linux/drivers/dma/cppi41.c
<<
>>
Prefs
   1#include <linux/delay.h>
   2#include <linux/dmaengine.h>
   3#include <linux/dma-mapping.h>
   4#include <linux/platform_device.h>
   5#include <linux/module.h>
   6#include <linux/of.h>
   7#include <linux/slab.h>
   8#include <linux/of_dma.h>
   9#include <linux/of_irq.h>
  10#include <linux/dmapool.h>
  11#include <linux/interrupt.h>
  12#include <linux/of_address.h>
  13#include <linux/pm_runtime.h>
  14#include "dmaengine.h"
  15
  16#define DESC_TYPE       27
  17#define DESC_TYPE_HOST  0x10
  18#define DESC_TYPE_TEARD 0x13
  19
  20#define TD_DESC_IS_RX   (1 << 16)
  21#define TD_DESC_DMA_NUM 10
  22
  23#define DESC_LENGTH_BITS_NUM    21
  24
  25#define DESC_TYPE_USB   (5 << 26)
  26#define DESC_PD_COMPLETE        (1 << 31)
  27
  28/* DMA engine */
  29#define DMA_TDFDQ       4
  30#define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
  31#define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
  32#define RXHPCRA0                4
  33
  34#define GCR_CHAN_ENABLE         (1 << 31)
  35#define GCR_TEARDOWN            (1 << 30)
  36#define GCR_STARV_RETRY         (1 << 24)
  37#define GCR_DESC_TYPE_HOST      (1 << 14)
  38
  39/* DMA scheduler */
  40#define DMA_SCHED_CTRL          0
  41#define DMA_SCHED_CTRL_EN       (1 << 31)
  42#define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
  43
  44#define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
  45#define SCHED_ENTRY0_IS_RX      (1 << 7)
  46
  47#define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
  48#define SCHED_ENTRY1_IS_RX      (1 << 15)
  49
  50#define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
  51#define SCHED_ENTRY2_IS_RX      (1 << 23)
  52
  53#define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
  54#define SCHED_ENTRY3_IS_RX      (1 << 31)
  55
  56/* Queue manager */
  57/* 4 KiB of memory for descriptors, 2 for each endpoint */
  58#define ALLOC_DECS_NUM          128
  59#define DESCS_AREAS             1
  60#define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
  61#define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
  62
  63#define QMGR_LRAM0_BASE         0x80
  64#define QMGR_LRAM_SIZE          0x84
  65#define QMGR_LRAM1_BASE         0x88
  66#define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
  67#define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
  68#define QMGR_MEMCTRL_IDX_SH     16
  69#define QMGR_MEMCTRL_DESC_SH    8
  70
  71#define QMGR_NUM_PEND   5
  72#define QMGR_PEND(x)    (0x90 + (x) * 4)
  73
  74#define QMGR_PENDING_SLOT_Q(x)  (x / 32)
  75#define QMGR_PENDING_BIT_Q(x)   (x % 32)
  76
  77#define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  78#define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  79#define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  80#define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  81
  82/* Glue layer specific */
  83/* USBSS  / USB AM335x */
  84#define USBSS_IRQ_STATUS        0x28
  85#define USBSS_IRQ_ENABLER       0x2c
  86#define USBSS_IRQ_CLEARR        0x30
  87
  88#define USBSS_IRQ_PD_COMP       (1 <<  2)
  89
  90/* Packet Descriptor */
  91#define PD2_ZERO_LENGTH         (1 << 19)
  92
  93struct cppi41_channel {
  94        struct dma_chan chan;
  95        struct dma_async_tx_descriptor txd;
  96        struct cppi41_dd *cdd;
  97        struct cppi41_desc *desc;
  98        dma_addr_t desc_phys;
  99        void __iomem *gcr_reg;
 100        int is_tx;
 101        u32 residue;
 102
 103        unsigned int q_num;
 104        unsigned int q_comp_num;
 105        unsigned int port_num;
 106
 107        unsigned td_retry;
 108        unsigned td_queued:1;
 109        unsigned td_seen:1;
 110        unsigned td_desc_seen:1;
 111};
 112
 113struct cppi41_desc {
 114        u32 pd0;
 115        u32 pd1;
 116        u32 pd2;
 117        u32 pd3;
 118        u32 pd4;
 119        u32 pd5;
 120        u32 pd6;
 121        u32 pd7;
 122} __aligned(32);
 123
 124struct chan_queues {
 125        u16 submit;
 126        u16 complete;
 127};
 128
 129struct cppi41_dd {
 130        struct dma_device ddev;
 131
 132        void *qmgr_scratch;
 133        dma_addr_t scratch_phys;
 134
 135        struct cppi41_desc *cd;
 136        dma_addr_t descs_phys;
 137        u32 first_td_desc;
 138        struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
 139
 140        void __iomem *usbss_mem;
 141        void __iomem *ctrl_mem;
 142        void __iomem *sched_mem;
 143        void __iomem *qmgr_mem;
 144        unsigned int irq;
 145        const struct chan_queues *queues_rx;
 146        const struct chan_queues *queues_tx;
 147        struct chan_queues td_queue;
 148
 149        /* context for suspend/resume */
 150        unsigned int dma_tdfdq;
 151};
 152
 153#define FIST_COMPLETION_QUEUE   93
 154static struct chan_queues usb_queues_tx[] = {
 155        /* USB0 ENDP 1 */
 156        [ 0] = { .submit = 32, .complete =  93},
 157        [ 1] = { .submit = 34, .complete =  94},
 158        [ 2] = { .submit = 36, .complete =  95},
 159        [ 3] = { .submit = 38, .complete =  96},
 160        [ 4] = { .submit = 40, .complete =  97},
 161        [ 5] = { .submit = 42, .complete =  98},
 162        [ 6] = { .submit = 44, .complete =  99},
 163        [ 7] = { .submit = 46, .complete = 100},
 164        [ 8] = { .submit = 48, .complete = 101},
 165        [ 9] = { .submit = 50, .complete = 102},
 166        [10] = { .submit = 52, .complete = 103},
 167        [11] = { .submit = 54, .complete = 104},
 168        [12] = { .submit = 56, .complete = 105},
 169        [13] = { .submit = 58, .complete = 106},
 170        [14] = { .submit = 60, .complete = 107},
 171
 172        /* USB1 ENDP1 */
 173        [15] = { .submit = 62, .complete = 125},
 174        [16] = { .submit = 64, .complete = 126},
 175        [17] = { .submit = 66, .complete = 127},
 176        [18] = { .submit = 68, .complete = 128},
 177        [19] = { .submit = 70, .complete = 129},
 178        [20] = { .submit = 72, .complete = 130},
 179        [21] = { .submit = 74, .complete = 131},
 180        [22] = { .submit = 76, .complete = 132},
 181        [23] = { .submit = 78, .complete = 133},
 182        [24] = { .submit = 80, .complete = 134},
 183        [25] = { .submit = 82, .complete = 135},
 184        [26] = { .submit = 84, .complete = 136},
 185        [27] = { .submit = 86, .complete = 137},
 186        [28] = { .submit = 88, .complete = 138},
 187        [29] = { .submit = 90, .complete = 139},
 188};
 189
 190static const struct chan_queues usb_queues_rx[] = {
 191        /* USB0 ENDP 1 */
 192        [ 0] = { .submit =  1, .complete = 109},
 193        [ 1] = { .submit =  2, .complete = 110},
 194        [ 2] = { .submit =  3, .complete = 111},
 195        [ 3] = { .submit =  4, .complete = 112},
 196        [ 4] = { .submit =  5, .complete = 113},
 197        [ 5] = { .submit =  6, .complete = 114},
 198        [ 6] = { .submit =  7, .complete = 115},
 199        [ 7] = { .submit =  8, .complete = 116},
 200        [ 8] = { .submit =  9, .complete = 117},
 201        [ 9] = { .submit = 10, .complete = 118},
 202        [10] = { .submit = 11, .complete = 119},
 203        [11] = { .submit = 12, .complete = 120},
 204        [12] = { .submit = 13, .complete = 121},
 205        [13] = { .submit = 14, .complete = 122},
 206        [14] = { .submit = 15, .complete = 123},
 207
 208        /* USB1 ENDP 1 */
 209        [15] = { .submit = 16, .complete = 141},
 210        [16] = { .submit = 17, .complete = 142},
 211        [17] = { .submit = 18, .complete = 143},
 212        [18] = { .submit = 19, .complete = 144},
 213        [19] = { .submit = 20, .complete = 145},
 214        [20] = { .submit = 21, .complete = 146},
 215        [21] = { .submit = 22, .complete = 147},
 216        [22] = { .submit = 23, .complete = 148},
 217        [23] = { .submit = 24, .complete = 149},
 218        [24] = { .submit = 25, .complete = 150},
 219        [25] = { .submit = 26, .complete = 151},
 220        [26] = { .submit = 27, .complete = 152},
 221        [27] = { .submit = 28, .complete = 153},
 222        [28] = { .submit = 29, .complete = 154},
 223        [29] = { .submit = 30, .complete = 155},
 224};
 225
 226struct cppi_glue_infos {
 227        irqreturn_t (*isr)(int irq, void *data);
 228        const struct chan_queues *queues_rx;
 229        const struct chan_queues *queues_tx;
 230        struct chan_queues td_queue;
 231};
 232
 233static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
 234{
 235        return container_of(c, struct cppi41_channel, chan);
 236}
 237
 238static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
 239{
 240        struct cppi41_channel *c;
 241        u32 descs_size;
 242        u32 desc_num;
 243
 244        descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
 245
 246        if (!((desc >= cdd->descs_phys) &&
 247                        (desc < (cdd->descs_phys + descs_size)))) {
 248                return NULL;
 249        }
 250
 251        desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
 252        BUG_ON(desc_num >= ALLOC_DECS_NUM);
 253        c = cdd->chan_busy[desc_num];
 254        cdd->chan_busy[desc_num] = NULL;
 255        return c;
 256}
 257
 258static void cppi_writel(u32 val, void *__iomem *mem)
 259{
 260        __raw_writel(val, mem);
 261}
 262
 263static u32 cppi_readl(void *__iomem *mem)
 264{
 265        return __raw_readl(mem);
 266}
 267
 268static u32 pd_trans_len(u32 val)
 269{
 270        return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
 271}
 272
 273static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
 274{
 275        u32 desc;
 276
 277        desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
 278        desc &= ~0x1f;
 279        return desc;
 280}
 281
 282static irqreturn_t cppi41_irq(int irq, void *data)
 283{
 284        struct cppi41_dd *cdd = data;
 285        struct cppi41_channel *c;
 286        u32 status;
 287        int i;
 288
 289        status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
 290        if (!(status & USBSS_IRQ_PD_COMP))
 291                return IRQ_NONE;
 292        cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
 293
 294        for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
 295                        i++) {
 296                u32 val;
 297                u32 q_num;
 298
 299                val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
 300                if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
 301                        u32 mask;
 302                        /* set corresponding bit for completetion Q 93 */
 303                        mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
 304                        /* not set all bits for queues less than Q 93 */
 305                        mask--;
 306                        /* now invert and keep only Q 93+ set */
 307                        val &= ~mask;
 308                }
 309
 310                if (val)
 311                        __iormb();
 312
 313                while (val) {
 314                        u32 desc, len;
 315
 316                        q_num = __fls(val);
 317                        val &= ~(1 << q_num);
 318                        q_num += 32 * i;
 319                        desc = cppi41_pop_desc(cdd, q_num);
 320                        c = desc_to_chan(cdd, desc);
 321                        if (WARN_ON(!c)) {
 322                                pr_err("%s() q %d desc %08x\n", __func__,
 323                                                q_num, desc);
 324                                continue;
 325                        }
 326
 327                        if (c->desc->pd2 & PD2_ZERO_LENGTH)
 328                                len = 0;
 329                        else
 330                                len = pd_trans_len(c->desc->pd0);
 331
 332                        c->residue = pd_trans_len(c->desc->pd6) - len;
 333                        dma_cookie_complete(&c->txd);
 334                        c->txd.callback(c->txd.callback_param);
 335                }
 336        }
 337        return IRQ_HANDLED;
 338}
 339
 340static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
 341{
 342        dma_cookie_t cookie;
 343
 344        cookie = dma_cookie_assign(tx);
 345
 346        return cookie;
 347}
 348
 349static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
 350{
 351        struct cppi41_channel *c = to_cpp41_chan(chan);
 352
 353        dma_cookie_init(chan);
 354        dma_async_tx_descriptor_init(&c->txd, chan);
 355        c->txd.tx_submit = cppi41_tx_submit;
 356
 357        if (!c->is_tx)
 358                cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
 359
 360        return 0;
 361}
 362
 363static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
 364{
 365}
 366
 367static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
 368        dma_cookie_t cookie, struct dma_tx_state *txstate)
 369{
 370        struct cppi41_channel *c = to_cpp41_chan(chan);
 371        enum dma_status ret;
 372
 373        /* lock */
 374        ret = dma_cookie_status(chan, cookie, txstate);
 375        if (txstate && ret == DMA_COMPLETE)
 376                txstate->residue = c->residue;
 377        /* unlock */
 378
 379        return ret;
 380}
 381
 382static void push_desc_queue(struct cppi41_channel *c)
 383{
 384        struct cppi41_dd *cdd = c->cdd;
 385        u32 desc_num;
 386        u32 desc_phys;
 387        u32 reg;
 388
 389        desc_phys = lower_32_bits(c->desc_phys);
 390        desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 391        WARN_ON(cdd->chan_busy[desc_num]);
 392        cdd->chan_busy[desc_num] = c;
 393
 394        reg = (sizeof(struct cppi41_desc) - 24) / 4;
 395        reg |= desc_phys;
 396        cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
 397}
 398
 399static void cppi41_dma_issue_pending(struct dma_chan *chan)
 400{
 401        struct cppi41_channel *c = to_cpp41_chan(chan);
 402        u32 reg;
 403
 404        c->residue = 0;
 405
 406        reg = GCR_CHAN_ENABLE;
 407        if (!c->is_tx) {
 408                reg |= GCR_STARV_RETRY;
 409                reg |= GCR_DESC_TYPE_HOST;
 410                reg |= c->q_comp_num;
 411        }
 412
 413        cppi_writel(reg, c->gcr_reg);
 414
 415        /*
 416         * We don't use writel() but __raw_writel() so we have to make sure
 417         * that the DMA descriptor in coherent memory made to the main memory
 418         * before starting the dma engine.
 419         */
 420        __iowmb();
 421        push_desc_queue(c);
 422}
 423
 424static u32 get_host_pd0(u32 length)
 425{
 426        u32 reg;
 427
 428        reg = DESC_TYPE_HOST << DESC_TYPE;
 429        reg |= length;
 430
 431        return reg;
 432}
 433
 434static u32 get_host_pd1(struct cppi41_channel *c)
 435{
 436        u32 reg;
 437
 438        reg = 0;
 439
 440        return reg;
 441}
 442
 443static u32 get_host_pd2(struct cppi41_channel *c)
 444{
 445        u32 reg;
 446
 447        reg = DESC_TYPE_USB;
 448        reg |= c->q_comp_num;
 449
 450        return reg;
 451}
 452
 453static u32 get_host_pd3(u32 length)
 454{
 455        u32 reg;
 456
 457        /* PD3 = packet size */
 458        reg = length;
 459
 460        return reg;
 461}
 462
 463static u32 get_host_pd6(u32 length)
 464{
 465        u32 reg;
 466
 467        /* PD6 buffer size */
 468        reg = DESC_PD_COMPLETE;
 469        reg |= length;
 470
 471        return reg;
 472}
 473
 474static u32 get_host_pd4_or_7(u32 addr)
 475{
 476        u32 reg;
 477
 478        reg = addr;
 479
 480        return reg;
 481}
 482
 483static u32 get_host_pd5(void)
 484{
 485        u32 reg;
 486
 487        reg = 0;
 488
 489        return reg;
 490}
 491
 492static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
 493        struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
 494        enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
 495{
 496        struct cppi41_channel *c = to_cpp41_chan(chan);
 497        struct cppi41_desc *d;
 498        struct scatterlist *sg;
 499        unsigned int i;
 500        unsigned int num;
 501
 502        num = 0;
 503        d = c->desc;
 504        for_each_sg(sgl, sg, sg_len, i) {
 505                u32 addr;
 506                u32 len;
 507
 508                /* We need to use more than one desc once musb supports sg */
 509                BUG_ON(num > 0);
 510                addr = lower_32_bits(sg_dma_address(sg));
 511                len = sg_dma_len(sg);
 512
 513                d->pd0 = get_host_pd0(len);
 514                d->pd1 = get_host_pd1(c);
 515                d->pd2 = get_host_pd2(c);
 516                d->pd3 = get_host_pd3(len);
 517                d->pd4 = get_host_pd4_or_7(addr);
 518                d->pd5 = get_host_pd5();
 519                d->pd6 = get_host_pd6(len);
 520                d->pd7 = get_host_pd4_or_7(addr);
 521
 522                d++;
 523        }
 524
 525        return &c->txd;
 526}
 527
 528static void cppi41_compute_td_desc(struct cppi41_desc *d)
 529{
 530        d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
 531}
 532
 533static int cppi41_tear_down_chan(struct cppi41_channel *c)
 534{
 535        struct cppi41_dd *cdd = c->cdd;
 536        struct cppi41_desc *td;
 537        u32 reg;
 538        u32 desc_phys;
 539        u32 td_desc_phys;
 540
 541        td = cdd->cd;
 542        td += cdd->first_td_desc;
 543
 544        td_desc_phys = cdd->descs_phys;
 545        td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
 546
 547        if (!c->td_queued) {
 548                cppi41_compute_td_desc(td);
 549                __iowmb();
 550
 551                reg = (sizeof(struct cppi41_desc) - 24) / 4;
 552                reg |= td_desc_phys;
 553                cppi_writel(reg, cdd->qmgr_mem +
 554                                QMGR_QUEUE_D(cdd->td_queue.submit));
 555
 556                reg = GCR_CHAN_ENABLE;
 557                if (!c->is_tx) {
 558                        reg |= GCR_STARV_RETRY;
 559                        reg |= GCR_DESC_TYPE_HOST;
 560                        reg |= c->q_comp_num;
 561                }
 562                reg |= GCR_TEARDOWN;
 563                cppi_writel(reg, c->gcr_reg);
 564                c->td_queued = 1;
 565                c->td_retry = 500;
 566        }
 567
 568        if (!c->td_seen || !c->td_desc_seen) {
 569
 570                desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
 571                if (!desc_phys)
 572                        desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 573
 574                if (desc_phys == c->desc_phys) {
 575                        c->td_desc_seen = 1;
 576
 577                } else if (desc_phys == td_desc_phys) {
 578                        u32 pd0;
 579
 580                        __iormb();
 581                        pd0 = td->pd0;
 582                        WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
 583                        WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
 584                        WARN_ON((pd0 & 0x1f) != c->port_num);
 585                        c->td_seen = 1;
 586                } else if (desc_phys) {
 587                        WARN_ON_ONCE(1);
 588                }
 589        }
 590        c->td_retry--;
 591        /*
 592         * If the TX descriptor / channel is in use, the caller needs to poke
 593         * his TD bit multiple times. After that he hardware releases the
 594         * transfer descriptor followed by TD descriptor. Waiting seems not to
 595         * cause any difference.
 596         * RX seems to be thrown out right away. However once the TearDown
 597         * descriptor gets through we are done. If we have seens the transfer
 598         * descriptor before the TD we fetch it from enqueue, it has to be
 599         * there waiting for us.
 600         */
 601        if (!c->td_seen && c->td_retry) {
 602                udelay(1);
 603                return -EAGAIN;
 604        }
 605        WARN_ON(!c->td_retry);
 606
 607        if (!c->td_desc_seen) {
 608                desc_phys = cppi41_pop_desc(cdd, c->q_num);
 609                if (!desc_phys)
 610                        desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 611                WARN_ON(!desc_phys);
 612        }
 613
 614        c->td_queued = 0;
 615        c->td_seen = 0;
 616        c->td_desc_seen = 0;
 617        cppi_writel(0, c->gcr_reg);
 618        return 0;
 619}
 620
 621static int cppi41_stop_chan(struct dma_chan *chan)
 622{
 623        struct cppi41_channel *c = to_cpp41_chan(chan);
 624        struct cppi41_dd *cdd = c->cdd;
 625        u32 desc_num;
 626        u32 desc_phys;
 627        int ret;
 628
 629        desc_phys = lower_32_bits(c->desc_phys);
 630        desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 631        if (!cdd->chan_busy[desc_num])
 632                return 0;
 633
 634        ret = cppi41_tear_down_chan(c);
 635        if (ret)
 636                return ret;
 637
 638        WARN_ON(!cdd->chan_busy[desc_num]);
 639        cdd->chan_busy[desc_num] = NULL;
 640
 641        return 0;
 642}
 643
 644static void cleanup_chans(struct cppi41_dd *cdd)
 645{
 646        while (!list_empty(&cdd->ddev.channels)) {
 647                struct cppi41_channel *cchan;
 648
 649                cchan = list_first_entry(&cdd->ddev.channels,
 650                                struct cppi41_channel, chan.device_node);
 651                list_del(&cchan->chan.device_node);
 652                kfree(cchan);
 653        }
 654}
 655
 656static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
 657{
 658        struct cppi41_channel *cchan;
 659        int i;
 660        int ret;
 661        u32 n_chans;
 662
 663        ret = of_property_read_u32(dev->of_node, "#dma-channels",
 664                        &n_chans);
 665        if (ret)
 666                return ret;
 667        /*
 668         * The channels can only be used as TX or as RX. So we add twice
 669         * that much dma channels because USB can only do RX or TX.
 670         */
 671        n_chans *= 2;
 672
 673        for (i = 0; i < n_chans; i++) {
 674                cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
 675                if (!cchan)
 676                        goto err;
 677
 678                cchan->cdd = cdd;
 679                if (i & 1) {
 680                        cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
 681                        cchan->is_tx = 1;
 682                } else {
 683                        cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
 684                        cchan->is_tx = 0;
 685                }
 686                cchan->port_num = i >> 1;
 687                cchan->desc = &cdd->cd[i];
 688                cchan->desc_phys = cdd->descs_phys;
 689                cchan->desc_phys += i * sizeof(struct cppi41_desc);
 690                cchan->chan.device = &cdd->ddev;
 691                list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
 692        }
 693        cdd->first_td_desc = n_chans;
 694
 695        return 0;
 696err:
 697        cleanup_chans(cdd);
 698        return -ENOMEM;
 699}
 700
 701static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
 702{
 703        unsigned int mem_decs;
 704        int i;
 705
 706        mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
 707
 708        for (i = 0; i < DESCS_AREAS; i++) {
 709
 710                cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
 711                cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 712
 713                dma_free_coherent(dev, mem_decs, cdd->cd,
 714                                cdd->descs_phys);
 715        }
 716}
 717
 718static void disable_sched(struct cppi41_dd *cdd)
 719{
 720        cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 721}
 722
 723static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
 724{
 725        disable_sched(cdd);
 726
 727        purge_descs(dev, cdd);
 728
 729        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 730        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 731        dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
 732                        cdd->scratch_phys);
 733}
 734
 735static int init_descs(struct device *dev, struct cppi41_dd *cdd)
 736{
 737        unsigned int desc_size;
 738        unsigned int mem_decs;
 739        int i;
 740        u32 reg;
 741        u32 idx;
 742
 743        BUILD_BUG_ON(sizeof(struct cppi41_desc) &
 744                        (sizeof(struct cppi41_desc) - 1));
 745        BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
 746        BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
 747
 748        desc_size = sizeof(struct cppi41_desc);
 749        mem_decs = ALLOC_DECS_NUM * desc_size;
 750
 751        idx = 0;
 752        for (i = 0; i < DESCS_AREAS; i++) {
 753
 754                reg = idx << QMGR_MEMCTRL_IDX_SH;
 755                reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
 756                reg |= ilog2(ALLOC_DECS_NUM) - 5;
 757
 758                BUILD_BUG_ON(DESCS_AREAS != 1);
 759                cdd->cd = dma_alloc_coherent(dev, mem_decs,
 760                                &cdd->descs_phys, GFP_KERNEL);
 761                if (!cdd->cd)
 762                        return -ENOMEM;
 763
 764                cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
 765                cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 766
 767                idx += ALLOC_DECS_NUM;
 768        }
 769        return 0;
 770}
 771
 772static void init_sched(struct cppi41_dd *cdd)
 773{
 774        unsigned ch;
 775        unsigned word;
 776        u32 reg;
 777
 778        word = 0;
 779        cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 780        for (ch = 0; ch < 15 * 2; ch += 2) {
 781
 782                reg = SCHED_ENTRY0_CHAN(ch);
 783                reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
 784
 785                reg |= SCHED_ENTRY2_CHAN(ch + 1);
 786                reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
 787                cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
 788                word++;
 789        }
 790        reg = 15 * 2 * 2 - 1;
 791        reg |= DMA_SCHED_CTRL_EN;
 792        cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
 793}
 794
 795static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
 796{
 797        int ret;
 798
 799        BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
 800        cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
 801                        &cdd->scratch_phys, GFP_KERNEL);
 802        if (!cdd->qmgr_scratch)
 803                return -ENOMEM;
 804
 805        cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 806        cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
 807        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
 808
 809        ret = init_descs(dev, cdd);
 810        if (ret)
 811                goto err_td;
 812
 813        cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
 814        init_sched(cdd);
 815        return 0;
 816err_td:
 817        deinit_cppi41(dev, cdd);
 818        return ret;
 819}
 820
 821static struct platform_driver cpp41_dma_driver;
 822/*
 823 * The param format is:
 824 * X Y
 825 * X: Port
 826 * Y: 0 = RX else TX
 827 */
 828#define INFO_PORT       0
 829#define INFO_IS_TX      1
 830
 831static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
 832{
 833        struct cppi41_channel *cchan;
 834        struct cppi41_dd *cdd;
 835        const struct chan_queues *queues;
 836        u32 *num = param;
 837
 838        if (chan->device->dev->driver != &cpp41_dma_driver.driver)
 839                return false;
 840
 841        cchan = to_cpp41_chan(chan);
 842
 843        if (cchan->port_num != num[INFO_PORT])
 844                return false;
 845
 846        if (cchan->is_tx && !num[INFO_IS_TX])
 847                return false;
 848        cdd = cchan->cdd;
 849        if (cchan->is_tx)
 850                queues = cdd->queues_tx;
 851        else
 852                queues = cdd->queues_rx;
 853
 854        BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
 855        if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
 856                return false;
 857
 858        cchan->q_num = queues[cchan->port_num].submit;
 859        cchan->q_comp_num = queues[cchan->port_num].complete;
 860        return true;
 861}
 862
 863static struct of_dma_filter_info cpp41_dma_info = {
 864        .filter_fn = cpp41_dma_filter_fn,
 865};
 866
 867static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
 868                struct of_dma *ofdma)
 869{
 870        int count = dma_spec->args_count;
 871        struct of_dma_filter_info *info = ofdma->of_dma_data;
 872
 873        if (!info || !info->filter_fn)
 874                return NULL;
 875
 876        if (count != 2)
 877                return NULL;
 878
 879        return dma_request_channel(info->dma_cap, info->filter_fn,
 880                        &dma_spec->args[0]);
 881}
 882
 883static const struct cppi_glue_infos usb_infos = {
 884        .isr = cppi41_irq,
 885        .queues_rx = usb_queues_rx,
 886        .queues_tx = usb_queues_tx,
 887        .td_queue = { .submit = 31, .complete = 0 },
 888};
 889
 890static const struct of_device_id cppi41_dma_ids[] = {
 891        { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
 892        {},
 893};
 894MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
 895
 896static const struct cppi_glue_infos *get_glue_info(struct device *dev)
 897{
 898        const struct of_device_id *of_id;
 899
 900        of_id = of_match_node(cppi41_dma_ids, dev->of_node);
 901        if (!of_id)
 902                return NULL;
 903        return of_id->data;
 904}
 905
 906#define CPPI41_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 907                                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 908                                BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
 909                                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 910
 911static int cppi41_dma_probe(struct platform_device *pdev)
 912{
 913        struct cppi41_dd *cdd;
 914        struct device *dev = &pdev->dev;
 915        const struct cppi_glue_infos *glue_info;
 916        int irq;
 917        int ret;
 918
 919        glue_info = get_glue_info(dev);
 920        if (!glue_info)
 921                return -EINVAL;
 922
 923        cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
 924        if (!cdd)
 925                return -ENOMEM;
 926
 927        dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
 928        cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
 929        cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
 930        cdd->ddev.device_tx_status = cppi41_dma_tx_status;
 931        cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
 932        cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
 933        cdd->ddev.device_terminate_all = cppi41_stop_chan;
 934        cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
 935        cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
 936        cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
 937        cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
 938        cdd->ddev.dev = dev;
 939        INIT_LIST_HEAD(&cdd->ddev.channels);
 940        cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
 941
 942        cdd->usbss_mem = of_iomap(dev->of_node, 0);
 943        cdd->ctrl_mem = of_iomap(dev->of_node, 1);
 944        cdd->sched_mem = of_iomap(dev->of_node, 2);
 945        cdd->qmgr_mem = of_iomap(dev->of_node, 3);
 946
 947        if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
 948                        !cdd->qmgr_mem)
 949                return -ENXIO;
 950
 951        pm_runtime_enable(dev);
 952        ret = pm_runtime_get_sync(dev);
 953        if (ret < 0)
 954                goto err_get_sync;
 955
 956        cdd->queues_rx = glue_info->queues_rx;
 957        cdd->queues_tx = glue_info->queues_tx;
 958        cdd->td_queue = glue_info->td_queue;
 959
 960        ret = init_cppi41(dev, cdd);
 961        if (ret)
 962                goto err_init_cppi;
 963
 964        ret = cppi41_add_chans(dev, cdd);
 965        if (ret)
 966                goto err_chans;
 967
 968        irq = irq_of_parse_and_map(dev->of_node, 0);
 969        if (!irq) {
 970                ret = -EINVAL;
 971                goto err_irq;
 972        }
 973
 974        cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
 975
 976        ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
 977                        dev_name(dev), cdd);
 978        if (ret)
 979                goto err_irq;
 980        cdd->irq = irq;
 981
 982        ret = dma_async_device_register(&cdd->ddev);
 983        if (ret)
 984                goto err_dma_reg;
 985
 986        ret = of_dma_controller_register(dev->of_node,
 987                        cppi41_dma_xlate, &cpp41_dma_info);
 988        if (ret)
 989                goto err_of;
 990
 991        platform_set_drvdata(pdev, cdd);
 992        return 0;
 993err_of:
 994        dma_async_device_unregister(&cdd->ddev);
 995err_dma_reg:
 996err_irq:
 997        cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
 998        cleanup_chans(cdd);
 999err_chans:
1000        deinit_cppi41(dev, cdd);
1001err_init_cppi:
1002        pm_runtime_put(dev);
1003err_get_sync:
1004        pm_runtime_disable(dev);
1005        iounmap(cdd->usbss_mem);
1006        iounmap(cdd->ctrl_mem);
1007        iounmap(cdd->sched_mem);
1008        iounmap(cdd->qmgr_mem);
1009        return ret;
1010}
1011
1012static int cppi41_dma_remove(struct platform_device *pdev)
1013{
1014        struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1015
1016        of_dma_controller_free(pdev->dev.of_node);
1017        dma_async_device_unregister(&cdd->ddev);
1018
1019        cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1020        devm_free_irq(&pdev->dev, cdd->irq, cdd);
1021        cleanup_chans(cdd);
1022        deinit_cppi41(&pdev->dev, cdd);
1023        iounmap(cdd->usbss_mem);
1024        iounmap(cdd->ctrl_mem);
1025        iounmap(cdd->sched_mem);
1026        iounmap(cdd->qmgr_mem);
1027        pm_runtime_put(&pdev->dev);
1028        pm_runtime_disable(&pdev->dev);
1029        return 0;
1030}
1031
1032#ifdef CONFIG_PM_SLEEP
1033static int cppi41_suspend(struct device *dev)
1034{
1035        struct cppi41_dd *cdd = dev_get_drvdata(dev);
1036
1037        cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1038        cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1039        disable_sched(cdd);
1040
1041        return 0;
1042}
1043
1044static int cppi41_resume(struct device *dev)
1045{
1046        struct cppi41_dd *cdd = dev_get_drvdata(dev);
1047        struct cppi41_channel *c;
1048        int i;
1049
1050        for (i = 0; i < DESCS_AREAS; i++)
1051                cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1052
1053        list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1054                if (!c->is_tx)
1055                        cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1056
1057        init_sched(cdd);
1058
1059        cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1060        cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1061        cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1062        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1063
1064        cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1065
1066        return 0;
1067}
1068#endif
1069
1070static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1071
1072static struct platform_driver cpp41_dma_driver = {
1073        .probe  = cppi41_dma_probe,
1074        .remove = cppi41_dma_remove,
1075        .driver = {
1076                .name = "cppi41-dma-engine",
1077                .pm = &cppi41_pm_ops,
1078                .of_match_table = of_match_ptr(cppi41_dma_ids),
1079        },
1080};
1081
1082module_platform_driver(cpp41_dma_driver);
1083MODULE_LICENSE("GPL");
1084MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
1085