linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1#include <linux/init.h>
   2
   3#include <linux/mm.h>
   4#include <linux/spinlock.h>
   5#include <linux/smp.h>
   6#include <linux/interrupt.h>
   7#include <linux/module.h>
   8#include <linux/cpu.h>
   9
  10#include <asm/tlbflush.h>
  11#include <asm/mmu_context.h>
  12#include <asm/cache.h>
  13#include <asm/apic.h>
  14#include <asm/uv/uv.h>
  15#include <linux/debugfs.h>
  16
  17/*
  18 *      Smarter SMP flushing macros.
  19 *              c/o Linus Torvalds.
  20 *
  21 *      These mean you can really definitely utterly forget about
  22 *      writing to user space from interrupts. (Its not allowed anyway).
  23 *
  24 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  25 *
  26 *      More scalable flush, from Andi Kleen
  27 *
  28 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  29 */
  30
  31struct flush_tlb_info {
  32        struct mm_struct *flush_mm;
  33        unsigned long flush_start;
  34        unsigned long flush_end;
  35};
  36
  37/*
  38 * We cannot call mmdrop() because we are in interrupt context,
  39 * instead update mm->cpu_vm_mask.
  40 */
  41void leave_mm(int cpu)
  42{
  43        struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
  44        if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  45                BUG();
  46        if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
  47                cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
  48                load_cr3(swapper_pg_dir);
  49                /*
  50                 * This gets called in the idle path where RCU
  51                 * functions differently.  Tracing normally
  52                 * uses RCU, so we have to call the tracepoint
  53                 * specially here.
  54                 */
  55                trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
  56        }
  57}
  58EXPORT_SYMBOL_GPL(leave_mm);
  59
  60/*
  61 * The flush IPI assumes that a thread switch happens in this order:
  62 * [cpu0: the cpu that switches]
  63 * 1) switch_mm() either 1a) or 1b)
  64 * 1a) thread switch to a different mm
  65 * 1a1) set cpu_tlbstate to TLBSTATE_OK
  66 *      Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
  67 *      if cpu0 was in lazy tlb mode.
  68 * 1a2) update cpu active_mm
  69 *      Now cpu0 accepts tlb flushes for the new mm.
  70 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
  71 *      Now the other cpus will send tlb flush ipis.
  72 * 1a4) change cr3.
  73 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
  74 *      Stop ipi delivery for the old mm. This is not synchronized with
  75 *      the other cpus, but flush_tlb_func ignore flush ipis for the wrong
  76 *      mm, and in the worst case we perform a superfluous tlb flush.
  77 * 1b) thread switch without mm change
  78 *      cpu active_mm is correct, cpu0 already handles flush ipis.
  79 * 1b1) set cpu_tlbstate to TLBSTATE_OK
  80 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  81 *      Atomically set the bit [other cpus will start sending flush ipis],
  82 *      and test the bit.
  83 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  84 * 2) switch %%esp, ie current
  85 *
  86 * The interrupt must handle 2 special cases:
  87 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  88 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  89 *   runs in kernel space, the cpu could load tlb entries for user space
  90 *   pages.
  91 *
  92 * The good news is that cpu_tlbstate is local to each cpu, no
  93 * write/read ordering problems.
  94 */
  95
  96/*
  97 * TLB flush funcation:
  98 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  99 * 2) Leave the mm if we are in the lazy tlb mode.
 100 */
 101static void flush_tlb_func(void *info)
 102{
 103        struct flush_tlb_info *f = info;
 104
 105        inc_irq_stat(irq_tlb_count);
 106
 107        if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
 108                return;
 109        if (!f->flush_end)
 110                f->flush_end = f->flush_start + PAGE_SIZE;
 111
 112        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 113        if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
 114                if (f->flush_end == TLB_FLUSH_ALL) {
 115                        local_flush_tlb();
 116                        trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
 117                } else {
 118                        unsigned long addr;
 119                        unsigned long nr_pages =
 120                                (f->flush_end - f->flush_start) / PAGE_SIZE;
 121                        addr = f->flush_start;
 122                        while (addr < f->flush_end) {
 123                                __flush_tlb_single(addr);
 124                                addr += PAGE_SIZE;
 125                        }
 126                        trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
 127                }
 128        } else
 129                leave_mm(smp_processor_id());
 130
 131}
 132
 133void native_flush_tlb_others(const struct cpumask *cpumask,
 134                                 struct mm_struct *mm, unsigned long start,
 135                                 unsigned long end)
 136{
 137        struct flush_tlb_info info;
 138        info.flush_mm = mm;
 139        info.flush_start = start;
 140        info.flush_end = end;
 141
 142        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 143        trace_tlb_flush(TLB_REMOTE_SEND_IPI, end - start);
 144        if (is_uv_system()) {
 145                unsigned int cpu;
 146
 147                cpu = smp_processor_id();
 148                cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
 149                if (cpumask)
 150                        smp_call_function_many(cpumask, flush_tlb_func,
 151                                                                &info, 1);
 152                return;
 153        }
 154        smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
 155}
 156
 157void flush_tlb_current_task(void)
 158{
 159        struct mm_struct *mm = current->mm;
 160
 161        preempt_disable();
 162
 163        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 164        local_flush_tlb();
 165        trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
 166        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 167                flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
 168        preempt_enable();
 169}
 170
 171/*
 172 * See Documentation/x86/tlb.txt for details.  We choose 33
 173 * because it is large enough to cover the vast majority (at
 174 * least 95%) of allocations, and is small enough that we are
 175 * confident it will not cause too much overhead.  Each single
 176 * flush is about 100 ns, so this caps the maximum overhead at
 177 * _about_ 3,000 ns.
 178 *
 179 * This is in units of pages.
 180 */
 181static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 182
 183void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 184                                unsigned long end, unsigned long vmflag)
 185{
 186        unsigned long addr;
 187        /* do a global flush by default */
 188        unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
 189
 190        preempt_disable();
 191        if (current->active_mm != mm)
 192                goto out;
 193
 194        if (!current->mm) {
 195                leave_mm(smp_processor_id());
 196                goto out;
 197        }
 198
 199        if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
 200                base_pages_to_flush = (end - start) >> PAGE_SHIFT;
 201
 202        if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
 203                base_pages_to_flush = TLB_FLUSH_ALL;
 204                count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 205                local_flush_tlb();
 206        } else {
 207                /* flush range by one by one 'invlpg' */
 208                for (addr = start; addr < end;  addr += PAGE_SIZE) {
 209                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
 210                        __flush_tlb_single(addr);
 211                }
 212        }
 213        trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
 214out:
 215        if (base_pages_to_flush == TLB_FLUSH_ALL) {
 216                start = 0UL;
 217                end = TLB_FLUSH_ALL;
 218        }
 219        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 220                flush_tlb_others(mm_cpumask(mm), mm, start, end);
 221        preempt_enable();
 222}
 223
 224void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
 225{
 226        struct mm_struct *mm = vma->vm_mm;
 227
 228        preempt_disable();
 229
 230        if (current->active_mm == mm) {
 231                if (current->mm)
 232                        __flush_tlb_one(start);
 233                else
 234                        leave_mm(smp_processor_id());
 235        }
 236
 237        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 238                flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
 239
 240        preempt_enable();
 241}
 242
 243static void do_flush_tlb_all(void *info)
 244{
 245        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 246        __flush_tlb_all();
 247        if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
 248                leave_mm(smp_processor_id());
 249}
 250
 251void flush_tlb_all(void)
 252{
 253        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 254        on_each_cpu(do_flush_tlb_all, NULL, 1);
 255}
 256
 257static void do_kernel_range_flush(void *info)
 258{
 259        struct flush_tlb_info *f = info;
 260        unsigned long addr;
 261
 262        /* flush range by one by one 'invlpg' */
 263        for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
 264                __flush_tlb_single(addr);
 265}
 266
 267void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 268{
 269
 270        /* Balance as user space task's flush, a bit conservative */
 271        if (end == TLB_FLUSH_ALL ||
 272            (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
 273                on_each_cpu(do_flush_tlb_all, NULL, 1);
 274        } else {
 275                struct flush_tlb_info info;
 276                info.flush_start = start;
 277                info.flush_end = end;
 278                on_each_cpu(do_kernel_range_flush, &info, 1);
 279        }
 280}
 281
 282static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
 283                             size_t count, loff_t *ppos)
 284{
 285        char buf[32];
 286        unsigned int len;
 287
 288        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
 289        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
 290}
 291
 292static ssize_t tlbflush_write_file(struct file *file,
 293                 const char __user *user_buf, size_t count, loff_t *ppos)
 294{
 295        char buf[32];
 296        ssize_t len;
 297        int ceiling;
 298
 299        len = min(count, sizeof(buf) - 1);
 300        if (copy_from_user(buf, user_buf, len))
 301                return -EFAULT;
 302
 303        buf[len] = '\0';
 304        if (kstrtoint(buf, 0, &ceiling))
 305                return -EINVAL;
 306
 307        if (ceiling < 0)
 308                return -EINVAL;
 309
 310        tlb_single_page_flush_ceiling = ceiling;
 311        return count;
 312}
 313
 314static const struct file_operations fops_tlbflush = {
 315        .read = tlbflush_read_file,
 316        .write = tlbflush_write_file,
 317        .llseek = default_llseek,
 318};
 319
 320static int __init create_tlb_single_page_flush_ceiling(void)
 321{
 322        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
 323                            arch_debugfs_dir, NULL, &fops_tlbflush);
 324        return 0;
 325}
 326late_initcall(create_tlb_single_page_flush_ceiling);
 327