linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/prctl.h>
  30#include <linux/delay.h>
  31#include <linux/kprobes.h>
  32#include <linux/kexec.h>
  33#include <linux/backlight.h>
  34#include <linux/bug.h>
  35#include <linux/kdebug.h>
  36#include <linux/debugfs.h>
  37#include <linux/ratelimit.h>
  38#include <linux/context_tracking.h>
  39
  40#include <asm/emulated_ops.h>
  41#include <asm/pgtable.h>
  42#include <asm/uaccess.h>
  43#include <asm/io.h>
  44#include <asm/machdep.h>
  45#include <asm/rtas.h>
  46#include <asm/pmc.h>
  47#include <asm/reg.h>
  48#ifdef CONFIG_PMAC_BACKLIGHT
  49#include <asm/backlight.h>
  50#endif
  51#ifdef CONFIG_PPC64
  52#include <asm/firmware.h>
  53#include <asm/processor.h>
  54#include <asm/tm.h>
  55#endif
  56#include <asm/kexec.h>
  57#include <asm/ppc-opcode.h>
  58#include <asm/rio.h>
  59#include <asm/fadump.h>
  60#include <asm/switch_to.h>
  61#include <asm/tm.h>
  62#include <asm/debug.h>
  63#include <sysdev/fsl_pci.h>
  64
  65#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  66int (*__debugger)(struct pt_regs *regs) __read_mostly;
  67int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  68int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  69int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  70int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  71int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  72int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  73
  74EXPORT_SYMBOL(__debugger);
  75EXPORT_SYMBOL(__debugger_ipi);
  76EXPORT_SYMBOL(__debugger_bpt);
  77EXPORT_SYMBOL(__debugger_sstep);
  78EXPORT_SYMBOL(__debugger_iabr_match);
  79EXPORT_SYMBOL(__debugger_break_match);
  80EXPORT_SYMBOL(__debugger_fault_handler);
  81#endif
  82
  83/* Transactional Memory trap debug */
  84#ifdef TM_DEBUG_SW
  85#define TM_DEBUG(x...) printk(KERN_INFO x)
  86#else
  87#define TM_DEBUG(x...) do { } while(0)
  88#endif
  89
  90/*
  91 * Trap & Exception support
  92 */
  93
  94#ifdef CONFIG_PMAC_BACKLIGHT
  95static void pmac_backlight_unblank(void)
  96{
  97        mutex_lock(&pmac_backlight_mutex);
  98        if (pmac_backlight) {
  99                struct backlight_properties *props;
 100
 101                props = &pmac_backlight->props;
 102                props->brightness = props->max_brightness;
 103                props->power = FB_BLANK_UNBLANK;
 104                backlight_update_status(pmac_backlight);
 105        }
 106        mutex_unlock(&pmac_backlight_mutex);
 107}
 108#else
 109static inline void pmac_backlight_unblank(void) { }
 110#endif
 111
 112static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 113static int die_owner = -1;
 114static unsigned int die_nest_count;
 115static int die_counter;
 116
 117static unsigned __kprobes long oops_begin(struct pt_regs *regs)
 118{
 119        int cpu;
 120        unsigned long flags;
 121
 122        if (debugger(regs))
 123                return 1;
 124
 125        oops_enter();
 126
 127        /* racy, but better than risking deadlock. */
 128        raw_local_irq_save(flags);
 129        cpu = smp_processor_id();
 130        if (!arch_spin_trylock(&die_lock)) {
 131                if (cpu == die_owner)
 132                        /* nested oops. should stop eventually */;
 133                else
 134                        arch_spin_lock(&die_lock);
 135        }
 136        die_nest_count++;
 137        die_owner = cpu;
 138        console_verbose();
 139        bust_spinlocks(1);
 140        if (machine_is(powermac))
 141                pmac_backlight_unblank();
 142        return flags;
 143}
 144
 145static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
 146                               int signr)
 147{
 148        bust_spinlocks(0);
 149        die_owner = -1;
 150        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 151        die_nest_count--;
 152        oops_exit();
 153        printk("\n");
 154        if (!die_nest_count)
 155                /* Nest count reaches zero, release the lock. */
 156                arch_spin_unlock(&die_lock);
 157        raw_local_irq_restore(flags);
 158
 159        crash_fadump(regs, "die oops");
 160
 161        /*
 162         * A system reset (0x100) is a request to dump, so we always send
 163         * it through the crashdump code.
 164         */
 165        if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 166                crash_kexec(regs);
 167
 168                /*
 169                 * We aren't the primary crash CPU. We need to send it
 170                 * to a holding pattern to avoid it ending up in the panic
 171                 * code.
 172                 */
 173                crash_kexec_secondary(regs);
 174        }
 175
 176        if (!signr)
 177                return;
 178
 179        /*
 180         * While our oops output is serialised by a spinlock, output
 181         * from panic() called below can race and corrupt it. If we
 182         * know we are going to panic, delay for 1 second so we have a
 183         * chance to get clean backtraces from all CPUs that are oopsing.
 184         */
 185        if (in_interrupt() || panic_on_oops || !current->pid ||
 186            is_global_init(current)) {
 187                mdelay(MSEC_PER_SEC);
 188        }
 189
 190        if (in_interrupt())
 191                panic("Fatal exception in interrupt");
 192        if (panic_on_oops)
 193                panic("Fatal exception");
 194        do_exit(signr);
 195}
 196
 197static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
 198{
 199        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 200#ifdef CONFIG_PREEMPT
 201        printk("PREEMPT ");
 202#endif
 203#ifdef CONFIG_SMP
 204        printk("SMP NR_CPUS=%d ", NR_CPUS);
 205#endif
 206#ifdef CONFIG_DEBUG_PAGEALLOC
 207        printk("DEBUG_PAGEALLOC ");
 208#endif
 209#ifdef CONFIG_NUMA
 210        printk("NUMA ");
 211#endif
 212        printk("%s\n", ppc_md.name ? ppc_md.name : "");
 213
 214        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 215                return 1;
 216
 217        print_modules();
 218        show_regs(regs);
 219
 220        return 0;
 221}
 222
 223void die(const char *str, struct pt_regs *regs, long err)
 224{
 225        unsigned long flags = oops_begin(regs);
 226
 227        if (__die(str, regs, err))
 228                err = 0;
 229        oops_end(flags, regs, err);
 230}
 231
 232void user_single_step_siginfo(struct task_struct *tsk,
 233                                struct pt_regs *regs, siginfo_t *info)
 234{
 235        memset(info, 0, sizeof(*info));
 236        info->si_signo = SIGTRAP;
 237        info->si_code = TRAP_TRACE;
 238        info->si_addr = (void __user *)regs->nip;
 239}
 240
 241void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 242{
 243        siginfo_t info;
 244        const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 245                        "at %08lx nip %08lx lr %08lx code %x\n";
 246        const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 247                        "at %016lx nip %016lx lr %016lx code %x\n";
 248
 249        if (!user_mode(regs)) {
 250                die("Exception in kernel mode", regs, signr);
 251                return;
 252        }
 253
 254        if (show_unhandled_signals && unhandled_signal(current, signr)) {
 255                printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 256                                   current->comm, current->pid, signr,
 257                                   addr, regs->nip, regs->link, code);
 258        }
 259
 260        if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 261                local_irq_enable();
 262
 263        current->thread.trap_nr = code;
 264        memset(&info, 0, sizeof(info));
 265        info.si_signo = signr;
 266        info.si_code = code;
 267        info.si_addr = (void __user *) addr;
 268        force_sig_info(signr, &info, current);
 269}
 270
 271#ifdef CONFIG_PPC64
 272void system_reset_exception(struct pt_regs *regs)
 273{
 274        /* See if any machine dependent calls */
 275        if (ppc_md.system_reset_exception) {
 276                if (ppc_md.system_reset_exception(regs))
 277                        return;
 278        }
 279
 280        die("System Reset", regs, SIGABRT);
 281
 282        /* Must die if the interrupt is not recoverable */
 283        if (!(regs->msr & MSR_RI))
 284                panic("Unrecoverable System Reset");
 285
 286        /* What should we do here? We could issue a shutdown or hard reset. */
 287}
 288
 289/*
 290 * This function is called in real mode. Strictly no printk's please.
 291 *
 292 * regs->nip and regs->msr contains srr0 and ssr1.
 293 */
 294long machine_check_early(struct pt_regs *regs)
 295{
 296        long handled = 0;
 297
 298        __this_cpu_inc(irq_stat.mce_exceptions);
 299
 300        add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 301
 302        if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
 303                handled = cur_cpu_spec->machine_check_early(regs);
 304        return handled;
 305}
 306
 307long hmi_exception_realmode(struct pt_regs *regs)
 308{
 309        __this_cpu_inc(irq_stat.hmi_exceptions);
 310
 311        if (ppc_md.hmi_exception_early)
 312                ppc_md.hmi_exception_early(regs);
 313
 314        return 0;
 315}
 316
 317#endif
 318
 319/*
 320 * I/O accesses can cause machine checks on powermacs.
 321 * Check if the NIP corresponds to the address of a sync
 322 * instruction for which there is an entry in the exception
 323 * table.
 324 * Note that the 601 only takes a machine check on TEA
 325 * (transfer error ack) signal assertion, and does not
 326 * set any of the top 16 bits of SRR1.
 327 *  -- paulus.
 328 */
 329static inline int check_io_access(struct pt_regs *regs)
 330{
 331#ifdef CONFIG_PPC32
 332        unsigned long msr = regs->msr;
 333        const struct exception_table_entry *entry;
 334        unsigned int *nip = (unsigned int *)regs->nip;
 335
 336        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 337            && (entry = search_exception_tables(regs->nip)) != NULL) {
 338                /*
 339                 * Check that it's a sync instruction, or somewhere
 340                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 341                 * As the address is in the exception table
 342                 * we should be able to read the instr there.
 343                 * For the debug message, we look at the preceding
 344                 * load or store.
 345                 */
 346                if (*nip == 0x60000000)         /* nop */
 347                        nip -= 2;
 348                else if (*nip == 0x4c00012c)    /* isync */
 349                        --nip;
 350                if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
 351                        /* sync or twi */
 352                        unsigned int rb;
 353
 354                        --nip;
 355                        rb = (*nip >> 11) & 0x1f;
 356                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 357                               (*nip & 0x100)? "OUT to": "IN from",
 358                               regs->gpr[rb] - _IO_BASE, nip);
 359                        regs->msr |= MSR_RI;
 360                        regs->nip = entry->fixup;
 361                        return 1;
 362                }
 363        }
 364#endif /* CONFIG_PPC32 */
 365        return 0;
 366}
 367
 368#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 369/* On 4xx, the reason for the machine check or program exception
 370   is in the ESR. */
 371#define get_reason(regs)        ((regs)->dsisr)
 372#ifndef CONFIG_FSL_BOOKE
 373#define get_mc_reason(regs)     ((regs)->dsisr)
 374#else
 375#define get_mc_reason(regs)     (mfspr(SPRN_MCSR))
 376#endif
 377#define REASON_FP               ESR_FP
 378#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 379#define REASON_PRIVILEGED       ESR_PPR
 380#define REASON_TRAP             ESR_PTR
 381
 382/* single-step stuff */
 383#define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
 384#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
 385
 386#else
 387/* On non-4xx, the reason for the machine check or program
 388   exception is in the MSR. */
 389#define get_reason(regs)        ((regs)->msr)
 390#define get_mc_reason(regs)     ((regs)->msr)
 391#define REASON_TM               0x200000
 392#define REASON_FP               0x100000
 393#define REASON_ILLEGAL          0x80000
 394#define REASON_PRIVILEGED       0x40000
 395#define REASON_TRAP             0x20000
 396
 397#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 398#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
 399#endif
 400
 401#if defined(CONFIG_4xx)
 402int machine_check_4xx(struct pt_regs *regs)
 403{
 404        unsigned long reason = get_mc_reason(regs);
 405
 406        if (reason & ESR_IMCP) {
 407                printk("Instruction");
 408                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 409        } else
 410                printk("Data");
 411        printk(" machine check in kernel mode.\n");
 412
 413        return 0;
 414}
 415
 416int machine_check_440A(struct pt_regs *regs)
 417{
 418        unsigned long reason = get_mc_reason(regs);
 419
 420        printk("Machine check in kernel mode.\n");
 421        if (reason & ESR_IMCP){
 422                printk("Instruction Synchronous Machine Check exception\n");
 423                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 424        }
 425        else {
 426                u32 mcsr = mfspr(SPRN_MCSR);
 427                if (mcsr & MCSR_IB)
 428                        printk("Instruction Read PLB Error\n");
 429                if (mcsr & MCSR_DRB)
 430                        printk("Data Read PLB Error\n");
 431                if (mcsr & MCSR_DWB)
 432                        printk("Data Write PLB Error\n");
 433                if (mcsr & MCSR_TLBP)
 434                        printk("TLB Parity Error\n");
 435                if (mcsr & MCSR_ICP){
 436                        flush_instruction_cache();
 437                        printk("I-Cache Parity Error\n");
 438                }
 439                if (mcsr & MCSR_DCSP)
 440                        printk("D-Cache Search Parity Error\n");
 441                if (mcsr & MCSR_DCFP)
 442                        printk("D-Cache Flush Parity Error\n");
 443                if (mcsr & MCSR_IMPE)
 444                        printk("Machine Check exception is imprecise\n");
 445
 446                /* Clear MCSR */
 447                mtspr(SPRN_MCSR, mcsr);
 448        }
 449        return 0;
 450}
 451
 452int machine_check_47x(struct pt_regs *regs)
 453{
 454        unsigned long reason = get_mc_reason(regs);
 455        u32 mcsr;
 456
 457        printk(KERN_ERR "Machine check in kernel mode.\n");
 458        if (reason & ESR_IMCP) {
 459                printk(KERN_ERR
 460                       "Instruction Synchronous Machine Check exception\n");
 461                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 462                return 0;
 463        }
 464        mcsr = mfspr(SPRN_MCSR);
 465        if (mcsr & MCSR_IB)
 466                printk(KERN_ERR "Instruction Read PLB Error\n");
 467        if (mcsr & MCSR_DRB)
 468                printk(KERN_ERR "Data Read PLB Error\n");
 469        if (mcsr & MCSR_DWB)
 470                printk(KERN_ERR "Data Write PLB Error\n");
 471        if (mcsr & MCSR_TLBP)
 472                printk(KERN_ERR "TLB Parity Error\n");
 473        if (mcsr & MCSR_ICP) {
 474                flush_instruction_cache();
 475                printk(KERN_ERR "I-Cache Parity Error\n");
 476        }
 477        if (mcsr & MCSR_DCSP)
 478                printk(KERN_ERR "D-Cache Search Parity Error\n");
 479        if (mcsr & PPC47x_MCSR_GPR)
 480                printk(KERN_ERR "GPR Parity Error\n");
 481        if (mcsr & PPC47x_MCSR_FPR)
 482                printk(KERN_ERR "FPR Parity Error\n");
 483        if (mcsr & PPC47x_MCSR_IPR)
 484                printk(KERN_ERR "Machine Check exception is imprecise\n");
 485
 486        /* Clear MCSR */
 487        mtspr(SPRN_MCSR, mcsr);
 488
 489        return 0;
 490}
 491#elif defined(CONFIG_E500)
 492int machine_check_e500mc(struct pt_regs *regs)
 493{
 494        unsigned long mcsr = mfspr(SPRN_MCSR);
 495        unsigned long reason = mcsr;
 496        int recoverable = 1;
 497
 498        if (reason & MCSR_LD) {
 499                recoverable = fsl_rio_mcheck_exception(regs);
 500                if (recoverable == 1)
 501                        goto silent_out;
 502        }
 503
 504        printk("Machine check in kernel mode.\n");
 505        printk("Caused by (from MCSR=%lx): ", reason);
 506
 507        if (reason & MCSR_MCP)
 508                printk("Machine Check Signal\n");
 509
 510        if (reason & MCSR_ICPERR) {
 511                printk("Instruction Cache Parity Error\n");
 512
 513                /*
 514                 * This is recoverable by invalidating the i-cache.
 515                 */
 516                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 517                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 518                        ;
 519
 520                /*
 521                 * This will generally be accompanied by an instruction
 522                 * fetch error report -- only treat MCSR_IF as fatal
 523                 * if it wasn't due to an L1 parity error.
 524                 */
 525                reason &= ~MCSR_IF;
 526        }
 527
 528        if (reason & MCSR_DCPERR_MC) {
 529                printk("Data Cache Parity Error\n");
 530
 531                /*
 532                 * In write shadow mode we auto-recover from the error, but it
 533                 * may still get logged and cause a machine check.  We should
 534                 * only treat the non-write shadow case as non-recoverable.
 535                 */
 536                if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 537                        recoverable = 0;
 538        }
 539
 540        if (reason & MCSR_L2MMU_MHIT) {
 541                printk("Hit on multiple TLB entries\n");
 542                recoverable = 0;
 543        }
 544
 545        if (reason & MCSR_NMI)
 546                printk("Non-maskable interrupt\n");
 547
 548        if (reason & MCSR_IF) {
 549                printk("Instruction Fetch Error Report\n");
 550                recoverable = 0;
 551        }
 552
 553        if (reason & MCSR_LD) {
 554                printk("Load Error Report\n");
 555                recoverable = 0;
 556        }
 557
 558        if (reason & MCSR_ST) {
 559                printk("Store Error Report\n");
 560                recoverable = 0;
 561        }
 562
 563        if (reason & MCSR_LDG) {
 564                printk("Guarded Load Error Report\n");
 565                recoverable = 0;
 566        }
 567
 568        if (reason & MCSR_TLBSYNC)
 569                printk("Simultaneous tlbsync operations\n");
 570
 571        if (reason & MCSR_BSL2_ERR) {
 572                printk("Level 2 Cache Error\n");
 573                recoverable = 0;
 574        }
 575
 576        if (reason & MCSR_MAV) {
 577                u64 addr;
 578
 579                addr = mfspr(SPRN_MCAR);
 580                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 581
 582                printk("Machine Check %s Address: %#llx\n",
 583                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 584        }
 585
 586silent_out:
 587        mtspr(SPRN_MCSR, mcsr);
 588        return mfspr(SPRN_MCSR) == 0 && recoverable;
 589}
 590
 591int machine_check_e500(struct pt_regs *regs)
 592{
 593        unsigned long reason = get_mc_reason(regs);
 594
 595        if (reason & MCSR_BUS_RBERR) {
 596                if (fsl_rio_mcheck_exception(regs))
 597                        return 1;
 598                if (fsl_pci_mcheck_exception(regs))
 599                        return 1;
 600        }
 601
 602        printk("Machine check in kernel mode.\n");
 603        printk("Caused by (from MCSR=%lx): ", reason);
 604
 605        if (reason & MCSR_MCP)
 606                printk("Machine Check Signal\n");
 607        if (reason & MCSR_ICPERR)
 608                printk("Instruction Cache Parity Error\n");
 609        if (reason & MCSR_DCP_PERR)
 610                printk("Data Cache Push Parity Error\n");
 611        if (reason & MCSR_DCPERR)
 612                printk("Data Cache Parity Error\n");
 613        if (reason & MCSR_BUS_IAERR)
 614                printk("Bus - Instruction Address Error\n");
 615        if (reason & MCSR_BUS_RAERR)
 616                printk("Bus - Read Address Error\n");
 617        if (reason & MCSR_BUS_WAERR)
 618                printk("Bus - Write Address Error\n");
 619        if (reason & MCSR_BUS_IBERR)
 620                printk("Bus - Instruction Data Error\n");
 621        if (reason & MCSR_BUS_RBERR)
 622                printk("Bus - Read Data Bus Error\n");
 623        if (reason & MCSR_BUS_WBERR)
 624                printk("Bus - Write Data Bus Error\n");
 625        if (reason & MCSR_BUS_IPERR)
 626                printk("Bus - Instruction Parity Error\n");
 627        if (reason & MCSR_BUS_RPERR)
 628                printk("Bus - Read Parity Error\n");
 629
 630        return 0;
 631}
 632
 633int machine_check_generic(struct pt_regs *regs)
 634{
 635        return 0;
 636}
 637#elif defined(CONFIG_E200)
 638int machine_check_e200(struct pt_regs *regs)
 639{
 640        unsigned long reason = get_mc_reason(regs);
 641
 642        printk("Machine check in kernel mode.\n");
 643        printk("Caused by (from MCSR=%lx): ", reason);
 644
 645        if (reason & MCSR_MCP)
 646                printk("Machine Check Signal\n");
 647        if (reason & MCSR_CP_PERR)
 648                printk("Cache Push Parity Error\n");
 649        if (reason & MCSR_CPERR)
 650                printk("Cache Parity Error\n");
 651        if (reason & MCSR_EXCP_ERR)
 652                printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 653        if (reason & MCSR_BUS_IRERR)
 654                printk("Bus - Read Bus Error on instruction fetch\n");
 655        if (reason & MCSR_BUS_DRERR)
 656                printk("Bus - Read Bus Error on data load\n");
 657        if (reason & MCSR_BUS_WRERR)
 658                printk("Bus - Write Bus Error on buffered store or cache line push\n");
 659
 660        return 0;
 661}
 662#else
 663int machine_check_generic(struct pt_regs *regs)
 664{
 665        unsigned long reason = get_mc_reason(regs);
 666
 667        printk("Machine check in kernel mode.\n");
 668        printk("Caused by (from SRR1=%lx): ", reason);
 669        switch (reason & 0x601F0000) {
 670        case 0x80000:
 671                printk("Machine check signal\n");
 672                break;
 673        case 0:         /* for 601 */
 674        case 0x40000:
 675        case 0x140000:  /* 7450 MSS error and TEA */
 676                printk("Transfer error ack signal\n");
 677                break;
 678        case 0x20000:
 679                printk("Data parity error signal\n");
 680                break;
 681        case 0x10000:
 682                printk("Address parity error signal\n");
 683                break;
 684        case 0x20000000:
 685                printk("L1 Data Cache error\n");
 686                break;
 687        case 0x40000000:
 688                printk("L1 Instruction Cache error\n");
 689                break;
 690        case 0x00100000:
 691                printk("L2 data cache parity error\n");
 692                break;
 693        default:
 694                printk("Unknown values in msr\n");
 695        }
 696        return 0;
 697}
 698#endif /* everything else */
 699
 700void machine_check_exception(struct pt_regs *regs)
 701{
 702        enum ctx_state prev_state = exception_enter();
 703        int recover = 0;
 704
 705        __this_cpu_inc(irq_stat.mce_exceptions);
 706
 707        /* See if any machine dependent calls. In theory, we would want
 708         * to call the CPU first, and call the ppc_md. one if the CPU
 709         * one returns a positive number. However there is existing code
 710         * that assumes the board gets a first chance, so let's keep it
 711         * that way for now and fix things later. --BenH.
 712         */
 713        if (ppc_md.machine_check_exception)
 714                recover = ppc_md.machine_check_exception(regs);
 715        else if (cur_cpu_spec->machine_check)
 716                recover = cur_cpu_spec->machine_check(regs);
 717
 718        if (recover > 0)
 719                goto bail;
 720
 721#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
 722        /* the qspan pci read routines can cause machine checks -- Cort
 723         *
 724         * yuck !!! that totally needs to go away ! There are better ways
 725         * to deal with that than having a wart in the mcheck handler.
 726         * -- BenH
 727         */
 728        bad_page_fault(regs, regs->dar, SIGBUS);
 729        goto bail;
 730#endif
 731
 732        if (debugger_fault_handler(regs))
 733                goto bail;
 734
 735        if (check_io_access(regs))
 736                goto bail;
 737
 738        die("Machine check", regs, SIGBUS);
 739
 740        /* Must die if the interrupt is not recoverable */
 741        if (!(regs->msr & MSR_RI))
 742                panic("Unrecoverable Machine check");
 743
 744bail:
 745        exception_exit(prev_state);
 746}
 747
 748void SMIException(struct pt_regs *regs)
 749{
 750        die("System Management Interrupt", regs, SIGABRT);
 751}
 752
 753void handle_hmi_exception(struct pt_regs *regs)
 754{
 755        struct pt_regs *old_regs;
 756
 757        old_regs = set_irq_regs(regs);
 758        irq_enter();
 759
 760        if (ppc_md.handle_hmi_exception)
 761                ppc_md.handle_hmi_exception(regs);
 762
 763        irq_exit();
 764        set_irq_regs(old_regs);
 765}
 766
 767void unknown_exception(struct pt_regs *regs)
 768{
 769        enum ctx_state prev_state = exception_enter();
 770
 771        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 772               regs->nip, regs->msr, regs->trap);
 773
 774        _exception(SIGTRAP, regs, 0, 0);
 775
 776        exception_exit(prev_state);
 777}
 778
 779void instruction_breakpoint_exception(struct pt_regs *regs)
 780{
 781        enum ctx_state prev_state = exception_enter();
 782
 783        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 784                                        5, SIGTRAP) == NOTIFY_STOP)
 785                goto bail;
 786        if (debugger_iabr_match(regs))
 787                goto bail;
 788        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 789
 790bail:
 791        exception_exit(prev_state);
 792}
 793
 794void RunModeException(struct pt_regs *regs)
 795{
 796        _exception(SIGTRAP, regs, 0, 0);
 797}
 798
 799void __kprobes single_step_exception(struct pt_regs *regs)
 800{
 801        enum ctx_state prev_state = exception_enter();
 802
 803        clear_single_step(regs);
 804
 805        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 806                                        5, SIGTRAP) == NOTIFY_STOP)
 807                goto bail;
 808        if (debugger_sstep(regs))
 809                goto bail;
 810
 811        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 812
 813bail:
 814        exception_exit(prev_state);
 815}
 816
 817/*
 818 * After we have successfully emulated an instruction, we have to
 819 * check if the instruction was being single-stepped, and if so,
 820 * pretend we got a single-step exception.  This was pointed out
 821 * by Kumar Gala.  -- paulus
 822 */
 823static void emulate_single_step(struct pt_regs *regs)
 824{
 825        if (single_stepping(regs))
 826                single_step_exception(regs);
 827}
 828
 829static inline int __parse_fpscr(unsigned long fpscr)
 830{
 831        int ret = 0;
 832
 833        /* Invalid operation */
 834        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 835                ret = FPE_FLTINV;
 836
 837        /* Overflow */
 838        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 839                ret = FPE_FLTOVF;
 840
 841        /* Underflow */
 842        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 843                ret = FPE_FLTUND;
 844
 845        /* Divide by zero */
 846        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 847                ret = FPE_FLTDIV;
 848
 849        /* Inexact result */
 850        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 851                ret = FPE_FLTRES;
 852
 853        return ret;
 854}
 855
 856static void parse_fpe(struct pt_regs *regs)
 857{
 858        int code = 0;
 859
 860        flush_fp_to_thread(current);
 861
 862        code = __parse_fpscr(current->thread.fp_state.fpscr);
 863
 864        _exception(SIGFPE, regs, code, regs->nip);
 865}
 866
 867/*
 868 * Illegal instruction emulation support.  Originally written to
 869 * provide the PVR to user applications using the mfspr rd, PVR.
 870 * Return non-zero if we can't emulate, or -EFAULT if the associated
 871 * memory access caused an access fault.  Return zero on success.
 872 *
 873 * There are a couple of ways to do this, either "decode" the instruction
 874 * or directly match lots of bits.  In this case, matching lots of
 875 * bits is faster and easier.
 876 *
 877 */
 878static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 879{
 880        u8 rT = (instword >> 21) & 0x1f;
 881        u8 rA = (instword >> 16) & 0x1f;
 882        u8 NB_RB = (instword >> 11) & 0x1f;
 883        u32 num_bytes;
 884        unsigned long EA;
 885        int pos = 0;
 886
 887        /* Early out if we are an invalid form of lswx */
 888        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 889                if ((rT == rA) || (rT == NB_RB))
 890                        return -EINVAL;
 891
 892        EA = (rA == 0) ? 0 : regs->gpr[rA];
 893
 894        switch (instword & PPC_INST_STRING_MASK) {
 895                case PPC_INST_LSWX:
 896                case PPC_INST_STSWX:
 897                        EA += NB_RB;
 898                        num_bytes = regs->xer & 0x7f;
 899                        break;
 900                case PPC_INST_LSWI:
 901                case PPC_INST_STSWI:
 902                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 903                        break;
 904                default:
 905                        return -EINVAL;
 906        }
 907
 908        while (num_bytes != 0)
 909        {
 910                u8 val;
 911                u32 shift = 8 * (3 - (pos & 0x3));
 912
 913                /* if process is 32-bit, clear upper 32 bits of EA */
 914                if ((regs->msr & MSR_64BIT) == 0)
 915                        EA &= 0xFFFFFFFF;
 916
 917                switch ((instword & PPC_INST_STRING_MASK)) {
 918                        case PPC_INST_LSWX:
 919                        case PPC_INST_LSWI:
 920                                if (get_user(val, (u8 __user *)EA))
 921                                        return -EFAULT;
 922                                /* first time updating this reg,
 923                                 * zero it out */
 924                                if (pos == 0)
 925                                        regs->gpr[rT] = 0;
 926                                regs->gpr[rT] |= val << shift;
 927                                break;
 928                        case PPC_INST_STSWI:
 929                        case PPC_INST_STSWX:
 930                                val = regs->gpr[rT] >> shift;
 931                                if (put_user(val, (u8 __user *)EA))
 932                                        return -EFAULT;
 933                                break;
 934                }
 935                /* move EA to next address */
 936                EA += 1;
 937                num_bytes--;
 938
 939                /* manage our position within the register */
 940                if (++pos == 4) {
 941                        pos = 0;
 942                        if (++rT == 32)
 943                                rT = 0;
 944                }
 945        }
 946
 947        return 0;
 948}
 949
 950static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 951{
 952        u32 ra,rs;
 953        unsigned long tmp;
 954
 955        ra = (instword >> 16) & 0x1f;
 956        rs = (instword >> 21) & 0x1f;
 957
 958        tmp = regs->gpr[rs];
 959        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 960        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 961        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 962        regs->gpr[ra] = tmp;
 963
 964        return 0;
 965}
 966
 967static int emulate_isel(struct pt_regs *regs, u32 instword)
 968{
 969        u8 rT = (instword >> 21) & 0x1f;
 970        u8 rA = (instword >> 16) & 0x1f;
 971        u8 rB = (instword >> 11) & 0x1f;
 972        u8 BC = (instword >> 6) & 0x1f;
 973        u8 bit;
 974        unsigned long tmp;
 975
 976        tmp = (rA == 0) ? 0 : regs->gpr[rA];
 977        bit = (regs->ccr >> (31 - BC)) & 0x1;
 978
 979        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
 980
 981        return 0;
 982}
 983
 984#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 985static inline bool tm_abort_check(struct pt_regs *regs, int cause)
 986{
 987        /* If we're emulating a load/store in an active transaction, we cannot
 988         * emulate it as the kernel operates in transaction suspended context.
 989         * We need to abort the transaction.  This creates a persistent TM
 990         * abort so tell the user what caused it with a new code.
 991         */
 992        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
 993                tm_enable();
 994                tm_abort(cause);
 995                return true;
 996        }
 997        return false;
 998}
 999#else
1000static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1001{
1002        return false;
1003}
1004#endif
1005
1006static int emulate_instruction(struct pt_regs *regs)
1007{
1008        u32 instword;
1009        u32 rd;
1010
1011        if (!user_mode(regs))
1012                return -EINVAL;
1013        CHECK_FULL_REGS(regs);
1014
1015        if (get_user(instword, (u32 __user *)(regs->nip)))
1016                return -EFAULT;
1017
1018        /* Emulate the mfspr rD, PVR. */
1019        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1020                PPC_WARN_EMULATED(mfpvr, regs);
1021                rd = (instword >> 21) & 0x1f;
1022                regs->gpr[rd] = mfspr(SPRN_PVR);
1023                return 0;
1024        }
1025
1026        /* Emulating the dcba insn is just a no-op.  */
1027        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1028                PPC_WARN_EMULATED(dcba, regs);
1029                return 0;
1030        }
1031
1032        /* Emulate the mcrxr insn.  */
1033        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1034                int shift = (instword >> 21) & 0x1c;
1035                unsigned long msk = 0xf0000000UL >> shift;
1036
1037                PPC_WARN_EMULATED(mcrxr, regs);
1038                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1039                regs->xer &= ~0xf0000000UL;
1040                return 0;
1041        }
1042
1043        /* Emulate load/store string insn. */
1044        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1045                if (tm_abort_check(regs,
1046                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1047                        return -EINVAL;
1048                PPC_WARN_EMULATED(string, regs);
1049                return emulate_string_inst(regs, instword);
1050        }
1051
1052        /* Emulate the popcntb (Population Count Bytes) instruction. */
1053        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1054                PPC_WARN_EMULATED(popcntb, regs);
1055                return emulate_popcntb_inst(regs, instword);
1056        }
1057
1058        /* Emulate isel (Integer Select) instruction */
1059        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1060                PPC_WARN_EMULATED(isel, regs);
1061                return emulate_isel(regs, instword);
1062        }
1063
1064        /* Emulate sync instruction variants */
1065        if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1066                PPC_WARN_EMULATED(sync, regs);
1067                asm volatile("sync");
1068                return 0;
1069        }
1070
1071#ifdef CONFIG_PPC64
1072        /* Emulate the mfspr rD, DSCR. */
1073        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1074                PPC_INST_MFSPR_DSCR_USER) ||
1075             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1076                PPC_INST_MFSPR_DSCR)) &&
1077                        cpu_has_feature(CPU_FTR_DSCR)) {
1078                PPC_WARN_EMULATED(mfdscr, regs);
1079                rd = (instword >> 21) & 0x1f;
1080                regs->gpr[rd] = mfspr(SPRN_DSCR);
1081                return 0;
1082        }
1083        /* Emulate the mtspr DSCR, rD. */
1084        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1085                PPC_INST_MTSPR_DSCR_USER) ||
1086             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1087                PPC_INST_MTSPR_DSCR)) &&
1088                        cpu_has_feature(CPU_FTR_DSCR)) {
1089                PPC_WARN_EMULATED(mtdscr, regs);
1090                rd = (instword >> 21) & 0x1f;
1091                current->thread.dscr = regs->gpr[rd];
1092                current->thread.dscr_inherit = 1;
1093                mtspr(SPRN_DSCR, current->thread.dscr);
1094                return 0;
1095        }
1096#endif
1097
1098        return -EINVAL;
1099}
1100
1101int is_valid_bugaddr(unsigned long addr)
1102{
1103        return is_kernel_addr(addr);
1104}
1105
1106#ifdef CONFIG_MATH_EMULATION
1107static int emulate_math(struct pt_regs *regs)
1108{
1109        int ret;
1110        extern int do_mathemu(struct pt_regs *regs);
1111
1112        ret = do_mathemu(regs);
1113        if (ret >= 0)
1114                PPC_WARN_EMULATED(math, regs);
1115
1116        switch (ret) {
1117        case 0:
1118                emulate_single_step(regs);
1119                return 0;
1120        case 1: {
1121                        int code = 0;
1122                        code = __parse_fpscr(current->thread.fp_state.fpscr);
1123                        _exception(SIGFPE, regs, code, regs->nip);
1124                        return 0;
1125                }
1126        case -EFAULT:
1127                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1128                return 0;
1129        }
1130
1131        return -1;
1132}
1133#else
1134static inline int emulate_math(struct pt_regs *regs) { return -1; }
1135#endif
1136
1137void __kprobes program_check_exception(struct pt_regs *regs)
1138{
1139        enum ctx_state prev_state = exception_enter();
1140        unsigned int reason = get_reason(regs);
1141
1142        /* We can now get here via a FP Unavailable exception if the core
1143         * has no FPU, in that case the reason flags will be 0 */
1144
1145        if (reason & REASON_FP) {
1146                /* IEEE FP exception */
1147                parse_fpe(regs);
1148                goto bail;
1149        }
1150        if (reason & REASON_TRAP) {
1151                /* Debugger is first in line to stop recursive faults in
1152                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1153                if (debugger_bpt(regs))
1154                        goto bail;
1155
1156                /* trap exception */
1157                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1158                                == NOTIFY_STOP)
1159                        goto bail;
1160
1161                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1162                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1163                        regs->nip += 4;
1164                        goto bail;
1165                }
1166                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1167                goto bail;
1168        }
1169#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1170        if (reason & REASON_TM) {
1171                /* This is a TM "Bad Thing Exception" program check.
1172                 * This occurs when:
1173                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1174                 *    transition in TM states.
1175                 * -  A trechkpt is attempted when transactional.
1176                 * -  A treclaim is attempted when non transactional.
1177                 * -  A tend is illegally attempted.
1178                 * -  writing a TM SPR when transactional.
1179                 */
1180                if (!user_mode(regs) &&
1181                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1182                        regs->nip += 4;
1183                        goto bail;
1184                }
1185                /* If usermode caused this, it's done something illegal and
1186                 * gets a SIGILL slap on the wrist.  We call it an illegal
1187                 * operand to distinguish from the instruction just being bad
1188                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1189                 * illegal /placement/ of a valid instruction.
1190                 */
1191                if (user_mode(regs)) {
1192                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1193                        goto bail;
1194                } else {
1195                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1196                               "at %lx (msr 0x%x)\n", regs->nip, reason);
1197                        die("Unrecoverable exception", regs, SIGABRT);
1198                }
1199        }
1200#endif
1201
1202        /*
1203         * If we took the program check in the kernel skip down to sending a
1204         * SIGILL. The subsequent cases all relate to emulating instructions
1205         * which we should only do for userspace. We also do not want to enable
1206         * interrupts for kernel faults because that might lead to further
1207         * faults, and loose the context of the original exception.
1208         */
1209        if (!user_mode(regs))
1210                goto sigill;
1211
1212        /* We restore the interrupt state now */
1213        if (!arch_irq_disabled_regs(regs))
1214                local_irq_enable();
1215
1216        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1217         * but there seems to be a hardware bug on the 405GP (RevD)
1218         * that means ESR is sometimes set incorrectly - either to
1219         * ESR_DST (!?) or 0.  In the process of chasing this with the
1220         * hardware people - not sure if it can happen on any illegal
1221         * instruction or only on FP instructions, whether there is a
1222         * pattern to occurrences etc. -dgibson 31/Mar/2003
1223         */
1224        if (!emulate_math(regs))
1225                goto bail;
1226
1227        /* Try to emulate it if we should. */
1228        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1229                switch (emulate_instruction(regs)) {
1230                case 0:
1231                        regs->nip += 4;
1232                        emulate_single_step(regs);
1233                        goto bail;
1234                case -EFAULT:
1235                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1236                        goto bail;
1237                }
1238        }
1239
1240sigill:
1241        if (reason & REASON_PRIVILEGED)
1242                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1243        else
1244                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1245
1246bail:
1247        exception_exit(prev_state);
1248}
1249
1250/*
1251 * This occurs when running in hypervisor mode on POWER6 or later
1252 * and an illegal instruction is encountered.
1253 */
1254void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1255{
1256        regs->msr |= REASON_ILLEGAL;
1257        program_check_exception(regs);
1258}
1259
1260void alignment_exception(struct pt_regs *regs)
1261{
1262        enum ctx_state prev_state = exception_enter();
1263        int sig, code, fixed = 0;
1264
1265        /* We restore the interrupt state now */
1266        if (!arch_irq_disabled_regs(regs))
1267                local_irq_enable();
1268
1269        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1270                goto bail;
1271
1272        /* we don't implement logging of alignment exceptions */
1273        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1274                fixed = fix_alignment(regs);
1275
1276        if (fixed == 1) {
1277                regs->nip += 4; /* skip over emulated instruction */
1278                emulate_single_step(regs);
1279                goto bail;
1280        }
1281
1282        /* Operand address was bad */
1283        if (fixed == -EFAULT) {
1284                sig = SIGSEGV;
1285                code = SEGV_ACCERR;
1286        } else {
1287                sig = SIGBUS;
1288                code = BUS_ADRALN;
1289        }
1290        if (user_mode(regs))
1291                _exception(sig, regs, code, regs->dar);
1292        else
1293                bad_page_fault(regs, regs->dar, sig);
1294
1295bail:
1296        exception_exit(prev_state);
1297}
1298
1299void StackOverflow(struct pt_regs *regs)
1300{
1301        printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1302               current, regs->gpr[1]);
1303        debugger(regs);
1304        show_regs(regs);
1305        panic("kernel stack overflow");
1306}
1307
1308void nonrecoverable_exception(struct pt_regs *regs)
1309{
1310        printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1311               regs->nip, regs->msr);
1312        debugger(regs);
1313        die("nonrecoverable exception", regs, SIGKILL);
1314}
1315
1316void trace_syscall(struct pt_regs *regs)
1317{
1318        printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1319               current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1320               regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1321}
1322
1323void kernel_fp_unavailable_exception(struct pt_regs *regs)
1324{
1325        enum ctx_state prev_state = exception_enter();
1326
1327        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1328                          "%lx at %lx\n", regs->trap, regs->nip);
1329        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1330
1331        exception_exit(prev_state);
1332}
1333
1334void altivec_unavailable_exception(struct pt_regs *regs)
1335{
1336        enum ctx_state prev_state = exception_enter();
1337
1338        if (user_mode(regs)) {
1339                /* A user program has executed an altivec instruction,
1340                   but this kernel doesn't support altivec. */
1341                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1342                goto bail;
1343        }
1344
1345        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1346                        "%lx at %lx\n", regs->trap, regs->nip);
1347        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1348
1349bail:
1350        exception_exit(prev_state);
1351}
1352
1353void vsx_unavailable_exception(struct pt_regs *regs)
1354{
1355        if (user_mode(regs)) {
1356                /* A user program has executed an vsx instruction,
1357                   but this kernel doesn't support vsx. */
1358                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1359                return;
1360        }
1361
1362        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1363                        "%lx at %lx\n", regs->trap, regs->nip);
1364        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1365}
1366
1367#ifdef CONFIG_PPC64
1368void facility_unavailable_exception(struct pt_regs *regs)
1369{
1370        static char *facility_strings[] = {
1371                [FSCR_FP_LG] = "FPU",
1372                [FSCR_VECVSX_LG] = "VMX/VSX",
1373                [FSCR_DSCR_LG] = "DSCR",
1374                [FSCR_PM_LG] = "PMU SPRs",
1375                [FSCR_BHRB_LG] = "BHRB",
1376                [FSCR_TM_LG] = "TM",
1377                [FSCR_EBB_LG] = "EBB",
1378                [FSCR_TAR_LG] = "TAR",
1379        };
1380        char *facility = "unknown";
1381        u64 value;
1382        u32 instword, rd;
1383        u8 status;
1384        bool hv;
1385
1386        hv = (regs->trap == 0xf80);
1387        if (hv)
1388                value = mfspr(SPRN_HFSCR);
1389        else
1390                value = mfspr(SPRN_FSCR);
1391
1392        status = value >> 56;
1393        if (status == FSCR_DSCR_LG) {
1394                /*
1395                 * User is accessing the DSCR register using the problem
1396                 * state only SPR number (0x03) either through a mfspr or
1397                 * a mtspr instruction. If it is a write attempt through
1398                 * a mtspr, then we set the inherit bit. This also allows
1399                 * the user to write or read the register directly in the
1400                 * future by setting via the FSCR DSCR bit. But in case it
1401                 * is a read DSCR attempt through a mfspr instruction, we
1402                 * just emulate the instruction instead. This code path will
1403                 * always emulate all the mfspr instructions till the user
1404                 * has attempted atleast one mtspr instruction. This way it
1405                 * preserves the same behaviour when the user is accessing
1406                 * the DSCR through privilege level only SPR number (0x11)
1407                 * which is emulated through illegal instruction exception.
1408                 * We always leave HFSCR DSCR set.
1409                 */
1410                if (get_user(instword, (u32 __user *)(regs->nip))) {
1411                        pr_err("Failed to fetch the user instruction\n");
1412                        return;
1413                }
1414
1415                /* Write into DSCR (mtspr 0x03, RS) */
1416                if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1417                                == PPC_INST_MTSPR_DSCR_USER) {
1418                        rd = (instword >> 21) & 0x1f;
1419                        current->thread.dscr = regs->gpr[rd];
1420                        current->thread.dscr_inherit = 1;
1421                        mtspr(SPRN_FSCR, value | FSCR_DSCR);
1422                }
1423
1424                /* Read from DSCR (mfspr RT, 0x03) */
1425                if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1426                                == PPC_INST_MFSPR_DSCR_USER) {
1427                        if (emulate_instruction(regs)) {
1428                                pr_err("DSCR based mfspr emulation failed\n");
1429                                return;
1430                        }
1431                        regs->nip += 4;
1432                        emulate_single_step(regs);
1433                }
1434                return;
1435        }
1436
1437        if ((status < ARRAY_SIZE(facility_strings)) &&
1438            facility_strings[status])
1439                facility = facility_strings[status];
1440
1441        /* We restore the interrupt state now */
1442        if (!arch_irq_disabled_regs(regs))
1443                local_irq_enable();
1444
1445        pr_err_ratelimited(
1446                "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1447                hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1448
1449        if (user_mode(regs)) {
1450                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1451                return;
1452        }
1453
1454        die("Unexpected facility unavailable exception", regs, SIGABRT);
1455}
1456#endif
1457
1458#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459
1460void fp_unavailable_tm(struct pt_regs *regs)
1461{
1462        /* Note:  This does not handle any kind of FP laziness. */
1463
1464        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1465                 regs->nip, regs->msr);
1466
1467        /* We can only have got here if the task started using FP after
1468         * beginning the transaction.  So, the transactional regs are just a
1469         * copy of the checkpointed ones.  But, we still need to recheckpoint
1470         * as we're enabling FP for the process; it will return, abort the
1471         * transaction, and probably retry but now with FP enabled.  So the
1472         * checkpointed FP registers need to be loaded.
1473         */
1474        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1475        /* Reclaim didn't save out any FPRs to transact_fprs. */
1476
1477        /* Enable FP for the task: */
1478        regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1479
1480        /* This loads and recheckpoints the FP registers from
1481         * thread.fpr[].  They will remain in registers after the
1482         * checkpoint so we don't need to reload them after.
1483         * If VMX is in use, the VRs now hold checkpointed values,
1484         * so we don't want to load the VRs from the thread_struct.
1485         */
1486        tm_recheckpoint(&current->thread, MSR_FP);
1487
1488        /* If VMX is in use, get the transactional values back */
1489        if (regs->msr & MSR_VEC) {
1490                do_load_up_transact_altivec(&current->thread);
1491                /* At this point all the VSX state is loaded, so enable it */
1492                regs->msr |= MSR_VSX;
1493        }
1494}
1495
1496void altivec_unavailable_tm(struct pt_regs *regs)
1497{
1498        /* See the comments in fp_unavailable_tm().  This function operates
1499         * the same way.
1500         */
1501
1502        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1503                 "MSR=%lx\n",
1504                 regs->nip, regs->msr);
1505        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1506        regs->msr |= MSR_VEC;
1507        tm_recheckpoint(&current->thread, MSR_VEC);
1508        current->thread.used_vr = 1;
1509
1510        if (regs->msr & MSR_FP) {
1511                do_load_up_transact_fpu(&current->thread);
1512                regs->msr |= MSR_VSX;
1513        }
1514}
1515
1516void vsx_unavailable_tm(struct pt_regs *regs)
1517{
1518        unsigned long orig_msr = regs->msr;
1519
1520        /* See the comments in fp_unavailable_tm().  This works similarly,
1521         * though we're loading both FP and VEC registers in here.
1522         *
1523         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1524         * regs.  Either way, set MSR_VSX.
1525         */
1526
1527        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1528                 "MSR=%lx\n",
1529                 regs->nip, regs->msr);
1530
1531        current->thread.used_vsr = 1;
1532
1533        /* If FP and VMX are already loaded, we have all the state we need */
1534        if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1535                regs->msr |= MSR_VSX;
1536                return;
1537        }
1538
1539        /* This reclaims FP and/or VR regs if they're already enabled */
1540        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1541
1542        regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1543                MSR_VSX;
1544
1545        /* This loads & recheckpoints FP and VRs; but we have
1546         * to be sure not to overwrite previously-valid state.
1547         */
1548        tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1549
1550        if (orig_msr & MSR_FP)
1551                do_load_up_transact_fpu(&current->thread);
1552        if (orig_msr & MSR_VEC)
1553                do_load_up_transact_altivec(&current->thread);
1554}
1555#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1556
1557void performance_monitor_exception(struct pt_regs *regs)
1558{
1559        __this_cpu_inc(irq_stat.pmu_irqs);
1560
1561        perf_irq(regs);
1562}
1563
1564#ifdef CONFIG_8xx
1565void SoftwareEmulation(struct pt_regs *regs)
1566{
1567        CHECK_FULL_REGS(regs);
1568
1569        if (!user_mode(regs)) {
1570                debugger(regs);
1571                die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1572                        regs, SIGFPE);
1573        }
1574
1575        if (!emulate_math(regs))
1576                return;
1577
1578        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1579}
1580#endif /* CONFIG_8xx */
1581
1582#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1583static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1584{
1585        int changed = 0;
1586        /*
1587         * Determine the cause of the debug event, clear the
1588         * event flags and send a trap to the handler. Torez
1589         */
1590        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1591                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1592#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1593                current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1594#endif
1595                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1596                             5);
1597                changed |= 0x01;
1598        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1599                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1600                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1601                             6);
1602                changed |= 0x01;
1603        }  else if (debug_status & DBSR_IAC1) {
1604                current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1605                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1606                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1607                             1);
1608                changed |= 0x01;
1609        }  else if (debug_status & DBSR_IAC2) {
1610                current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1611                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1612                             2);
1613                changed |= 0x01;
1614        }  else if (debug_status & DBSR_IAC3) {
1615                current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1616                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1617                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1618                             3);
1619                changed |= 0x01;
1620        }  else if (debug_status & DBSR_IAC4) {
1621                current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1622                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1623                             4);
1624                changed |= 0x01;
1625        }
1626        /*
1627         * At the point this routine was called, the MSR(DE) was turned off.
1628         * Check all other debug flags and see if that bit needs to be turned
1629         * back on or not.
1630         */
1631        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1632                               current->thread.debug.dbcr1))
1633                regs->msr |= MSR_DE;
1634        else
1635                /* Make sure the IDM flag is off */
1636                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1637
1638        if (changed & 0x01)
1639                mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1640}
1641
1642void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1643{
1644        current->thread.debug.dbsr = debug_status;
1645
1646        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1647         * on server, it stops on the target of the branch. In order to simulate
1648         * the server behaviour, we thus restart right away with a single step
1649         * instead of stopping here when hitting a BT
1650         */
1651        if (debug_status & DBSR_BT) {
1652                regs->msr &= ~MSR_DE;
1653
1654                /* Disable BT */
1655                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1656                /* Clear the BT event */
1657                mtspr(SPRN_DBSR, DBSR_BT);
1658
1659                /* Do the single step trick only when coming from userspace */
1660                if (user_mode(regs)) {
1661                        current->thread.debug.dbcr0 &= ~DBCR0_BT;
1662                        current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1663                        regs->msr |= MSR_DE;
1664                        return;
1665                }
1666
1667                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1668                               5, SIGTRAP) == NOTIFY_STOP) {
1669                        return;
1670                }
1671                if (debugger_sstep(regs))
1672                        return;
1673        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
1674                regs->msr &= ~MSR_DE;
1675
1676                /* Disable instruction completion */
1677                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1678                /* Clear the instruction completion event */
1679                mtspr(SPRN_DBSR, DBSR_IC);
1680
1681                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1682                               5, SIGTRAP) == NOTIFY_STOP) {
1683                        return;
1684                }
1685
1686                if (debugger_sstep(regs))
1687                        return;
1688
1689                if (user_mode(regs)) {
1690                        current->thread.debug.dbcr0 &= ~DBCR0_IC;
1691                        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1692                                               current->thread.debug.dbcr1))
1693                                regs->msr |= MSR_DE;
1694                        else
1695                                /* Make sure the IDM bit is off */
1696                                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1697                }
1698
1699                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1700        } else
1701                handle_debug(regs, debug_status);
1702}
1703#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1704
1705#if !defined(CONFIG_TAU_INT)
1706void TAUException(struct pt_regs *regs)
1707{
1708        printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1709               regs->nip, regs->msr, regs->trap, print_tainted());
1710}
1711#endif /* CONFIG_INT_TAU */
1712
1713#ifdef CONFIG_ALTIVEC
1714void altivec_assist_exception(struct pt_regs *regs)
1715{
1716        int err;
1717
1718        if (!user_mode(regs)) {
1719                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1720                       " at %lx\n", regs->nip);
1721                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1722        }
1723
1724        flush_altivec_to_thread(current);
1725
1726        PPC_WARN_EMULATED(altivec, regs);
1727        err = emulate_altivec(regs);
1728        if (err == 0) {
1729                regs->nip += 4;         /* skip emulated instruction */
1730                emulate_single_step(regs);
1731                return;
1732        }
1733
1734        if (err == -EFAULT) {
1735                /* got an error reading the instruction */
1736                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1737        } else {
1738                /* didn't recognize the instruction */
1739                /* XXX quick hack for now: set the non-Java bit in the VSCR */
1740                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1741                                   "in %s at %lx\n", current->comm, regs->nip);
1742                current->thread.vr_state.vscr.u[3] |= 0x10000;
1743        }
1744}
1745#endif /* CONFIG_ALTIVEC */
1746
1747#ifdef CONFIG_FSL_BOOKE
1748void CacheLockingException(struct pt_regs *regs, unsigned long address,
1749                           unsigned long error_code)
1750{
1751        /* We treat cache locking instructions from the user
1752         * as priv ops, in the future we could try to do
1753         * something smarter
1754         */
1755        if (error_code & (ESR_DLK|ESR_ILK))
1756                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1757        return;
1758}
1759#endif /* CONFIG_FSL_BOOKE */
1760
1761#ifdef CONFIG_SPE
1762void SPEFloatingPointException(struct pt_regs *regs)
1763{
1764        extern int do_spe_mathemu(struct pt_regs *regs);
1765        unsigned long spefscr;
1766        int fpexc_mode;
1767        int code = 0;
1768        int err;
1769
1770        flush_spe_to_thread(current);
1771
1772        spefscr = current->thread.spefscr;
1773        fpexc_mode = current->thread.fpexc_mode;
1774
1775        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1776                code = FPE_FLTOVF;
1777        }
1778        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1779                code = FPE_FLTUND;
1780        }
1781        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1782                code = FPE_FLTDIV;
1783        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1784                code = FPE_FLTINV;
1785        }
1786        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1787                code = FPE_FLTRES;
1788
1789        err = do_spe_mathemu(regs);
1790        if (err == 0) {
1791                regs->nip += 4;         /* skip emulated instruction */
1792                emulate_single_step(regs);
1793                return;
1794        }
1795
1796        if (err == -EFAULT) {
1797                /* got an error reading the instruction */
1798                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1799        } else if (err == -EINVAL) {
1800                /* didn't recognize the instruction */
1801                printk(KERN_ERR "unrecognized spe instruction "
1802                       "in %s at %lx\n", current->comm, regs->nip);
1803        } else {
1804                _exception(SIGFPE, regs, code, regs->nip);
1805        }
1806
1807        return;
1808}
1809
1810void SPEFloatingPointRoundException(struct pt_regs *regs)
1811{
1812        extern int speround_handler(struct pt_regs *regs);
1813        int err;
1814
1815        preempt_disable();
1816        if (regs->msr & MSR_SPE)
1817                giveup_spe(current);
1818        preempt_enable();
1819
1820        regs->nip -= 4;
1821        err = speround_handler(regs);
1822        if (err == 0) {
1823                regs->nip += 4;         /* skip emulated instruction */
1824                emulate_single_step(regs);
1825                return;
1826        }
1827
1828        if (err == -EFAULT) {
1829                /* got an error reading the instruction */
1830                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1831        } else if (err == -EINVAL) {
1832                /* didn't recognize the instruction */
1833                printk(KERN_ERR "unrecognized spe instruction "
1834                       "in %s at %lx\n", current->comm, regs->nip);
1835        } else {
1836                _exception(SIGFPE, regs, 0, regs->nip);
1837                return;
1838        }
1839}
1840#endif
1841
1842/*
1843 * We enter here if we get an unrecoverable exception, that is, one
1844 * that happened at a point where the RI (recoverable interrupt) bit
1845 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1846 * we therefore lost state by taking this exception.
1847 */
1848void unrecoverable_exception(struct pt_regs *regs)
1849{
1850        printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1851               regs->trap, regs->nip);
1852        die("Unrecoverable exception", regs, SIGABRT);
1853}
1854
1855#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1856/*
1857 * Default handler for a Watchdog exception,
1858 * spins until a reboot occurs
1859 */
1860void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1861{
1862        /* Generic WatchdogHandler, implement your own */
1863        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1864        return;
1865}
1866
1867void WatchdogException(struct pt_regs *regs)
1868{
1869        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1870        WatchdogHandler(regs);
1871}
1872#endif
1873
1874/*
1875 * We enter here if we discover during exception entry that we are
1876 * running in supervisor mode with a userspace value in the stack pointer.
1877 */
1878void kernel_bad_stack(struct pt_regs *regs)
1879{
1880        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1881               regs->gpr[1], regs->nip);
1882        die("Bad kernel stack pointer", regs, SIGABRT);
1883}
1884
1885void __init trap_init(void)
1886{
1887}
1888
1889
1890#ifdef CONFIG_PPC_EMULATED_STATS
1891
1892#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
1893
1894struct ppc_emulated ppc_emulated = {
1895#ifdef CONFIG_ALTIVEC
1896        WARN_EMULATED_SETUP(altivec),
1897#endif
1898        WARN_EMULATED_SETUP(dcba),
1899        WARN_EMULATED_SETUP(dcbz),
1900        WARN_EMULATED_SETUP(fp_pair),
1901        WARN_EMULATED_SETUP(isel),
1902        WARN_EMULATED_SETUP(mcrxr),
1903        WARN_EMULATED_SETUP(mfpvr),
1904        WARN_EMULATED_SETUP(multiple),
1905        WARN_EMULATED_SETUP(popcntb),
1906        WARN_EMULATED_SETUP(spe),
1907        WARN_EMULATED_SETUP(string),
1908        WARN_EMULATED_SETUP(sync),
1909        WARN_EMULATED_SETUP(unaligned),
1910#ifdef CONFIG_MATH_EMULATION
1911        WARN_EMULATED_SETUP(math),
1912#endif
1913#ifdef CONFIG_VSX
1914        WARN_EMULATED_SETUP(vsx),
1915#endif
1916#ifdef CONFIG_PPC64
1917        WARN_EMULATED_SETUP(mfdscr),
1918        WARN_EMULATED_SETUP(mtdscr),
1919        WARN_EMULATED_SETUP(lq_stq),
1920#endif
1921};
1922
1923u32 ppc_warn_emulated;
1924
1925void ppc_warn_emulated_print(const char *type)
1926{
1927        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1928                            type);
1929}
1930
1931static int __init ppc_warn_emulated_init(void)
1932{
1933        struct dentry *dir, *d;
1934        unsigned int i;
1935        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1936
1937        if (!powerpc_debugfs_root)
1938                return -ENODEV;
1939
1940        dir = debugfs_create_dir("emulated_instructions",
1941                                 powerpc_debugfs_root);
1942        if (!dir)
1943                return -ENOMEM;
1944
1945        d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1946                               &ppc_warn_emulated);
1947        if (!d)
1948                goto fail;
1949
1950        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1951                d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1952                                       (u32 *)&entries[i].val.counter);
1953                if (!d)
1954                        goto fail;
1955        }
1956
1957        return 0;
1958
1959fail:
1960        debugfs_remove_recursive(dir);
1961        return -ENOMEM;
1962}
1963
1964device_initcall(ppc_warn_emulated_init);
1965
1966#endif /* CONFIG_PPC_EMULATED_STATS */
1967