linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/slab.h>
  26#include <linux/user.h>
  27#include <linux/elf.h>
  28#include <linux/prctl.h>
  29#include <linux/init_task.h>
  30#include <linux/export.h>
  31#include <linux/kallsyms.h>
  32#include <linux/mqueue.h>
  33#include <linux/hardirq.h>
  34#include <linux/utsname.h>
  35#include <linux/ftrace.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/personality.h>
  38#include <linux/random.h>
  39#include <linux/hw_breakpoint.h>
  40#include <linux/uaccess.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/io.h>
  44#include <asm/processor.h>
  45#include <asm/mmu.h>
  46#include <asm/prom.h>
  47#include <asm/machdep.h>
  48#include <asm/time.h>
  49#include <asm/runlatch.h>
  50#include <asm/syscalls.h>
  51#include <asm/switch_to.h>
  52#include <asm/tm.h>
  53#include <asm/debug.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/firmware.h>
  56#endif
  57#include <asm/code-patching.h>
  58#include <linux/kprobes.h>
  59#include <linux/kdebug.h>
  60
  61/* Transactional Memory debug */
  62#ifdef TM_DEBUG_SW
  63#define TM_DEBUG(x...) printk(KERN_INFO x)
  64#else
  65#define TM_DEBUG(x...) do { } while(0)
  66#endif
  67
  68extern unsigned long _get_SP(void);
  69
  70#ifndef CONFIG_SMP
  71struct task_struct *last_task_used_math = NULL;
  72struct task_struct *last_task_used_altivec = NULL;
  73struct task_struct *last_task_used_vsx = NULL;
  74struct task_struct *last_task_used_spe = NULL;
  75#endif
  76
  77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
  79{
  80        /*
  81         * If we are saving the current thread's registers, and the
  82         * thread is in a transactional state, set the TIF_RESTORE_TM
  83         * bit so that we know to restore the registers before
  84         * returning to userspace.
  85         */
  86        if (tsk == current && tsk->thread.regs &&
  87            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  88            !test_thread_flag(TIF_RESTORE_TM)) {
  89                tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
  90                set_thread_flag(TIF_RESTORE_TM);
  91        }
  92
  93        giveup_fpu(tsk);
  94}
  95
  96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
  97{
  98        /*
  99         * If we are saving the current thread's registers, and the
 100         * thread is in a transactional state, set the TIF_RESTORE_TM
 101         * bit so that we know to restore the registers before
 102         * returning to userspace.
 103         */
 104        if (tsk == current && tsk->thread.regs &&
 105            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 106            !test_thread_flag(TIF_RESTORE_TM)) {
 107                tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
 108                set_thread_flag(TIF_RESTORE_TM);
 109        }
 110
 111        giveup_altivec(tsk);
 112}
 113
 114#else
 115#define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
 116#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
 117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 118
 119#ifdef CONFIG_PPC_FPU
 120/*
 121 * Make sure the floating-point register state in the
 122 * the thread_struct is up to date for task tsk.
 123 */
 124void flush_fp_to_thread(struct task_struct *tsk)
 125{
 126        if (tsk->thread.regs) {
 127                /*
 128                 * We need to disable preemption here because if we didn't,
 129                 * another process could get scheduled after the regs->msr
 130                 * test but before we have finished saving the FP registers
 131                 * to the thread_struct.  That process could take over the
 132                 * FPU, and then when we get scheduled again we would store
 133                 * bogus values for the remaining FP registers.
 134                 */
 135                preempt_disable();
 136                if (tsk->thread.regs->msr & MSR_FP) {
 137#ifdef CONFIG_SMP
 138                        /*
 139                         * This should only ever be called for current or
 140                         * for a stopped child process.  Since we save away
 141                         * the FP register state on context switch on SMP,
 142                         * there is something wrong if a stopped child appears
 143                         * to still have its FP state in the CPU registers.
 144                         */
 145                        BUG_ON(tsk != current);
 146#endif
 147                        giveup_fpu_maybe_transactional(tsk);
 148                }
 149                preempt_enable();
 150        }
 151}
 152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 153#endif /* CONFIG_PPC_FPU */
 154
 155void enable_kernel_fp(void)
 156{
 157        WARN_ON(preemptible());
 158
 159#ifdef CONFIG_SMP
 160        if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
 161                giveup_fpu_maybe_transactional(current);
 162        else
 163                giveup_fpu(NULL);       /* just enables FP for kernel */
 164#else
 165        giveup_fpu_maybe_transactional(last_task_used_math);
 166#endif /* CONFIG_SMP */
 167}
 168EXPORT_SYMBOL(enable_kernel_fp);
 169
 170#ifdef CONFIG_ALTIVEC
 171void enable_kernel_altivec(void)
 172{
 173        WARN_ON(preemptible());
 174
 175#ifdef CONFIG_SMP
 176        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
 177                giveup_altivec_maybe_transactional(current);
 178        else
 179                giveup_altivec_notask();
 180#else
 181        giveup_altivec_maybe_transactional(last_task_used_altivec);
 182#endif /* CONFIG_SMP */
 183}
 184EXPORT_SYMBOL(enable_kernel_altivec);
 185
 186/*
 187 * Make sure the VMX/Altivec register state in the
 188 * the thread_struct is up to date for task tsk.
 189 */
 190void flush_altivec_to_thread(struct task_struct *tsk)
 191{
 192        if (tsk->thread.regs) {
 193                preempt_disable();
 194                if (tsk->thread.regs->msr & MSR_VEC) {
 195#ifdef CONFIG_SMP
 196                        BUG_ON(tsk != current);
 197#endif
 198                        giveup_altivec_maybe_transactional(tsk);
 199                }
 200                preempt_enable();
 201        }
 202}
 203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 204#endif /* CONFIG_ALTIVEC */
 205
 206#ifdef CONFIG_VSX
 207void enable_kernel_vsx(void)
 208{
 209        WARN_ON(preemptible());
 210
 211#ifdef CONFIG_SMP
 212        if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
 213                giveup_vsx(current);
 214        else
 215                giveup_vsx(NULL);       /* just enable vsx for kernel - force */
 216#else
 217        giveup_vsx(last_task_used_vsx);
 218#endif /* CONFIG_SMP */
 219}
 220EXPORT_SYMBOL(enable_kernel_vsx);
 221
 222void giveup_vsx(struct task_struct *tsk)
 223{
 224        giveup_fpu_maybe_transactional(tsk);
 225        giveup_altivec_maybe_transactional(tsk);
 226        __giveup_vsx(tsk);
 227}
 228EXPORT_SYMBOL(giveup_vsx);
 229
 230void flush_vsx_to_thread(struct task_struct *tsk)
 231{
 232        if (tsk->thread.regs) {
 233                preempt_disable();
 234                if (tsk->thread.regs->msr & MSR_VSX) {
 235#ifdef CONFIG_SMP
 236                        BUG_ON(tsk != current);
 237#endif
 238                        giveup_vsx(tsk);
 239                }
 240                preempt_enable();
 241        }
 242}
 243EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 244#endif /* CONFIG_VSX */
 245
 246#ifdef CONFIG_SPE
 247
 248void enable_kernel_spe(void)
 249{
 250        WARN_ON(preemptible());
 251
 252#ifdef CONFIG_SMP
 253        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
 254                giveup_spe(current);
 255        else
 256                giveup_spe(NULL);       /* just enable SPE for kernel - force */
 257#else
 258        giveup_spe(last_task_used_spe);
 259#endif /* __SMP __ */
 260}
 261EXPORT_SYMBOL(enable_kernel_spe);
 262
 263void flush_spe_to_thread(struct task_struct *tsk)
 264{
 265        if (tsk->thread.regs) {
 266                preempt_disable();
 267                if (tsk->thread.regs->msr & MSR_SPE) {
 268#ifdef CONFIG_SMP
 269                        BUG_ON(tsk != current);
 270#endif
 271                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 272                        giveup_spe(tsk);
 273                }
 274                preempt_enable();
 275        }
 276}
 277#endif /* CONFIG_SPE */
 278
 279#ifndef CONFIG_SMP
 280/*
 281 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 282 * and the current task has some state, discard it.
 283 */
 284void discard_lazy_cpu_state(void)
 285{
 286        preempt_disable();
 287        if (last_task_used_math == current)
 288                last_task_used_math = NULL;
 289#ifdef CONFIG_ALTIVEC
 290        if (last_task_used_altivec == current)
 291                last_task_used_altivec = NULL;
 292#endif /* CONFIG_ALTIVEC */
 293#ifdef CONFIG_VSX
 294        if (last_task_used_vsx == current)
 295                last_task_used_vsx = NULL;
 296#endif /* CONFIG_VSX */
 297#ifdef CONFIG_SPE
 298        if (last_task_used_spe == current)
 299                last_task_used_spe = NULL;
 300#endif
 301        preempt_enable();
 302}
 303#endif /* CONFIG_SMP */
 304
 305#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 306void do_send_trap(struct pt_regs *regs, unsigned long address,
 307                  unsigned long error_code, int signal_code, int breakpt)
 308{
 309        siginfo_t info;
 310
 311        current->thread.trap_nr = signal_code;
 312        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 313                        11, SIGSEGV) == NOTIFY_STOP)
 314                return;
 315
 316        /* Deliver the signal to userspace */
 317        info.si_signo = SIGTRAP;
 318        info.si_errno = breakpt;        /* breakpoint or watchpoint id */
 319        info.si_code = signal_code;
 320        info.si_addr = (void __user *)address;
 321        force_sig_info(SIGTRAP, &info, current);
 322}
 323#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 324void do_break (struct pt_regs *regs, unsigned long address,
 325                    unsigned long error_code)
 326{
 327        siginfo_t info;
 328
 329        current->thread.trap_nr = TRAP_HWBKPT;
 330        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 331                        11, SIGSEGV) == NOTIFY_STOP)
 332                return;
 333
 334        if (debugger_break_match(regs))
 335                return;
 336
 337        /* Clear the breakpoint */
 338        hw_breakpoint_disable();
 339
 340        /* Deliver the signal to userspace */
 341        info.si_signo = SIGTRAP;
 342        info.si_errno = 0;
 343        info.si_code = TRAP_HWBKPT;
 344        info.si_addr = (void __user *)address;
 345        force_sig_info(SIGTRAP, &info, current);
 346}
 347#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 348
 349static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 350
 351#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 352/*
 353 * Set the debug registers back to their default "safe" values.
 354 */
 355static void set_debug_reg_defaults(struct thread_struct *thread)
 356{
 357        thread->debug.iac1 = thread->debug.iac2 = 0;
 358#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 359        thread->debug.iac3 = thread->debug.iac4 = 0;
 360#endif
 361        thread->debug.dac1 = thread->debug.dac2 = 0;
 362#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 363        thread->debug.dvc1 = thread->debug.dvc2 = 0;
 364#endif
 365        thread->debug.dbcr0 = 0;
 366#ifdef CONFIG_BOOKE
 367        /*
 368         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 369         */
 370        thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 371                        DBCR1_IAC3US | DBCR1_IAC4US;
 372        /*
 373         * Force Data Address Compare User/Supervisor bits to be User-only
 374         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 375         */
 376        thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 377#else
 378        thread->debug.dbcr1 = 0;
 379#endif
 380}
 381
 382static void prime_debug_regs(struct debug_reg *debug)
 383{
 384        /*
 385         * We could have inherited MSR_DE from userspace, since
 386         * it doesn't get cleared on exception entry.  Make sure
 387         * MSR_DE is clear before we enable any debug events.
 388         */
 389        mtmsr(mfmsr() & ~MSR_DE);
 390
 391        mtspr(SPRN_IAC1, debug->iac1);
 392        mtspr(SPRN_IAC2, debug->iac2);
 393#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 394        mtspr(SPRN_IAC3, debug->iac3);
 395        mtspr(SPRN_IAC4, debug->iac4);
 396#endif
 397        mtspr(SPRN_DAC1, debug->dac1);
 398        mtspr(SPRN_DAC2, debug->dac2);
 399#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 400        mtspr(SPRN_DVC1, debug->dvc1);
 401        mtspr(SPRN_DVC2, debug->dvc2);
 402#endif
 403        mtspr(SPRN_DBCR0, debug->dbcr0);
 404        mtspr(SPRN_DBCR1, debug->dbcr1);
 405#ifdef CONFIG_BOOKE
 406        mtspr(SPRN_DBCR2, debug->dbcr2);
 407#endif
 408}
 409/*
 410 * Unless neither the old or new thread are making use of the
 411 * debug registers, set the debug registers from the values
 412 * stored in the new thread.
 413 */
 414void switch_booke_debug_regs(struct debug_reg *new_debug)
 415{
 416        if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 417                || (new_debug->dbcr0 & DBCR0_IDM))
 418                        prime_debug_regs(new_debug);
 419}
 420EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 421#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 422#ifndef CONFIG_HAVE_HW_BREAKPOINT
 423static void set_debug_reg_defaults(struct thread_struct *thread)
 424{
 425        thread->hw_brk.address = 0;
 426        thread->hw_brk.type = 0;
 427        set_breakpoint(&thread->hw_brk);
 428}
 429#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 430#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 431
 432#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 433static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 434{
 435        mtspr(SPRN_DAC1, dabr);
 436#ifdef CONFIG_PPC_47x
 437        isync();
 438#endif
 439        return 0;
 440}
 441#elif defined(CONFIG_PPC_BOOK3S)
 442static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 443{
 444        mtspr(SPRN_DABR, dabr);
 445        if (cpu_has_feature(CPU_FTR_DABRX))
 446                mtspr(SPRN_DABRX, dabrx);
 447        return 0;
 448}
 449#else
 450static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 451{
 452        return -EINVAL;
 453}
 454#endif
 455
 456static inline int set_dabr(struct arch_hw_breakpoint *brk)
 457{
 458        unsigned long dabr, dabrx;
 459
 460        dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 461        dabrx = ((brk->type >> 3) & 0x7);
 462
 463        if (ppc_md.set_dabr)
 464                return ppc_md.set_dabr(dabr, dabrx);
 465
 466        return __set_dabr(dabr, dabrx);
 467}
 468
 469static inline int set_dawr(struct arch_hw_breakpoint *brk)
 470{
 471        unsigned long dawr, dawrx, mrd;
 472
 473        dawr = brk->address;
 474
 475        dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 476                                   << (63 - 58); //* read/write bits */
 477        dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 478                                   << (63 - 59); //* translate */
 479        dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 480                                   >> 3; //* PRIM bits */
 481        /* dawr length is stored in field MDR bits 48:53.  Matches range in
 482           doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 483           0b111111=64DW.
 484           brk->len is in bytes.
 485           This aligns up to double word size, shifts and does the bias.
 486        */
 487        mrd = ((brk->len + 7) >> 3) - 1;
 488        dawrx |= (mrd & 0x3f) << (63 - 53);
 489
 490        if (ppc_md.set_dawr)
 491                return ppc_md.set_dawr(dawr, dawrx);
 492        mtspr(SPRN_DAWR, dawr);
 493        mtspr(SPRN_DAWRX, dawrx);
 494        return 0;
 495}
 496
 497void __set_breakpoint(struct arch_hw_breakpoint *brk)
 498{
 499        memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
 500
 501        if (cpu_has_feature(CPU_FTR_DAWR))
 502                set_dawr(brk);
 503        else
 504                set_dabr(brk);
 505}
 506
 507void set_breakpoint(struct arch_hw_breakpoint *brk)
 508{
 509        preempt_disable();
 510        __set_breakpoint(brk);
 511        preempt_enable();
 512}
 513
 514#ifdef CONFIG_PPC64
 515DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 516#endif
 517
 518static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 519                              struct arch_hw_breakpoint *b)
 520{
 521        if (a->address != b->address)
 522                return false;
 523        if (a->type != b->type)
 524                return false;
 525        if (a->len != b->len)
 526                return false;
 527        return true;
 528}
 529
 530#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 531static void tm_reclaim_thread(struct thread_struct *thr,
 532                              struct thread_info *ti, uint8_t cause)
 533{
 534        unsigned long msr_diff = 0;
 535
 536        /*
 537         * If FP/VSX registers have been already saved to the
 538         * thread_struct, move them to the transact_fp array.
 539         * We clear the TIF_RESTORE_TM bit since after the reclaim
 540         * the thread will no longer be transactional.
 541         */
 542        if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
 543                msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
 544                if (msr_diff & MSR_FP)
 545                        memcpy(&thr->transact_fp, &thr->fp_state,
 546                               sizeof(struct thread_fp_state));
 547                if (msr_diff & MSR_VEC)
 548                        memcpy(&thr->transact_vr, &thr->vr_state,
 549                               sizeof(struct thread_vr_state));
 550                clear_ti_thread_flag(ti, TIF_RESTORE_TM);
 551                msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
 552        }
 553
 554        /*
 555         * Use the current MSR TM suspended bit to track if we have
 556         * checkpointed state outstanding.
 557         * On signal delivery, we'd normally reclaim the checkpointed
 558         * state to obtain stack pointer (see:get_tm_stackpointer()).
 559         * This will then directly return to userspace without going
 560         * through __switch_to(). However, if the stack frame is bad,
 561         * we need to exit this thread which calls __switch_to() which
 562         * will again attempt to reclaim the already saved tm state.
 563         * Hence we need to check that we've not already reclaimed
 564         * this state.
 565         * We do this using the current MSR, rather tracking it in
 566         * some specific thread_struct bit, as it has the additional
 567         * benifit of checking for a potential TM bad thing exception.
 568         */
 569        if (!MSR_TM_SUSPENDED(mfmsr()))
 570                return;
 571
 572        tm_reclaim(thr, thr->regs->msr, cause);
 573
 574        /* Having done the reclaim, we now have the checkpointed
 575         * FP/VSX values in the registers.  These might be valid
 576         * even if we have previously called enable_kernel_fp() or
 577         * flush_fp_to_thread(), so update thr->regs->msr to
 578         * indicate their current validity.
 579         */
 580        thr->regs->msr |= msr_diff;
 581}
 582
 583void tm_reclaim_current(uint8_t cause)
 584{
 585        tm_enable();
 586        tm_reclaim_thread(&current->thread, current_thread_info(), cause);
 587}
 588
 589static inline void tm_reclaim_task(struct task_struct *tsk)
 590{
 591        /* We have to work out if we're switching from/to a task that's in the
 592         * middle of a transaction.
 593         *
 594         * In switching we need to maintain a 2nd register state as
 595         * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 596         * checkpointed (tbegin) state in ckpt_regs and saves the transactional
 597         * (current) FPRs into oldtask->thread.transact_fpr[].
 598         *
 599         * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 600         */
 601        struct thread_struct *thr = &tsk->thread;
 602
 603        if (!thr->regs)
 604                return;
 605
 606        if (!MSR_TM_ACTIVE(thr->regs->msr))
 607                goto out_and_saveregs;
 608
 609        /* Stash the original thread MSR, as giveup_fpu et al will
 610         * modify it.  We hold onto it to see whether the task used
 611         * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
 612         * ckpt_regs.msr is already set.
 613         */
 614        if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
 615                thr->ckpt_regs.msr = thr->regs->msr;
 616
 617        TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 618                 "ccr=%lx, msr=%lx, trap=%lx)\n",
 619                 tsk->pid, thr->regs->nip,
 620                 thr->regs->ccr, thr->regs->msr,
 621                 thr->regs->trap);
 622
 623        tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
 624
 625        TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 626                 tsk->pid);
 627
 628out_and_saveregs:
 629        /* Always save the regs here, even if a transaction's not active.
 630         * This context-switches a thread's TM info SPRs.  We do it here to
 631         * be consistent with the restore path (in recheckpoint) which
 632         * cannot happen later in _switch().
 633         */
 634        tm_save_sprs(thr);
 635}
 636
 637extern void __tm_recheckpoint(struct thread_struct *thread,
 638                              unsigned long orig_msr);
 639
 640void tm_recheckpoint(struct thread_struct *thread,
 641                     unsigned long orig_msr)
 642{
 643        unsigned long flags;
 644
 645        /* We really can't be interrupted here as the TEXASR registers can't
 646         * change and later in the trecheckpoint code, we have a userspace R1.
 647         * So let's hard disable over this region.
 648         */
 649        local_irq_save(flags);
 650        hard_irq_disable();
 651
 652        /* The TM SPRs are restored here, so that TEXASR.FS can be set
 653         * before the trecheckpoint and no explosion occurs.
 654         */
 655        tm_restore_sprs(thread);
 656
 657        __tm_recheckpoint(thread, orig_msr);
 658
 659        local_irq_restore(flags);
 660}
 661
 662static inline void tm_recheckpoint_new_task(struct task_struct *new)
 663{
 664        unsigned long msr;
 665
 666        if (!cpu_has_feature(CPU_FTR_TM))
 667                return;
 668
 669        /* Recheckpoint the registers of the thread we're about to switch to.
 670         *
 671         * If the task was using FP, we non-lazily reload both the original and
 672         * the speculative FP register states.  This is because the kernel
 673         * doesn't see if/when a TM rollback occurs, so if we take an FP
 674         * unavoidable later, we are unable to determine which set of FP regs
 675         * need to be restored.
 676         */
 677        if (!new->thread.regs)
 678                return;
 679
 680        if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 681                tm_restore_sprs(&new->thread);
 682                return;
 683        }
 684        msr = new->thread.ckpt_regs.msr;
 685        /* Recheckpoint to restore original checkpointed register state. */
 686        TM_DEBUG("*** tm_recheckpoint of pid %d "
 687                 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
 688                 new->pid, new->thread.regs->msr, msr);
 689
 690        /* This loads the checkpointed FP/VEC state, if used */
 691        tm_recheckpoint(&new->thread, msr);
 692
 693        /* This loads the speculative FP/VEC state, if used */
 694        if (msr & MSR_FP) {
 695                do_load_up_transact_fpu(&new->thread);
 696                new->thread.regs->msr |=
 697                        (MSR_FP | new->thread.fpexc_mode);
 698        }
 699#ifdef CONFIG_ALTIVEC
 700        if (msr & MSR_VEC) {
 701                do_load_up_transact_altivec(&new->thread);
 702                new->thread.regs->msr |= MSR_VEC;
 703        }
 704#endif
 705        /* We may as well turn on VSX too since all the state is restored now */
 706        if (msr & MSR_VSX)
 707                new->thread.regs->msr |= MSR_VSX;
 708
 709        TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 710                 "(kernel msr 0x%lx)\n",
 711                 new->pid, mfmsr());
 712}
 713
 714static inline void __switch_to_tm(struct task_struct *prev)
 715{
 716        if (cpu_has_feature(CPU_FTR_TM)) {
 717                tm_enable();
 718                tm_reclaim_task(prev);
 719        }
 720}
 721
 722/*
 723 * This is called if we are on the way out to userspace and the
 724 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 725 * FP and/or vector state and does so if necessary.
 726 * If userspace is inside a transaction (whether active or
 727 * suspended) and FP/VMX/VSX instructions have ever been enabled
 728 * inside that transaction, then we have to keep them enabled
 729 * and keep the FP/VMX/VSX state loaded while ever the transaction
 730 * continues.  The reason is that if we didn't, and subsequently
 731 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 732 * we don't know whether it's the same transaction, and thus we
 733 * don't know which of the checkpointed state and the transactional
 734 * state to use.
 735 */
 736void restore_tm_state(struct pt_regs *regs)
 737{
 738        unsigned long msr_diff;
 739
 740        clear_thread_flag(TIF_RESTORE_TM);
 741        if (!MSR_TM_ACTIVE(regs->msr))
 742                return;
 743
 744        msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
 745        msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
 746        if (msr_diff & MSR_FP) {
 747                fp_enable();
 748                load_fp_state(&current->thread.fp_state);
 749                regs->msr |= current->thread.fpexc_mode;
 750        }
 751        if (msr_diff & MSR_VEC) {
 752                vec_enable();
 753                load_vr_state(&current->thread.vr_state);
 754        }
 755        regs->msr |= msr_diff;
 756}
 757
 758#else
 759#define tm_recheckpoint_new_task(new)
 760#define __switch_to_tm(prev)
 761#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 762
 763struct task_struct *__switch_to(struct task_struct *prev,
 764        struct task_struct *new)
 765{
 766        struct thread_struct *new_thread, *old_thread;
 767        struct task_struct *last;
 768#ifdef CONFIG_PPC_BOOK3S_64
 769        struct ppc64_tlb_batch *batch;
 770#endif
 771
 772        WARN_ON(!irqs_disabled());
 773
 774        /* Back up the TAR and DSCR across context switches.
 775         * Note that the TAR is not available for use in the kernel.  (To
 776         * provide this, the TAR should be backed up/restored on exception
 777         * entry/exit instead, and be in pt_regs.  FIXME, this should be in
 778         * pt_regs anyway (for debug).)
 779         * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
 780         * these will change them.
 781         */
 782        save_early_sprs(&prev->thread);
 783
 784        __switch_to_tm(prev);
 785
 786#ifdef CONFIG_SMP
 787        /* avoid complexity of lazy save/restore of fpu
 788         * by just saving it every time we switch out if
 789         * this task used the fpu during the last quantum.
 790         *
 791         * If it tries to use the fpu again, it'll trap and
 792         * reload its fp regs.  So we don't have to do a restore
 793         * every switch, just a save.
 794         *  -- Cort
 795         */
 796        if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
 797                giveup_fpu(prev);
 798#ifdef CONFIG_ALTIVEC
 799        /*
 800         * If the previous thread used altivec in the last quantum
 801         * (thus changing altivec regs) then save them.
 802         * We used to check the VRSAVE register but not all apps
 803         * set it, so we don't rely on it now (and in fact we need
 804         * to save & restore VSCR even if VRSAVE == 0).  -- paulus
 805         *
 806         * On SMP we always save/restore altivec regs just to avoid the
 807         * complexity of changing processors.
 808         *  -- Cort
 809         */
 810        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
 811                giveup_altivec(prev);
 812#endif /* CONFIG_ALTIVEC */
 813#ifdef CONFIG_VSX
 814        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
 815                /* VMX and FPU registers are already save here */
 816                __giveup_vsx(prev);
 817#endif /* CONFIG_VSX */
 818#ifdef CONFIG_SPE
 819        /*
 820         * If the previous thread used spe in the last quantum
 821         * (thus changing spe regs) then save them.
 822         *
 823         * On SMP we always save/restore spe regs just to avoid the
 824         * complexity of changing processors.
 825         */
 826        if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
 827                giveup_spe(prev);
 828#endif /* CONFIG_SPE */
 829
 830#else  /* CONFIG_SMP */
 831#ifdef CONFIG_ALTIVEC
 832        /* Avoid the trap.  On smp this this never happens since
 833         * we don't set last_task_used_altivec -- Cort
 834         */
 835        if (new->thread.regs && last_task_used_altivec == new)
 836                new->thread.regs->msr |= MSR_VEC;
 837#endif /* CONFIG_ALTIVEC */
 838#ifdef CONFIG_VSX
 839        if (new->thread.regs && last_task_used_vsx == new)
 840                new->thread.regs->msr |= MSR_VSX;
 841#endif /* CONFIG_VSX */
 842#ifdef CONFIG_SPE
 843        /* Avoid the trap.  On smp this this never happens since
 844         * we don't set last_task_used_spe
 845         */
 846        if (new->thread.regs && last_task_used_spe == new)
 847                new->thread.regs->msr |= MSR_SPE;
 848#endif /* CONFIG_SPE */
 849
 850#endif /* CONFIG_SMP */
 851
 852#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 853        switch_booke_debug_regs(&new->thread.debug);
 854#else
 855/*
 856 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 857 * schedule DABR
 858 */
 859#ifndef CONFIG_HAVE_HW_BREAKPOINT
 860        if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
 861                __set_breakpoint(&new->thread.hw_brk);
 862#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 863#endif
 864
 865
 866        new_thread = &new->thread;
 867        old_thread = &current->thread;
 868
 869#ifdef CONFIG_PPC64
 870        /*
 871         * Collect processor utilization data per process
 872         */
 873        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 874                struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 875                long unsigned start_tb, current_tb;
 876                start_tb = old_thread->start_tb;
 877                cu->current_tb = current_tb = mfspr(SPRN_PURR);
 878                old_thread->accum_tb += (current_tb - start_tb);
 879                new_thread->start_tb = current_tb;
 880        }
 881#endif /* CONFIG_PPC64 */
 882
 883#ifdef CONFIG_PPC_BOOK3S_64
 884        batch = this_cpu_ptr(&ppc64_tlb_batch);
 885        if (batch->active) {
 886                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
 887                if (batch->index)
 888                        __flush_tlb_pending(batch);
 889                batch->active = 0;
 890        }
 891#endif /* CONFIG_PPC_BOOK3S_64 */
 892
 893        /*
 894         * We can't take a PMU exception inside _switch() since there is a
 895         * window where the kernel stack SLB and the kernel stack are out
 896         * of sync. Hard disable here.
 897         */
 898        hard_irq_disable();
 899
 900        tm_recheckpoint_new_task(new);
 901
 902        last = _switch(old_thread, new_thread);
 903
 904#ifdef CONFIG_PPC_BOOK3S_64
 905        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
 906                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
 907                batch = this_cpu_ptr(&ppc64_tlb_batch);
 908                batch->active = 1;
 909        }
 910#endif /* CONFIG_PPC_BOOK3S_64 */
 911
 912        return last;
 913}
 914
 915static int instructions_to_print = 16;
 916
 917static void show_instructions(struct pt_regs *regs)
 918{
 919        int i;
 920        unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
 921                        sizeof(int));
 922
 923        printk("Instruction dump:");
 924
 925        for (i = 0; i < instructions_to_print; i++) {
 926                int instr;
 927
 928                if (!(i % 8))
 929                        printk("\n");
 930
 931#if !defined(CONFIG_BOOKE)
 932                /* If executing with the IMMU off, adjust pc rather
 933                 * than print XXXXXXXX.
 934                 */
 935                if (!(regs->msr & MSR_IR))
 936                        pc = (unsigned long)phys_to_virt(pc);
 937#endif
 938
 939                if (!__kernel_text_address(pc) ||
 940                     probe_kernel_address((unsigned int __user *)pc, instr)) {
 941                        printk(KERN_CONT "XXXXXXXX ");
 942                } else {
 943                        if (regs->nip == pc)
 944                                printk(KERN_CONT "<%08x> ", instr);
 945                        else
 946                                printk(KERN_CONT "%08x ", instr);
 947                }
 948
 949                pc += sizeof(int);
 950        }
 951
 952        printk("\n");
 953}
 954
 955static struct regbit {
 956        unsigned long bit;
 957        const char *name;
 958} msr_bits[] = {
 959#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
 960        {MSR_SF,        "SF"},
 961        {MSR_HV,        "HV"},
 962#endif
 963        {MSR_VEC,       "VEC"},
 964        {MSR_VSX,       "VSX"},
 965#ifdef CONFIG_BOOKE
 966        {MSR_CE,        "CE"},
 967#endif
 968        {MSR_EE,        "EE"},
 969        {MSR_PR,        "PR"},
 970        {MSR_FP,        "FP"},
 971        {MSR_ME,        "ME"},
 972#ifdef CONFIG_BOOKE
 973        {MSR_DE,        "DE"},
 974#else
 975        {MSR_SE,        "SE"},
 976        {MSR_BE,        "BE"},
 977#endif
 978        {MSR_IR,        "IR"},
 979        {MSR_DR,        "DR"},
 980        {MSR_PMM,       "PMM"},
 981#ifndef CONFIG_BOOKE
 982        {MSR_RI,        "RI"},
 983        {MSR_LE,        "LE"},
 984#endif
 985        {0,             NULL}
 986};
 987
 988static void printbits(unsigned long val, struct regbit *bits)
 989{
 990        const char *sep = "";
 991
 992        printk("<");
 993        for (; bits->bit; ++bits)
 994                if (val & bits->bit) {
 995                        printk("%s%s", sep, bits->name);
 996                        sep = ",";
 997                }
 998        printk(">");
 999}
1000
1001#ifdef CONFIG_PPC64
1002#define REG             "%016lx"
1003#define REGS_PER_LINE   4
1004#define LAST_VOLATILE   13
1005#else
1006#define REG             "%08lx"
1007#define REGS_PER_LINE   8
1008#define LAST_VOLATILE   12
1009#endif
1010
1011void show_regs(struct pt_regs * regs)
1012{
1013        int i, trap;
1014
1015        show_regs_print_info(KERN_DEFAULT);
1016
1017        printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1018               regs->nip, regs->link, regs->ctr);
1019        printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1020               regs, regs->trap, print_tainted(), init_utsname()->release);
1021        printk("MSR: "REG" ", regs->msr);
1022        printbits(regs->msr, msr_bits);
1023        printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1024        trap = TRAP(regs);
1025        if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1026                printk("CFAR: "REG" ", regs->orig_gpr3);
1027        if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1028#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1029                printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1030#else
1031                printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1032#endif
1033#ifdef CONFIG_PPC64
1034        printk("SOFTE: %ld ", regs->softe);
1035#endif
1036#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1037        if (MSR_TM_ACTIVE(regs->msr))
1038                printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1039#endif
1040
1041        for (i = 0;  i < 32;  i++) {
1042                if ((i % REGS_PER_LINE) == 0)
1043                        printk("\nGPR%02d: ", i);
1044                printk(REG " ", regs->gpr[i]);
1045                if (i == LAST_VOLATILE && !FULL_REGS(regs))
1046                        break;
1047        }
1048        printk("\n");
1049#ifdef CONFIG_KALLSYMS
1050        /*
1051         * Lookup NIP late so we have the best change of getting the
1052         * above info out without failing
1053         */
1054        printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1055        printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1056#endif
1057        show_stack(current, (unsigned long *) regs->gpr[1]);
1058        if (!user_mode(regs))
1059                show_instructions(regs);
1060}
1061
1062void exit_thread(void)
1063{
1064        discard_lazy_cpu_state();
1065}
1066
1067void flush_thread(void)
1068{
1069        discard_lazy_cpu_state();
1070
1071#ifdef CONFIG_HAVE_HW_BREAKPOINT
1072        flush_ptrace_hw_breakpoint(current);
1073#else /* CONFIG_HAVE_HW_BREAKPOINT */
1074        set_debug_reg_defaults(&current->thread);
1075#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1076}
1077
1078void
1079release_thread(struct task_struct *t)
1080{
1081}
1082
1083/*
1084 * this gets called so that we can store coprocessor state into memory and
1085 * copy the current task into the new thread.
1086 */
1087int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1088{
1089        flush_fp_to_thread(src);
1090        flush_altivec_to_thread(src);
1091        flush_vsx_to_thread(src);
1092        flush_spe_to_thread(src);
1093        /*
1094         * Flush TM state out so we can copy it.  __switch_to_tm() does this
1095         * flush but it removes the checkpointed state from the current CPU and
1096         * transitions the CPU out of TM mode.  Hence we need to call
1097         * tm_recheckpoint_new_task() (on the same task) to restore the
1098         * checkpointed state back and the TM mode.
1099         */
1100        __switch_to_tm(src);
1101        tm_recheckpoint_new_task(src);
1102
1103        *dst = *src;
1104
1105        clear_task_ebb(dst);
1106
1107        return 0;
1108}
1109
1110static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1111{
1112#ifdef CONFIG_PPC_STD_MMU_64
1113        unsigned long sp_vsid;
1114        unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1115
1116        if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1117                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1118                        << SLB_VSID_SHIFT_1T;
1119        else
1120                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1121                        << SLB_VSID_SHIFT;
1122        sp_vsid |= SLB_VSID_KERNEL | llp;
1123        p->thread.ksp_vsid = sp_vsid;
1124#endif
1125}
1126
1127/*
1128 * Copy a thread..
1129 */
1130
1131/*
1132 * Copy architecture-specific thread state
1133 */
1134int copy_thread(unsigned long clone_flags, unsigned long usp,
1135                unsigned long kthread_arg, struct task_struct *p)
1136{
1137        struct pt_regs *childregs, *kregs;
1138        extern void ret_from_fork(void);
1139        extern void ret_from_kernel_thread(void);
1140        void (*f)(void);
1141        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1142
1143        /* Copy registers */
1144        sp -= sizeof(struct pt_regs);
1145        childregs = (struct pt_regs *) sp;
1146        if (unlikely(p->flags & PF_KTHREAD)) {
1147                /* kernel thread */
1148                struct thread_info *ti = (void *)task_stack_page(p);
1149                memset(childregs, 0, sizeof(struct pt_regs));
1150                childregs->gpr[1] = sp + sizeof(struct pt_regs);
1151                /* function */
1152                if (usp)
1153                        childregs->gpr[14] = ppc_function_entry((void *)usp);
1154#ifdef CONFIG_PPC64
1155                clear_tsk_thread_flag(p, TIF_32BIT);
1156                childregs->softe = 1;
1157#endif
1158                childregs->gpr[15] = kthread_arg;
1159                p->thread.regs = NULL;  /* no user register state */
1160                ti->flags |= _TIF_RESTOREALL;
1161                f = ret_from_kernel_thread;
1162        } else {
1163                /* user thread */
1164                struct pt_regs *regs = current_pt_regs();
1165                CHECK_FULL_REGS(regs);
1166                *childregs = *regs;
1167                if (usp)
1168                        childregs->gpr[1] = usp;
1169                p->thread.regs = childregs;
1170                childregs->gpr[3] = 0;  /* Result from fork() */
1171                if (clone_flags & CLONE_SETTLS) {
1172#ifdef CONFIG_PPC64
1173                        if (!is_32bit_task())
1174                                childregs->gpr[13] = childregs->gpr[6];
1175                        else
1176#endif
1177                                childregs->gpr[2] = childregs->gpr[6];
1178                }
1179
1180                f = ret_from_fork;
1181        }
1182        sp -= STACK_FRAME_OVERHEAD;
1183
1184        /*
1185         * The way this works is that at some point in the future
1186         * some task will call _switch to switch to the new task.
1187         * That will pop off the stack frame created below and start
1188         * the new task running at ret_from_fork.  The new task will
1189         * do some house keeping and then return from the fork or clone
1190         * system call, using the stack frame created above.
1191         */
1192        ((unsigned long *)sp)[0] = 0;
1193        sp -= sizeof(struct pt_regs);
1194        kregs = (struct pt_regs *) sp;
1195        sp -= STACK_FRAME_OVERHEAD;
1196        p->thread.ksp = sp;
1197#ifdef CONFIG_PPC32
1198        p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1199                                _ALIGN_UP(sizeof(struct thread_info), 16);
1200#endif
1201#ifdef CONFIG_HAVE_HW_BREAKPOINT
1202        p->thread.ptrace_bps[0] = NULL;
1203#endif
1204
1205        p->thread.fp_save_area = NULL;
1206#ifdef CONFIG_ALTIVEC
1207        p->thread.vr_save_area = NULL;
1208#endif
1209
1210        setup_ksp_vsid(p, sp);
1211
1212#ifdef CONFIG_PPC64 
1213        if (cpu_has_feature(CPU_FTR_DSCR)) {
1214                p->thread.dscr_inherit = current->thread.dscr_inherit;
1215                p->thread.dscr = current->thread.dscr;
1216        }
1217        if (cpu_has_feature(CPU_FTR_HAS_PPR))
1218                p->thread.ppr = INIT_PPR;
1219#endif
1220        kregs->nip = ppc_function_entry(f);
1221        return 0;
1222}
1223
1224/*
1225 * Set up a thread for executing a new program
1226 */
1227void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1228{
1229#ifdef CONFIG_PPC64
1230        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1231#endif
1232
1233        /*
1234         * If we exec out of a kernel thread then thread.regs will not be
1235         * set.  Do it now.
1236         */
1237        if (!current->thread.regs) {
1238                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1239                current->thread.regs = regs - 1;
1240        }
1241
1242        memset(regs->gpr, 0, sizeof(regs->gpr));
1243        regs->ctr = 0;
1244        regs->link = 0;
1245        regs->xer = 0;
1246        regs->ccr = 0;
1247        regs->gpr[1] = sp;
1248
1249        /*
1250         * We have just cleared all the nonvolatile GPRs, so make
1251         * FULL_REGS(regs) return true.  This is necessary to allow
1252         * ptrace to examine the thread immediately after exec.
1253         */
1254        regs->trap &= ~1UL;
1255
1256#ifdef CONFIG_PPC32
1257        regs->mq = 0;
1258        regs->nip = start;
1259        regs->msr = MSR_USER;
1260#else
1261        if (!is_32bit_task()) {
1262                unsigned long entry;
1263
1264                if (is_elf2_task()) {
1265                        /* Look ma, no function descriptors! */
1266                        entry = start;
1267
1268                        /*
1269                         * Ulrich says:
1270                         *   The latest iteration of the ABI requires that when
1271                         *   calling a function (at its global entry point),
1272                         *   the caller must ensure r12 holds the entry point
1273                         *   address (so that the function can quickly
1274                         *   establish addressability).
1275                         */
1276                        regs->gpr[12] = start;
1277                        /* Make sure that's restored on entry to userspace. */
1278                        set_thread_flag(TIF_RESTOREALL);
1279                } else {
1280                        unsigned long toc;
1281
1282                        /* start is a relocated pointer to the function
1283                         * descriptor for the elf _start routine.  The first
1284                         * entry in the function descriptor is the entry
1285                         * address of _start and the second entry is the TOC
1286                         * value we need to use.
1287                         */
1288                        __get_user(entry, (unsigned long __user *)start);
1289                        __get_user(toc, (unsigned long __user *)start+1);
1290
1291                        /* Check whether the e_entry function descriptor entries
1292                         * need to be relocated before we can use them.
1293                         */
1294                        if (load_addr != 0) {
1295                                entry += load_addr;
1296                                toc   += load_addr;
1297                        }
1298                        regs->gpr[2] = toc;
1299                }
1300                regs->nip = entry;
1301                regs->msr = MSR_USER64;
1302        } else {
1303                regs->nip = start;
1304                regs->gpr[2] = 0;
1305                regs->msr = MSR_USER32;
1306        }
1307#endif
1308        discard_lazy_cpu_state();
1309#ifdef CONFIG_VSX
1310        current->thread.used_vsr = 0;
1311#endif
1312        memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1313        current->thread.fp_save_area = NULL;
1314#ifdef CONFIG_ALTIVEC
1315        memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1316        current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1317        current->thread.vr_save_area = NULL;
1318        current->thread.vrsave = 0;
1319        current->thread.used_vr = 0;
1320#endif /* CONFIG_ALTIVEC */
1321#ifdef CONFIG_SPE
1322        memset(current->thread.evr, 0, sizeof(current->thread.evr));
1323        current->thread.acc = 0;
1324        current->thread.spefscr = 0;
1325        current->thread.used_spe = 0;
1326#endif /* CONFIG_SPE */
1327#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1328        if (cpu_has_feature(CPU_FTR_TM))
1329                regs->msr |= MSR_TM;
1330        current->thread.tm_tfhar = 0;
1331        current->thread.tm_texasr = 0;
1332        current->thread.tm_tfiar = 0;
1333#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1334}
1335EXPORT_SYMBOL(start_thread);
1336
1337#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1338                | PR_FP_EXC_RES | PR_FP_EXC_INV)
1339
1340int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1341{
1342        struct pt_regs *regs = tsk->thread.regs;
1343
1344        /* This is a bit hairy.  If we are an SPE enabled  processor
1345         * (have embedded fp) we store the IEEE exception enable flags in
1346         * fpexc_mode.  fpexc_mode is also used for setting FP exception
1347         * mode (asyn, precise, disabled) for 'Classic' FP. */
1348        if (val & PR_FP_EXC_SW_ENABLE) {
1349#ifdef CONFIG_SPE
1350                if (cpu_has_feature(CPU_FTR_SPE)) {
1351                        /*
1352                         * When the sticky exception bits are set
1353                         * directly by userspace, it must call prctl
1354                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1355                         * in the existing prctl settings) or
1356                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1357                         * the bits being set).  <fenv.h> functions
1358                         * saving and restoring the whole
1359                         * floating-point environment need to do so
1360                         * anyway to restore the prctl settings from
1361                         * the saved environment.
1362                         */
1363                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1364                        tsk->thread.fpexc_mode = val &
1365                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1366                        return 0;
1367                } else {
1368                        return -EINVAL;
1369                }
1370#else
1371                return -EINVAL;
1372#endif
1373        }
1374
1375        /* on a CONFIG_SPE this does not hurt us.  The bits that
1376         * __pack_fe01 use do not overlap with bits used for
1377         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1378         * on CONFIG_SPE implementations are reserved so writing to
1379         * them does not change anything */
1380        if (val > PR_FP_EXC_PRECISE)
1381                return -EINVAL;
1382        tsk->thread.fpexc_mode = __pack_fe01(val);
1383        if (regs != NULL && (regs->msr & MSR_FP) != 0)
1384                regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1385                        | tsk->thread.fpexc_mode;
1386        return 0;
1387}
1388
1389int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1390{
1391        unsigned int val;
1392
1393        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1394#ifdef CONFIG_SPE
1395                if (cpu_has_feature(CPU_FTR_SPE)) {
1396                        /*
1397                         * When the sticky exception bits are set
1398                         * directly by userspace, it must call prctl
1399                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1400                         * in the existing prctl settings) or
1401                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1402                         * the bits being set).  <fenv.h> functions
1403                         * saving and restoring the whole
1404                         * floating-point environment need to do so
1405                         * anyway to restore the prctl settings from
1406                         * the saved environment.
1407                         */
1408                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1409                        val = tsk->thread.fpexc_mode;
1410                } else
1411                        return -EINVAL;
1412#else
1413                return -EINVAL;
1414#endif
1415        else
1416                val = __unpack_fe01(tsk->thread.fpexc_mode);
1417        return put_user(val, (unsigned int __user *) adr);
1418}
1419
1420int set_endian(struct task_struct *tsk, unsigned int val)
1421{
1422        struct pt_regs *regs = tsk->thread.regs;
1423
1424        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1425            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1426                return -EINVAL;
1427
1428        if (regs == NULL)
1429                return -EINVAL;
1430
1431        if (val == PR_ENDIAN_BIG)
1432                regs->msr &= ~MSR_LE;
1433        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1434                regs->msr |= MSR_LE;
1435        else
1436                return -EINVAL;
1437
1438        return 0;
1439}
1440
1441int get_endian(struct task_struct *tsk, unsigned long adr)
1442{
1443        struct pt_regs *regs = tsk->thread.regs;
1444        unsigned int val;
1445
1446        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1447            !cpu_has_feature(CPU_FTR_REAL_LE))
1448                return -EINVAL;
1449
1450        if (regs == NULL)
1451                return -EINVAL;
1452
1453        if (regs->msr & MSR_LE) {
1454                if (cpu_has_feature(CPU_FTR_REAL_LE))
1455                        val = PR_ENDIAN_LITTLE;
1456                else
1457                        val = PR_ENDIAN_PPC_LITTLE;
1458        } else
1459                val = PR_ENDIAN_BIG;
1460
1461        return put_user(val, (unsigned int __user *)adr);
1462}
1463
1464int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1465{
1466        tsk->thread.align_ctl = val;
1467        return 0;
1468}
1469
1470int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1471{
1472        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1473}
1474
1475static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1476                                  unsigned long nbytes)
1477{
1478        unsigned long stack_page;
1479        unsigned long cpu = task_cpu(p);
1480
1481        /*
1482         * Avoid crashing if the stack has overflowed and corrupted
1483         * task_cpu(p), which is in the thread_info struct.
1484         */
1485        if (cpu < NR_CPUS && cpu_possible(cpu)) {
1486                stack_page = (unsigned long) hardirq_ctx[cpu];
1487                if (sp >= stack_page + sizeof(struct thread_struct)
1488                    && sp <= stack_page + THREAD_SIZE - nbytes)
1489                        return 1;
1490
1491                stack_page = (unsigned long) softirq_ctx[cpu];
1492                if (sp >= stack_page + sizeof(struct thread_struct)
1493                    && sp <= stack_page + THREAD_SIZE - nbytes)
1494                        return 1;
1495        }
1496        return 0;
1497}
1498
1499int validate_sp(unsigned long sp, struct task_struct *p,
1500                       unsigned long nbytes)
1501{
1502        unsigned long stack_page = (unsigned long)task_stack_page(p);
1503
1504        if (sp >= stack_page + sizeof(struct thread_struct)
1505            && sp <= stack_page + THREAD_SIZE - nbytes)
1506                return 1;
1507
1508        return valid_irq_stack(sp, p, nbytes);
1509}
1510
1511EXPORT_SYMBOL(validate_sp);
1512
1513unsigned long get_wchan(struct task_struct *p)
1514{
1515        unsigned long ip, sp;
1516        int count = 0;
1517
1518        if (!p || p == current || p->state == TASK_RUNNING)
1519                return 0;
1520
1521        sp = p->thread.ksp;
1522        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1523                return 0;
1524
1525        do {
1526                sp = *(unsigned long *)sp;
1527                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1528                        return 0;
1529                if (count > 0) {
1530                        ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1531                        if (!in_sched_functions(ip))
1532                                return ip;
1533                }
1534        } while (count++ < 16);
1535        return 0;
1536}
1537
1538static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1539
1540void show_stack(struct task_struct *tsk, unsigned long *stack)
1541{
1542        unsigned long sp, ip, lr, newsp;
1543        int count = 0;
1544        int firstframe = 1;
1545#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1546        int curr_frame = current->curr_ret_stack;
1547        extern void return_to_handler(void);
1548        unsigned long rth = (unsigned long)return_to_handler;
1549#endif
1550
1551        sp = (unsigned long) stack;
1552        if (tsk == NULL)
1553                tsk = current;
1554        if (sp == 0) {
1555                if (tsk == current)
1556                        sp = current_stack_pointer();
1557                else
1558                        sp = tsk->thread.ksp;
1559        }
1560
1561        lr = 0;
1562        printk("Call Trace:\n");
1563        do {
1564                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1565                        return;
1566
1567                stack = (unsigned long *) sp;
1568                newsp = stack[0];
1569                ip = stack[STACK_FRAME_LR_SAVE];
1570                if (!firstframe || ip != lr) {
1571                        printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1572#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1573                        if ((ip == rth) && curr_frame >= 0) {
1574                                printk(" (%pS)",
1575                                       (void *)current->ret_stack[curr_frame].ret);
1576                                curr_frame--;
1577                        }
1578#endif
1579                        if (firstframe)
1580                                printk(" (unreliable)");
1581                        printk("\n");
1582                }
1583                firstframe = 0;
1584
1585                /*
1586                 * See if this is an exception frame.
1587                 * We look for the "regshere" marker in the current frame.
1588                 */
1589                if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1590                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1591                        struct pt_regs *regs = (struct pt_regs *)
1592                                (sp + STACK_FRAME_OVERHEAD);
1593                        lr = regs->link;
1594                        printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1595                               regs->trap, (void *)regs->nip, (void *)lr);
1596                        firstframe = 1;
1597                }
1598
1599                sp = newsp;
1600        } while (count++ < kstack_depth_to_print);
1601}
1602
1603#ifdef CONFIG_PPC64
1604/* Called with hard IRQs off */
1605void notrace __ppc64_runlatch_on(void)
1606{
1607        struct thread_info *ti = current_thread_info();
1608        unsigned long ctrl;
1609
1610        ctrl = mfspr(SPRN_CTRLF);
1611        ctrl |= CTRL_RUNLATCH;
1612        mtspr(SPRN_CTRLT, ctrl);
1613
1614        ti->local_flags |= _TLF_RUNLATCH;
1615}
1616
1617/* Called with hard IRQs off */
1618void notrace __ppc64_runlatch_off(void)
1619{
1620        struct thread_info *ti = current_thread_info();
1621        unsigned long ctrl;
1622
1623        ti->local_flags &= ~_TLF_RUNLATCH;
1624
1625        ctrl = mfspr(SPRN_CTRLF);
1626        ctrl &= ~CTRL_RUNLATCH;
1627        mtspr(SPRN_CTRLT, ctrl);
1628}
1629#endif /* CONFIG_PPC64 */
1630
1631unsigned long arch_align_stack(unsigned long sp)
1632{
1633        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1634                sp -= get_random_int() & ~PAGE_MASK;
1635        return sp & ~0xf;
1636}
1637
1638static inline unsigned long brk_rnd(void)
1639{
1640        unsigned long rnd = 0;
1641
1642        /* 8MB for 32bit, 1GB for 64bit */
1643        if (is_32bit_task())
1644                rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1645        else
1646                rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1647
1648        return rnd << PAGE_SHIFT;
1649}
1650
1651unsigned long arch_randomize_brk(struct mm_struct *mm)
1652{
1653        unsigned long base = mm->brk;
1654        unsigned long ret;
1655
1656#ifdef CONFIG_PPC_STD_MMU_64
1657        /*
1658         * If we are using 1TB segments and we are allowed to randomise
1659         * the heap, we can put it above 1TB so it is backed by a 1TB
1660         * segment. Otherwise the heap will be in the bottom 1TB
1661         * which always uses 256MB segments and this may result in a
1662         * performance penalty.
1663         */
1664        if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1665                base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1666#endif
1667
1668        ret = PAGE_ALIGN(base + brk_rnd());
1669
1670        if (ret < mm->brk)
1671                return mm->brk;
1672
1673        return ret;
1674}
1675
1676