linux/arch/x86/include/asm/pgtable-3level.h
<<
>>
Prefs
   1#ifndef _ASM_X86_PGTABLE_3LEVEL_H
   2#define _ASM_X86_PGTABLE_3LEVEL_H
   3
   4/*
   5 * Intel Physical Address Extension (PAE) Mode - three-level page
   6 * tables on PPro+ CPUs.
   7 *
   8 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
   9 */
  10
  11#define pte_ERROR(e)                                                    \
  12        pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",                       \
  13               __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
  14#define pmd_ERROR(e)                                                    \
  15        pr_err("%s:%d: bad pmd %p(%016Lx)\n",                           \
  16               __FILE__, __LINE__, &(e), pmd_val(e))
  17#define pgd_ERROR(e)                                                    \
  18        pr_err("%s:%d: bad pgd %p(%016Lx)\n",                           \
  19               __FILE__, __LINE__, &(e), pgd_val(e))
  20
  21/* Rules for using set_pte: the pte being assigned *must* be
  22 * either not present or in a state where the hardware will
  23 * not attempt to update the pte.  In places where this is
  24 * not possible, use pte_get_and_clear to obtain the old pte
  25 * value and then use set_pte to update it.  -ben
  26 */
  27static inline void native_set_pte(pte_t *ptep, pte_t pte)
  28{
  29        ptep->pte_high = pte.pte_high;
  30        smp_wmb();
  31        ptep->pte_low = pte.pte_low;
  32}
  33
  34#define pmd_read_atomic pmd_read_atomic
  35/*
  36 * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
  37 * a "*pmdp" dereference done by gcc. Problem is, in certain places
  38 * where pte_offset_map_lock is called, concurrent page faults are
  39 * allowed, if the mmap_sem is hold for reading. An example is mincore
  40 * vs page faults vs MADV_DONTNEED. On the page fault side
  41 * pmd_populate rightfully does a set_64bit, but if we're reading the
  42 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
  43 * because gcc will not read the 64bit of the pmd atomically. To fix
  44 * this all places running pmd_offset_map_lock() while holding the
  45 * mmap_sem in read mode, shall read the pmdp pointer using this
  46 * function to know if the pmd is null nor not, and in turn to know if
  47 * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
  48 * operations.
  49 *
  50 * Without THP if the mmap_sem is hold for reading, the pmd can only
  51 * transition from null to not null while pmd_read_atomic runs. So
  52 * we can always return atomic pmd values with this function.
  53 *
  54 * With THP if the mmap_sem is hold for reading, the pmd can become
  55 * trans_huge or none or point to a pte (and in turn become "stable")
  56 * at any time under pmd_read_atomic. We could read it really
  57 * atomically here with a atomic64_read for the THP enabled case (and
  58 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
  59 * only return an atomic pmdval if the low part of the pmdval is later
  60 * found stable (i.e. pointing to a pte). And we're returning a none
  61 * pmdval if the low part of the pmd is none. In some cases the high
  62 * and low part of the pmdval returned may not be consistent if THP is
  63 * enabled (the low part may point to previously mapped hugepage,
  64 * while the high part may point to a more recently mapped hugepage),
  65 * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
  66 * of the pmd to be read atomically to decide if the pmd is unstable
  67 * or not, with the only exception of when the low part of the pmd is
  68 * zero in which case we return a none pmd.
  69 */
  70static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
  71{
  72        pmdval_t ret;
  73        u32 *tmp = (u32 *)pmdp;
  74
  75        ret = (pmdval_t) (*tmp);
  76        if (ret) {
  77                /*
  78                 * If the low part is null, we must not read the high part
  79                 * or we can end up with a partial pmd.
  80                 */
  81                smp_rmb();
  82                ret |= ((pmdval_t)*(tmp + 1)) << 32;
  83        }
  84
  85        return (pmd_t) { ret };
  86}
  87
  88static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
  89{
  90        set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
  91}
  92
  93static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
  94{
  95        set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
  96}
  97
  98static inline void native_set_pud(pud_t *pudp, pud_t pud)
  99{
 100        set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
 101}
 102
 103/*
 104 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
 105 * entry, so clear the bottom half first and enforce ordering with a compiler
 106 * barrier.
 107 */
 108static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
 109                                    pte_t *ptep)
 110{
 111        ptep->pte_low = 0;
 112        smp_wmb();
 113        ptep->pte_high = 0;
 114}
 115
 116static inline void native_pmd_clear(pmd_t *pmd)
 117{
 118        u32 *tmp = (u32 *)pmd;
 119        *tmp = 0;
 120        smp_wmb();
 121        *(tmp + 1) = 0;
 122}
 123
 124static inline void pud_clear(pud_t *pudp)
 125{
 126        set_pud(pudp, __pud(0));
 127
 128        /*
 129         * According to Intel App note "TLBs, Paging-Structure Caches,
 130         * and Their Invalidation", April 2007, document 317080-001,
 131         * section 8.1: in PAE mode we explicitly have to flush the
 132         * TLB via cr3 if the top-level pgd is changed...
 133         *
 134         * Currently all places where pud_clear() is called either have
 135         * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
 136         * pud_clear_bad()), so we don't need TLB flush here.
 137         */
 138}
 139
 140#ifdef CONFIG_SMP
 141static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
 142{
 143        pte_t res;
 144
 145        /* xchg acts as a barrier before the setting of the high bits */
 146        res.pte_low = xchg(&ptep->pte_low, 0);
 147        res.pte_high = ptep->pte_high;
 148        ptep->pte_high = 0;
 149
 150        return res;
 151}
 152#else
 153#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
 154#endif
 155
 156#ifdef CONFIG_SMP
 157union split_pmd {
 158        struct {
 159                u32 pmd_low;
 160                u32 pmd_high;
 161        };
 162        pmd_t pmd;
 163};
 164static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
 165{
 166        union split_pmd res, *orig = (union split_pmd *)pmdp;
 167
 168        /* xchg acts as a barrier before setting of the high bits */
 169        res.pmd_low = xchg(&orig->pmd_low, 0);
 170        res.pmd_high = orig->pmd_high;
 171        orig->pmd_high = 0;
 172
 173        return res.pmd;
 174}
 175#else
 176#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
 177#endif
 178
 179/* Encode and de-code a swap entry */
 180#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
 181#define __swp_type(x)                   (((x).val) & 0x1f)
 182#define __swp_offset(x)                 ((x).val >> 5)
 183#define __swp_entry(type, offset)       ((swp_entry_t){(type) | (offset) << 5})
 184#define __pte_to_swp_entry(pte)         ((swp_entry_t){ (pte).pte_high })
 185#define __swp_entry_to_pte(x)           ((pte_t){ { .pte_high = (x).val } })
 186
 187#endif /* _ASM_X86_PGTABLE_3LEVEL_H */
 188