linux/arch/powerpc/platforms/pseries/ras.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/interrupt.h>
  21#include <linux/irq.h>
  22#include <linux/of.h>
  23#include <linux/fs.h>
  24#include <linux/reboot.h>
  25
  26#include <asm/machdep.h>
  27#include <asm/rtas.h>
  28#include <asm/firmware.h>
  29
  30#include "pseries.h"
  31
  32static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
  33static DEFINE_SPINLOCK(ras_log_buf_lock);
  34
  35static char global_mce_data_buf[RTAS_ERROR_LOG_MAX];
  36static DEFINE_PER_CPU(__u64, mce_data_buf);
  37
  38static int ras_check_exception_token;
  39
  40#define EPOW_SENSOR_TOKEN       9
  41#define EPOW_SENSOR_INDEX       0
  42
  43static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
  44static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
  45
  46
  47/*
  48 * Initialize handlers for the set of interrupts caused by hardware errors
  49 * and power system events.
  50 */
  51static int __init init_ras_IRQ(void)
  52{
  53        struct device_node *np;
  54
  55        ras_check_exception_token = rtas_token("check-exception");
  56
  57        /* Internal Errors */
  58        np = of_find_node_by_path("/event-sources/internal-errors");
  59        if (np != NULL) {
  60                request_event_sources_irqs(np, ras_error_interrupt,
  61                                           "RAS_ERROR");
  62                of_node_put(np);
  63        }
  64
  65        /* EPOW Events */
  66        np = of_find_node_by_path("/event-sources/epow-events");
  67        if (np != NULL) {
  68                request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
  69                of_node_put(np);
  70        }
  71
  72        return 0;
  73}
  74machine_subsys_initcall(pseries, init_ras_IRQ);
  75
  76#define EPOW_SHUTDOWN_NORMAL                            1
  77#define EPOW_SHUTDOWN_ON_UPS                            2
  78#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS        3
  79#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH      4
  80
  81static void handle_system_shutdown(char event_modifier)
  82{
  83        switch (event_modifier) {
  84        case EPOW_SHUTDOWN_NORMAL:
  85                pr_emerg("Firmware initiated power off");
  86                orderly_poweroff(true);
  87                break;
  88
  89        case EPOW_SHUTDOWN_ON_UPS:
  90                pr_emerg("Loss of power reported by firmware, system is "
  91                        "running on UPS/battery");
  92                pr_emerg("Check RTAS error log for details");
  93                orderly_poweroff(true);
  94                break;
  95
  96        case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
  97                pr_emerg("Loss of system critical functions reported by "
  98                        "firmware");
  99                pr_emerg("Check RTAS error log for details");
 100                orderly_poweroff(true);
 101                break;
 102
 103        case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
 104                pr_emerg("Ambient temperature too high reported by firmware");
 105                pr_emerg("Check RTAS error log for details");
 106                orderly_poweroff(true);
 107                break;
 108
 109        default:
 110                pr_err("Unknown power/cooling shutdown event (modifier %d)",
 111                        event_modifier);
 112        }
 113}
 114
 115struct epow_errorlog {
 116        unsigned char sensor_value;
 117        unsigned char event_modifier;
 118        unsigned char extended_modifier;
 119        unsigned char reserved;
 120        unsigned char platform_reason;
 121};
 122
 123#define EPOW_RESET                      0
 124#define EPOW_WARN_COOLING               1
 125#define EPOW_WARN_POWER                 2
 126#define EPOW_SYSTEM_SHUTDOWN            3
 127#define EPOW_SYSTEM_HALT                4
 128#define EPOW_MAIN_ENCLOSURE             5
 129#define EPOW_POWER_OFF                  7
 130
 131static void rtas_parse_epow_errlog(struct rtas_error_log *log)
 132{
 133        struct pseries_errorlog *pseries_log;
 134        struct epow_errorlog *epow_log;
 135        char action_code;
 136        char modifier;
 137
 138        pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
 139        if (pseries_log == NULL)
 140                return;
 141
 142        epow_log = (struct epow_errorlog *)pseries_log->data;
 143        action_code = epow_log->sensor_value & 0xF;     /* bottom 4 bits */
 144        modifier = epow_log->event_modifier & 0xF;      /* bottom 4 bits */
 145
 146        switch (action_code) {
 147        case EPOW_RESET:
 148                pr_err("Non critical power or cooling issue cleared");
 149                break;
 150
 151        case EPOW_WARN_COOLING:
 152                pr_err("Non critical cooling issue reported by firmware");
 153                pr_err("Check RTAS error log for details");
 154                break;
 155
 156        case EPOW_WARN_POWER:
 157                pr_err("Non critical power issue reported by firmware");
 158                pr_err("Check RTAS error log for details");
 159                break;
 160
 161        case EPOW_SYSTEM_SHUTDOWN:
 162                handle_system_shutdown(epow_log->event_modifier);
 163                break;
 164
 165        case EPOW_SYSTEM_HALT:
 166                pr_emerg("Firmware initiated power off");
 167                orderly_poweroff(true);
 168                break;
 169
 170        case EPOW_MAIN_ENCLOSURE:
 171        case EPOW_POWER_OFF:
 172                pr_emerg("Critical power/cooling issue reported by firmware");
 173                pr_emerg("Check RTAS error log for details");
 174                pr_emerg("Immediate power off");
 175                emergency_sync();
 176                kernel_power_off();
 177                break;
 178
 179        default:
 180                pr_err("Unknown power/cooling event (action code %d)",
 181                        action_code);
 182        }
 183}
 184
 185/* Handle environmental and power warning (EPOW) interrupts. */
 186static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
 187{
 188        int status;
 189        int state;
 190        int critical;
 191
 192        status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
 193                                      &state);
 194
 195        if (state > 3)
 196                critical = 1;           /* Time Critical */
 197        else
 198                critical = 0;
 199
 200        spin_lock(&ras_log_buf_lock);
 201
 202        status = rtas_call(ras_check_exception_token, 6, 1, NULL,
 203                           RTAS_VECTOR_EXTERNAL_INTERRUPT,
 204                           virq_to_hw(irq),
 205                           RTAS_EPOW_WARNING,
 206                           critical, __pa(&ras_log_buf),
 207                                rtas_get_error_log_max());
 208
 209        log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
 210
 211        rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
 212
 213        spin_unlock(&ras_log_buf_lock);
 214        return IRQ_HANDLED;
 215}
 216
 217/*
 218 * Handle hardware error interrupts.
 219 *
 220 * RTAS check-exception is called to collect data on the exception.  If
 221 * the error is deemed recoverable, we log a warning and return.
 222 * For nonrecoverable errors, an error is logged and we stop all processing
 223 * as quickly as possible in order to prevent propagation of the failure.
 224 */
 225static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
 226{
 227        struct rtas_error_log *rtas_elog;
 228        int status;
 229        int fatal;
 230
 231        spin_lock(&ras_log_buf_lock);
 232
 233        status = rtas_call(ras_check_exception_token, 6, 1, NULL,
 234                           RTAS_VECTOR_EXTERNAL_INTERRUPT,
 235                           virq_to_hw(irq),
 236                           RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
 237                           __pa(&ras_log_buf),
 238                                rtas_get_error_log_max());
 239
 240        rtas_elog = (struct rtas_error_log *)ras_log_buf;
 241
 242        if (status == 0 &&
 243            rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
 244                fatal = 1;
 245        else
 246                fatal = 0;
 247
 248        /* format and print the extended information */
 249        log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
 250
 251        if (fatal) {
 252                pr_emerg("Fatal hardware error reported by firmware");
 253                pr_emerg("Check RTAS error log for details");
 254                pr_emerg("Immediate power off");
 255                emergency_sync();
 256                kernel_power_off();
 257        } else {
 258                pr_err("Recoverable hardware error reported by firmware");
 259        }
 260
 261        spin_unlock(&ras_log_buf_lock);
 262        return IRQ_HANDLED;
 263}
 264
 265/*
 266 * Some versions of FWNMI place the buffer inside the 4kB page starting at
 267 * 0x7000. Other versions place it inside the rtas buffer. We check both.
 268 */
 269#define VALID_FWNMI_BUFFER(A) \
 270        ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
 271        (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
 272
 273/*
 274 * Get the error information for errors coming through the
 275 * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
 276 * the actual r3 if possible, and a ptr to the error log entry
 277 * will be returned if found.
 278 *
 279 * If the RTAS error is not of the extended type, then we put it in a per
 280 * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
 281 *
 282 * The global_mce_data_buf does not have any locks or protection around it,
 283 * if a second machine check comes in, or a system reset is done
 284 * before we have logged the error, then we will get corruption in the
 285 * error log.  This is preferable over holding off on calling
 286 * ibm,nmi-interlock which would result in us checkstopping if a
 287 * second machine check did come in.
 288 */
 289static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
 290{
 291        unsigned long *savep;
 292        struct rtas_error_log *h, *errhdr = NULL;
 293
 294        /* Mask top two bits */
 295        regs->gpr[3] &= ~(0x3UL << 62);
 296
 297        if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
 298                printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
 299                return NULL;
 300        }
 301
 302        savep = __va(regs->gpr[3]);
 303        regs->gpr[3] = savep[0];        /* restore original r3 */
 304
 305        /* If it isn't an extended log we can use the per cpu 64bit buffer */
 306        h = (struct rtas_error_log *)&savep[1];
 307        if (!rtas_error_extended(h)) {
 308                memcpy(this_cpu_ptr(&mce_data_buf), h, sizeof(__u64));
 309                errhdr = (struct rtas_error_log *)this_cpu_ptr(&mce_data_buf);
 310        } else {
 311                int len, error_log_length;
 312
 313                error_log_length = 8 + rtas_error_extended_log_length(h);
 314                len = max_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
 315                memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
 316                memcpy(global_mce_data_buf, h, len);
 317                errhdr = (struct rtas_error_log *)global_mce_data_buf;
 318        }
 319
 320        return errhdr;
 321}
 322
 323/* Call this when done with the data returned by FWNMI_get_errinfo.
 324 * It will release the saved data area for other CPUs in the
 325 * partition to receive FWNMI errors.
 326 */
 327static void fwnmi_release_errinfo(void)
 328{
 329        int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
 330        if (ret != 0)
 331                printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
 332}
 333
 334int pSeries_system_reset_exception(struct pt_regs *regs)
 335{
 336        if (fwnmi_active) {
 337                struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
 338                if (errhdr) {
 339                        /* XXX Should look at FWNMI information */
 340                }
 341                fwnmi_release_errinfo();
 342        }
 343        return 0; /* need to perform reset */
 344}
 345
 346/*
 347 * See if we can recover from a machine check exception.
 348 * This is only called on power4 (or above) and only via
 349 * the Firmware Non-Maskable Interrupts (fwnmi) handler
 350 * which provides the error analysis for us.
 351 *
 352 * Return 1 if corrected (or delivered a signal).
 353 * Return 0 if there is nothing we can do.
 354 */
 355static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
 356{
 357        int recovered = 0;
 358        int disposition = rtas_error_disposition(err);
 359
 360        if (!(regs->msr & MSR_RI)) {
 361                /* If MSR_RI isn't set, we cannot recover */
 362                recovered = 0;
 363
 364        } else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
 365                /* Platform corrected itself */
 366                recovered = 1;
 367
 368        } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
 369                /* Platform corrected itself but could be degraded */
 370                printk(KERN_ERR "MCE: limited recovery, system may "
 371                       "be degraded\n");
 372                recovered = 1;
 373
 374        } else if (user_mode(regs) && !is_global_init(current) &&
 375                   rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
 376
 377                /*
 378                 * If we received a synchronous error when in userspace
 379                 * kill the task. Firmware may report details of the fail
 380                 * asynchronously, so we can't rely on the target and type
 381                 * fields being valid here.
 382                 */
 383                printk(KERN_ERR "MCE: uncorrectable error, killing task "
 384                       "%s:%d\n", current->comm, current->pid);
 385
 386                _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
 387                recovered = 1;
 388        }
 389
 390        log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
 391
 392        return recovered;
 393}
 394
 395/*
 396 * Handle a machine check.
 397 *
 398 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
 399 * should be present.  If so the handler which called us tells us if the
 400 * error was recovered (never true if RI=0).
 401 *
 402 * On hardware prior to Power 4 these exceptions were asynchronous which
 403 * means we can't tell exactly where it occurred and so we can't recover.
 404 */
 405int pSeries_machine_check_exception(struct pt_regs *regs)
 406{
 407        struct rtas_error_log *errp;
 408
 409        if (fwnmi_active) {
 410                errp = fwnmi_get_errinfo(regs);
 411                fwnmi_release_errinfo();
 412                if (errp && recover_mce(regs, errp))
 413                        return 1;
 414        }
 415
 416        return 0;
 417}
 418