reentry ->
 198         *   start_secondary
 199         */
 200
 201        pr_info("SMP: Booting CPU%d...\n", cpu);
 202
 203        if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 204                /* kseg1 might not exist if this CPU enabled XKS01 */
 205                bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
 206
 207                switch (current_cpu_type()) {
 208                case CPU_BMIPS4350:
 209                case CPU_BMIPS4380:
 210                        bmips43xx_send_ipi_single(cpu, 0);
 211                        break;
 212                case CPU_BMIPS5000:
 213                        bmips5000_send_ipi_single(cpu, 0);
 214                        break;
 215                }
 216        } else {
 217                bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
 218
 219                switch (current_cpu_type()) {
 220                case CPU_BMIPS4350:
 221                case CPU_BMIPS4380:
 222                        /* Reset slave TP1 if booting from TP0 */
 223                        if (cpu_logical_map(cpu) == 1)
 224                                set_c0_brcm_cmt_ctrl(0x01);
 225                        break;
 226                case CPU_BMIPS5000:
 227                        write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 228                        break;
 229                }
 230                cpumask_set_cpu(cpu, &bmips_booted_mask);
 231        }
 232}
 233
 234/*
 235 * Early setup - runs on secondary CPU after cache probe
 236 */
 237static void bmips_init_secondary(void)
 238{
 239        switch (current_cpu_type()) {
 240        case CPU_BMIPS4350:
 241        case CPU_BMIPS4380:
 242                clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
 243                break;
 244        case CPU_BMIPS5000:
 245                write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 246                break;
 247        }
 248}
 249
 250/*
 251 * Late setup - runs on secondary CPU before entering the idle loop
 252 */
 253static void bmips_smp_finish(void)
 254{
 255        pr_info("SMP: CPU%d is running\n", smp_processor_id());
 256
 257        /* make sure there won't be a timer interrupt for a little while */
 258        write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
 259
 260        irq_enable_hazard();
 261        set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
 262        irq_enable_hazard();
 263}
 264
 265/*
 266 * BMIPS5000 raceless IPIs
 267 *
 268 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
 269 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
 270 * IPI1 is used for SMP_CALL_FUNCTION
 271 */
 272
 273static void bmips5000_send_ipi_single(int cpu, unsigned int action)
 274{
 275        write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
 276}
 277
 278static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
 279{
 280        int action = irq - IPI0_IRQ;
 281
 282        write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
 283
 284        if (action == 0)
 285                scheduler_ipi();
 286        else
 287                generic_smp_call_function_interrupt();
 288
 289        return IRQ_HANDLED;
 290}
 291
 292static void bmips5000_send_ipi_mask(const struct cpumask *mask,
 293        unsigned int action)
 294{
 295        unsigned int i;
 296
 297        for_each_cpu(i, mask)
 298                bmips5000_send_ipi_single(i, action);
 299}
 300
 301/*
 302 * BMIPS43xx racey IPIs
 303 *
 304 * We use one inbound SW IRQ for each CPU.
 305 *
 306 * A spinlock must be held in order to keep CPUx from accidentally clearing
 307 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
 308 * same spinlock is used to protect the action masks.
 309 */
 310
 311static DEFINE_SPINLOCK(ipi_lock);
 312static DEFINE_PER_CPU(int, ipi_action_mask);
 313
 314static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
 315{
 316        unsigned long flags;
 317
 318        spin_lock_irqsave(&ipi_lock, flags);
 319        set_c0_cause(cpu ? C_SW1 : C_SW0);
 320        per_cpu(ipi_action_mask, cpu) |= action;
 321        irq_enable_hazard();
 322        spin_unlock_irqrestore(&ipi_lock, flags);
 323}
 324
 325static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
 326{
 327        unsigned long flags;
 328        int action, cpu = irq - IPI0_IRQ;
 329
 330        spin_lock_irqsave(&ipi_lock, flags);
 331        action = __this_cpu_read(ipi_action_mask);
 332        per_cpu(ipi_action_mask, cpu) = 0;
 333        clear_c0_cause(cpu ? C_SW1 : C_SW0);
 334        spin_unlock_irqrestore(&ipi_lock, flags);
 335
 336        if (action & SMP_RESCHEDULE_YOURSELF)
 337                scheduler_ipi();
 338        if (action & SMP_CALL_FUNCTION)
 339                generic_smp_call_function_interrupt();
 340
 341        return IRQ_HANDLED;
 342}
 343
 344static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
 345        unsigned int action)
 346{
 347        unsigned int i;
 348
 349        for_each_cpu(i, mask)
 350                bmips43xx_send_ipi_single(i, action);
 351}
 352
 353#ifdef CONFIG_HOTPLUG_CPU
 354
 355static int bmips_cpu_disable(void)
 356{
 357        unsigned int cpu = smp_processor_id();
 358
 359        if (cpu == 0)
 360                return -EBUSY;
 361
 362        pr_info("SMP: CPU%d is offline\n", cpu);
 363
 364        set_cpu_online(cpu, false);
 365        cpumask_clear_cpu(cpu, &cpu_callin_map);
 366        clear_c0_status(IE_IRQ5);
 367
 368        local_flush_tlb_all();
 369        local_flush_icache_range(0, ~0);
 370
 371        return 0;
 372}
 373
 374static void bmips_cpu_die(unsigned int cpu)
 375{
 376}
 377
 378void __ref play_dead(void)
 379{
 380        idle_task_exit();
 381
 382        /* flush data cache */
 383        _dma_cache_wback_inv(0, ~0);
 384
 385        /*
 386         * Wakeup is on SW0 or SW1; disable everything else
 387         * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
 388         * IRQ handlers; this clears ST0_IE and returns immediately.
 389         */
 390        clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
 391        change_c0_status(
 392                IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 393                IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
 394        irq_disable_hazard();
 395
 396        /*
 397         * wait for SW interrupt from bmips_boot_secondary(), then jump
 398         * back to start_secondary()
 399         */
 400        __asm__ __volatile__(
 401        "       wait\n"
 402        "       j       bmips_secondary_reentry\n"
 403        : : : "memory");
 404}
 405
 406#endif /* CONFIG_HOTPLUG_CPU */
 407
 408struct plat_smp_ops bmips43xx_smp_ops = {
 409        .smp_setup              = bmips_smp_setup,
 410        .prepare_cpus           = bmips_prepare_cpus,
 411        .boot_secondary         = bmips_boot_secondary,
 412        .smp_finish             = bmips_smp_finish,
 413        .init_secondary         = bmips_init_secondary,
 414        .send_ipi_single        = bmips43xx_send_ipi_single,
 415        .send_ipi_mask          = bmips43xx_send_ipi_mask,
 416#ifdef CONFIG_HOTPLUG_CPU
 417        .cpu_disable            = bmips_cpu_disable,
 418        .cpu_die                = bmips_cpu_die,
 419#endif
 420};
 421
 422struct plat_smp_ops bmips5000_smp_ops = {
 423        .smp_setup              = bmips_smp_setup,
 424        .prepare_cpus           = bmips_prepare_cpus,
 425        .boot_secondary         = bmips_boot_secondary,
 426        .smp_finish             = bmips_smp_finish,
 427        .init_secondary         = bmips_init_secondary,
 428        .send_ipi_single        = bmips5000_send_ipi_single,
 429        .send_ipi_mask          = bmips5000_send_ipi_mask,
 430#ifdef CONFIG_HOTPLUG_CPU
 431        .cpu_disable            = bmips_cpu_disable,
 432        .cpu_die                = bmips_cpu_die,
 433#endif
 434};
 435
 436#endif /* CONFIG_SMP */
 437
 438/***********************************************************************
 439 * BMIPS vector relocation
 440 * This is primarily used for SMP boot, but it is applicable to some
 441 * UP BMIPS systems as well.
 442 ***********************************************************************/
 443
 444static void bmips_wr_vec(unsigned long dst, char *start, char *end)
 445{
 446        memcpy((void *)dst, start, end - start);
 447        dma_cache_wback(dst, end - start);
 448        local_flush_icache_range(dst, dst + (end - start));
 449        instruction_hazard();
 450}
 451
 452static inline void bmips_nmi_handler_setup(void)
 453{
 454        bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
 455                &bmips_reset_nmi_vec_end);
 456        bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
 457                &bmips_smp_int_vec_end);
 458}
 459
 460struct reset_vec_info {
 461        int cpu;
 462        u32 val;
 463};
 464
 465static void bmips_set_reset_vec_remote(void *vinfo)
 466{
 467        struct reset_vec_info *info = vinfo;
 468        int shift = info->cpu & 0x01 ? 16 : 0;
 469        u32 mask = ~(0xffff << shift), val = info->val >> 16;
 470
 471        preempt_disable();
 472        if (smp_processor_id() > 0) {
 473                smp_call_function_single(0, &bmips_set_reset_vec_remote,
 474                                         info, 1);
 475        } else {
 476                if (info->cpu & 0x02) {
 477                        /* BMIPS5200 "should" use mask/shift, but it's buggy */
 478                        bmips_write_zscm_reg(0xa0, (val << 16) | val);
 479                        bmips_read_zscm_reg(0xa0);
 480                } else {
 481                        write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
 482                                              (val << shift));
 483                }
 484        }
 485        preempt_enable();
 486}
 487
 488static void bmips_set_reset_vec(int cpu, u32 val)
 489{
 490        struct reset_vec_info info;
 491
 492        if (current_cpu_type() == CPU_BMIPS5000) {
 493                /* this needs to run from CPU0 (which is always online) */
 494                info.cpu = cpu;
 495                info.val = val;
 496                bmips_set_reset_vec_remote(&info);
 497        } else {
 498                void __iomem *cbr = BMIPS_GET_CBR();
 499
 500                if (cpu == 0)
 501                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
 502                else {
 503                        if (current_cpu_type() != CPU_BMIPS4380)
 504                                return;
 505                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
 506                }
 507        }
 508        __sync();
 509        back_to_back_c0_hazard();
 510}
 511
 512void bmips_ebase_setup(void)
 513{
 514        unsigned long new_ebase = ebase;
 515
 516        BUG_ON(ebase != CKSEG0);
 517
 518        switch (current_cpu_type()) {
 519        case CPU_BMIPS4350:
 520                /*
 521                 * BMIPS4350 cannot relocate the normal vectors, but it
 522                 * can relocate the BEV=1 vectors.  So CPU1 starts up at
 523                 * the relocated BEV=1, IV=0 general exception vector @
 524                 * 0xa000_0380.
 525                 *
 526                 * set_uncached_handler() is used here because:
 527                 *  - CPU1 will run this from uncached space
 528                 *  - None of the cacheflush functions are set up yet
 529                 */
 530                set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
 531                        &bmips_smp_int_vec, 0x80);
 532                __sync();
 533                return;
 534        case CPU_BMIPS3300:
 535        case CPU_BMIPS4380:
 536                /*
 537                 * 0x8000_0000: reset/NMI (initially in kseg1)
 538                 * 0x8000_0400: normal vectors
 539                 */
 540                new_ebase = 0x80000400;
 541                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 542                break;
 543        case CPU_BMIPS5000:
 544                /*
 545                 * 0x8000_0000: reset/NMI (initially in kseg1)
 546                 * 0x8000_1000: normal vectors
 547                 */
 548                new_ebase = 0x80001000;
 549                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 550                write_c0_ebase(new_ebase);
 551                break;
 552        default:
 553                return;
 554        }
 555
 556        board_nmi_handler_setup = &bmips_nmi_handler_setup;
 557        ebase = new_ebase;
 558}
 559
 560asmlinkage void __weak plat_wired_tlb_setup(void)
 561{
 562        /*
 563         * Called when starting/restarting a secondary CPU.
 564         * Kernel stacks and other important data might only be accessible
 565         * once the wired entries are present.
 566         */
 567}
 568