linux/drivers/crypto/qce/sha.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 and
   6 * only version 2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include <linux/device.h>
  15#include <linux/interrupt.h>
  16#include <crypto/internal/hash.h>
  17
  18#include "common.h"
  19#include "core.h"
  20#include "sha.h"
  21
  22/* crypto hw padding constant for first operation */
  23#define SHA_PADDING             64
  24#define SHA_PADDING_MASK        (SHA_PADDING - 1)
  25
  26static LIST_HEAD(ahash_algs);
  27
  28static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  29        SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
  30};
  31
  32static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  33        SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
  34        SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
  35};
  36
  37static void qce_ahash_done(void *data)
  38{
  39        struct crypto_async_request *async_req = data;
  40        struct ahash_request *req = ahash_request_cast(async_req);
  41        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  42        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  43        struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  44        struct qce_device *qce = tmpl->qce;
  45        struct qce_result_dump *result = qce->dma.result_buf;
  46        unsigned int digestsize = crypto_ahash_digestsize(ahash);
  47        int error;
  48        u32 status;
  49
  50        error = qce_dma_terminate_all(&qce->dma);
  51        if (error)
  52                dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
  53
  54        dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
  55        dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
  56
  57        memcpy(rctx->digest, result->auth_iv, digestsize);
  58        if (req->result)
  59                memcpy(req->result, result->auth_iv, digestsize);
  60
  61        rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
  62        rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
  63
  64        error = qce_check_status(qce, &status);
  65        if (error < 0)
  66                dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
  67
  68        req->src = rctx->src_orig;
  69        req->nbytes = rctx->nbytes_orig;
  70        rctx->last_blk = false;
  71        rctx->first_blk = false;
  72
  73        qce->async_req_done(tmpl->qce, error);
  74}
  75
  76static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
  77{
  78        struct ahash_request *req = ahash_request_cast(async_req);
  79        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  80        struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
  81        struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  82        struct qce_device *qce = tmpl->qce;
  83        unsigned long flags = rctx->flags;
  84        int ret;
  85
  86        if (IS_SHA_HMAC(flags)) {
  87                rctx->authkey = ctx->authkey;
  88                rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
  89        } else if (IS_CMAC(flags)) {
  90                rctx->authkey = ctx->authkey;
  91                rctx->authklen = AES_KEYSIZE_128;
  92        }
  93
  94        rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
  95        ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
  96        if (ret < 0)
  97                return ret;
  98
  99        sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
 100
 101        ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 102        if (ret < 0)
 103                goto error_unmap_src;
 104
 105        ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
 106                               &rctx->result_sg, 1, qce_ahash_done, async_req);
 107        if (ret)
 108                goto error_unmap_dst;
 109
 110        qce_dma_issue_pending(&qce->dma);
 111
 112        ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
 113        if (ret)
 114                goto error_terminate;
 115
 116        return 0;
 117
 118error_terminate:
 119        qce_dma_terminate_all(&qce->dma);
 120error_unmap_dst:
 121        dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 122error_unmap_src:
 123        dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
 124        return ret;
 125}
 126
 127static int qce_ahash_init(struct ahash_request *req)
 128{
 129        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 130        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 131        const u32 *std_iv = tmpl->std_iv;
 132
 133        memset(rctx, 0, sizeof(*rctx));
 134        rctx->first_blk = true;
 135        rctx->last_blk = false;
 136        rctx->flags = tmpl->alg_flags;
 137        memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
 138
 139        return 0;
 140}
 141
 142static int qce_ahash_export(struct ahash_request *req, void *out)
 143{
 144        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 145        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 146        unsigned long flags = rctx->flags;
 147        unsigned int digestsize = crypto_ahash_digestsize(ahash);
 148        unsigned int blocksize =
 149                        crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 150
 151        if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 152                struct sha1_state *out_state = out;
 153
 154                out_state->count = rctx->count;
 155                qce_cpu_to_be32p_array((__be32 *)out_state->state,
 156                                       rctx->digest, digestsize);
 157                memcpy(out_state->buffer, rctx->buf, blocksize);
 158        } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 159                struct sha256_state *out_state = out;
 160
 161                out_state->count = rctx->count;
 162                qce_cpu_to_be32p_array((__be32 *)out_state->state,
 163                                       rctx->digest, digestsize);
 164                memcpy(out_state->buf, rctx->buf, blocksize);
 165        } else {
 166                return -EINVAL;
 167        }
 168
 169        return 0;
 170}
 171
 172static int qce_import_common(struct ahash_request *req, u64 in_count,
 173                             const u32 *state, const u8 *buffer, bool hmac)
 174{
 175        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 176        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 177        unsigned int digestsize = crypto_ahash_digestsize(ahash);
 178        unsigned int blocksize;
 179        u64 count = in_count;
 180
 181        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 182        rctx->count = in_count;
 183        memcpy(rctx->buf, buffer, blocksize);
 184
 185        if (in_count <= blocksize) {
 186                rctx->first_blk = 1;
 187        } else {
 188                rctx->first_blk = 0;
 189                /*
 190                 * For HMAC, there is a hardware padding done when first block
 191                 * is set. Therefore the byte_count must be incremened by 64
 192                 * after the first block operation.
 193                 */
 194                if (hmac)
 195                        count += SHA_PADDING;
 196        }
 197
 198        rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
 199        rctx->byte_count[1] = (__force __be32)(count >> 32);
 200        qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
 201                               digestsize);
 202        rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
 203
 204        return 0;
 205}
 206
 207static int qce_ahash_import(struct ahash_request *req, const void *in)
 208{
 209        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 210        unsigned long flags = rctx->flags;
 211        bool hmac = IS_SHA_HMAC(flags);
 212        int ret = -EINVAL;
 213
 214        if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 215                const struct sha1_state *state = in;
 216
 217                ret = qce_import_common(req, state->count, state->state,
 218                                        state->buffer, hmac);
 219        } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 220                const struct sha256_state *state = in;
 221
 222                ret = qce_import_common(req, state->count, state->state,
 223                                        state->buf, hmac);
 224        }
 225
 226        return ret;
 227}
 228
 229static int qce_ahash_update(struct ahash_request *req)
 230{
 231        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 232        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 233        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 234        struct qce_device *qce = tmpl->qce;
 235        struct scatterlist *sg_last, *sg;
 236        unsigned int total, len;
 237        unsigned int hash_later;
 238        unsigned int nbytes;
 239        unsigned int blocksize;
 240
 241        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 242        rctx->count += req->nbytes;
 243
 244        /* check for buffer from previous updates and append it */
 245        total = req->nbytes + rctx->buflen;
 246
 247        if (total <= blocksize) {
 248                scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
 249                                         0, req->nbytes, 0);
 250                rctx->buflen += req->nbytes;
 251                return 0;
 252        }
 253
 254        /* save the original req structure fields */
 255        rctx->src_orig = req->src;
 256        rctx->nbytes_orig = req->nbytes;
 257
 258        /*
 259         * if we have data from previous update copy them on buffer. The old
 260         * data will be combined with current request bytes.
 261         */
 262        if (rctx->buflen)
 263                memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 264
 265        /* calculate how many bytes will be hashed later */
 266        hash_later = total % blocksize;
 267        if (hash_later) {
 268                unsigned int src_offset = req->nbytes - hash_later;
 269                scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
 270                                         hash_later, 0);
 271        }
 272
 273        /* here nbytes is multiple of blocksize */
 274        nbytes = total - hash_later;
 275
 276        len = rctx->buflen;
 277        sg = sg_last = req->src;
 278
 279        while (len < nbytes && sg) {
 280                if (len + sg_dma_len(sg) > nbytes)
 281                        break;
 282                len += sg_dma_len(sg);
 283                sg_last = sg;
 284                sg = sg_next(sg);
 285        }
 286
 287        if (!sg_last)
 288                return -EINVAL;
 289
 290        sg_mark_end(sg_last);
 291
 292        if (rctx->buflen) {
 293                sg_init_table(rctx->sg, 2);
 294                sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
 295                sg_chain(rctx->sg, 2, req->src);
 296                req->src = rctx->sg;
 297        }
 298
 299        req->nbytes = nbytes;
 300        rctx->buflen = hash_later;
 301
 302        return qce->async_req_enqueue(tmpl->qce, &req->base);
 303}
 304
 305static int qce_ahash_final(struct ahash_request *req)
 306{
 307        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 308        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 309        struct qce_device *qce = tmpl->qce;
 310
 311        if (!rctx->buflen)
 312                return 0;
 313
 314        rctx->last_blk = true;
 315
 316        rctx->src_orig = req->src;
 317        rctx->nbytes_orig = req->nbytes;
 318
 319        memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 320        sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
 321
 322        req->src = rctx->sg;
 323        req->nbytes = rctx->buflen;
 324
 325        return qce->async_req_enqueue(tmpl->qce, &req->base);
 326}
 327
 328static int qce_ahash_digest(struct ahash_request *req)
 329{
 330        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 331        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 332        struct qce_device *qce = tmpl->qce;
 333        int ret;
 334
 335        ret = qce_ahash_init(req);
 336        if (ret)
 337                return ret;
 338
 339        rctx->src_orig = req->src;
 340        rctx->nbytes_orig = req->nbytes;
 341        rctx->first_blk = true;
 342        rctx->last_blk = true;
 343
 344        return qce->async_req_enqueue(tmpl->qce, &req->base);
 345}
 346
 347struct qce_ahash_result {
 348        struct completion completion;
 349        int error;
 350};
 351
 352static void qce_digest_complete(struct crypto_async_request *req, int error)
 353{
 354        struct qce_ahash_result *result = req->data;
 355
 356        if (error == -EINPROGRESS)
 357                return;
 358
 359        result->error = error;
 360        complete(&result->completion);
 361}
 362
 363static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
 364                                 unsigned int keylen)
 365{
 366        unsigned int digestsize = crypto_ahash_digestsize(tfm);
 367        struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 368        struct qce_ahash_result result;
 369        struct ahash_request *req;
 370        struct scatterlist sg;
 371        unsigned int blocksize;
 372        struct crypto_ahash *ahash_tfm;
 373        u8 *buf;
 374        int ret;
 375        const char *alg_name;
 376
 377        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 378        memset(ctx->authkey, 0, sizeof(ctx->authkey));
 379
 380        if (keylen <= blocksize) {
 381                memcpy(ctx->authkey, key, keylen);
 382                return 0;
 383        }
 384
 385        if (digestsize == SHA1_DIGEST_SIZE)
 386                alg_name = "sha1-qce";
 387        else if (digestsize == SHA256_DIGEST_SIZE)
 388                alg_name = "sha256-qce";
 389        else
 390                return -EINVAL;
 391
 392        ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
 393                                       CRYPTO_ALG_TYPE_AHASH_MASK);
 394        if (IS_ERR(ahash_tfm))
 395                return PTR_ERR(ahash_tfm);
 396
 397        req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
 398        if (!req) {
 399                ret = -ENOMEM;
 400                goto err_free_ahash;
 401        }
 402
 403        init_completion(&result.completion);
 404        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 405                                   qce_digest_complete, &result);
 406        crypto_ahash_clear_flags(ahash_tfm, ~0);
 407
 408        buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
 409        if (!buf) {
 410                ret = -ENOMEM;
 411                goto err_free_req;
 412        }
 413
 414        memcpy(buf, key, keylen);
 415        sg_init_one(&sg, buf, keylen);
 416        ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
 417
 418        ret = crypto_ahash_digest(req);
 419        if (ret == -EINPROGRESS || ret == -EBUSY) {
 420                ret = wait_for_completion_interruptible(&result.completion);
 421                if (!ret)
 422                        ret = result.error;
 423        }
 424
 425        if (ret)
 426                crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 427
 428        kfree(buf);
 429err_free_req:
 430        ahash_request_free(req);
 431err_free_ahash:
 432        crypto_free_ahash(ahash_tfm);
 433        return ret;
 434}
 435
 436static int qce_ahash_cra_init(struct crypto_tfm *tfm)
 437{
 438        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 439        struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
 440
 441        crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
 442        memset(ctx, 0, sizeof(*ctx));
 443        return 0;
 444}
 445
 446struct qce_ahash_def {
 447        unsigned long flags;
 448        const char *name;
 449        const char *drv_name;
 450        unsigned int digestsize;
 451        unsigned int blocksize;
 452        unsigned int statesize;
 453        const u32 *std_iv;
 454};
 455
 456static const struct qce_ahash_def ahash_def[] = {
 457        {
 458                .flags          = QCE_HASH_SHA1,
 459                .name           = "sha1",
 460                .drv_name       = "sha1-qce",
 461                .digestsize     = SHA1_DIGEST_SIZE,
 462                .blocksize      = SHA1_BLOCK_SIZE,
 463                .statesize      = sizeof(struct sha1_state),
 464                .std_iv         = std_iv_sha1,
 465        },
 466        {
 467                .flags          = QCE_HASH_SHA256,
 468                .name           = "sha256",
 469                .drv_name       = "sha256-qce",
 470                .digestsize     = SHA256_DIGEST_SIZE,
 471                .blocksize      = SHA256_BLOCK_SIZE,
 472                .statesize      = sizeof(struct sha256_state),
 473                .std_iv         = std_iv_sha256,
 474        },
 475        {
 476                .flags          = QCE_HASH_SHA1_HMAC,
 477                .name           = "hmac(sha1)",
 478                .drv_name       = "hmac-sha1-qce",
 479                .digestsize     = SHA1_DIGEST_SIZE,
 480                .blocksize      = SHA1_BLOCK_SIZE,
 481                .statesize      = sizeof(struct sha1_state),
 482                .std_iv         = std_iv_sha1,
 483        },
 484        {
 485                .flags          = QCE_HASH_SHA256_HMAC,
 486                .name           = "hmac(sha256)",
 487                .drv_name       = "hmac-sha256-qce",
 488                .digestsize     = SHA256_DIGEST_SIZE,
 489                .blocksize      = SHA256_BLOCK_SIZE,
 490                .statesize      = sizeof(struct sha256_state),
 491                .std_iv         = std_iv_sha256,
 492        },
 493};
 494
 495static int qce_ahash_register_one(const struct qce_ahash_def *def,
 496                                  struct qce_device *qce)
 497{
 498        struct qce_alg_template *tmpl;
 499        struct ahash_alg *alg;
 500        struct crypto_alg *base;
 501        int ret;
 502
 503        tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
 504        if (!tmpl)
 505                return -ENOMEM;
 506
 507        tmpl->std_iv = def->std_iv;
 508
 509        alg = &tmpl->alg.ahash;
 510        alg->init = qce_ahash_init;
 511        alg->update = qce_ahash_update;
 512        alg->final = qce_ahash_final;
 513        alg->digest = qce_ahash_digest;
 514        alg->export = qce_ahash_export;
 515        alg->import = qce_ahash_import;
 516        if (IS_SHA_HMAC(def->flags))
 517                alg->setkey = qce_ahash_hmac_setkey;
 518        alg->halg.digestsize = def->digestsize;
 519        alg->halg.statesize = def->statesize;
 520
 521        base = &alg->halg.base;
 522        base->cra_blocksize = def->blocksize;
 523        base->cra_priority = 300;
 524        base->cra_flags = CRYPTO_ALG_ASYNC;
 525        base->cra_ctxsize = sizeof(struct qce_sha_ctx);
 526        base->cra_alignmask = 0;
 527        base->cra_module = THIS_MODULE;
 528        base->cra_init = qce_ahash_cra_init;
 529        INIT_LIST_HEAD(&base->cra_list);
 530
 531        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 532        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 533                 def->drv_name);
 534
 535        INIT_LIST_HEAD(&tmpl->entry);
 536        tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
 537        tmpl->alg_flags = def->flags;
 538        tmpl->qce = qce;
 539
 540        ret = crypto_register_ahash(alg);
 541        if (ret) {
 542                kfree(tmpl);
 543                dev_err(qce->dev, "%s registration failed\n", base->cra_name);
 544                return ret;
 545        }
 546
 547        list_add_tail(&tmpl->entry, &ahash_algs);
 548        dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
 549        return 0;
 550}
 551
 552static void qce_ahash_unregister(struct qce_device *qce)
 553{
 554        struct qce_alg_template *tmpl, *n;
 555
 556        list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
 557                crypto_unregister_ahash(&tmpl->alg.ahash);
 558                list_del(&tmpl->entry);
 559                kfree(tmpl);
 560        }
 561}
 562
 563static int qce_ahash_register(struct qce_device *qce)
 564{
 565        int ret, i;
 566
 567        for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
 568                ret = qce_ahash_register_one(&ahash_def[i], qce);
 569                if (ret)
 570                        goto err;
 571        }
 572
 573        return 0;
 574err:
 575        qce_ahash_unregister(qce);
 576        return ret;
 577}
 578
 579const struct qce_algo_ops ahash_ops = {
 580        .type = CRYPTO_ALG_TYPE_AHASH,
 581        .register_algs = qce_ahash_register,
 582        .unregister_algs = qce_ahash_unregister,
 583        .async_req_handle = qce_ahash_async_req_handle,
 584};
 585