linux/arch/s390/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  SMP related functions
   3 *
   4 *    Copyright IBM Corp. 1999, 2012
   5 *    Author(s): Denis Joseph Barrow,
   6 *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
   7 *               Heiko Carstens <heiko.carstens@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/mm.h>
  25#include <linux/err.h>
  26#include <linux/spinlock.h>
  27#include <linux/kernel_stat.h>
  28#include <linux/delay.h>
  29#include <linux/interrupt.h>
  30#include <linux/irqflags.h>
  31#include <linux/cpu.h>
  32#include <linux/slab.h>
  33#include <linux/crash_dump.h>
  34#include <linux/memblock.h>
  35#include <asm/asm-offsets.h>
  36#include <asm/diag.h>
  37#include <asm/switch_to.h>
  38#include <asm/facility.h>
  39#include <asm/ipl.h>
  40#include <asm/setup.h>
  41#include <asm/irq.h>
  42#include <asm/tlbflush.h>
  43#include <asm/vtimer.h>
  44#include <asm/lowcore.h>
  45#include <asm/sclp.h>
  46#include <asm/vdso.h>
  47#include <asm/debug.h>
  48#include <asm/os_info.h>
  49#include <asm/sigp.h>
  50#include <asm/idle.h>
  51#include "entry.h"
  52
  53enum {
  54        ec_schedule = 0,
  55        ec_call_function_single,
  56        ec_stop_cpu,
  57};
  58
  59enum {
  60        CPU_STATE_STANDBY,
  61        CPU_STATE_CONFIGURED,
  62};
  63
  64static DEFINE_PER_CPU(struct cpu *, cpu_device);
  65
  66struct pcpu {
  67        struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
  68        unsigned long ec_mask;          /* bit mask for ec_xxx functions */
  69        signed char state;              /* physical cpu state */
  70        signed char polarization;       /* physical polarization */
  71        u16 address;                    /* physical cpu address */
  72};
  73
  74static u8 boot_core_type;
  75static struct pcpu pcpu_devices[NR_CPUS];
  76
  77unsigned int smp_cpu_mt_shift;
  78EXPORT_SYMBOL(smp_cpu_mt_shift);
  79
  80unsigned int smp_cpu_mtid;
  81EXPORT_SYMBOL(smp_cpu_mtid);
  82
  83static unsigned int smp_max_threads __initdata = -1U;
  84
  85static int __init early_nosmt(char *s)
  86{
  87        smp_max_threads = 1;
  88        return 0;
  89}
  90early_param("nosmt", early_nosmt);
  91
  92static int __init early_smt(char *s)
  93{
  94        get_option(&s, &smp_max_threads);
  95        return 0;
  96}
  97early_param("smt", early_smt);
  98
  99/*
 100 * The smp_cpu_state_mutex must be held when changing the state or polarization
 101 * member of a pcpu data structure within the pcpu_devices arreay.
 102 */
 103DEFINE_MUTEX(smp_cpu_state_mutex);
 104
 105/*
 106 * Signal processor helper functions.
 107 */
 108static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
 109                                    u32 *status)
 110{
 111        int cc;
 112
 113        while (1) {
 114                cc = __pcpu_sigp(addr, order, parm, NULL);
 115                if (cc != SIGP_CC_BUSY)
 116                        return cc;
 117                cpu_relax();
 118        }
 119}
 120
 121static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 122{
 123        int cc, retry;
 124
 125        for (retry = 0; ; retry++) {
 126                cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 127                if (cc != SIGP_CC_BUSY)
 128                        break;
 129                if (retry >= 3)
 130                        udelay(10);
 131        }
 132        return cc;
 133}
 134
 135static inline int pcpu_stopped(struct pcpu *pcpu)
 136{
 137        u32 uninitialized_var(status);
 138
 139        if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 140                        0, &status) != SIGP_CC_STATUS_STORED)
 141                return 0;
 142        return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 143}
 144
 145static inline int pcpu_running(struct pcpu *pcpu)
 146{
 147        if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 148                        0, NULL) != SIGP_CC_STATUS_STORED)
 149                return 1;
 150        /* Status stored condition code is equivalent to cpu not running. */
 151        return 0;
 152}
 153
 154/*
 155 * Find struct pcpu by cpu address.
 156 */
 157static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 158{
 159        int cpu;
 160
 161        for_each_cpu(cpu, mask)
 162                if (pcpu_devices[cpu].address == address)
 163                        return pcpu_devices + cpu;
 164        return NULL;
 165}
 166
 167static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 168{
 169        int order;
 170
 171        if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 172                return;
 173        order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 174        pcpu_sigp_retry(pcpu, order, 0);
 175}
 176
 177#define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 178#define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 179
 180static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 181{
 182        unsigned long async_stack, panic_stack;
 183        struct _lowcore *lc;
 184
 185        if (pcpu != &pcpu_devices[0]) {
 186                pcpu->lowcore = (struct _lowcore *)
 187                        __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 188                async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 189                panic_stack = __get_free_page(GFP_KERNEL);
 190                if (!pcpu->lowcore || !panic_stack || !async_stack)
 191                        goto out;
 192        } else {
 193                async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
 194                panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
 195        }
 196        lc = pcpu->lowcore;
 197        memcpy(lc, &S390_lowcore, 512);
 198        memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 199        lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
 200        lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
 201        lc->cpu_nr = cpu;
 202        lc->spinlock_lockval = arch_spin_lockval(cpu);
 203        if (MACHINE_HAS_VX)
 204                lc->vector_save_area_addr =
 205                        (unsigned long) &lc->vector_save_area;
 206        if (vdso_alloc_per_cpu(lc))
 207                goto out;
 208        lowcore_ptr[cpu] = lc;
 209        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 210        return 0;
 211out:
 212        if (pcpu != &pcpu_devices[0]) {
 213                free_page(panic_stack);
 214                free_pages(async_stack, ASYNC_ORDER);
 215                free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 216        }
 217        return -ENOMEM;
 218}
 219
 220#ifdef CONFIG_HOTPLUG_CPU
 221
 222static void pcpu_free_lowcore(struct pcpu *pcpu)
 223{
 224        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 225        lowcore_ptr[pcpu - pcpu_devices] = NULL;
 226        vdso_free_per_cpu(pcpu->lowcore);
 227        if (pcpu == &pcpu_devices[0])
 228                return;
 229        free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
 230        free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
 231        free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 232}
 233
 234#endif /* CONFIG_HOTPLUG_CPU */
 235
 236static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 237{
 238        struct _lowcore *lc = pcpu->lowcore;
 239
 240        if (MACHINE_HAS_TLB_LC)
 241                cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 242        cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 243        atomic_inc(&init_mm.context.attach_count);
 244        lc->cpu_nr = cpu;
 245        lc->spinlock_lockval = arch_spin_lockval(cpu);
 246        lc->percpu_offset = __per_cpu_offset[cpu];
 247        lc->kernel_asce = S390_lowcore.kernel_asce;
 248        lc->machine_flags = S390_lowcore.machine_flags;
 249        lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 250        __ctl_store(lc->cregs_save_area, 0, 15);
 251        save_access_regs((unsigned int *) lc->access_regs_save_area);
 252        memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 253               MAX_FACILITY_BIT/8);
 254}
 255
 256static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 257{
 258        struct _lowcore *lc = pcpu->lowcore;
 259        struct thread_info *ti = task_thread_info(tsk);
 260
 261        lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 262                + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 263        lc->thread_info = (unsigned long) task_thread_info(tsk);
 264        lc->current_task = (unsigned long) tsk;
 265        lc->lpp = LPP_MAGIC;
 266        lc->current_pid = tsk->pid;
 267        lc->user_timer = ti->user_timer;
 268        lc->system_timer = ti->system_timer;
 269        lc->steal_timer = 0;
 270}
 271
 272static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 273{
 274        struct _lowcore *lc = pcpu->lowcore;
 275
 276        lc->restart_stack = lc->kernel_stack;
 277        lc->restart_fn = (unsigned long) func;
 278        lc->restart_data = (unsigned long) data;
 279        lc->restart_source = -1UL;
 280        pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 281}
 282
 283/*
 284 * Call function via PSW restart on pcpu and stop the current cpu.
 285 */
 286static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 287                          void *data, unsigned long stack)
 288{
 289        struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 290        unsigned long source_cpu = stap();
 291
 292        __load_psw_mask(PSW_KERNEL_BITS);
 293        if (pcpu->address == source_cpu)
 294                func(data);     /* should not return */
 295        /* Stop target cpu (if func returns this stops the current cpu). */
 296        pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 297        /* Restart func on the target cpu and stop the current cpu. */
 298        mem_assign_absolute(lc->restart_stack, stack);
 299        mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 300        mem_assign_absolute(lc->restart_data, (unsigned long) data);
 301        mem_assign_absolute(lc->restart_source, source_cpu);
 302        asm volatile(
 303                "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
 304                "       brc     2,0b    # busy, try again\n"
 305                "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
 306                "       brc     2,1b    # busy, try again\n"
 307                : : "d" (pcpu->address), "d" (source_cpu),
 308                    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 309                : "0", "1", "cc");
 310        for (;;) ;
 311}
 312
 313/*
 314 * Enable additional logical cpus for multi-threading.
 315 */
 316static int pcpu_set_smt(unsigned int mtid)
 317{
 318        register unsigned long reg1 asm ("1") = (unsigned long) mtid;
 319        int cc;
 320
 321        if (smp_cpu_mtid == mtid)
 322                return 0;
 323        asm volatile(
 324                "       sigp    %1,0,%2 # sigp set multi-threading\n"
 325                "       ipm     %0\n"
 326                "       srl     %0,28\n"
 327                : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
 328                : "cc");
 329        if (cc == 0) {
 330                smp_cpu_mtid = mtid;
 331                smp_cpu_mt_shift = 0;
 332                while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 333                        smp_cpu_mt_shift++;
 334                pcpu_devices[0].address = stap();
 335        }
 336        return cc;
 337}
 338
 339/*
 340 * Call function on an online CPU.
 341 */
 342void smp_call_online_cpu(void (*func)(void *), void *data)
 343{
 344        struct pcpu *pcpu;
 345
 346        /* Use the current cpu if it is online. */
 347        pcpu = pcpu_find_address(cpu_online_mask, stap());
 348        if (!pcpu)
 349                /* Use the first online cpu. */
 350                pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 351        pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 352}
 353
 354/*
 355 * Call function on the ipl CPU.
 356 */
 357void smp_call_ipl_cpu(void (*func)(void *), void *data)
 358{
 359        pcpu_delegate(&pcpu_devices[0], func, data,
 360                      pcpu_devices->lowcore->panic_stack -
 361                      PANIC_FRAME_OFFSET + PAGE_SIZE);
 362}
 363
 364int smp_find_processor_id(u16 address)
 365{
 366        int cpu;
 367
 368        for_each_present_cpu(cpu)
 369                if (pcpu_devices[cpu].address == address)
 370                        return cpu;
 371        return -1;
 372}
 373
 374int smp_vcpu_scheduled(int cpu)
 375{
 376        return pcpu_running(pcpu_devices + cpu);
 377}
 378
 379void smp_yield_cpu(int cpu)
 380{
 381        if (MACHINE_HAS_DIAG9C) {
 382                diag_stat_inc_norecursion(DIAG_STAT_X09C);
 383                asm volatile("diag %0,0,0x9c"
 384                             : : "d" (pcpu_devices[cpu].address));
 385        } else if (MACHINE_HAS_DIAG44) {
 386                diag_stat_inc_norecursion(DIAG_STAT_X044);
 387                asm volatile("diag 0,0,0x44");
 388        }
 389}
 390
 391/*
 392 * Send cpus emergency shutdown signal. This gives the cpus the
 393 * opportunity to complete outstanding interrupts.
 394 */
 395static void smp_emergency_stop(cpumask_t *cpumask)
 396{
 397        u64 end;
 398        int cpu;
 399
 400        end = get_tod_clock() + (1000000UL << 12);
 401        for_each_cpu(cpu, cpumask) {
 402                struct pcpu *pcpu = pcpu_devices + cpu;
 403                set_bit(ec_stop_cpu, &pcpu->ec_mask);
 404                while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 405                                   0, NULL) == SIGP_CC_BUSY &&
 406                       get_tod_clock() < end)
 407                        cpu_relax();
 408        }
 409        while (get_tod_clock() < end) {
 410                for_each_cpu(cpu, cpumask)
 411                        if (pcpu_stopped(pcpu_devices + cpu))
 412                                cpumask_clear_cpu(cpu, cpumask);
 413                if (cpumask_empty(cpumask))
 414                        break;
 415                cpu_relax();
 416        }
 417}
 418
 419/*
 420 * Stop all cpus but the current one.
 421 */
 422void smp_send_stop(void)
 423{
 424        cpumask_t cpumask;
 425        int cpu;
 426
 427        /* Disable all interrupts/machine checks */
 428        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 429        trace_hardirqs_off();
 430
 431        debug_set_critical();
 432        cpumask_copy(&cpumask, cpu_online_mask);
 433        cpumask_clear_cpu(smp_processor_id(), &cpumask);
 434
 435        if (oops_in_progress)
 436                smp_emergency_stop(&cpumask);
 437
 438        /* stop all processors */
 439        for_each_cpu(cpu, &cpumask) {
 440                struct pcpu *pcpu = pcpu_devices + cpu;
 441                pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 442                while (!pcpu_stopped(pcpu))
 443                        cpu_relax();
 444        }
 445}
 446
 447/*
 448 * This is the main routine where commands issued by other
 449 * cpus are handled.
 450 */
 451static void smp_handle_ext_call(void)
 452{
 453        unsigned long bits;
 454
 455        /* handle bit signal external calls */
 456        bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 457        if (test_bit(ec_stop_cpu, &bits))
 458                smp_stop_cpu();
 459        if (test_bit(ec_schedule, &bits))
 460                scheduler_ipi();
 461        if (test_bit(ec_call_function_single, &bits))
 462                generic_smp_call_function_single_interrupt();
 463}
 464
 465static void do_ext_call_interrupt(struct ext_code ext_code,
 466                                  unsigned int param32, unsigned long param64)
 467{
 468        inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 469        smp_handle_ext_call();
 470}
 471
 472void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 473{
 474        int cpu;
 475
 476        for_each_cpu(cpu, mask)
 477                pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 478}
 479
 480void arch_send_call_function_single_ipi(int cpu)
 481{
 482        pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 483}
 484
 485/*
 486 * this function sends a 'reschedule' IPI to another CPU.
 487 * it goes straight through and wastes no time serializing
 488 * anything. Worst case is that we lose a reschedule ...
 489 */
 490void smp_send_reschedule(int cpu)
 491{
 492        pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 493}
 494
 495/*
 496 * parameter area for the set/clear control bit callbacks
 497 */
 498struct ec_creg_mask_parms {
 499        unsigned long orval;
 500        unsigned long andval;
 501        int cr;
 502};
 503
 504/*
 505 * callback for setting/clearing control bits
 506 */
 507static void smp_ctl_bit_callback(void *info)
 508{
 509        struct ec_creg_mask_parms *pp = info;
 510        unsigned long cregs[16];
 511
 512        __ctl_store(cregs, 0, 15);
 513        cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 514        __ctl_load(cregs, 0, 15);
 515}
 516
 517/*
 518 * Set a bit in a control register of all cpus
 519 */
 520void smp_ctl_set_bit(int cr, int bit)
 521{
 522        struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 523
 524        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 525}
 526EXPORT_SYMBOL(smp_ctl_set_bit);
 527
 528/*
 529 * Clear a bit in a control register of all cpus
 530 */
 531void smp_ctl_clear_bit(int cr, int bit)
 532{
 533        struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 534
 535        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 536}
 537EXPORT_SYMBOL(smp_ctl_clear_bit);
 538
 539#ifdef CONFIG_CRASH_DUMP
 540
 541static void __init __smp_store_cpu_state(struct save_area_ext *sa_ext,
 542                                         u16 address, int is_boot_cpu)
 543{
 544        void *lc = (void *)(unsigned long) store_prefix();
 545        unsigned long vx_sa;
 546
 547        if (is_boot_cpu) {
 548                /* Copy the registers of the boot CPU. */
 549                copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
 550                                 SAVE_AREA_BASE - PAGE_SIZE, 0);
 551                if (MACHINE_HAS_VX)
 552                        save_vx_regs_safe(sa_ext->vx_regs);
 553                return;
 554        }
 555        /* Get the registers of a non-boot cpu. */
 556        __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
 557        memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
 558        if (!MACHINE_HAS_VX)
 559                return;
 560        /* Get the VX registers */
 561        vx_sa = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 562        if (!vx_sa)
 563                panic("could not allocate memory for VX save area\n");
 564        __pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
 565        memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
 566        memblock_free(vx_sa, PAGE_SIZE);
 567}
 568
 569int smp_store_status(int cpu)
 570{
 571        unsigned long vx_sa;
 572        struct pcpu *pcpu;
 573
 574        pcpu = pcpu_devices + cpu;
 575        if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
 576                              0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
 577                return -EIO;
 578        if (!MACHINE_HAS_VX)
 579                return 0;
 580        vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
 581        __pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 582                          vx_sa, NULL);
 583        return 0;
 584}
 585
 586#endif /* CONFIG_CRASH_DUMP */
 587
 588/*
 589 * Collect CPU state of the previous, crashed system.
 590 * There are four cases:
 591 * 1) standard zfcp dump
 592 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 593 *    The state for all CPUs except the boot CPU needs to be collected
 594 *    with sigp stop-and-store-status. The boot CPU state is located in
 595 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 596 *    will allocate the save area and copy the boot CPU state from the HSA.
 597 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 598 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 599 *    The state for all CPUs except the boot CPU needs to be collected
 600 *    with sigp stop-and-store-status. The firmware or the boot-loader
 601 *    stored the registers of the boot CPU in the absolute lowcore in the
 602 *    memory of the old system.
 603 * 3) kdump and the old kernel did not store the CPU state,
 604 *    or stand-alone kdump for DASD
 605 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 606 *    The state for all CPUs except the boot CPU needs to be collected
 607 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 608 *    stored the registers of the boot CPU in the memory of the old system.
 609 * 4) kdump and the old kernel stored the CPU state
 610 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 611 *    The state of all CPUs is stored in ELF sections in the memory of the
 612 *    old system. The ELF sections are picked up by the crash_dump code
 613 *    via elfcorehdr_addr.
 614 */
 615void __init smp_save_dump_cpus(void)
 616{
 617#ifdef CONFIG_CRASH_DUMP
 618        int addr, cpu, boot_cpu_addr, max_cpu_addr;
 619        struct save_area_ext *sa_ext;
 620        bool is_boot_cpu;
 621
 622        if (is_kdump_kernel())
 623                /* Previous system stored the CPU states. Nothing to do. */
 624                return;
 625        if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 626                /* No previous system present, normal boot. */
 627                return;
 628        /* Set multi-threading state to the previous system. */
 629        pcpu_set_smt(sclp.mtid_prev);
 630        max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 631        for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
 632                if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
 633                    SIGP_CC_NOT_OPERATIONAL)
 634                        continue;
 635                cpu += 1;
 636        }
 637        dump_save_areas.areas = (void *)memblock_alloc(sizeof(void *) * cpu, 8);
 638        dump_save_areas.count = cpu;
 639        boot_cpu_addr = stap();
 640        for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
 641                if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
 642                    SIGP_CC_NOT_OPERATIONAL)
 643                        continue;
 644                sa_ext = (void *) memblock_alloc(sizeof(*sa_ext), 8);
 645                dump_save_areas.areas[cpu] = sa_ext;
 646                if (!sa_ext)
 647                        panic("could not allocate memory for save area\n");
 648                is_boot_cpu = (addr == boot_cpu_addr);
 649                cpu += 1;
 650                if (is_boot_cpu && !OLDMEM_BASE)
 651                        /* Skip boot CPU for standard zfcp dump. */
 652                        continue;
 653                /* Get state for this CPU. */
 654                __smp_store_cpu_state(sa_ext, addr, is_boot_cpu);
 655        }
 656        diag308_reset();
 657        pcpu_set_smt(0);
 658#endif /* CONFIG_CRASH_DUMP */
 659}
 660
 661void smp_cpu_set_polarization(int cpu, int val)
 662{
 663        pcpu_devices[cpu].polarization = val;
 664}
 665
 666int smp_cpu_get_polarization(int cpu)
 667{
 668        return pcpu_devices[cpu].polarization;
 669}
 670
 671static struct sclp_core_info *smp_get_core_info(void)
 672{
 673        static int use_sigp_detection;
 674        struct sclp_core_info *info;
 675        int address;
 676
 677        info = kzalloc(sizeof(*info), GFP_KERNEL);
 678        if (info && (use_sigp_detection || sclp_get_core_info(info))) {
 679                use_sigp_detection = 1;
 680                for (address = 0;
 681                     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 682                     address += (1U << smp_cpu_mt_shift)) {
 683                        if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
 684                            SIGP_CC_NOT_OPERATIONAL)
 685                                continue;
 686                        info->core[info->configured].core_id =
 687                                address >> smp_cpu_mt_shift;
 688                        info->configured++;
 689                }
 690                info->combined = info->configured;
 691        }
 692        return info;
 693}
 694
 695static int smp_add_present_cpu(int cpu);
 696
 697static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 698{
 699        struct pcpu *pcpu;
 700        cpumask_t avail;
 701        int cpu, nr, i, j;
 702        u16 address;
 703
 704        nr = 0;
 705        cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 706        cpu = cpumask_first(&avail);
 707        for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 708                if (sclp.has_core_type && info->core[i].type != boot_core_type)
 709                        continue;
 710                address = info->core[i].core_id << smp_cpu_mt_shift;
 711                for (j = 0; j <= smp_cpu_mtid; j++) {
 712                        if (pcpu_find_address(cpu_present_mask, address + j))
 713                                continue;
 714                        pcpu = pcpu_devices + cpu;
 715                        pcpu->address = address + j;
 716                        pcpu->state =
 717                                (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 718                                CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 719                        smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 720                        set_cpu_present(cpu, true);
 721                        if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 722                                set_cpu_present(cpu, false);
 723                        else
 724                                nr++;
 725                        cpu = cpumask_next(cpu, &avail);
 726                        if (cpu >= nr_cpu_ids)
 727                                break;
 728                }
 729        }
 730        return nr;
 731}
 732
 733static void __init smp_detect_cpus(void)
 734{
 735        unsigned int cpu, mtid, c_cpus, s_cpus;
 736        struct sclp_core_info *info;
 737        u16 address;
 738
 739        /* Get CPU information */
 740        info = smp_get_core_info();
 741        if (!info)
 742                panic("smp_detect_cpus failed to allocate memory\n");
 743
 744        /* Find boot CPU type */
 745        if (sclp.has_core_type) {
 746                address = stap();
 747                for (cpu = 0; cpu < info->combined; cpu++)
 748                        if (info->core[cpu].core_id == address) {
 749                                /* The boot cpu dictates the cpu type. */
 750                                boot_core_type = info->core[cpu].type;
 751                                break;
 752                        }
 753                if (cpu >= info->combined)
 754                        panic("Could not find boot CPU type");
 755        }
 756
 757        /* Set multi-threading state for the current system */
 758        mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 759        mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 760        pcpu_set_smt(mtid);
 761
 762        /* Print number of CPUs */
 763        c_cpus = s_cpus = 0;
 764        for (cpu = 0; cpu < info->combined; cpu++) {
 765                if (sclp.has_core_type &&
 766                    info->core[cpu].type != boot_core_type)
 767                        continue;
 768                if (cpu < info->configured)
 769                        c_cpus += smp_cpu_mtid + 1;
 770                else
 771                        s_cpus += smp_cpu_mtid + 1;
 772        }
 773        pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 774
 775        /* Add CPUs present at boot */
 776        get_online_cpus();
 777        __smp_rescan_cpus(info, 0);
 778        put_online_cpus();
 779        kfree(info);
 780}
 781
 782/*
 783 *      Activate a secondary processor.
 784 */
 785static void smp_start_secondary(void *cpuvoid)
 786{
 787        S390_lowcore.last_update_clock = get_tod_clock();
 788        S390_lowcore.restart_stack = (unsigned long) restart_stack;
 789        S390_lowcore.restart_fn = (unsigned long) do_restart;
 790        S390_lowcore.restart_data = 0;
 791        S390_lowcore.restart_source = -1UL;
 792        restore_access_regs(S390_lowcore.access_regs_save_area);
 793        __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 794        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 795        cpu_init();
 796        preempt_disable();
 797        init_cpu_timer();
 798        vtime_init();
 799        pfault_init();
 800        notify_cpu_starting(smp_processor_id());
 801        set_cpu_online(smp_processor_id(), true);
 802        inc_irq_stat(CPU_RST);
 803        local_irq_enable();
 804        cpu_startup_entry(CPUHP_ONLINE);
 805}
 806
 807/* Upping and downing of CPUs */
 808int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 809{
 810        struct pcpu *pcpu;
 811        int base, i, rc;
 812
 813        pcpu = pcpu_devices + cpu;
 814        if (pcpu->state != CPU_STATE_CONFIGURED)
 815                return -EIO;
 816        base = cpu - (cpu % (smp_cpu_mtid + 1));
 817        for (i = 0; i <= smp_cpu_mtid; i++) {
 818                if (base + i < nr_cpu_ids)
 819                        if (cpu_online(base + i))
 820                                break;
 821        }
 822        /*
 823         * If this is the first CPU of the core to get online
 824         * do an initial CPU reset.
 825         */
 826        if (i > smp_cpu_mtid &&
 827            pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 828            SIGP_CC_ORDER_CODE_ACCEPTED)
 829                return -EIO;
 830
 831        rc = pcpu_alloc_lowcore(pcpu, cpu);
 832        if (rc)
 833                return rc;
 834        pcpu_prepare_secondary(pcpu, cpu);
 835        pcpu_attach_task(pcpu, tidle);
 836        pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 837        /* Wait until cpu puts itself in the online & active maps */
 838        while (!cpu_online(cpu) || !cpu_active(cpu))
 839                cpu_relax();
 840        return 0;
 841}
 842
 843static unsigned int setup_possible_cpus __initdata;
 844
 845static int __init _setup_possible_cpus(char *s)
 846{
 847        get_option(&s, &setup_possible_cpus);
 848        return 0;
 849}
 850early_param("possible_cpus", _setup_possible_cpus);
 851
 852#ifdef CONFIG_HOTPLUG_CPU
 853
 854int __cpu_disable(void)
 855{
 856        unsigned long cregs[16];
 857
 858        /* Handle possible pending IPIs */
 859        smp_handle_ext_call();
 860        set_cpu_online(smp_processor_id(), false);
 861        /* Disable pseudo page faults on this cpu. */
 862        pfault_fini();
 863        /* Disable interrupt sources via control register. */
 864        __ctl_store(cregs, 0, 15);
 865        cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
 866        cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
 867        cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
 868        __ctl_load(cregs, 0, 15);
 869        clear_cpu_flag(CIF_NOHZ_DELAY);
 870        return 0;
 871}
 872
 873void __cpu_die(unsigned int cpu)
 874{
 875        struct pcpu *pcpu;
 876
 877        /* Wait until target cpu is down */
 878        pcpu = pcpu_devices + cpu;
 879        while (!pcpu_stopped(pcpu))
 880                cpu_relax();
 881        pcpu_free_lowcore(pcpu);
 882        atomic_dec(&init_mm.context.attach_count);
 883        cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 884        if (MACHINE_HAS_TLB_LC)
 885                cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 886}
 887
 888void __noreturn cpu_die(void)
 889{
 890        idle_task_exit();
 891        pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 892        for (;;) ;
 893}
 894
 895#endif /* CONFIG_HOTPLUG_CPU */
 896
 897void __init smp_fill_possible_mask(void)
 898{
 899        unsigned int possible, sclp_max, cpu;
 900
 901        sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 902        sclp_max = min(smp_max_threads, sclp_max);
 903        sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
 904        possible = setup_possible_cpus ?: nr_cpu_ids;
 905        possible = min(possible, sclp_max);
 906        for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 907                set_cpu_possible(cpu, true);
 908}
 909
 910void __init smp_prepare_cpus(unsigned int max_cpus)
 911{
 912        /* request the 0x1201 emergency signal external interrupt */
 913        if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 914                panic("Couldn't request external interrupt 0x1201");
 915        /* request the 0x1202 external call external interrupt */
 916        if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 917                panic("Couldn't request external interrupt 0x1202");
 918        smp_detect_cpus();
 919}
 920
 921void __init smp_prepare_boot_cpu(void)
 922{
 923        struct pcpu *pcpu = pcpu_devices;
 924
 925        pcpu->state = CPU_STATE_CONFIGURED;
 926        pcpu->address = stap();
 927        pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
 928        S390_lowcore.percpu_offset = __per_cpu_offset[0];
 929        smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 930        set_cpu_present(0, true);
 931        set_cpu_online(0, true);
 932}
 933
 934void __init smp_cpus_done(unsigned int max_cpus)
 935{
 936}
 937
 938void __init smp_setup_processor_id(void)
 939{
 940        S390_lowcore.cpu_nr = 0;
 941        S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 942}
 943
 944/*
 945 * the frequency of the profiling timer can be changed
 946 * by writing a multiplier value into /proc/profile.
 947 *
 948 * usually you want to run this on all CPUs ;)
 949 */
 950int setup_profiling_timer(unsigned int multiplier)
 951{
 952        return 0;
 953}
 954
 955#ifdef CONFIG_HOTPLUG_CPU
 956static ssize_t cpu_configure_show(struct device *dev,
 957                                  struct device_attribute *attr, char *buf)
 958{
 959        ssize_t count;
 960
 961        mutex_lock(&smp_cpu_state_mutex);
 962        count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 963        mutex_unlock(&smp_cpu_state_mutex);
 964        return count;
 965}
 966
 967static ssize_t cpu_configure_store(struct device *dev,
 968                                   struct device_attribute *attr,
 969                                   const char *buf, size_t count)
 970{
 971        struct pcpu *pcpu;
 972        int cpu, val, rc, i;
 973        char delim;
 974
 975        if (sscanf(buf, "%d %c", &val, &delim) != 1)
 976                return -EINVAL;
 977        if (val != 0 && val != 1)
 978                return -EINVAL;
 979        get_online_cpus();
 980        mutex_lock(&smp_cpu_state_mutex);
 981        rc = -EBUSY;
 982        /* disallow configuration changes of online cpus and cpu 0 */
 983        cpu = dev->id;
 984        cpu -= cpu % (smp_cpu_mtid + 1);
 985        if (cpu == 0)
 986                goto out;
 987        for (i = 0; i <= smp_cpu_mtid; i++)
 988                if (cpu_online(cpu + i))
 989                        goto out;
 990        pcpu = pcpu_devices + cpu;
 991        rc = 0;
 992        switch (val) {
 993        case 0:
 994                if (pcpu->state != CPU_STATE_CONFIGURED)
 995                        break;
 996                rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
 997                if (rc)
 998                        break;
 999                for (i = 0; i <= smp_cpu_mtid; i++) {
1000                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1001                                continue;
1002                        pcpu[i].state = CPU_STATE_STANDBY;
1003                        smp_cpu_set_polarization(cpu + i,
1004                                                 POLARIZATION_UNKNOWN);
1005                }
1006                topology_expect_change();
1007                break;
1008        case 1:
1009                if (pcpu->state != CPU_STATE_STANDBY)
1010                        break;
1011                rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1012                if (rc)
1013                        break;
1014                for (i = 0; i <= smp_cpu_mtid; i++) {
1015                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1016                                continue;
1017                        pcpu[i].state = CPU_STATE_CONFIGURED;
1018                        smp_cpu_set_polarization(cpu + i,
1019                                                 POLARIZATION_UNKNOWN);
1020                }
1021                topology_expect_change();
1022                break;
1023        default:
1024                break;
1025        }
1026out:
1027        mutex_unlock(&smp_cpu_state_mutex);
1028        put_online_cpus();
1029        return rc ? rc : count;
1030}
1031static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1032#endif /* CONFIG_HOTPLUG_CPU */
1033
1034static ssize_t show_cpu_address(struct device *dev,
1035                                struct device_attribute *attr, char *buf)
1036{
1037        return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1038}
1039static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1040
1041static struct attribute *cpu_common_attrs[] = {
1042#ifdef CONFIG_HOTPLUG_CPU
1043        &dev_attr_configure.attr,
1044#endif
1045        &dev_attr_address.attr,
1046        NULL,
1047};
1048
1049static struct attribute_group cpu_common_attr_group = {
1050        .attrs = cpu_common_attrs,
1051};
1052
1053static struct attribute *cpu_online_attrs[] = {
1054        &dev_attr_idle_count.attr,
1055        &dev_attr_idle_time_us.attr,
1056        NULL,
1057};
1058
1059static struct attribute_group cpu_online_attr_group = {
1060        .attrs = cpu_online_attrs,
1061};
1062
1063static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1064                          void *hcpu)
1065{
1066        unsigned int cpu = (unsigned int)(long)hcpu;
1067        struct device *s = &per_cpu(cpu_device, cpu)->dev;
1068        int err = 0;
1069
1070        switch (action & ~CPU_TASKS_FROZEN) {
1071        case CPU_ONLINE:
1072                err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1073                break;
1074        case CPU_DEAD:
1075                sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1076                break;
1077        }
1078        return notifier_from_errno(err);
1079}
1080
1081static int smp_add_present_cpu(int cpu)
1082{
1083        struct device *s;
1084        struct cpu *c;
1085        int rc;
1086
1087        c = kzalloc(sizeof(*c), GFP_KERNEL);
1088        if (!c)
1089                return -ENOMEM;
1090        per_cpu(cpu_device, cpu) = c;
1091        s = &c->dev;
1092        c->hotpluggable = 1;
1093        rc = register_cpu(c, cpu);
1094        if (rc)
1095                goto out;
1096        rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1097        if (rc)
1098                goto out_cpu;
1099        if (cpu_online(cpu)) {
1100                rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1101                if (rc)
1102                        goto out_online;
1103        }
1104        rc = topology_cpu_init(c);
1105        if (rc)
1106                goto out_topology;
1107        return 0;
1108
1109out_topology:
1110        if (cpu_online(cpu))
1111                sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1112out_online:
1113        sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1114out_cpu:
1115#ifdef CONFIG_HOTPLUG_CPU
1116        unregister_cpu(c);
1117#endif
1118out:
1119        return rc;
1120}
1121
1122#ifdef CONFIG_HOTPLUG_CPU
1123
1124int __ref smp_rescan_cpus(void)
1125{
1126        struct sclp_core_info *info;
1127        int nr;
1128
1129        info = smp_get_core_info();
1130        if (!info)
1131                return -ENOMEM;
1132        get_online_cpus();
1133        mutex_lock(&smp_cpu_state_mutex);
1134        nr = __smp_rescan_cpus(info, 1);
1135        mutex_unlock(&smp_cpu_state_mutex);
1136        put_online_cpus();
1137        kfree(info);
1138        if (nr)
1139                topology_schedule_update();
1140        return 0;
1141}
1142
1143static ssize_t __ref rescan_store(struct device *dev,
1144                                  struct device_attribute *attr,
1145                                  const char *buf,
1146                                  size_t count)
1147{
1148        int rc;
1149
1150        rc = smp_rescan_cpus();
1151        return rc ? rc : count;
1152}
1153static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1154#endif /* CONFIG_HOTPLUG_CPU */
1155
1156static int __init s390_smp_init(void)
1157{
1158        int cpu, rc = 0;
1159
1160#ifdef CONFIG_HOTPLUG_CPU
1161        rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1162        if (rc)
1163                return rc;
1164#endif
1165        cpu_notifier_register_begin();
1166        for_each_present_cpu(cpu) {
1167                rc = smp_add_present_cpu(cpu);
1168                if (rc)
1169                        goto out;
1170        }
1171
1172        __hotcpu_notifier(smp_cpu_notify, 0);
1173
1174out:
1175        cpu_notifier_register_done();
1176        return rc;
1177}
1178subsys_initcall(s390_smp_init);
1179