linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33
  34/**
  35 * RC6 is a special power stage which allows the GPU to enter an very
  36 * low-voltage mode when idle, using down to 0V while at this stage.  This
  37 * stage is entered automatically when the GPU is idle when RC6 support is
  38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  39 *
  40 * There are different RC6 modes available in Intel GPU, which differentiate
  41 * among each other with the latency required to enter and leave RC6 and
  42 * voltage consumed by the GPU in different states.
  43 *
  44 * The combination of the following flags define which states GPU is allowed
  45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  46 * RC6pp is deepest RC6. Their support by hardware varies according to the
  47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  48 * which brings the most power savings; deeper states save more power, but
  49 * require higher latency to switch to and wake up.
  50 */
  51#define INTEL_RC6_ENABLE                        (1<<0)
  52#define INTEL_RC6p_ENABLE                       (1<<1)
  53#define INTEL_RC6pp_ENABLE                      (1<<2)
  54
  55static void bxt_init_clock_gating(struct drm_device *dev)
  56{
  57        struct drm_i915_private *dev_priv = dev->dev_private;
  58
  59        /* WaDisableSDEUnitClockGating:bxt */
  60        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  61                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  62
  63        /*
  64         * FIXME:
  65         * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  66         */
  67        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  68                   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  69}
  70
  71static void i915_pineview_get_mem_freq(struct drm_device *dev)
  72{
  73        struct drm_i915_private *dev_priv = dev->dev_private;
  74        u32 tmp;
  75
  76        tmp = I915_READ(CLKCFG);
  77
  78        switch (tmp & CLKCFG_FSB_MASK) {
  79        case CLKCFG_FSB_533:
  80                dev_priv->fsb_freq = 533; /* 133*4 */
  81                break;
  82        case CLKCFG_FSB_800:
  83                dev_priv->fsb_freq = 800; /* 200*4 */
  84                break;
  85        case CLKCFG_FSB_667:
  86                dev_priv->fsb_freq =  667; /* 167*4 */
  87                break;
  88        case CLKCFG_FSB_400:
  89                dev_priv->fsb_freq = 400; /* 100*4 */
  90                break;
  91        }
  92
  93        switch (tmp & CLKCFG_MEM_MASK) {
  94        case CLKCFG_MEM_533:
  95                dev_priv->mem_freq = 533;
  96                break;
  97        case CLKCFG_MEM_667:
  98                dev_priv->mem_freq = 667;
  99                break;
 100        case CLKCFG_MEM_800:
 101                dev_priv->mem_freq = 800;
 102                break;
 103        }
 104
 105        /* detect pineview DDR3 setting */
 106        tmp = I915_READ(CSHRDDR3CTL);
 107        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 108}
 109
 110static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 111{
 112        struct drm_i915_private *dev_priv = dev->dev_private;
 113        u16 ddrpll, csipll;
 114
 115        ddrpll = I915_READ16(DDRMPLL1);
 116        csipll = I915_READ16(CSIPLL0);
 117
 118        switch (ddrpll & 0xff) {
 119        case 0xc:
 120                dev_priv->mem_freq = 800;
 121                break;
 122        case 0x10:
 123                dev_priv->mem_freq = 1066;
 124                break;
 125        case 0x14:
 126                dev_priv->mem_freq = 1333;
 127                break;
 128        case 0x18:
 129                dev_priv->mem_freq = 1600;
 130                break;
 131        default:
 132                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 133                                 ddrpll & 0xff);
 134                dev_priv->mem_freq = 0;
 135                break;
 136        }
 137
 138        dev_priv->ips.r_t = dev_priv->mem_freq;
 139
 140        switch (csipll & 0x3ff) {
 141        case 0x00c:
 142                dev_priv->fsb_freq = 3200;
 143                break;
 144        case 0x00e:
 145                dev_priv->fsb_freq = 3733;
 146                break;
 147        case 0x010:
 148                dev_priv->fsb_freq = 4266;
 149                break;
 150        case 0x012:
 151                dev_priv->fsb_freq = 4800;
 152                break;
 153        case 0x014:
 154                dev_priv->fsb_freq = 5333;
 155                break;
 156        case 0x016:
 157                dev_priv->fsb_freq = 5866;
 158                break;
 159        case 0x018:
 160                dev_priv->fsb_freq = 6400;
 161                break;
 162        default:
 163                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 164                                 csipll & 0x3ff);
 165                dev_priv->fsb_freq = 0;
 166                break;
 167        }
 168
 169        if (dev_priv->fsb_freq == 3200) {
 170                dev_priv->ips.c_m = 0;
 171        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 172                dev_priv->ips.c_m = 1;
 173        } else {
 174                dev_priv->ips.c_m = 2;
 175        }
 176}
 177
 178static const struct cxsr_latency cxsr_latency_table[] = {
 179        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 180        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 181        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 182        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 183        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 184
 185        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 186        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 187        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 188        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 189        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 190
 191        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 192        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 193        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 194        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 195        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 196
 197        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 198        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 199        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 200        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 201        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 202
 203        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 204        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 205        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 206        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 207        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 208
 209        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 210        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 211        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 212        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 213        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 214};
 215
 216static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 217                                                         int is_ddr3,
 218                                                         int fsb,
 219                                                         int mem)
 220{
 221        const struct cxsr_latency *latency;
 222        int i;
 223
 224        if (fsb == 0 || mem == 0)
 225                return NULL;
 226
 227        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 228                latency = &cxsr_latency_table[i];
 229                if (is_desktop == latency->is_desktop &&
 230                    is_ddr3 == latency->is_ddr3 &&
 231                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 232                        return latency;
 233        }
 234
 235        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 236
 237        return NULL;
 238}
 239
 240static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 241{
 242        u32 val;
 243
 244        mutex_lock(&dev_priv->rps.hw_lock);
 245
 246        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 247        if (enable)
 248                val &= ~FORCE_DDR_HIGH_FREQ;
 249        else
 250                val |= FORCE_DDR_HIGH_FREQ;
 251        val &= ~FORCE_DDR_LOW_FREQ;
 252        val |= FORCE_DDR_FREQ_REQ_ACK;
 253        vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 254
 255        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 256                      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 257                DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 258
 259        mutex_unlock(&dev_priv->rps.hw_lock);
 260}
 261
 262static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 263{
 264        u32 val;
 265
 266        mutex_lock(&dev_priv->rps.hw_lock);
 267
 268        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 269        if (enable)
 270                val |= DSP_MAXFIFO_PM5_ENABLE;
 271        else
 272                val &= ~DSP_MAXFIFO_PM5_ENABLE;
 273        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 274
 275        mutex_unlock(&dev_priv->rps.hw_lock);
 276}
 277
 278#define FW_WM(value, plane) \
 279        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 280
 281void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 282{
 283        struct drm_device *dev = dev_priv->dev;
 284        u32 val;
 285
 286        if (IS_VALLEYVIEW(dev)) {
 287                I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 288                POSTING_READ(FW_BLC_SELF_VLV);
 289                dev_priv->wm.vlv.cxsr = enable;
 290        } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
 291                I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 292                POSTING_READ(FW_BLC_SELF);
 293        } else if (IS_PINEVIEW(dev)) {
 294                val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
 295                val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
 296                I915_WRITE(DSPFW3, val);
 297                POSTING_READ(DSPFW3);
 298        } else if (IS_I945G(dev) || IS_I945GM(dev)) {
 299                val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 300                               _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 301                I915_WRITE(FW_BLC_SELF, val);
 302                POSTING_READ(FW_BLC_SELF);
 303        } else if (IS_I915GM(dev)) {
 304                val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 305                               _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 306                I915_WRITE(INSTPM, val);
 307                POSTING_READ(INSTPM);
 308        } else {
 309                return;
 310        }
 311
 312        DRM_DEBUG_KMS("memory self-refresh is %s\n",
 313                      enable ? "enabled" : "disabled");
 314}
 315
 316
 317/*
 318 * Latency for FIFO fetches is dependent on several factors:
 319 *   - memory configuration (speed, channels)
 320 *   - chipset
 321 *   - current MCH state
 322 * It can be fairly high in some situations, so here we assume a fairly
 323 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 324 * set this value too high, the FIFO will fetch frequently to stay full)
 325 * and power consumption (set it too low to save power and we might see
 326 * FIFO underruns and display "flicker").
 327 *
 328 * A value of 5us seems to be a good balance; safe for very low end
 329 * platforms but not overly aggressive on lower latency configs.
 330 */
 331static const int pessimal_latency_ns = 5000;
 332
 333#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 334        ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 335
 336static int vlv_get_fifo_size(struct drm_device *dev,
 337                              enum pipe pipe, int plane)
 338{
 339        struct drm_i915_private *dev_priv = dev->dev_private;
 340        int sprite0_start, sprite1_start, size;
 341
 342        switch (pipe) {
 343                uint32_t dsparb, dsparb2, dsparb3;
 344        case PIPE_A:
 345                dsparb = I915_READ(DSPARB);
 346                dsparb2 = I915_READ(DSPARB2);
 347                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 348                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 349                break;
 350        case PIPE_B:
 351                dsparb = I915_READ(DSPARB);
 352                dsparb2 = I915_READ(DSPARB2);
 353                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 354                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 355                break;
 356        case PIPE_C:
 357                dsparb2 = I915_READ(DSPARB2);
 358                dsparb3 = I915_READ(DSPARB3);
 359                sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 360                sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 361                break;
 362        default:
 363                return 0;
 364        }
 365
 366        switch (plane) {
 367        case 0:
 368                size = sprite0_start;
 369                break;
 370        case 1:
 371                size = sprite1_start - sprite0_start;
 372                break;
 373        case 2:
 374                size = 512 - 1 - sprite1_start;
 375                break;
 376        default:
 377                return 0;
 378        }
 379
 380        DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
 381                      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
 382                      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
 383                      size);
 384
 385        return size;
 386}
 387
 388static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 389{
 390        struct drm_i915_private *dev_priv = dev->dev_private;
 391        uint32_t dsparb = I915_READ(DSPARB);
 392        int size;
 393
 394        size = dsparb & 0x7f;
 395        if (plane)
 396                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 397
 398        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 399                      plane ? "B" : "A", size);
 400
 401        return size;
 402}
 403
 404static int i830_get_fifo_size(struct drm_device *dev, int plane)
 405{
 406        struct drm_i915_private *dev_priv = dev->dev_private;
 407        uint32_t dsparb = I915_READ(DSPARB);
 408        int size;
 409
 410        size = dsparb & 0x1ff;
 411        if (plane)
 412                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 413        size >>= 1; /* Convert to cachelines */
 414
 415        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 416                      plane ? "B" : "A", size);
 417
 418        return size;
 419}
 420
 421static int i845_get_fifo_size(struct drm_device *dev, int plane)
 422{
 423        struct drm_i915_private *dev_priv = dev->dev_private;
 424        uint32_t dsparb = I915_READ(DSPARB);
 425        int size;
 426
 427        size = dsparb & 0x7f;
 428        size >>= 2; /* Convert to cachelines */
 429
 430        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 431                      plane ? "B" : "A",
 432                      size);
 433
 434        return size;
 435}
 436
 437/* Pineview has different values for various configs */
 438static const struct intel_watermark_params pineview_display_wm = {
 439        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 440        .max_wm = PINEVIEW_MAX_WM,
 441        .default_wm = PINEVIEW_DFT_WM,
 442        .guard_size = PINEVIEW_GUARD_WM,
 443        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 444};
 445static const struct intel_watermark_params pineview_display_hplloff_wm = {
 446        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 447        .max_wm = PINEVIEW_MAX_WM,
 448        .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 449        .guard_size = PINEVIEW_GUARD_WM,
 450        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 451};
 452static const struct intel_watermark_params pineview_cursor_wm = {
 453        .fifo_size = PINEVIEW_CURSOR_FIFO,
 454        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 455        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 456        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 457        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 458};
 459static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 460        .fifo_size = PINEVIEW_CURSOR_FIFO,
 461        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 462        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 463        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 464        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 465};
 466static const struct intel_watermark_params g4x_wm_info = {
 467        .fifo_size = G4X_FIFO_SIZE,
 468        .max_wm = G4X_MAX_WM,
 469        .default_wm = G4X_MAX_WM,
 470        .guard_size = 2,
 471        .cacheline_size = G4X_FIFO_LINE_SIZE,
 472};
 473static const struct intel_watermark_params g4x_cursor_wm_info = {
 474        .fifo_size = I965_CURSOR_FIFO,
 475        .max_wm = I965_CURSOR_MAX_WM,
 476        .default_wm = I965_CURSOR_DFT_WM,
 477        .guard_size = 2,
 478        .cacheline_size = G4X_FIFO_LINE_SIZE,
 479};
 480static const struct intel_watermark_params valleyview_wm_info = {
 481        .fifo_size = VALLEYVIEW_FIFO_SIZE,
 482        .max_wm = VALLEYVIEW_MAX_WM,
 483        .default_wm = VALLEYVIEW_MAX_WM,
 484        .guard_size = 2,
 485        .cacheline_size = G4X_FIFO_LINE_SIZE,
 486};
 487static const struct intel_watermark_params valleyview_cursor_wm_info = {
 488        .fifo_size = I965_CURSOR_FIFO,
 489        .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
 490        .default_wm = I965_CURSOR_DFT_WM,
 491        .guard_size = 2,
 492        .cacheline_size = G4X_FIFO_LINE_SIZE,
 493};
 494static const struct intel_watermark_params i965_cursor_wm_info = {
 495        .fifo_size = I965_CURSOR_FIFO,
 496        .max_wm = I965_CURSOR_MAX_WM,
 497        .default_wm = I965_CURSOR_DFT_WM,
 498        .guard_size = 2,
 499        .cacheline_size = I915_FIFO_LINE_SIZE,
 500};
 501static const struct intel_watermark_params i945_wm_info = {
 502        .fifo_size = I945_FIFO_SIZE,
 503        .max_wm = I915_MAX_WM,
 504        .default_wm = 1,
 505        .guard_size = 2,
 506        .cacheline_size = I915_FIFO_LINE_SIZE,
 507};
 508static const struct intel_watermark_params i915_wm_info = {
 509        .fifo_size = I915_FIFO_SIZE,
 510        .max_wm = I915_MAX_WM,
 511        .default_wm = 1,
 512        .guard_size = 2,
 513        .cacheline_size = I915_FIFO_LINE_SIZE,
 514};
 515static const struct intel_watermark_params i830_a_wm_info = {
 516        .fifo_size = I855GM_FIFO_SIZE,
 517        .max_wm = I915_MAX_WM,
 518        .default_wm = 1,
 519        .guard_size = 2,
 520        .cacheline_size = I830_FIFO_LINE_SIZE,
 521};
 522static const struct intel_watermark_params i830_bc_wm_info = {
 523        .fifo_size = I855GM_FIFO_SIZE,
 524        .max_wm = I915_MAX_WM/2,
 525        .default_wm = 1,
 526        .guard_size = 2,
 527        .cacheline_size = I830_FIFO_LINE_SIZE,
 528};
 529static const struct intel_watermark_params i845_wm_info = {
 530        .fifo_size = I830_FIFO_SIZE,
 531        .max_wm = I915_MAX_WM,
 532        .default_wm = 1,
 533        .guard_size = 2,
 534        .cacheline_size = I830_FIFO_LINE_SIZE,
 535};
 536
 537/**
 538 * intel_calculate_wm - calculate watermark level
 539 * @clock_in_khz: pixel clock
 540 * @wm: chip FIFO params
 541 * @pixel_size: display pixel size
 542 * @latency_ns: memory latency for the platform
 543 *
 544 * Calculate the watermark level (the level at which the display plane will
 545 * start fetching from memory again).  Each chip has a different display
 546 * FIFO size and allocation, so the caller needs to figure that out and pass
 547 * in the correct intel_watermark_params structure.
 548 *
 549 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 550 * on the pixel size.  When it reaches the watermark level, it'll start
 551 * fetching FIFO line sized based chunks from memory until the FIFO fills
 552 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 553 * will occur, and a display engine hang could result.
 554 */
 555static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 556                                        const struct intel_watermark_params *wm,
 557                                        int fifo_size,
 558                                        int pixel_size,
 559                                        unsigned long latency_ns)
 560{
 561        long entries_required, wm_size;
 562
 563        /*
 564         * Note: we need to make sure we don't overflow for various clock &
 565         * latency values.
 566         * clocks go from a few thousand to several hundred thousand.
 567         * latency is usually a few thousand
 568         */
 569        entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
 570                1000;
 571        entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 572
 573        DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 574
 575        wm_size = fifo_size - (entries_required + wm->guard_size);
 576
 577        DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 578
 579        /* Don't promote wm_size to unsigned... */
 580        if (wm_size > (long)wm->max_wm)
 581                wm_size = wm->max_wm;
 582        if (wm_size <= 0)
 583                wm_size = wm->default_wm;
 584
 585        /*
 586         * Bspec seems to indicate that the value shouldn't be lower than
 587         * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 588         * Lets go for 8 which is the burst size since certain platforms
 589         * already use a hardcoded 8 (which is what the spec says should be
 590         * done).
 591         */
 592        if (wm_size <= 8)
 593                wm_size = 8;
 594
 595        return wm_size;
 596}
 597
 598static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 599{
 600        struct drm_crtc *crtc, *enabled = NULL;
 601
 602        for_each_crtc(dev, crtc) {
 603                if (intel_crtc_active(crtc)) {
 604                        if (enabled)
 605                                return NULL;
 606                        enabled = crtc;
 607                }
 608        }
 609
 610        return enabled;
 611}
 612
 613static void pineview_update_wm(struct drm_crtc *unused_crtc)
 614{
 615        struct drm_device *dev = unused_crtc->dev;
 616        struct drm_i915_private *dev_priv = dev->dev_private;
 617        struct drm_crtc *crtc;
 618        const struct cxsr_latency *latency;
 619        u32 reg;
 620        unsigned long wm;
 621
 622        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
 623                                         dev_priv->fsb_freq, dev_priv->mem_freq);
 624        if (!latency) {
 625                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 626                intel_set_memory_cxsr(dev_priv, false);
 627                return;
 628        }
 629
 630        crtc = single_enabled_crtc(dev);
 631        if (crtc) {
 632                const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 633                int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
 634                int clock = adjusted_mode->crtc_clock;
 635
 636                /* Display SR */
 637                wm = intel_calculate_wm(clock, &pineview_display_wm,
 638                                        pineview_display_wm.fifo_size,
 639                                        pixel_size, latency->display_sr);
 640                reg = I915_READ(DSPFW1);
 641                reg &= ~DSPFW_SR_MASK;
 642                reg |= FW_WM(wm, SR);
 643                I915_WRITE(DSPFW1, reg);
 644                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 645
 646                /* cursor SR */
 647                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 648                                        pineview_display_wm.fifo_size,
 649                                        pixel_size, latency->cursor_sr);
 650                reg = I915_READ(DSPFW3);
 651                reg &= ~DSPFW_CURSOR_SR_MASK;
 652                reg |= FW_WM(wm, CURSOR_SR);
 653                I915_WRITE(DSPFW3, reg);
 654
 655                /* Display HPLL off SR */
 656                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 657                                        pineview_display_hplloff_wm.fifo_size,
 658                                        pixel_size, latency->display_hpll_disable);
 659                reg = I915_READ(DSPFW3);
 660                reg &= ~DSPFW_HPLL_SR_MASK;
 661                reg |= FW_WM(wm, HPLL_SR);
 662                I915_WRITE(DSPFW3, reg);
 663
 664                /* cursor HPLL off SR */
 665                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 666                                        pineview_display_hplloff_wm.fifo_size,
 667                                        pixel_size, latency->cursor_hpll_disable);
 668                reg = I915_READ(DSPFW3);
 669                reg &= ~DSPFW_HPLL_CURSOR_MASK;
 670                reg |= FW_WM(wm, HPLL_CURSOR);
 671                I915_WRITE(DSPFW3, reg);
 672                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 673
 674                intel_set_memory_cxsr(dev_priv, true);
 675        } else {
 676                intel_set_memory_cxsr(dev_priv, false);
 677        }
 678}
 679
 680static bool g4x_compute_wm0(struct drm_device *dev,
 681                            int plane,
 682                            const struct intel_watermark_params *display,
 683                            int display_latency_ns,
 684                            const struct intel_watermark_params *cursor,
 685                            int cursor_latency_ns,
 686                            int *plane_wm,
 687                            int *cursor_wm)
 688{
 689        struct drm_crtc *crtc;
 690        const struct drm_display_mode *adjusted_mode;
 691        int htotal, hdisplay, clock, pixel_size;
 692        int line_time_us, line_count;
 693        int entries, tlb_miss;
 694
 695        crtc = intel_get_crtc_for_plane(dev, plane);
 696        if (!intel_crtc_active(crtc)) {
 697                *cursor_wm = cursor->guard_size;
 698                *plane_wm = display->guard_size;
 699                return false;
 700        }
 701
 702        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 703        clock = adjusted_mode->crtc_clock;
 704        htotal = adjusted_mode->crtc_htotal;
 705        hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 706        pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
 707
 708        /* Use the small buffer method to calculate plane watermark */
 709        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
 710        tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 711        if (tlb_miss > 0)
 712                entries += tlb_miss;
 713        entries = DIV_ROUND_UP(entries, display->cacheline_size);
 714        *plane_wm = entries + display->guard_size;
 715        if (*plane_wm > (int)display->max_wm)
 716                *plane_wm = display->max_wm;
 717
 718        /* Use the large buffer method to calculate cursor watermark */
 719        line_time_us = max(htotal * 1000 / clock, 1);
 720        line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 721        entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
 722        tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 723        if (tlb_miss > 0)
 724                entries += tlb_miss;
 725        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 726        *cursor_wm = entries + cursor->guard_size;
 727        if (*cursor_wm > (int)cursor->max_wm)
 728                *cursor_wm = (int)cursor->max_wm;
 729
 730        return true;
 731}
 732
 733/*
 734 * Check the wm result.
 735 *
 736 * If any calculated watermark values is larger than the maximum value that
 737 * can be programmed into the associated watermark register, that watermark
 738 * must be disabled.
 739 */
 740static bool g4x_check_srwm(struct drm_device *dev,
 741                           int display_wm, int cursor_wm,
 742                           const struct intel_watermark_params *display,
 743                           const struct intel_watermark_params *cursor)
 744{
 745        DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 746                      display_wm, cursor_wm);
 747
 748        if (display_wm > display->max_wm) {
 749                DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
 750                              display_wm, display->max_wm);
 751                return false;
 752        }
 753
 754        if (cursor_wm > cursor->max_wm) {
 755                DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
 756                              cursor_wm, cursor->max_wm);
 757                return false;
 758        }
 759
 760        if (!(display_wm || cursor_wm)) {
 761                DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 762                return false;
 763        }
 764
 765        return true;
 766}
 767
 768static bool g4x_compute_srwm(struct drm_device *dev,
 769                             int plane,
 770                             int latency_ns,
 771                             const struct intel_watermark_params *display,
 772                             const struct intel_watermark_params *cursor,
 773                             int *display_wm, int *cursor_wm)
 774{
 775        struct drm_crtc *crtc;
 776        const struct drm_display_mode *adjusted_mode;
 777        int hdisplay, htotal, pixel_size, clock;
 778        unsigned long line_time_us;
 779        int line_count, line_size;
 780        int small, large;
 781        int entries;
 782
 783        if (!latency_ns) {
 784                *display_wm = *cursor_wm = 0;
 785                return false;
 786        }
 787
 788        crtc = intel_get_crtc_for_plane(dev, plane);
 789        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 790        clock = adjusted_mode->crtc_clock;
 791        htotal = adjusted_mode->crtc_htotal;
 792        hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 793        pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
 794
 795        line_time_us = max(htotal * 1000 / clock, 1);
 796        line_count = (latency_ns / line_time_us + 1000) / 1000;
 797        line_size = hdisplay * pixel_size;
 798
 799        /* Use the minimum of the small and large buffer method for primary */
 800        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
 801        large = line_count * line_size;
 802
 803        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 804        *display_wm = entries + display->guard_size;
 805
 806        /* calculate the self-refresh watermark for display cursor */
 807        entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
 808        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 809        *cursor_wm = entries + cursor->guard_size;
 810
 811        return g4x_check_srwm(dev,
 812                              *display_wm, *cursor_wm,
 813                              display, cursor);
 814}
 815
 816#define FW_WM_VLV(value, plane) \
 817        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 818
 819static void vlv_write_wm_values(struct intel_crtc *crtc,
 820                                const struct vlv_wm_values *wm)
 821{
 822        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 823        enum pipe pipe = crtc->pipe;
 824
 825        I915_WRITE(VLV_DDL(pipe),
 826                   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
 827                   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
 828                   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
 829                   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
 830
 831        I915_WRITE(DSPFW1,
 832                   FW_WM(wm->sr.plane, SR) |
 833                   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
 834                   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
 835                   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
 836        I915_WRITE(DSPFW2,
 837                   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
 838                   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
 839                   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
 840        I915_WRITE(DSPFW3,
 841                   FW_WM(wm->sr.cursor, CURSOR_SR));
 842
 843        if (IS_CHERRYVIEW(dev_priv)) {
 844                I915_WRITE(DSPFW7_CHV,
 845                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 846                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 847                I915_WRITE(DSPFW8_CHV,
 848                           FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
 849                           FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
 850                I915_WRITE(DSPFW9_CHV,
 851                           FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
 852                           FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
 853                I915_WRITE(DSPHOWM,
 854                           FW_WM(wm->sr.plane >> 9, SR_HI) |
 855                           FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
 856                           FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
 857                           FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
 858                           FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 859                           FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 860                           FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 861                           FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 862                           FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 863                           FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 864        } else {
 865                I915_WRITE(DSPFW7,
 866                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 867                           FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 868                I915_WRITE(DSPHOWM,
 869                           FW_WM(wm->sr.plane >> 9, SR_HI) |
 870                           FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 871                           FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 872                           FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 873                           FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 874                           FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 875                           FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 876        }
 877
 878        /* zero (unused) WM1 watermarks */
 879        I915_WRITE(DSPFW4, 0);
 880        I915_WRITE(DSPFW5, 0);
 881        I915_WRITE(DSPFW6, 0);
 882        I915_WRITE(DSPHOWM1, 0);
 883
 884        POSTING_READ(DSPFW1);
 885}
 886
 887#undef FW_WM_VLV
 888
 889enum vlv_wm_level {
 890        VLV_WM_LEVEL_PM2,
 891        VLV_WM_LEVEL_PM5,
 892        VLV_WM_LEVEL_DDR_DVFS,
 893};
 894
 895/* latency must be in 0.1us units. */
 896static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 897                                   unsigned int pipe_htotal,
 898                                   unsigned int horiz_pixels,
 899                                   unsigned int bytes_per_pixel,
 900                                   unsigned int latency)
 901{
 902        unsigned int ret;
 903
 904        ret = (latency * pixel_rate) / (pipe_htotal * 10000);
 905        ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
 906        ret = DIV_ROUND_UP(ret, 64);
 907
 908        return ret;
 909}
 910
 911static void vlv_setup_wm_latency(struct drm_device *dev)
 912{
 913        struct drm_i915_private *dev_priv = dev->dev_private;
 914
 915        /* all latencies in usec */
 916        dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
 917
 918        dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
 919
 920        if (IS_CHERRYVIEW(dev_priv)) {
 921                dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
 922                dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
 923
 924                dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
 925        }
 926}
 927
 928static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
 929                                     struct intel_crtc *crtc,
 930                                     const struct intel_plane_state *state,
 931                                     int level)
 932{
 933        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 934        int clock, htotal, pixel_size, width, wm;
 935
 936        if (dev_priv->wm.pri_latency[level] == 0)
 937                return USHRT_MAX;
 938
 939        if (!state->visible)
 940                return 0;
 941
 942        pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 943        clock = crtc->config->base.adjusted_mode.crtc_clock;
 944        htotal = crtc->config->base.adjusted_mode.crtc_htotal;
 945        width = crtc->config->pipe_src_w;
 946        if (WARN_ON(htotal == 0))
 947                htotal = 1;
 948
 949        if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
 950                /*
 951                 * FIXME the formula gives values that are
 952                 * too big for the cursor FIFO, and hence we
 953                 * would never be able to use cursors. For
 954                 * now just hardcode the watermark.
 955                 */
 956                wm = 63;
 957        } else {
 958                wm = vlv_wm_method2(clock, htotal, width, pixel_size,
 959                                    dev_priv->wm.pri_latency[level] * 10);
 960        }
 961
 962        return min_t(int, wm, USHRT_MAX);
 963}
 964
 965static void vlv_compute_fifo(struct intel_crtc *crtc)
 966{
 967        struct drm_device *dev = crtc->base.dev;
 968        struct vlv_wm_state *wm_state = &crtc->wm_state;
 969        struct intel_plane *plane;
 970        unsigned int total_rate = 0;
 971        const int fifo_size = 512 - 1;
 972        int fifo_extra, fifo_left = fifo_size;
 973
 974        for_each_intel_plane_on_crtc(dev, crtc, plane) {
 975                struct intel_plane_state *state =
 976                        to_intel_plane_state(plane->base.state);
 977
 978                if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
 979                        continue;
 980
 981                if (state->visible) {
 982                        wm_state->num_active_planes++;
 983                        total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 984                }
 985        }
 986
 987        for_each_intel_plane_on_crtc(dev, crtc, plane) {
 988                struct intel_plane_state *state =
 989                        to_intel_plane_state(plane->base.state);
 990                unsigned int rate;
 991
 992                if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
 993                        plane->wm.fifo_size = 63;
 994                        continue;
 995                }
 996
 997                if (!state->visible) {
 998                        plane->wm.fifo_size = 0;
 999                        continue;
1000                }
1001
1002                rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1003                plane->wm.fifo_size = fifo_size * rate / total_rate;
1004                fifo_left -= plane->wm.fifo_size;
1005        }
1006
1007        fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1008
1009        /* spread the remainder evenly */
1010        for_each_intel_plane_on_crtc(dev, crtc, plane) {
1011                int plane_extra;
1012
1013                if (fifo_left == 0)
1014                        break;
1015
1016                if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1017                        continue;
1018
1019                /* give it all to the first plane if none are active */
1020                if (plane->wm.fifo_size == 0 &&
1021                    wm_state->num_active_planes)
1022                        continue;
1023
1024                plane_extra = min(fifo_extra, fifo_left);
1025                plane->wm.fifo_size += plane_extra;
1026                fifo_left -= plane_extra;
1027        }
1028
1029        WARN_ON(fifo_left != 0);
1030}
1031
1032static void vlv_invert_wms(struct intel_crtc *crtc)
1033{
1034        struct vlv_wm_state *wm_state = &crtc->wm_state;
1035        int level;
1036
1037        for (level = 0; level < wm_state->num_levels; level++) {
1038                struct drm_device *dev = crtc->base.dev;
1039                const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1040                struct intel_plane *plane;
1041
1042                wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1043                wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1044
1045                for_each_intel_plane_on_crtc(dev, crtc, plane) {
1046                        switch (plane->base.type) {
1047                                int sprite;
1048                        case DRM_PLANE_TYPE_CURSOR:
1049                                wm_state->wm[level].cursor = plane->wm.fifo_size -
1050                                        wm_state->wm[level].cursor;
1051                                break;
1052                        case DRM_PLANE_TYPE_PRIMARY:
1053                                wm_state->wm[level].primary = plane->wm.fifo_size -
1054                                        wm_state->wm[level].primary;
1055                                break;
1056                        case DRM_PLANE_TYPE_OVERLAY:
1057                                sprite = plane->plane;
1058                                wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1059                                        wm_state->wm[level].sprite[sprite];
1060                                break;
1061                        }
1062                }
1063        }
1064}
1065
1066static void vlv_compute_wm(struct intel_crtc *crtc)
1067{
1068        struct drm_device *dev = crtc->base.dev;
1069        struct vlv_wm_state *wm_state = &crtc->wm_state;
1070        struct intel_plane *plane;
1071        int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1072        int level;
1073
1074        memset(wm_state, 0, sizeof(*wm_state));
1075
1076        wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077        wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078
1079        wm_state->num_active_planes = 0;
1080
1081        vlv_compute_fifo(crtc);
1082
1083        if (wm_state->num_active_planes != 1)
1084                wm_state->cxsr = false;
1085
1086        if (wm_state->cxsr) {
1087                for (level = 0; level < wm_state->num_levels; level++) {
1088                        wm_state->sr[level].plane = sr_fifo_size;
1089                        wm_state->sr[level].cursor = 63;
1090                }
1091        }
1092
1093        for_each_intel_plane_on_crtc(dev, crtc, plane) {
1094                struct intel_plane_state *state =
1095                        to_intel_plane_state(plane->base.state);
1096
1097                if (!state->visible)
1098                        continue;
1099
1100                /* normal watermarks */
1101                for (level = 0; level < wm_state->num_levels; level++) {
1102                        int wm = vlv_compute_wm_level(plane, crtc, state, level);
1103                        int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1104
1105                        /* hack */
1106                        if (WARN_ON(level == 0 && wm > max_wm))
1107                                wm = max_wm;
1108
1109                        if (wm > plane->wm.fifo_size)
1110                                break;
1111
1112                        switch (plane->base.type) {
1113                                int sprite;
1114                        case DRM_PLANE_TYPE_CURSOR:
1115                                wm_state->wm[level].cursor = wm;
1116                                break;
1117                        case DRM_PLANE_TYPE_PRIMARY:
1118                                wm_state->wm[level].primary = wm;
1119                                break;
1120                        case DRM_PLANE_TYPE_OVERLAY:
1121                                sprite = plane->plane;
1122                                wm_state->wm[level].sprite[sprite] = wm;
1123                                break;
1124                        }
1125                }
1126
1127                wm_state->num_levels = level;
1128
1129                if (!wm_state->cxsr)
1130                        continue;
1131
1132                /* maxfifo watermarks */
1133                switch (plane->base.type) {
1134                        int sprite, level;
1135                case DRM_PLANE_TYPE_CURSOR:
1136                        for (level = 0; level < wm_state->num_levels; level++)
1137                                wm_state->sr[level].cursor =
1138                                        wm_state->wm[level].cursor;
1139                        break;
1140                case DRM_PLANE_TYPE_PRIMARY:
1141                        for (level = 0; level < wm_state->num_levels; level++)
1142                                wm_state->sr[level].plane =
1143                                        min(wm_state->sr[level].plane,
1144                                            wm_state->wm[level].primary);
1145                        break;
1146                case DRM_PLANE_TYPE_OVERLAY:
1147                        sprite = plane->plane;
1148                        for (level = 0; level < wm_state->num_levels; level++)
1149                                wm_state->sr[level].plane =
1150                                        min(wm_state->sr[level].plane,
1151                                            wm_state->wm[level].sprite[sprite]);
1152                        break;
1153                }
1154        }
1155
1156        /* clear any (partially) filled invalid levels */
1157        for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158                memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1159                memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1160        }
1161
1162        vlv_invert_wms(crtc);
1163}
1164
1165#define VLV_FIFO(plane, value) \
1166        (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1167
1168static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1169{
1170        struct drm_device *dev = crtc->base.dev;
1171        struct drm_i915_private *dev_priv = to_i915(dev);
1172        struct intel_plane *plane;
1173        int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1174
1175        for_each_intel_plane_on_crtc(dev, crtc, plane) {
1176                if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1177                        WARN_ON(plane->wm.fifo_size != 63);
1178                        continue;
1179                }
1180
1181                if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1182                        sprite0_start = plane->wm.fifo_size;
1183                else if (plane->plane == 0)
1184                        sprite1_start = sprite0_start + plane->wm.fifo_size;
1185                else
1186                        fifo_size = sprite1_start + plane->wm.fifo_size;
1187        }
1188
1189        WARN_ON(fifo_size != 512 - 1);
1190
1191        DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1192                      pipe_name(crtc->pipe), sprite0_start,
1193                      sprite1_start, fifo_size);
1194
1195        switch (crtc->pipe) {
1196                uint32_t dsparb, dsparb2, dsparb3;
1197        case PIPE_A:
1198                dsparb = I915_READ(DSPARB);
1199                dsparb2 = I915_READ(DSPARB2);
1200
1201                dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1202                            VLV_FIFO(SPRITEB, 0xff));
1203                dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1204                           VLV_FIFO(SPRITEB, sprite1_start));
1205
1206                dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1207                             VLV_FIFO(SPRITEB_HI, 0x1));
1208                dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1209                           VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1210
1211                I915_WRITE(DSPARB, dsparb);
1212                I915_WRITE(DSPARB2, dsparb2);
1213                break;
1214        case PIPE_B:
1215                dsparb = I915_READ(DSPARB);
1216                dsparb2 = I915_READ(DSPARB2);
1217
1218                dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1219                            VLV_FIFO(SPRITED, 0xff));
1220                dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1221                           VLV_FIFO(SPRITED, sprite1_start));
1222
1223                dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1224                             VLV_FIFO(SPRITED_HI, 0xff));
1225                dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1226                           VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1227
1228                I915_WRITE(DSPARB, dsparb);
1229                I915_WRITE(DSPARB2, dsparb2);
1230                break;
1231        case PIPE_C:
1232                dsparb3 = I915_READ(DSPARB3);
1233                dsparb2 = I915_READ(DSPARB2);
1234
1235                dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1236                             VLV_FIFO(SPRITEF, 0xff));
1237                dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1238                            VLV_FIFO(SPRITEF, sprite1_start));
1239
1240                dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1241                             VLV_FIFO(SPRITEF_HI, 0xff));
1242                dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1243                           VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1244
1245                I915_WRITE(DSPARB3, dsparb3);
1246                I915_WRITE(DSPARB2, dsparb2);
1247                break;
1248        default:
1249                break;
1250        }
1251}
1252
1253#undef VLV_FIFO
1254
1255static void vlv_merge_wm(struct drm_device *dev,
1256                         struct vlv_wm_values *wm)
1257{
1258        struct intel_crtc *crtc;
1259        int num_active_crtcs = 0;
1260
1261        wm->level = to_i915(dev)->wm.max_level;
1262        wm->cxsr = true;
1263
1264        for_each_intel_crtc(dev, crtc) {
1265                const struct vlv_wm_state *wm_state = &crtc->wm_state;
1266
1267                if (!crtc->active)
1268                        continue;
1269
1270                if (!wm_state->cxsr)
1271                        wm->cxsr = false;
1272
1273                num_active_crtcs++;
1274                wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1275        }
1276
1277        if (num_active_crtcs != 1)
1278                wm->cxsr = false;
1279
1280        if (num_active_crtcs > 1)
1281                wm->level = VLV_WM_LEVEL_PM2;
1282
1283        for_each_intel_crtc(dev, crtc) {
1284                struct vlv_wm_state *wm_state = &crtc->wm_state;
1285                enum pipe pipe = crtc->pipe;
1286
1287                if (!crtc->active)
1288                        continue;
1289
1290                wm->pipe[pipe] = wm_state->wm[wm->level];
1291                if (wm->cxsr)
1292                        wm->sr = wm_state->sr[wm->level];
1293
1294                wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1295                wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1296                wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1297                wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1298        }
1299}
1300
1301static void vlv_update_wm(struct drm_crtc *crtc)
1302{
1303        struct drm_device *dev = crtc->dev;
1304        struct drm_i915_private *dev_priv = dev->dev_private;
1305        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1306        enum pipe pipe = intel_crtc->pipe;
1307        struct vlv_wm_values wm = {};
1308
1309        vlv_compute_wm(intel_crtc);
1310        vlv_merge_wm(dev, &wm);
1311
1312        if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1313                /* FIXME should be part of crtc atomic commit */
1314                vlv_pipe_set_fifo_size(intel_crtc);
1315                return;
1316        }
1317
1318        if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1319            dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1320                chv_set_memory_dvfs(dev_priv, false);
1321
1322        if (wm.level < VLV_WM_LEVEL_PM5 &&
1323            dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1324                chv_set_memory_pm5(dev_priv, false);
1325
1326        if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327                intel_set_memory_cxsr(dev_priv, false);
1328
1329        /* FIXME should be part of crtc atomic commit */
1330        vlv_pipe_set_fifo_size(intel_crtc);
1331
1332        vlv_write_wm_values(intel_crtc, &wm);
1333
1334        DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1335                      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1336                      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1337                      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1338                      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1339
1340        if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341                intel_set_memory_cxsr(dev_priv, true);
1342
1343        if (wm.level >= VLV_WM_LEVEL_PM5 &&
1344            dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1345                chv_set_memory_pm5(dev_priv, true);
1346
1347        if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1348            dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1349                chv_set_memory_dvfs(dev_priv, true);
1350
1351        dev_priv->wm.vlv = wm;
1352}
1353
1354#define single_plane_enabled(mask) is_power_of_2(mask)
1355
1356static void g4x_update_wm(struct drm_crtc *crtc)
1357{
1358        struct drm_device *dev = crtc->dev;
1359        static const int sr_latency_ns = 12000;
1360        struct drm_i915_private *dev_priv = dev->dev_private;
1361        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1362        int plane_sr, cursor_sr;
1363        unsigned int enabled = 0;
1364        bool cxsr_enabled;
1365
1366        if (g4x_compute_wm0(dev, PIPE_A,
1367                            &g4x_wm_info, pessimal_latency_ns,
1368                            &g4x_cursor_wm_info, pessimal_latency_ns,
1369                            &planea_wm, &cursora_wm))
1370                enabled |= 1 << PIPE_A;
1371
1372        if (g4x_compute_wm0(dev, PIPE_B,
1373                            &g4x_wm_info, pessimal_latency_ns,
1374                            &g4x_cursor_wm_info, pessimal_latency_ns,
1375                            &planeb_wm, &cursorb_wm))
1376                enabled |= 1 << PIPE_B;
1377
1378        if (single_plane_enabled(enabled) &&
1379            g4x_compute_srwm(dev, ffs(enabled) - 1,
1380                             sr_latency_ns,
1381                             &g4x_wm_info,
1382                             &g4x_cursor_wm_info,
1383                             &plane_sr, &cursor_sr)) {
1384                cxsr_enabled = true;
1385        } else {
1386                cxsr_enabled = false;
1387                intel_set_memory_cxsr(dev_priv, false);
1388                plane_sr = cursor_sr = 0;
1389        }
1390
1391        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1392                      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393                      planea_wm, cursora_wm,
1394                      planeb_wm, cursorb_wm,
1395                      plane_sr, cursor_sr);
1396
1397        I915_WRITE(DSPFW1,
1398                   FW_WM(plane_sr, SR) |
1399                   FW_WM(cursorb_wm, CURSORB) |
1400                   FW_WM(planeb_wm, PLANEB) |
1401                   FW_WM(planea_wm, PLANEA));
1402        I915_WRITE(DSPFW2,
1403                   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404                   FW_WM(cursora_wm, CURSORA));
1405        /* HPLL off in SR has some issues on G4x... disable it */
1406        I915_WRITE(DSPFW3,
1407                   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408                   FW_WM(cursor_sr, CURSOR_SR));
1409
1410        if (cxsr_enabled)
1411                intel_set_memory_cxsr(dev_priv, true);
1412}
1413
1414static void i965_update_wm(struct drm_crtc *unused_crtc)
1415{
1416        struct drm_device *dev = unused_crtc->dev;
1417        struct drm_i915_private *dev_priv = dev->dev_private;
1418        struct drm_crtc *crtc;
1419        int srwm = 1;
1420        int cursor_sr = 16;
1421        bool cxsr_enabled;
1422
1423        /* Calc sr entries for one plane configs */
1424        crtc = single_enabled_crtc(dev);
1425        if (crtc) {
1426                /* self-refresh has much higher latency */
1427                static const int sr_latency_ns = 12000;
1428                const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429                int clock = adjusted_mode->crtc_clock;
1430                int htotal = adjusted_mode->crtc_htotal;
1431                int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432                int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1433                unsigned long line_time_us;
1434                int entries;
1435
1436                line_time_us = max(htotal * 1000 / clock, 1);
1437
1438                /* Use ns/us then divide to preserve precision */
1439                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1440                        pixel_size * hdisplay;
1441                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1442                srwm = I965_FIFO_SIZE - entries;
1443                if (srwm < 0)
1444                        srwm = 1;
1445                srwm &= 0x1ff;
1446                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1447                              entries, srwm);
1448
1449                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                        pixel_size * crtc->cursor->state->crtc_w;
1451                entries = DIV_ROUND_UP(entries,
1452                                          i965_cursor_wm_info.cacheline_size);
1453                cursor_sr = i965_cursor_wm_info.fifo_size -
1454                        (entries + i965_cursor_wm_info.guard_size);
1455
1456                if (cursor_sr > i965_cursor_wm_info.max_wm)
1457                        cursor_sr = i965_cursor_wm_info.max_wm;
1458
1459                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1460                              "cursor %d\n", srwm, cursor_sr);
1461
1462                cxsr_enabled = true;
1463        } else {
1464                cxsr_enabled = false;
1465                /* Turn off self refresh if both pipes are enabled */
1466                intel_set_memory_cxsr(dev_priv, false);
1467        }
1468
1469        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1470                      srwm);
1471
1472        /* 965 has limitations... */
1473        I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1474                   FW_WM(8, CURSORB) |
1475                   FW_WM(8, PLANEB) |
1476                   FW_WM(8, PLANEA));
1477        I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1478                   FW_WM(8, PLANEC_OLD));
1479        /* update cursor SR watermark */
1480        I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481
1482        if (cxsr_enabled)
1483                intel_set_memory_cxsr(dev_priv, true);
1484}
1485
1486#undef FW_WM
1487
1488static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489{
1490        struct drm_device *dev = unused_crtc->dev;
1491        struct drm_i915_private *dev_priv = dev->dev_private;
1492        const struct intel_watermark_params *wm_info;
1493        uint32_t fwater_lo;
1494        uint32_t fwater_hi;
1495        int cwm, srwm = 1;
1496        int fifo_size;
1497        int planea_wm, planeb_wm;
1498        struct drm_crtc *crtc, *enabled = NULL;
1499
1500        if (IS_I945GM(dev))
1501                wm_info = &i945_wm_info;
1502        else if (!IS_GEN2(dev))
1503                wm_info = &i915_wm_info;
1504        else
1505                wm_info = &i830_a_wm_info;
1506
1507        fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1508        crtc = intel_get_crtc_for_plane(dev, 0);
1509        if (intel_crtc_active(crtc)) {
1510                const struct drm_display_mode *adjusted_mode;
1511                int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1512                if (IS_GEN2(dev))
1513                        cpp = 4;
1514
1515                adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516                planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517                                               wm_info, fifo_size, cpp,
1518                                               pessimal_latency_ns);
1519                enabled = crtc;
1520        } else {
1521                planea_wm = fifo_size - wm_info->guard_size;
1522                if (planea_wm > (long)wm_info->max_wm)
1523                        planea_wm = wm_info->max_wm;
1524        }
1525
1526        if (IS_GEN2(dev))
1527                wm_info = &i830_bc_wm_info;
1528
1529        fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1530        crtc = intel_get_crtc_for_plane(dev, 1);
1531        if (intel_crtc_active(crtc)) {
1532                const struct drm_display_mode *adjusted_mode;
1533                int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1534                if (IS_GEN2(dev))
1535                        cpp = 4;
1536
1537                adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538                planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539                                               wm_info, fifo_size, cpp,
1540                                               pessimal_latency_ns);
1541                if (enabled == NULL)
1542                        enabled = crtc;
1543                else
1544                        enabled = NULL;
1545        } else {
1546                planeb_wm = fifo_size - wm_info->guard_size;
1547                if (planeb_wm > (long)wm_info->max_wm)
1548                        planeb_wm = wm_info->max_wm;
1549        }
1550
1551        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1552
1553        if (IS_I915GM(dev) && enabled) {
1554                struct drm_i915_gem_object *obj;
1555
1556                obj = intel_fb_obj(enabled->primary->state->fb);
1557
1558                /* self-refresh seems busted with untiled */
1559                if (obj->tiling_mode == I915_TILING_NONE)
1560                        enabled = NULL;
1561        }
1562
1563        /*
1564         * Overlay gets an aggressive default since video jitter is bad.
1565         */
1566        cwm = 2;
1567
1568        /* Play safe and disable self-refresh before adjusting watermarks. */
1569        intel_set_memory_cxsr(dev_priv, false);
1570
1571        /* Calc sr entries for one plane configs */
1572        if (HAS_FW_BLC(dev) && enabled) {
1573                /* self-refresh has much higher latency */
1574                static const int sr_latency_ns = 6000;
1575                const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576                int clock = adjusted_mode->crtc_clock;
1577                int htotal = adjusted_mode->crtc_htotal;
1578                int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579                int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1580                unsigned long line_time_us;
1581                int entries;
1582
1583                line_time_us = max(htotal * 1000 / clock, 1);
1584
1585                /* Use ns/us then divide to preserve precision */
1586                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1587                        pixel_size * hdisplay;
1588                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1589                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1590                srwm = wm_info->fifo_size - entries;
1591                if (srwm < 0)
1592                        srwm = 1;
1593
1594                if (IS_I945G(dev) || IS_I945GM(dev))
1595                        I915_WRITE(FW_BLC_SELF,
1596                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1597                else if (IS_I915GM(dev))
1598                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1599        }
1600
1601        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1602                      planea_wm, planeb_wm, cwm, srwm);
1603
1604        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1605        fwater_hi = (cwm & 0x1f);
1606
1607        /* Set request length to 8 cachelines per fetch */
1608        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1609        fwater_hi = fwater_hi | (1 << 8);
1610
1611        I915_WRITE(FW_BLC, fwater_lo);
1612        I915_WRITE(FW_BLC2, fwater_hi);
1613
1614        if (enabled)
1615                intel_set_memory_cxsr(dev_priv, true);
1616}
1617
1618static void i845_update_wm(struct drm_crtc *unused_crtc)
1619{
1620        struct drm_device *dev = unused_crtc->dev;
1621        struct drm_i915_private *dev_priv = dev->dev_private;
1622        struct drm_crtc *crtc;
1623        const struct drm_display_mode *adjusted_mode;
1624        uint32_t fwater_lo;
1625        int planea_wm;
1626
1627        crtc = single_enabled_crtc(dev);
1628        if (crtc == NULL)
1629                return;
1630
1631        adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632        planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633                                       &i845_wm_info,
1634                                       dev_priv->display.get_fifo_size(dev, 0),
1635                                       4, pessimal_latency_ns);
1636        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1637        fwater_lo |= (3<<8) | planea_wm;
1638
1639        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1640
1641        I915_WRITE(FW_BLC, fwater_lo);
1642}
1643
1644uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645{
1646        uint32_t pixel_rate;
1647
1648        pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649
1650        /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651         * adjust the pixel_rate here. */
1652
1653        if (pipe_config->pch_pfit.enabled) {
1654                uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655                uint32_t pfit_size = pipe_config->pch_pfit.size;
1656
1657                pipe_w = pipe_config->pipe_src_w;
1658                pipe_h = pipe_config->pipe_src_h;
1659
1660                pfit_w = (pfit_size >> 16) & 0xFFFF;
1661                pfit_h = pfit_size & 0xFFFF;
1662                if (pipe_w < pfit_w)
1663                        pipe_w = pfit_w;
1664                if (pipe_h < pfit_h)
1665                        pipe_h = pfit_h;
1666
1667                pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1668                                     pfit_w * pfit_h);
1669        }
1670
1671        return pixel_rate;
1672}
1673
1674/* latency must be in 0.1us units. */
1675static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1676                               uint32_t latency)
1677{
1678        uint64_t ret;
1679
1680        if (WARN(latency == 0, "Latency value missing\n"))
1681                return UINT_MAX;
1682
1683        ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1684        ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1685
1686        return ret;
1687}
1688
1689/* latency must be in 0.1us units. */
1690static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1691                               uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1692                               uint32_t latency)
1693{
1694        uint32_t ret;
1695
1696        if (WARN(latency == 0, "Latency value missing\n"))
1697                return UINT_MAX;
1698
1699        ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1700        ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1701        ret = DIV_ROUND_UP(ret, 64) + 2;
1702        return ret;
1703}
1704
1705static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1706                           uint8_t bytes_per_pixel)
1707{
1708        return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1709}
1710
1711struct skl_pipe_wm_parameters {
1712        bool active;
1713        uint32_t pipe_htotal;
1714        uint32_t pixel_rate; /* in KHz */
1715        struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1716};
1717
1718struct ilk_wm_maximums {
1719        uint16_t pri;
1720        uint16_t spr;
1721        uint16_t cur;
1722        uint16_t fbc;
1723};
1724
1725/* used in computing the new watermarks state */
1726struct intel_wm_config {
1727        unsigned int num_pipes_active;
1728        bool sprites_enabled;
1729        bool sprites_scaled;
1730};
1731
1732/*
1733 * For both WM_PIPE and WM_LP.
1734 * mem_value must be in 0.1us units.
1735 */
1736static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737                                   const struct intel_plane_state *pstate,
1738                                   uint32_t mem_value,
1739                                   bool is_lp)
1740{
1741        int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1742        uint32_t method1, method2;
1743
1744        if (!cstate->base.active || !pstate->visible)
1745                return 0;
1746
1747        method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1748
1749        if (!is_lp)
1750                return method1;
1751
1752        method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1753                                 cstate->base.adjusted_mode.crtc_htotal,
1754                                 drm_rect_width(&pstate->dst),
1755                                 bpp,
1756                                 mem_value);
1757
1758        return min(method1, method2);
1759}
1760
1761/*
1762 * For both WM_PIPE and WM_LP.
1763 * mem_value must be in 0.1us units.
1764 */
1765static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766                                   const struct intel_plane_state *pstate,
1767                                   uint32_t mem_value)
1768{
1769        int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1770        uint32_t method1, method2;
1771
1772        if (!cstate->base.active || !pstate->visible)
1773                return 0;
1774
1775        method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1776        method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1777                                 cstate->base.adjusted_mode.crtc_htotal,
1778                                 drm_rect_width(&pstate->dst),
1779                                 bpp,
1780                                 mem_value);
1781        return min(method1, method2);
1782}
1783
1784/*
1785 * For both WM_PIPE and WM_LP.
1786 * mem_value must be in 0.1us units.
1787 */
1788static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789                                   const struct intel_plane_state *pstate,
1790                                   uint32_t mem_value)
1791{
1792        int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1793
1794        if (!cstate->base.active || !pstate->visible)
1795                return 0;
1796
1797        return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1798                              cstate->base.adjusted_mode.crtc_htotal,
1799                              drm_rect_width(&pstate->dst),
1800                              bpp,
1801                              mem_value);
1802}
1803
1804/* Only for WM_LP. */
1805static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1806                                   const struct intel_plane_state *pstate,
1807                                   uint32_t pri_val)
1808{
1809        int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1810
1811        if (!cstate->base.active || !pstate->visible)
1812                return 0;
1813
1814        return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1815}
1816
1817static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1818{
1819        if (INTEL_INFO(dev)->gen >= 8)
1820                return 3072;
1821        else if (INTEL_INFO(dev)->gen >= 7)
1822                return 768;
1823        else
1824                return 512;
1825}
1826
1827static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1828                                         int level, bool is_sprite)
1829{
1830        if (INTEL_INFO(dev)->gen >= 8)
1831                /* BDW primary/sprite plane watermarks */
1832                return level == 0 ? 255 : 2047;
1833        else if (INTEL_INFO(dev)->gen >= 7)
1834                /* IVB/HSW primary/sprite plane watermarks */
1835                return level == 0 ? 127 : 1023;
1836        else if (!is_sprite)
1837                /* ILK/SNB primary plane watermarks */
1838                return level == 0 ? 127 : 511;
1839        else
1840                /* ILK/SNB sprite plane watermarks */
1841                return level == 0 ? 63 : 255;
1842}
1843
1844static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1845                                          int level)
1846{
1847        if (INTEL_INFO(dev)->gen >= 7)
1848                return level == 0 ? 63 : 255;
1849        else
1850                return level == 0 ? 31 : 63;
1851}
1852
1853static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1854{
1855        if (INTEL_INFO(dev)->gen >= 8)
1856                return 31;
1857        else
1858                return 15;
1859}
1860
1861/* Calculate the maximum primary/sprite plane watermark */
1862static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1863                                     int level,
1864                                     const struct intel_wm_config *config,
1865                                     enum intel_ddb_partitioning ddb_partitioning,
1866                                     bool is_sprite)
1867{
1868        unsigned int fifo_size = ilk_display_fifo_size(dev);
1869
1870        /* if sprites aren't enabled, sprites get nothing */
1871        if (is_sprite && !config->sprites_enabled)
1872                return 0;
1873
1874        /* HSW allows LP1+ watermarks even with multiple pipes */
1875        if (level == 0 || config->num_pipes_active > 1) {
1876                fifo_size /= INTEL_INFO(dev)->num_pipes;
1877
1878                /*
1879                 * For some reason the non self refresh
1880                 * FIFO size is only half of the self
1881                 * refresh FIFO size on ILK/SNB.
1882                 */
1883                if (INTEL_INFO(dev)->gen <= 6)
1884                        fifo_size /= 2;
1885        }
1886
1887        if (config->sprites_enabled) {
1888                /* level 0 is always calculated with 1:1 split */
1889                if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1890                        if (is_sprite)
1891                                fifo_size *= 5;
1892                        fifo_size /= 6;
1893                } else {
1894                        fifo_size /= 2;
1895                }
1896        }
1897
1898        /* clamp to max that the registers can hold */
1899        return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1900}
1901
1902/* Calculate the maximum cursor plane watermark */
1903static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1904                                      int level,
1905                                      const struct intel_wm_config *config)
1906{
1907        /* HSW LP1+ watermarks w/ multiple pipes */
1908        if (level > 0 && config->num_pipes_active > 1)
1909                return 64;
1910
1911        /* otherwise just report max that registers can hold */
1912        return ilk_cursor_wm_reg_max(dev, level);
1913}
1914
1915static void ilk_compute_wm_maximums(const struct drm_device *dev,
1916                                    int level,
1917                                    const struct intel_wm_config *config,
1918                                    enum intel_ddb_partitioning ddb_partitioning,
1919                                    struct ilk_wm_maximums *max)
1920{
1921        max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1922        max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1923        max->cur = ilk_cursor_wm_max(dev, level, config);
1924        max->fbc = ilk_fbc_wm_reg_max(dev);
1925}
1926
1927static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1928                                        int level,
1929                                        struct ilk_wm_maximums *max)
1930{
1931        max->pri = ilk_plane_wm_reg_max(dev, level, false);
1932        max->spr = ilk_plane_wm_reg_max(dev, level, true);
1933        max->cur = ilk_cursor_wm_reg_max(dev, level);
1934        max->fbc = ilk_fbc_wm_reg_max(dev);
1935}
1936
1937static bool ilk_validate_wm_level(int level,
1938                                  const struct ilk_wm_maximums *max,
1939                                  struct intel_wm_level *result)
1940{
1941        bool ret;
1942
1943        /* already determined to be invalid? */
1944        if (!result->enable)
1945                return false;
1946
1947        result->enable = result->pri_val <= max->pri &&
1948                         result->spr_val <= max->spr &&
1949                         result->cur_val <= max->cur;
1950
1951        ret = result->enable;
1952
1953        /*
1954         * HACK until we can pre-compute everything,
1955         * and thus fail gracefully if LP0 watermarks
1956         * are exceeded...
1957         */
1958        if (level == 0 && !result->enable) {
1959                if (result->pri_val > max->pri)
1960                        DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1961                                      level, result->pri_val, max->pri);
1962                if (result->spr_val > max->spr)
1963                        DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1964                                      level, result->spr_val, max->spr);
1965                if (result->cur_val > max->cur)
1966                        DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1967                                      level, result->cur_val, max->cur);
1968
1969                result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1970                result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1971                result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1972                result->enable = true;
1973        }
1974
1975        return ret;
1976}
1977
1978static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1979                                 const struct intel_crtc *intel_crtc,
1980                                 int level,
1981                                 struct intel_crtc_state *cstate,
1982                                 struct intel_wm_level *result)
1983{
1984        struct intel_plane *intel_plane;
1985        uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1986        uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1987        uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1988
1989        /* WM1+ latency values stored in 0.5us units */
1990        if (level > 0) {
1991                pri_latency *= 5;
1992                spr_latency *= 5;
1993                cur_latency *= 5;
1994        }
1995
1996        for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
1997                struct intel_plane_state *pstate =
1998                        to_intel_plane_state(intel_plane->base.state);
1999
2000                switch (intel_plane->base.type) {
2001                case DRM_PLANE_TYPE_PRIMARY:
2002                        result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2003                                                             pri_latency,
2004                                                             level);
2005                        result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2006                                                             result->pri_val);
2007                        break;
2008                case DRM_PLANE_TYPE_OVERLAY:
2009                        result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2010                                                             spr_latency);
2011                        break;
2012                case DRM_PLANE_TYPE_CURSOR:
2013                        result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2014                                                             cur_latency);
2015                        break;
2016                }
2017        }
2018
2019        result->enable = true;
2020}
2021
2022static uint32_t
2023hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2024{
2025        struct drm_i915_private *dev_priv = dev->dev_private;
2026        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2027        const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2028        u32 linetime, ips_linetime;
2029
2030        if (!intel_crtc->active)
2031                return 0;
2032
2033        /* The WM are computed with base on how long it takes to fill a single
2034         * row at the given clock rate, multiplied by 8.
2035         * */
2036        linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2037                                     adjusted_mode->crtc_clock);
2038        ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2039                                         dev_priv->cdclk_freq);
2040
2041        return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2042               PIPE_WM_LINETIME_TIME(linetime);
2043}
2044
2045static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2046{
2047        struct drm_i915_private *dev_priv = dev->dev_private;
2048
2049        if (IS_GEN9(dev)) {
2050                uint32_t val;
2051                int ret, i;
2052                int level, max_level = ilk_wm_max_level(dev);
2053
2054                /* read the first set of memory latencies[0:3] */
2055                val = 0; /* data0 to be programmed to 0 for first set */
2056                mutex_lock(&dev_priv->rps.hw_lock);
2057                ret = sandybridge_pcode_read(dev_priv,
2058                                             GEN9_PCODE_READ_MEM_LATENCY,
2059                                             &val);
2060                mutex_unlock(&dev_priv->rps.hw_lock);
2061
2062                if (ret) {
2063                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2064                        return;
2065                }
2066
2067                wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2068                wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2069                                GEN9_MEM_LATENCY_LEVEL_MASK;
2070                wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2071                                GEN9_MEM_LATENCY_LEVEL_MASK;
2072                wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2073                                GEN9_MEM_LATENCY_LEVEL_MASK;
2074
2075                /* read the second set of memory latencies[4:7] */
2076                val = 1; /* data0 to be programmed to 1 for second set */
2077                mutex_lock(&dev_priv->rps.hw_lock);
2078                ret = sandybridge_pcode_read(dev_priv,
2079                                             GEN9_PCODE_READ_MEM_LATENCY,
2080                                             &val);
2081                mutex_unlock(&dev_priv->rps.hw_lock);
2082                if (ret) {
2083                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2084                        return;
2085                }
2086
2087                wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2088                wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2089                                GEN9_MEM_LATENCY_LEVEL_MASK;
2090                wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2091                                GEN9_MEM_LATENCY_LEVEL_MASK;
2092                wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2093                                GEN9_MEM_LATENCY_LEVEL_MASK;
2094
2095                /*
2096                 * WaWmMemoryReadLatency:skl
2097                 *
2098                 * punit doesn't take into account the read latency so we need
2099                 * to add 2us to the various latency levels we retrieve from
2100                 * the punit.
2101                 *   - W0 is a bit special in that it's the only level that
2102                 *   can't be disabled if we want to have display working, so
2103                 *   we always add 2us there.
2104                 *   - For levels >=1, punit returns 0us latency when they are
2105                 *   disabled, so we respect that and don't add 2us then
2106                 *
2107                 * Additionally, if a level n (n > 1) has a 0us latency, all
2108                 * levels m (m >= n) need to be disabled. We make sure to
2109                 * sanitize the values out of the punit to satisfy this
2110                 * requirement.
2111                 */
2112                wm[0] += 2;
2113                for (level = 1; level <= max_level; level++)
2114                        if (wm[level] != 0)
2115                                wm[level] += 2;
2116                        else {
2117                                for (i = level + 1; i <= max_level; i++)
2118                                        wm[i] = 0;
2119
2120                                break;
2121                        }
2122        } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2123                uint64_t sskpd = I915_READ64(MCH_SSKPD);
2124
2125                wm[0] = (sskpd >> 56) & 0xFF;
2126                if (wm[0] == 0)
2127                        wm[0] = sskpd & 0xF;
2128                wm[1] = (sskpd >> 4) & 0xFF;
2129                wm[2] = (sskpd >> 12) & 0xFF;
2130                wm[3] = (sskpd >> 20) & 0x1FF;
2131                wm[4] = (sskpd >> 32) & 0x1FF;
2132        } else if (INTEL_INFO(dev)->gen >= 6) {
2133                uint32_t sskpd = I915_READ(MCH_SSKPD);
2134
2135                wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2136                wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2137                wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2138                wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2139        } else if (INTEL_INFO(dev)->gen >= 5) {
2140                uint32_t mltr = I915_READ(MLTR_ILK);
2141
2142                /* ILK primary LP0 latency is 700 ns */
2143                wm[0] = 7;
2144                wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2145                wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2146        }
2147}
2148
2149static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2150{
2151        /* ILK sprite LP0 latency is 1300 ns */
2152        if (INTEL_INFO(dev)->gen == 5)
2153                wm[0] = 13;
2154}
2155
2156static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2157{
2158        /* ILK cursor LP0 latency is 1300 ns */
2159        if (INTEL_INFO(dev)->gen == 5)
2160                wm[0] = 13;
2161
2162        /* WaDoubleCursorLP3Latency:ivb */
2163        if (IS_IVYBRIDGE(dev))
2164                wm[3] *= 2;
2165}
2166
2167int ilk_wm_max_level(const struct drm_device *dev)
2168{
2169        /* how many WM levels are we expecting */
2170        if (INTEL_INFO(dev)->gen >= 9)
2171                return 7;
2172        else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2173                return 4;
2174        else if (INTEL_INFO(dev)->gen >= 6)
2175                return 3;
2176        else
2177                return 2;
2178}
2179
2180static void intel_print_wm_latency(struct drm_device *dev,
2181                                   const char *name,
2182                                   const uint16_t wm[8])
2183{
2184        int level, max_level = ilk_wm_max_level(dev);
2185
2186        for (level = 0; level <= max_level; level++) {
2187                unsigned int latency = wm[level];
2188
2189                if (latency == 0) {
2190                        DRM_ERROR("%s WM%d latency not provided\n",
2191                                  name, level);
2192                        continue;
2193                }
2194
2195                /*
2196                 * - latencies are in us on gen9.
2197                 * - before then, WM1+ latency values are in 0.5us units
2198                 */
2199                if (IS_GEN9(dev))
2200                        latency *= 10;
2201                else if (level > 0)
2202                        latency *= 5;
2203
2204                DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2205                              name, level, wm[level],
2206                              latency / 10, latency % 10);
2207        }
2208}
2209
2210static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2211                                    uint16_t wm[5], uint16_t min)
2212{
2213        int level, max_level = ilk_wm_max_level(dev_priv->dev);
2214
2215        if (wm[0] >= min)
2216                return false;
2217
2218        wm[0] = max(wm[0], min);
2219        for (level = 1; level <= max_level; level++)
2220                wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2221
2222        return true;
2223}
2224
2225static void snb_wm_latency_quirk(struct drm_device *dev)
2226{
2227        struct drm_i915_private *dev_priv = dev->dev_private;
2228        bool changed;
2229
2230        /*
2231         * The BIOS provided WM memory latency values are often
2232         * inadequate for high resolution displays. Adjust them.
2233         */
2234        changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2235                ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2236                ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2237
2238        if (!changed)
2239                return;
2240
2241        DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2242        intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2243        intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2244        intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2245}
2246
2247static void ilk_setup_wm_latency(struct drm_device *dev)
2248{
2249        struct drm_i915_private *dev_priv = dev->dev_private;
2250
2251        intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2252
2253        memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2254               sizeof(dev_priv->wm.pri_latency));
2255        memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2256               sizeof(dev_priv->wm.pri_latency));
2257
2258        intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2259        intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2260
2261        intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2262        intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2263        intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2264
2265        if (IS_GEN6(dev))
2266                snb_wm_latency_quirk(dev);
2267}
2268
2269static void skl_setup_wm_latency(struct drm_device *dev)
2270{
2271        struct drm_i915_private *dev_priv = dev->dev_private;
2272
2273        intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2274        intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2275}
2276
2277static void ilk_compute_wm_config(struct drm_device *dev,
2278                                  struct intel_wm_config *config)
2279{
2280        struct intel_crtc *intel_crtc;
2281
2282        /* Compute the currently _active_ config */
2283        for_each_intel_crtc(dev, intel_crtc) {
2284                const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2285
2286                if (!wm->pipe_enabled)
2287                        continue;
2288
2289                config->sprites_enabled |= wm->sprites_enabled;
2290                config->sprites_scaled |= wm->sprites_scaled;
2291                config->num_pipes_active++;
2292        }
2293}
2294
2295/* Compute new watermarks for the pipe */
2296static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2297                                  struct intel_pipe_wm *pipe_wm)
2298{
2299        struct drm_crtc *crtc = cstate->base.crtc;
2300        struct drm_device *dev = crtc->dev;
2301        const struct drm_i915_private *dev_priv = dev->dev_private;
2302        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303        struct intel_plane *intel_plane;
2304        struct intel_plane_state *sprstate = NULL;
2305        int level, max_level = ilk_wm_max_level(dev);
2306        /* LP0 watermark maximums depend on this pipe alone */
2307        struct intel_wm_config config = {
2308                .num_pipes_active = 1,
2309        };
2310        struct ilk_wm_maximums max;
2311
2312        for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2313                if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2314                        sprstate = to_intel_plane_state(intel_plane->base.state);
2315                        break;
2316                }
2317        }
2318
2319        config.sprites_enabled = sprstate->visible;
2320        config.sprites_scaled = sprstate->visible &&
2321                (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2322                drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2323
2324        pipe_wm->pipe_enabled = cstate->base.active;
2325        pipe_wm->sprites_enabled = sprstate->visible;
2326        pipe_wm->sprites_scaled = config.sprites_scaled;
2327
2328        /* ILK/SNB: LP2+ watermarks only w/o sprites */
2329        if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2330                max_level = 1;
2331
2332        /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2333        if (config.sprites_scaled)
2334                max_level = 0;
2335
2336        ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2337
2338        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2339                pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2340
2341        /* LP0 watermarks always use 1/2 DDB partitioning */
2342        ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2343
2344        /* At least LP0 must be valid */
2345        if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2346                return false;
2347
2348        ilk_compute_wm_reg_maximums(dev, 1, &max);
2349
2350        for (level = 1; level <= max_level; level++) {
2351                struct intel_wm_level wm = {};
2352
2353                ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2354
2355                /*
2356                 * Disable any watermark level that exceeds the
2357                 * register maximums since such watermarks are
2358                 * always invalid.
2359                 */
2360                if (!ilk_validate_wm_level(level, &max, &wm))
2361                        break;
2362
2363                pipe_wm->wm[level] = wm;
2364        }
2365
2366        return true;
2367}
2368
2369/*
2370 * Merge the watermarks from all active pipes for a specific level.
2371 */
2372static void ilk_merge_wm_level(struct drm_device *dev,
2373                               int level,
2374                               struct intel_wm_level *ret_wm)
2375{
2376        const struct intel_crtc *intel_crtc;
2377
2378        ret_wm->enable = true;
2379
2380        for_each_intel_crtc(dev, intel_crtc) {
2381                const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2382                const struct intel_wm_level *wm = &active->wm[level];
2383
2384                if (!active->pipe_enabled)
2385                        continue;
2386
2387                /*
2388                 * The watermark values may have been used in the past,
2389                 * so we must maintain them in the registers for some
2390                 * time even if the level is now disabled.
2391                 */
2392                if (!wm->enable)
2393                        ret_wm->enable = false;
2394
2395                ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2396                ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2397                ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2398                ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2399        }
2400}
2401
2402/*
2403 * Merge all low power watermarks for all active pipes.
2404 */
2405static void ilk_wm_merge(struct drm_device *dev,
2406                         const struct intel_wm_config *config,
2407                         const struct ilk_wm_maximums *max,
2408                         struct intel_pipe_wm *merged)
2409{
2410        struct drm_i915_private *dev_priv = dev->dev_private;
2411        int level, max_level = ilk_wm_max_level(dev);
2412        int last_enabled_level = max_level;
2413
2414        /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2415        if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2416            config->num_pipes_active > 1)
2417                return;
2418
2419        /* ILK: FBC WM must be disabled always */
2420        merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2421
2422        /* merge each WM1+ level */
2423        for (level = 1; level <= max_level; level++) {
2424                struct intel_wm_level *wm = &merged->wm[level];
2425
2426                ilk_merge_wm_level(dev, level, wm);
2427
2428                if (level > last_enabled_level)
2429                        wm->enable = false;
2430                else if (!ilk_validate_wm_level(level, max, wm))
2431                        /* make sure all following levels get disabled */
2432                        last_enabled_level = level - 1;
2433
2434                /*
2435                 * The spec says it is preferred to disable
2436                 * FBC WMs instead of disabling a WM level.
2437                 */
2438                if (wm->fbc_val > max->fbc) {
2439                        if (wm->enable)
2440                                merged->fbc_wm_enabled = false;
2441                        wm->fbc_val = 0;
2442                }
2443        }
2444
2445        /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2446        /*
2447         * FIXME this is racy. FBC might get enabled later.
2448         * What we should check here is whether FBC can be
2449         * enabled sometime later.
2450         */
2451        if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2452            intel_fbc_enabled(dev_priv)) {
2453                for (level = 2; level <= max_level; level++) {
2454                        struct intel_wm_level *wm = &merged->wm[level];
2455
2456                        wm->enable = false;
2457                }
2458        }
2459}
2460
2461static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2462{
2463        /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2464        return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2465}
2466
2467/* The value we need to program into the WM_LPx latency field */
2468static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2469{
2470        struct drm_i915_private *dev_priv = dev->dev_private;
2471
2472        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2473                return 2 * level;
2474        else
2475                return dev_priv->wm.pri_latency[level];
2476}
2477
2478static void ilk_compute_wm_results(struct drm_device *dev,
2479                                   const struct intel_pipe_wm *merged,
2480                                   enum intel_ddb_partitioning partitioning,
2481                                   struct ilk_wm_values *results)
2482{
2483        struct intel_crtc *intel_crtc;
2484        int level, wm_lp;
2485
2486        results->enable_fbc_wm = merged->fbc_wm_enabled;
2487        results->partitioning = partitioning;
2488
2489        /* LP1+ register values */
2490        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2491                const struct intel_wm_level *r;
2492
2493                level = ilk_wm_lp_to_level(wm_lp, merged);
2494
2495                r = &merged->wm[level];
2496
2497                /*
2498                 * Maintain the watermark values even if the level is
2499                 * disabled. Doing otherwise could cause underruns.
2500                 */
2501                results->wm_lp[wm_lp - 1] =
2502                        (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2503                        (r->pri_val << WM1_LP_SR_SHIFT) |
2504                        r->cur_val;
2505
2506                if (r->enable)
2507                        results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2508
2509                if (INTEL_INFO(dev)->gen >= 8)
2510                        results->wm_lp[wm_lp - 1] |=
2511                                r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2512                else
2513                        results->wm_lp[wm_lp - 1] |=
2514                                r->fbc_val << WM1_LP_FBC_SHIFT;
2515
2516                /*
2517                 * Always set WM1S_LP_EN when spr_val != 0, even if the
2518                 * level is disabled. Doing otherwise could cause underruns.
2519                 */
2520                if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2521                        WARN_ON(wm_lp != 1);
2522                        results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2523                } else
2524                        results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2525        }
2526
2527        /* LP0 register values */
2528        for_each_intel_crtc(dev, intel_crtc) {
2529                enum pipe pipe = intel_crtc->pipe;
2530                const struct intel_wm_level *r =
2531                        &intel_crtc->wm.active.wm[0];
2532
2533                if (WARN_ON(!r->enable))
2534                        continue;
2535
2536                results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2537
2538                results->wm_pipe[pipe] =
2539                        (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2540                        (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2541                        r->cur_val;
2542        }
2543}
2544
2545/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2546 * case both are at the same level. Prefer r1 in case they're the same. */
2547static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2548                                                  struct intel_pipe_wm *r1,
2549                                                  struct intel_pipe_wm *r2)
2550{
2551        int level, max_level = ilk_wm_max_level(dev);
2552        int level1 = 0, level2 = 0;
2553
2554        for (level = 1; level <= max_level; level++) {
2555                if (r1->wm[level].enable)
2556                        level1 = level;
2557                if (r2->wm[level].enable)
2558                        level2 = level;
2559        }
2560
2561        if (level1 == level2) {
2562                if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2563                        return r2;
2564                else
2565                        return r1;
2566        } else if (level1 > level2) {
2567                return r1;
2568        } else {
2569                return r2;
2570        }
2571}
2572
2573/* dirty bits used to track which watermarks need changes */
2574#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2575#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2576#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2577#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2578#define WM_DIRTY_FBC (1 << 24)
2579#define WM_DIRTY_DDB (1 << 25)
2580
2581static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2582                                         const struct ilk_wm_values *old,
2583                                         const struct ilk_wm_values *new)
2584{
2585        unsigned int dirty = 0;
2586        enum pipe pipe;
2587        int wm_lp;
2588
2589        for_each_pipe(dev_priv, pipe) {
2590                if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2591                        dirty |= WM_DIRTY_LINETIME(pipe);
2592                        /* Must disable LP1+ watermarks too */
2593                        dirty |= WM_DIRTY_LP_ALL;
2594                }
2595
2596                if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2597                        dirty |= WM_DIRTY_PIPE(pipe);
2598                        /* Must disable LP1+ watermarks too */
2599                        dirty |= WM_DIRTY_LP_ALL;
2600                }
2601        }
2602
2603        if (old->enable_fbc_wm != new->enable_fbc_wm) {
2604                dirty |= WM_DIRTY_FBC;
2605                /* Must disable LP1+ watermarks too */
2606                dirty |= WM_DIRTY_LP_ALL;
2607        }
2608
2609        if (old->partitioning != new->partitioning) {
2610                dirty |= WM_DIRTY_DDB;
2611                /* Must disable LP1+ watermarks too */
2612                dirty |= WM_DIRTY_LP_ALL;
2613        }
2614
2615        /* LP1+ watermarks already deemed dirty, no need to continue */
2616        if (dirty & WM_DIRTY_LP_ALL)
2617                return dirty;
2618
2619        /* Find the lowest numbered LP1+ watermark in need of an update... */
2620        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2621                if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2622                    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2623                        break;
2624        }
2625
2626        /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2627        for (; wm_lp <= 3; wm_lp++)
2628                dirty |= WM_DIRTY_LP(wm_lp);
2629
2630        return dirty;
2631}
2632
2633static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2634                               unsigned int dirty)
2635{
2636        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2637        bool changed = false;
2638
2639        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2640                previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2641                I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2642                changed = true;
2643        }
2644        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2645                previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2646                I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2647                changed = true;
2648        }
2649        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2650                previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2651                I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2652                changed = true;
2653        }
2654
2655        /*
2656         * Don't touch WM1S_LP_EN here.
2657         * Doing so could cause underruns.
2658         */
2659
2660        return changed;
2661}
2662
2663/*
2664 * The spec says we shouldn't write when we don't need, because every write
2665 * causes WMs to be re-evaluated, expending some power.
2666 */
2667static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2668                                struct ilk_wm_values *results)
2669{
2670        struct drm_device *dev = dev_priv->dev;
2671        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2672        unsigned int dirty;
2673        uint32_t val;
2674
2675        dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2676        if (!dirty)
2677                return;
2678
2679        _ilk_disable_lp_wm(dev_priv, dirty);
2680
2681        if (dirty & WM_DIRTY_PIPE(PIPE_A))
2682                I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2683        if (dirty & WM_DIRTY_PIPE(PIPE_B))
2684                I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2685        if (dirty & WM_DIRTY_PIPE(PIPE_C))
2686                I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2687
2688        if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2689                I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2690        if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2691                I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2692        if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2693                I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2694
2695        if (dirty & WM_DIRTY_DDB) {
2696                if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2697                        val = I915_READ(WM_MISC);
2698                        if (results->partitioning == INTEL_DDB_PART_1_2)
2699                                val &= ~WM_MISC_DATA_PARTITION_5_6;
2700                        else
2701                                val |= WM_MISC_DATA_PARTITION_5_6;
2702                        I915_WRITE(WM_MISC, val);
2703                } else {
2704                        val = I915_READ(DISP_ARB_CTL2);
2705                        if (results->partitioning == INTEL_DDB_PART_1_2)
2706                                val &= ~DISP_DATA_PARTITION_5_6;
2707                        else
2708                                val |= DISP_DATA_PARTITION_5_6;
2709                        I915_WRITE(DISP_ARB_CTL2, val);
2710                }
2711        }
2712
2713        if (dirty & WM_DIRTY_FBC) {
2714                val = I915_READ(DISP_ARB_CTL);
2715                if (results->enable_fbc_wm)
2716                        val &= ~DISP_FBC_WM_DIS;
2717                else
2718                        val |= DISP_FBC_WM_DIS;
2719                I915_WRITE(DISP_ARB_CTL, val);
2720        }
2721
2722        if (dirty & WM_DIRTY_LP(1) &&
2723            previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2724                I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2725
2726        if (INTEL_INFO(dev)->gen >= 7) {
2727                if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2728                        I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2729                if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2730                        I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2731        }
2732
2733        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2734                I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2735        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2736                I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2737        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2738                I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2739
2740        dev_priv->wm.hw = *results;
2741}
2742
2743static bool ilk_disable_lp_wm(struct drm_device *dev)
2744{
2745        struct drm_i915_private *dev_priv = dev->dev_private;
2746
2747        return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2748}
2749
2750/*
2751 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2752 * different active planes.
2753 */
2754
2755#define SKL_DDB_SIZE            896     /* in blocks */
2756#define BXT_DDB_SIZE            512
2757
2758static void
2759skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2760                                   struct drm_crtc *for_crtc,
2761                                   const struct intel_wm_config *config,
2762                                   const struct skl_pipe_wm_parameters *params,
2763                                   struct skl_ddb_entry *alloc /* out */)
2764{
2765        struct drm_crtc *crtc;
2766        unsigned int pipe_size, ddb_size;
2767        int nth_active_pipe;
2768
2769        if (!params->active) {
2770                alloc->start = 0;
2771                alloc->end = 0;
2772                return;
2773        }
2774
2775        if (IS_BROXTON(dev))
2776                ddb_size = BXT_DDB_SIZE;
2777        else
2778                ddb_size = SKL_DDB_SIZE;
2779
2780        ddb_size -= 4; /* 4 blocks for bypass path allocation */
2781
2782        nth_active_pipe = 0;
2783        for_each_crtc(dev, crtc) {
2784                if (!to_intel_crtc(crtc)->active)
2785                        continue;
2786
2787                if (crtc == for_crtc)
2788                        break;
2789
2790                nth_active_pipe++;
2791        }
2792
2793        pipe_size = ddb_size / config->num_pipes_active;
2794        alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2795        alloc->end = alloc->start + pipe_size;
2796}
2797
2798static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2799{
2800        if (config->num_pipes_active == 1)
2801                return 32;
2802
2803        return 8;
2804}
2805
2806static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2807{
2808        entry->start = reg & 0x3ff;
2809        entry->end = (reg >> 16) & 0x3ff;
2810        if (entry->end)
2811                entry->end += 1;
2812}
2813
2814void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2815                          struct skl_ddb_allocation *ddb /* out */)
2816{
2817        enum pipe pipe;
2818        int plane;
2819        u32 val;
2820
2821        memset(ddb, 0, sizeof(*ddb));
2822
2823        for_each_pipe(dev_priv, pipe) {
2824                if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2825                        continue;
2826
2827                for_each_plane(dev_priv, pipe, plane) {
2828                        val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2829                        skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2830                                                   val);
2831                }
2832
2833                val = I915_READ(CUR_BUF_CFG(pipe));
2834                skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2835                                           val);
2836        }
2837}
2838
2839static unsigned int
2840skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2841{
2842
2843        /* for planar format */
2844        if (p->y_bytes_per_pixel) {
2845                if (y)  /* y-plane data rate */
2846                        return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2847                else    /* uv-plane data rate */
2848                        return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2849        }
2850
2851        /* for packed formats */
2852        return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2853}
2854
2855/*
2856 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2857 * a 8192x4096@32bpp framebuffer:
2858 *   3 * 4096 * 8192  * 4 < 2^32
2859 */
2860static unsigned int
2861skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2862                                 const struct skl_pipe_wm_parameters *params)
2863{
2864        unsigned int total_data_rate = 0;
2865        int plane;
2866
2867        for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2868                const struct intel_plane_wm_parameters *p;
2869
2870                p = &params->plane[plane];
2871                if (!p->enabled)
2872                        continue;
2873
2874                total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2875                if (p->y_bytes_per_pixel) {
2876                        total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2877                }
2878        }
2879
2880        return total_data_rate;
2881}
2882
2883static void
2884skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2885                      const struct intel_wm_config *config,
2886                      const struct skl_pipe_wm_parameters *params,
2887                      struct skl_ddb_allocation *ddb /* out */)
2888{
2889        struct drm_device *dev = crtc->dev;
2890        struct drm_i915_private *dev_priv = dev->dev_private;
2891        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2892        enum pipe pipe = intel_crtc->pipe;
2893        struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2894        uint16_t alloc_size, start, cursor_blocks;
2895        uint16_t minimum[I915_MAX_PLANES];
2896        uint16_t y_minimum[I915_MAX_PLANES];
2897        unsigned int total_data_rate;
2898        int plane;
2899
2900        skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2901        alloc_size = skl_ddb_entry_size(alloc);
2902        if (alloc_size == 0) {
2903                memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2904                memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2905                       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2906                return;
2907        }
2908
2909        cursor_blocks = skl_cursor_allocation(config);
2910        ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2911        ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2912
2913        alloc_size -= cursor_blocks;
2914        alloc->end -= cursor_blocks;
2915
2916        /* 1. Allocate the mininum required blocks for each active plane */
2917        for_each_plane(dev_priv, pipe, plane) {
2918                const struct intel_plane_wm_parameters *p;
2919
2920                p = &params->plane[plane];
2921                if (!p->enabled)
2922                        continue;
2923
2924                minimum[plane] = 8;
2925                alloc_size -= minimum[plane];
2926                y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2927                alloc_size -= y_minimum[plane];
2928        }
2929
2930        /*
2931         * 2. Distribute the remaining space in proportion to the amount of
2932         * data each plane needs to fetch from memory.
2933         *
2934         * FIXME: we may not allocate every single block here.
2935         */
2936        total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2937
2938        start = alloc->start;
2939        for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2940                const struct intel_plane_wm_parameters *p;
2941                unsigned int data_rate, y_data_rate;
2942                uint16_t plane_blocks, y_plane_blocks = 0;
2943
2944                p = &params->plane[plane];
2945                if (!p->enabled)
2946                        continue;
2947
2948                data_rate = skl_plane_relative_data_rate(p, 0);
2949
2950                /*
2951                 * allocation for (packed formats) or (uv-plane part of planar format):
2952                 * promote the expression to 64 bits to avoid overflowing, the
2953                 * result is < available as data_rate / total_data_rate < 1
2954                 */
2955                plane_blocks = minimum[plane];
2956                plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2957                                        total_data_rate);
2958
2959                ddb->plane[pipe][plane].start = start;
2960                ddb->plane[pipe][plane].end = start + plane_blocks;
2961
2962                start += plane_blocks;
2963
2964                /*
2965                 * allocation for y_plane part of planar format:
2966                 */
2967                if (p->y_bytes_per_pixel) {
2968                        y_data_rate = skl_plane_relative_data_rate(p, 1);
2969                        y_plane_blocks = y_minimum[plane];
2970                        y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2971                                                total_data_rate);
2972
2973                        ddb->y_plane[pipe][plane].start = start;
2974                        ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2975
2976                        start += y_plane_blocks;
2977                }
2978
2979        }
2980
2981}
2982
2983static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2984{
2985        /* TODO: Take into account the scalers once we support them */
2986        return config->base.adjusted_mode.crtc_clock;
2987}
2988
2989/*
2990 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2991 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2992 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2993 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2994*/
2995static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2996                               uint32_t latency)
2997{
2998        uint32_t wm_intermediate_val, ret;
2999
3000        if (latency == 0)
3001                return UINT_MAX;
3002
3003        wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3004        ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3005
3006        return ret;
3007}
3008
3009static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3010                               uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3011                               uint64_t tiling, uint32_t latency)
3012{
3013        uint32_t ret;
3014        uint32_t plane_bytes_per_line, plane_blocks_per_line;
3015        uint32_t wm_intermediate_val;
3016
3017        if (latency == 0)
3018                return UINT_MAX;
3019
3020        plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3021
3022        if (tiling == I915_FORMAT_MOD_Y_TILED ||
3023            tiling == I915_FORMAT_MOD_Yf_TILED) {
3024                plane_bytes_per_line *= 4;
3025                plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3026                plane_blocks_per_line /= 4;
3027        } else {
3028                plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3029        }
3030
3031        wm_intermediate_val = latency * pixel_rate;
3032        ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3033                                plane_blocks_per_line;
3034
3035        return ret;
3036}
3037
3038static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3039                                       const struct intel_crtc *intel_crtc)
3040{
3041        struct drm_device *dev = intel_crtc->base.dev;
3042        struct drm_i915_private *dev_priv = dev->dev_private;
3043        const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3044        enum pipe pipe = intel_crtc->pipe;
3045
3046        if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3047                   sizeof(new_ddb->plane[pipe])))
3048                return true;
3049
3050        if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3051                    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3052                return true;
3053
3054        return false;
3055}
3056
3057static void skl_compute_wm_global_parameters(struct drm_device *dev,
3058                                             struct intel_wm_config *config)
3059{
3060        struct drm_crtc *crtc;
3061        struct drm_plane *plane;
3062
3063        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3064                config->num_pipes_active += to_intel_crtc(crtc)->active;
3065
3066        /* FIXME: I don't think we need those two global parameters on SKL */
3067        list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3068                struct intel_plane *intel_plane = to_intel_plane(plane);
3069
3070                config->sprites_enabled |= intel_plane->wm.enabled;
3071                config->sprites_scaled |= intel_plane->wm.scaled;
3072        }
3073}
3074
3075static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3076                                           struct skl_pipe_wm_parameters *p)
3077{
3078        struct drm_device *dev = crtc->dev;
3079        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080        enum pipe pipe = intel_crtc->pipe;
3081        struct drm_plane *plane;
3082        struct drm_framebuffer *fb;
3083        int i = 1; /* Index for sprite planes start */
3084
3085        p->active = intel_crtc->active;
3086        if (p->active) {
3087                p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3088                p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3089
3090                fb = crtc->primary->state->fb;
3091                /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3092                if (fb) {
3093                        p->plane[0].enabled = true;
3094                        p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3095                                drm_format_plane_cpp(fb->pixel_format, 1) :
3096                                drm_format_plane_cpp(fb->pixel_format, 0);
3097                        p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3098                                drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3099                        p->plane[0].tiling = fb->modifier[0];
3100                } else {
3101                        p->plane[0].enabled = false;
3102                        p->plane[0].bytes_per_pixel = 0;
3103                        p->plane[0].y_bytes_per_pixel = 0;
3104                        p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3105                }
3106                p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3107                p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3108                p->plane[0].rotation = crtc->primary->state->rotation;
3109
3110                fb = crtc->cursor->state->fb;
3111                p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3112                if (fb) {
3113                        p->plane[PLANE_CURSOR].enabled = true;
3114                        p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3115                        p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3116                        p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3117                } else {
3118                        p->plane[PLANE_CURSOR].enabled = false;
3119                        p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3120                        p->plane[PLANE_CURSOR].horiz_pixels = 64;
3121                        p->plane[PLANE_CURSOR].vert_pixels = 64;
3122                }
3123        }
3124
3125        list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3126                struct intel_plane *intel_plane = to_intel_plane(plane);
3127
3128                if (intel_plane->pipe == pipe &&
3129                        plane->type == DRM_PLANE_TYPE_OVERLAY)
3130                        p->plane[i++] = intel_plane->wm;
3131        }
3132}
3133
3134static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3135                                 struct skl_pipe_wm_parameters *p,
3136                                 struct intel_plane_wm_parameters *p_params,
3137                                 uint16_t ddb_allocation,
3138                                 int level,
3139                                 uint16_t *out_blocks, /* out */
3140                                 uint8_t *out_lines /* out */)
3141{
3142        uint32_t latency = dev_priv->wm.skl_latency[level];
3143        uint32_t method1, method2;
3144        uint32_t plane_bytes_per_line, plane_blocks_per_line;
3145        uint32_t res_blocks, res_lines;
3146        uint32_t selected_result;
3147        uint8_t bytes_per_pixel;
3148
3149        if (latency == 0 || !p->active || !p_params->enabled)
3150                return false;
3151
3152        bytes_per_pixel = p_params->y_bytes_per_pixel ?
3153                p_params->y_bytes_per_pixel :
3154                p_params->bytes_per_pixel;
3155        method1 = skl_wm_method1(p->pixel_rate,
3156                                 bytes_per_pixel,
3157                                 latency);
3158        method2 = skl_wm_method2(p->pixel_rate,
3159                                 p->pipe_htotal,
3160                                 p_params->horiz_pixels,
3161                                 bytes_per_pixel,
3162                                 p_params->tiling,
3163                                 latency);
3164
3165        plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3166        plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3167
3168        if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3169            p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3170                uint32_t min_scanlines = 4;
3171                uint32_t y_tile_minimum;
3172                if (intel_rotation_90_or_270(p_params->rotation)) {
3173                        switch (p_params->bytes_per_pixel) {
3174                        case 1:
3175                                min_scanlines = 16;
3176                                break;
3177                        case 2:
3178                                min_scanlines = 8;
3179                                break;
3180                        case 8:
3181                                WARN(1, "Unsupported pixel depth for rotation");
3182                        }
3183                }
3184                y_tile_minimum = plane_blocks_per_line * min_scanlines;
3185                selected_result = max(method2, y_tile_minimum);
3186        } else {
3187                if ((ddb_allocation / plane_blocks_per_line) >= 1)
3188                        selected_result = min(method1, method2);
3189                else
3190                        selected_result = method1;
3191        }
3192
3193        res_blocks = selected_result + 1;
3194        res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3195
3196        if (level >= 1 && level <= 7) {
3197                if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3198                    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3199                        res_lines += 4;
3200                else
3201                        res_blocks++;
3202        }
3203
3204        if (res_blocks >= ddb_allocation || res_lines > 31)
3205                return false;
3206
3207        *out_blocks = res_blocks;
3208        *out_lines = res_lines;
3209
3210        return true;
3211}
3212
3213static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3214                                 struct skl_ddb_allocation *ddb,
3215                                 struct skl_pipe_wm_parameters *p,
3216                                 enum pipe pipe,
3217                                 int level,
3218                                 int num_planes,
3219                                 struct skl_wm_level *result)
3220{
3221        uint16_t ddb_blocks;
3222        int i;
3223
3224        for (i = 0; i < num_planes; i++) {
3225                ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3226
3227                result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3228                                                p, &p->plane[i],
3229                                                ddb_blocks,
3230                                                level,
3231                                                &result->plane_res_b[i],
3232                                                &result->plane_res_l[i]);
3233        }
3234
3235        ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3236        result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3237                                                 &p->plane[PLANE_CURSOR],
3238                                                 ddb_blocks, level,
3239                                                 &result->plane_res_b[PLANE_CURSOR],
3240                                                 &result->plane_res_l[PLANE_CURSOR]);
3241}
3242
3243static uint32_t
3244skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3245{
3246        if (!to_intel_crtc(crtc)->active)
3247                return 0;
3248
3249        if (WARN_ON(p->pixel_rate == 0))
3250                return 0;
3251
3252        return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3253}
3254
3255static void skl_compute_transition_wm(struct drm_crtc *crtc,
3256                                      struct skl_pipe_wm_parameters *params,
3257                                      struct skl_wm_level *trans_wm /* out */)
3258{
3259        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3260        int i;
3261
3262        if (!params->active)
3263                return;
3264
3265        /* Until we know more, just disable transition WMs */
3266        for (i = 0; i < intel_num_planes(intel_crtc); i++)
3267                trans_wm->plane_en[i] = false;
3268        trans_wm->plane_en[PLANE_CURSOR] = false;
3269}
3270
3271static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3272                                struct skl_ddb_allocation *ddb,
3273                                struct skl_pipe_wm_parameters *params,
3274                                struct skl_pipe_wm *pipe_wm)
3275{
3276        struct drm_device *dev = crtc->dev;
3277        const struct drm_i915_private *dev_priv = dev->dev_private;
3278        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3279        int level, max_level = ilk_wm_max_level(dev);
3280
3281        for (level = 0; level <= max_level; level++) {
3282                skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3283                                     level, intel_num_planes(intel_crtc),
3284                                     &pipe_wm->wm[level]);
3285        }
3286        pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3287
3288        skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3289}
3290
3291static void skl_compute_wm_results(struct drm_device *dev,
3292                                   struct skl_pipe_wm_parameters *p,
3293                                   struct skl_pipe_wm *p_wm,
3294                                   struct skl_wm_values *r,
3295                                   struct intel_crtc *intel_crtc)
3296{
3297        int level, max_level = ilk_wm_max_level(dev);
3298        enum pipe pipe = intel_crtc->pipe;
3299        uint32_t temp;
3300        int i;
3301
3302        for (level = 0; level <= max_level; level++) {
3303                for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3304                        temp = 0;
3305
3306                        temp |= p_wm->wm[level].plane_res_l[i] <<
3307                                        PLANE_WM_LINES_SHIFT;
3308                        temp |= p_wm->wm[level].plane_res_b[i];
3309                        if (p_wm->wm[level].plane_en[i])
3310                                temp |= PLANE_WM_EN;
3311
3312                        r->plane[pipe][i][level] = temp;
3313                }
3314
3315                temp = 0;
3316
3317                temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3318                temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3319
3320                if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3321                        temp |= PLANE_WM_EN;
3322
3323                r->plane[pipe][PLANE_CURSOR][level] = temp;
3324
3325        }
3326
3327        /* transition WMs */
3328        for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3329                temp = 0;
3330                temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3331                temp |= p_wm->trans_wm.plane_res_b[i];
3332                if (p_wm->trans_wm.plane_en[i])
3333                        temp |= PLANE_WM_EN;
3334
3335                r->plane_trans[pipe][i] = temp;
3336        }
3337
3338        temp = 0;
3339        temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3340        temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3341        if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3342                temp |= PLANE_WM_EN;
3343
3344        r->plane_trans[pipe][PLANE_CURSOR] = temp;
3345
3346        r->wm_linetime[pipe] = p_wm->linetime;
3347}
3348
3349static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3350                                const struct skl_ddb_entry *entry)
3351{
3352        if (entry->end)
3353                I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3354        else
3355                I915_WRITE(reg, 0);
3356}
3357
3358static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3359                                const struct skl_wm_values *new)
3360{
3361        struct drm_device *dev = dev_priv->dev;
3362        struct intel_crtc *crtc;
3363
3364        list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3365                int i, level, max_level = ilk_wm_max_level(dev);
3366                enum pipe pipe = crtc->pipe;
3367
3368                if (!new->dirty[pipe])
3369                        continue;
3370
3371                I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3372
3373                for (level = 0; level <= max_level; level++) {
3374                        for (i = 0; i < intel_num_planes(crtc); i++)
3375                                I915_WRITE(PLANE_WM(pipe, i, level),
3376                                           new->plane[pipe][i][level]);
3377                        I915_WRITE(CUR_WM(pipe, level),
3378                                   new->plane[pipe][PLANE_CURSOR][level]);
3379                }
3380                for (i = 0; i < intel_num_planes(crtc); i++)
3381                        I915_WRITE(PLANE_WM_TRANS(pipe, i),
3382                                   new->plane_trans[pipe][i]);
3383                I915_WRITE(CUR_WM_TRANS(pipe),
3384                           new->plane_trans[pipe][PLANE_CURSOR]);
3385
3386                for (i = 0; i < intel_num_planes(crtc); i++) {
3387                        skl_ddb_entry_write(dev_priv,
3388                                            PLANE_BUF_CFG(pipe, i),
3389                                            &new->ddb.plane[pipe][i]);
3390                        skl_ddb_entry_write(dev_priv,
3391                                            PLANE_NV12_BUF_CFG(pipe, i),
3392                                            &new->ddb.y_plane[pipe][i]);
3393                }
3394
3395                skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3396                                    &new->ddb.plane[pipe][PLANE_CURSOR]);
3397        }
3398}
3399
3400/*
3401 * When setting up a new DDB allocation arrangement, we need to correctly
3402 * sequence the times at which the new allocations for the pipes are taken into
3403 * account or we'll have pipes fetching from space previously allocated to
3404 * another pipe.
3405 *
3406 * Roughly the sequence looks like:
3407 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3408 *     overlapping with a previous light-up pipe (another way to put it is:
3409 *     pipes with their new allocation strickly included into their old ones).
3410 *  2. re-allocate the other pipes that get their allocation reduced
3411 *  3. allocate the pipes having their allocation increased
3412 *
3413 * Steps 1. and 2. are here to take care of the following case:
3414 * - Initially DDB looks like this:
3415 *     |   B    |   C    |
3416 * - enable pipe A.
3417 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3418 *   allocation
3419 *     |  A  |  B  |  C  |
3420 *
3421 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3422 */
3423
3424static void
3425skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3426{
3427        int plane;
3428
3429        DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3430
3431        for_each_plane(dev_priv, pipe, plane) {
3432                I915_WRITE(PLANE_SURF(pipe, plane),
3433                           I915_READ(PLANE_SURF(pipe, plane)));
3434        }
3435        I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3436}
3437
3438static bool
3439skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3440                            const struct skl_ddb_allocation *new,
3441                            enum pipe pipe)
3442{
3443        uint16_t old_size, new_size;
3444
3445        old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3446        new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3447
3448        return old_size != new_size &&
3449               new->pipe[pipe].start >= old->pipe[pipe].start &&
3450               new->pipe[pipe].end <= old->pipe[pipe].end;
3451}
3452
3453static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3454                                struct skl_wm_values *new_values)
3455{
3456        struct drm_device *dev = dev_priv->dev;
3457        struct skl_ddb_allocation *cur_ddb, *new_ddb;
3458        bool reallocated[I915_MAX_PIPES] = {};
3459        struct intel_crtc *crtc;
3460        enum pipe pipe;
3461
3462        new_ddb = &new_values->ddb;
3463        cur_ddb = &dev_priv->wm.skl_hw.ddb;
3464
3465        /*
3466         * First pass: flush the pipes with the new allocation contained into
3467         * the old space.
3468         *
3469         * We'll wait for the vblank on those pipes to ensure we can safely
3470         * re-allocate the freed space without this pipe fetching from it.
3471         */
3472        for_each_intel_crtc(dev, crtc) {
3473                if (!crtc->active)
3474                        continue;
3475
3476                pipe = crtc->pipe;
3477
3478                if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3479                        continue;
3480
3481                skl_wm_flush_pipe(dev_priv, pipe, 1);
3482                intel_wait_for_vblank(dev, pipe);
3483
3484                reallocated[pipe] = true;
3485        }
3486
3487
3488        /*
3489         * Second pass: flush the pipes that are having their allocation
3490         * reduced, but overlapping with a previous allocation.
3491         *
3492         * Here as well we need to wait for the vblank to make sure the freed
3493         * space is not used anymore.
3494         */
3495        for_each_intel_crtc(dev, crtc) {
3496                if (!crtc->active)
3497                        continue;
3498
3499                pipe = crtc->pipe;
3500
3501                if (reallocated[pipe])
3502                        continue;
3503
3504                if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3505                    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3506                        skl_wm_flush_pipe(dev_priv, pipe, 2);
3507                        intel_wait_for_vblank(dev, pipe);
3508                        reallocated[pipe] = true;
3509                }
3510        }
3511
3512        /*
3513         * Third pass: flush the pipes that got more space allocated.
3514         *
3515         * We don't need to actively wait for the update here, next vblank
3516         * will just get more DDB space with the correct WM values.
3517         */
3518        for_each_intel_crtc(dev, crtc) {
3519                if (!crtc->active)
3520                        continue;
3521
3522                pipe = crtc->pipe;
3523
3524                /*
3525                 * At this point, only the pipes more space than before are
3526                 * left to re-allocate.
3527                 */
3528                if (reallocated[pipe])
3529                        continue;
3530
3531                skl_wm_flush_pipe(dev_priv, pipe, 3);
3532        }
3533}
3534
3535static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3536                               struct skl_pipe_wm_parameters *params,
3537                               struct intel_wm_config *config,
3538                               struct skl_ddb_allocation *ddb, /* out */
3539                               struct skl_pipe_wm *pipe_wm /* out */)
3540{
3541        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3542
3543        skl_compute_wm_pipe_parameters(crtc, params);
3544        skl_allocate_pipe_ddb(crtc, config, params, ddb);
3545        skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3546
3547        if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3548                return false;
3549
3550        intel_crtc->wm.skl_active = *pipe_wm;
3551
3552        return true;
3553}
3554
3555static void skl_update_other_pipe_wm(struct drm_device *dev,
3556                                     struct drm_crtc *crtc,
3557                                     struct intel_wm_config *config,
3558                                     struct skl_wm_values *r)
3559{
3560        struct intel_crtc *intel_crtc;
3561        struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3562
3563        /*
3564         * If the WM update hasn't changed the allocation for this_crtc (the
3565         * crtc we are currently computing the new WM values for), other
3566         * enabled crtcs will keep the same allocation and we don't need to
3567         * recompute anything for them.
3568         */
3569        if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3570                return;
3571
3572        /*
3573         * Otherwise, because of this_crtc being freshly enabled/disabled, the
3574         * other active pipes need new DDB allocation and WM values.
3575         */
3576        list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3577                                base.head) {
3578                struct skl_pipe_wm_parameters params = {};
3579                struct skl_pipe_wm pipe_wm = {};
3580                bool wm_changed;
3581
3582                if (this_crtc->pipe == intel_crtc->pipe)
3583                        continue;
3584
3585                if (!intel_crtc->active)
3586                        continue;
3587
3588                wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3589                                                &params, config,
3590                                                &r->ddb, &pipe_wm);
3591
3592                /*
3593                 * If we end up re-computing the other pipe WM values, it's
3594                 * because it was really needed, so we expect the WM values to
3595                 * be different.
3596                 */
3597                WARN_ON(!wm_changed);
3598
3599                skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3600                r->dirty[intel_crtc->pipe] = true;
3601        }
3602}
3603
3604static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3605{
3606        watermarks->wm_linetime[pipe] = 0;
3607        memset(watermarks->plane[pipe], 0,
3608               sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3609        memset(watermarks->plane_trans[pipe],
3610               0, sizeof(uint32_t) * I915_MAX_PLANES);
3611        watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3612
3613        /* Clear ddb entries for pipe */
3614        memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3615        memset(&watermarks->ddb.plane[pipe], 0,
3616               sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3617        memset(&watermarks->ddb.y_plane[pipe], 0,
3618               sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3619        memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3620               sizeof(struct skl_ddb_entry));
3621
3622}
3623
3624static void skl_update_wm(struct drm_crtc *crtc)
3625{
3626        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3627        struct drm_device *dev = crtc->dev;
3628        struct drm_i915_private *dev_priv = dev->dev_private;
3629        struct skl_pipe_wm_parameters params = {};
3630        struct skl_wm_values *results = &dev_priv->wm.skl_results;
3631        struct skl_pipe_wm pipe_wm = {};
3632        struct intel_wm_config config = {};
3633
3634
3635        /* Clear all dirty flags */
3636        memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3637
3638        skl_clear_wm(results, intel_crtc->pipe);
3639
3640        skl_compute_wm_global_parameters(dev, &config);
3641
3642        if (!skl_update_pipe_wm(crtc, &params, &config,
3643                                &results->ddb, &pipe_wm))
3644                return;
3645
3646        skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3647        results->dirty[intel_crtc->pipe] = true;
3648
3649        skl_update_other_pipe_wm(dev, crtc, &config, results);
3650        skl_write_wm_values(dev_priv, results);
3651        skl_flush_wm_values(dev_priv, results);
3652
3653        /* store the new configuration */
3654        dev_priv->wm.skl_hw = *results;
3655}
3656
3657static void
3658skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3659                     uint32_t sprite_width, uint32_t sprite_height,
3660                     int pixel_size, bool enabled, bool scaled)
3661{
3662        struct intel_plane *intel_plane = to_intel_plane(plane);
3663        struct drm_framebuffer *fb = plane->state->fb;
3664
3665        intel_plane->wm.enabled = enabled;
3666        intel_plane->wm.scaled = scaled;
3667        intel_plane->wm.horiz_pixels = sprite_width;
3668        intel_plane->wm.vert_pixels = sprite_height;
3669        intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3670
3671        /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3672        intel_plane->wm.bytes_per_pixel =
3673                (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3674                drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3675        intel_plane->wm.y_bytes_per_pixel =
3676                (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3677                drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3678
3679        /*
3680         * Framebuffer can be NULL on plane disable, but it does not
3681         * matter for watermarks if we assume no tiling in that case.
3682         */
3683        if (fb)
3684                intel_plane->wm.tiling = fb->modifier[0];
3685        intel_plane->wm.rotation = plane->state->rotation;
3686
3687        skl_update_wm(crtc);
3688}
3689
3690static void ilk_update_wm(struct drm_crtc *crtc)
3691{
3692        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3694        struct drm_device *dev = crtc->dev;
3695        struct drm_i915_private *dev_priv = dev->dev_private;
3696        struct ilk_wm_maximums max;
3697        struct ilk_wm_values results = {};
3698        enum intel_ddb_partitioning partitioning;
3699        struct intel_pipe_wm pipe_wm = {};
3700        struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3701        struct intel_wm_config config = {};
3702
3703        WARN_ON(cstate->base.active != intel_crtc->active);
3704
3705        intel_compute_pipe_wm(cstate, &pipe_wm);
3706
3707        if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3708                return;
3709
3710        intel_crtc->wm.active = pipe_wm;
3711
3712        ilk_compute_wm_config(dev, &config);
3713
3714        ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3715        ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3716
3717        /* 5/6 split only in single pipe config on IVB+ */
3718        if (INTEL_INFO(dev)->gen >= 7 &&
3719            config.num_pipes_active == 1 && config.sprites_enabled) {
3720                ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3721                ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3722
3723                best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3724        } else {
3725                best_lp_wm = &lp_wm_1_2;
3726        }
3727
3728        partitioning = (best_lp_wm == &lp_wm_1_2) ?
3729                       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3730
3731        ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3732
3733        ilk_write_wm_values(dev_priv, &results);
3734}
3735
3736static void
3737ilk_update_sprite_wm(struct drm_plane *plane,
3738                     struct drm_crtc *crtc,
3739                     uint32_t sprite_width, uint32_t sprite_height,
3740                     int pixel_size, bool enabled, bool scaled)
3741{
3742        struct drm_device *dev = plane->dev;
3743        struct intel_plane *intel_plane = to_intel_plane(plane);
3744
3745        /*
3746         * IVB workaround: must disable low power watermarks for at least
3747         * one frame before enabling scaling.  LP watermarks can be re-enabled
3748         * when scaling is disabled.
3749         *
3750         * WaCxSRDisabledForSpriteScaling:ivb
3751         */
3752        if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3753                intel_wait_for_vblank(dev, intel_plane->pipe);
3754
3755        ilk_update_wm(crtc);
3756}
3757
3758static void skl_pipe_wm_active_state(uint32_t val,
3759                                     struct skl_pipe_wm *active,
3760                                     bool is_transwm,
3761                                     bool is_cursor,
3762                                     int i,
3763                                     int level)
3764{
3765        bool is_enabled = (val & PLANE_WM_EN) != 0;
3766
3767        if (!is_transwm) {
3768                if (!is_cursor) {
3769                        active->wm[level].plane_en[i] = is_enabled;
3770                        active->wm[level].plane_res_b[i] =
3771                                        val & PLANE_WM_BLOCKS_MASK;
3772                        active->wm[level].plane_res_l[i] =
3773                                        (val >> PLANE_WM_LINES_SHIFT) &
3774                                                PLANE_WM_LINES_MASK;
3775                } else {
3776                        active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3777                        active->wm[level].plane_res_b[PLANE_CURSOR] =
3778                                        val & PLANE_WM_BLOCKS_MASK;
3779                        active->wm[level].plane_res_l[PLANE_CURSOR] =
3780                                        (val >> PLANE_WM_LINES_SHIFT) &
3781                                                PLANE_WM_LINES_MASK;
3782                }
3783        } else {
3784                if (!is_cursor) {
3785                        active->trans_wm.plane_en[i] = is_enabled;
3786                        active->trans_wm.plane_res_b[i] =
3787                                        val & PLANE_WM_BLOCKS_MASK;
3788                        active->trans_wm.plane_res_l[i] =
3789                                        (val >> PLANE_WM_LINES_SHIFT) &
3790                                                PLANE_WM_LINES_MASK;
3791                } else {
3792                        active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3793                        active->trans_wm.plane_res_b[PLANE_CURSOR] =
3794                                        val & PLANE_WM_BLOCKS_MASK;
3795                        active->trans_wm.plane_res_l[PLANE_CURSOR] =
3796                                        (val >> PLANE_WM_LINES_SHIFT) &
3797                                                PLANE_WM_LINES_MASK;
3798                }
3799        }
3800}
3801
3802static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3803{
3804        struct drm_device *dev = crtc->dev;
3805        struct drm_i915_private *dev_priv = dev->dev_private;
3806        struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3807        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3808        struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3809        enum pipe pipe = intel_crtc->pipe;
3810        int level, i, max_level;
3811        uint32_t temp;
3812
3813        max_level = ilk_wm_max_level(dev);
3814
3815        hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3816
3817        for (level = 0; level <= max_level; level++) {
3818                for (i = 0; i < intel_num_planes(intel_crtc); i++)
3819                        hw->plane[pipe][i][level] =
3820                                        I915_READ(PLANE_WM(pipe, i, level));
3821                hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3822        }
3823
3824        for (i = 0; i < intel_num_planes(intel_crtc); i++)
3825                hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3826        hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3827
3828        if (!intel_crtc->active)
3829                return;
3830
3831        hw->dirty[pipe] = true;
3832
3833        active->linetime = hw->wm_linetime[pipe];
3834
3835        for (level = 0; level <= max_level; level++) {
3836                for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3837                        temp = hw->plane[pipe][i][level];
3838                        skl_pipe_wm_active_state(temp, active, false,
3839                                                false, i, level);
3840                }
3841                temp = hw->plane[pipe][PLANE_CURSOR][level];
3842                skl_pipe_wm_active_state(temp, active, false, true, i, level);
3843        }
3844
3845        for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3846                temp = hw->plane_trans[pipe][i];
3847                skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3848        }
3849
3850        temp = hw->plane_trans[pipe][PLANE_CURSOR];
3851        skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3852}
3853
3854void skl_wm_get_hw_state(struct drm_device *dev)
3855{
3856        struct drm_i915_private *dev_priv = dev->dev_private;
3857        struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3858        struct drm_crtc *crtc;
3859
3860        skl_ddb_get_hw_state(dev_priv, ddb);
3861        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3862                skl_pipe_wm_get_hw_state(crtc);
3863}
3864
3865static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3866{
3867        struct drm_device *dev = crtc->dev;
3868        struct drm_i915_private *dev_priv = dev->dev_private;
3869        struct ilk_wm_values *hw = &dev_priv->wm.hw;
3870        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3871        struct intel_pipe_wm *active = &intel_crtc->wm.active;
3872        enum pipe pipe = intel_crtc->pipe;
3873        static const unsigned int wm0_pipe_reg[] = {
3874                [PIPE_A] = WM0_PIPEA_ILK,
3875                [PIPE_B] = WM0_PIPEB_ILK,
3876                [PIPE_C] = WM0_PIPEC_IVB,
3877        };
3878
3879        hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3880        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3881                hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3882
3883        active->pipe_enabled = intel_crtc->active;
3884
3885        if (active->pipe_enabled) {
3886                u32 tmp = hw->wm_pipe[pipe];
3887
3888                /*
3889                 * For active pipes LP0 watermark is marked as
3890                 * enabled, and LP1+ watermaks as disabled since
3891                 * we can't really reverse compute them in case
3892                 * multiple pipes are active.
3893                 */
3894                active->wm[0].enable = true;
3895                active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3896                active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3897                active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3898                active->linetime = hw->wm_linetime[pipe];
3899        } else {
3900                int level, max_level = ilk_wm_max_level(dev);
3901
3902                /*
3903                 * For inactive pipes, all watermark levels
3904                 * should be marked as enabled but zeroed,
3905                 * which is what we'd compute them to.
3906                 */
3907                for (level = 0; level <= max_level; level++)
3908                        active->wm[level].enable = true;
3909        }
3910}
3911
3912#define _FW_WM(value, plane) \
3913        (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3914#define _FW_WM_VLV(value, plane) \
3915        (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3916
3917static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3918                               struct vlv_wm_values *wm)
3919{
3920        enum pipe pipe;
3921        uint32_t tmp;
3922
3923        for_each_pipe(dev_priv, pipe) {
3924                tmp = I915_READ(VLV_DDL(pipe));
3925
3926                wm->ddl[pipe].primary =
3927                        (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3928                wm->ddl[pipe].cursor =
3929                        (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3930                wm->ddl[pipe].sprite[0] =
3931                        (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3932                wm->ddl[pipe].sprite[1] =
3933                        (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3934        }
3935
3936        tmp = I915_READ(DSPFW1);
3937        wm->sr.plane = _FW_WM(tmp, SR);
3938        wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3939        wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3940        wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3941
3942        tmp = I915_READ(DSPFW2);
3943        wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3944        wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3945        wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3946
3947        tmp = I915_READ(DSPFW3);
3948        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3949
3950        if (IS_CHERRYVIEW(dev_priv)) {
3951                tmp = I915_READ(DSPFW7_CHV);
3952                wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3953                wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3954
3955                tmp = I915_READ(DSPFW8_CHV);
3956                wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3957                wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3958
3959                tmp = I915_READ(DSPFW9_CHV);
3960                wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3961                wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3962
3963                tmp = I915_READ(DSPHOWM);
3964                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3965                wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3966                wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3967                wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3968                wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3969                wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3970                wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3971                wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3972                wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3973                wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3974        } else {
3975                tmp = I915_READ(DSPFW7);
3976                wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3977                wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3978
3979                tmp = I915_READ(DSPHOWM);
3980                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3981                wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3982                wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3983                wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3984                wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3985                wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3986                wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3987        }
3988}
3989
3990#undef _FW_WM
3991#undef _FW_WM_VLV
3992
3993void vlv_wm_get_hw_state(struct drm_device *dev)
3994{
3995        struct drm_i915_private *dev_priv = to_i915(dev);
3996        struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3997        struct intel_plane *plane;
3998        enum pipe pipe;
3999        u32 val;
4000
4001        vlv_read_wm_values(dev_priv, wm);
4002
4003        for_each_intel_plane(dev, plane) {
4004                switch (plane->base.type) {
4005                        int sprite;
4006                case DRM_PLANE_TYPE_CURSOR:
4007                        plane->wm.fifo_size = 63;
4008                        break;
4009                case DRM_PLANE_TYPE_PRIMARY:
4010                        plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4011                        break;
4012                case DRM_PLANE_TYPE_OVERLAY:
4013                        sprite = plane->plane;
4014                        plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4015                        break;
4016                }
4017        }
4018
4019        wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4020        wm->level = VLV_WM_LEVEL_PM2;
4021
4022        if (IS_CHERRYVIEW(dev_priv)) {
4023                mutex_lock(&dev_priv->rps.hw_lock);
4024
4025                val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4026                if (val & DSP_MAXFIFO_PM5_ENABLE)
4027                        wm->level = VLV_WM_LEVEL_PM5;
4028
4029                /*
4030                 * If DDR DVFS is disabled in the BIOS, Punit
4031                 * will never ack the request. So if that happens
4032                 * assume we don't have to enable/disable DDR DVFS
4033                 * dynamically. To test that just set the REQ_ACK
4034                 * bit to poke the Punit, but don't change the
4035                 * HIGH/LOW bits so that we don't actually change
4036                 * the current state.
4037                 */
4038                val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4039                val |= FORCE_DDR_FREQ_REQ_ACK;
4040                vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4041
4042                if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4043                              FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4044                        DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4045                                      "assuming DDR DVFS is disabled\n");
4046                        dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4047                } else {
4048                        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4049                        if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4050                                wm->level = VLV_WM_LEVEL_DDR_DVFS;
4051                }
4052
4053                mutex_unlock(&dev_priv->rps.hw_lock);
4054        }
4055
4056        for_each_pipe(dev_priv, pipe)
4057                DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4058                              pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4059                              wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4060
4061        DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4062                      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4063}
4064
4065void ilk_wm_get_hw_state(struct drm_device *dev)
4066{
4067        struct drm_i915_private *dev_priv = dev->dev_private;
4068        struct ilk_wm_values *hw = &dev_priv->wm.hw;
4069        struct drm_crtc *crtc;
4070
4071        for_each_crtc(dev, crtc)
4072                ilk_pipe_wm_get_hw_state(crtc);
4073
4074        hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4075        hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4076        hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4077
4078        hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4079        if (INTEL_INFO(dev)->gen >= 7) {
4080                hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4081                hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4082        }
4083
4084        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4085                hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4086                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4087        else if (IS_IVYBRIDGE(dev))
4088                hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4089                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4090
4091        hw->enable_fbc_wm =
4092                !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4093}
4094
4095/**
4096 * intel_update_watermarks - update FIFO watermark values based on current modes
4097 *
4098 * Calculate watermark values for the various WM regs based on current mode
4099 * and plane configuration.
4100 *
4101 * There are several cases to deal with here:
4102 *   - normal (i.e. non-self-refresh)
4103 *   - self-refresh (SR) mode
4104 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4105 *   - lines are small relative to FIFO size (buffer can hold more than 2
4106 *     lines), so need to account for TLB latency
4107 *
4108 *   The normal calculation is:
4109 *     watermark = dotclock * bytes per pixel * latency
4110 *   where latency is platform & configuration dependent (we assume pessimal
4111 *   values here).
4112 *
4113 *   The SR calculation is:
4114 *     watermark = (trunc(latency/line time)+1) * surface width *
4115 *       bytes per pixel
4116 *   where
4117 *     line time = htotal / dotclock
4118 *     surface width = hdisplay for normal plane and 64 for cursor
4119 *   and latency is assumed to be high, as above.
4120 *
4121 * The final value programmed to the register should always be rounded up,
4122 * and include an extra 2 entries to account for clock crossings.
4123 *
4124 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4125 * to set the non-SR watermarks to 8.
4126 */
4127void intel_update_watermarks(struct drm_crtc *crtc)
4128{
4129        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4130
4131        if (dev_priv->display.update_wm)
4132                dev_priv->display.update_wm(crtc);
4133}
4134
4135void intel_update_sprite_watermarks(struct drm_plane *plane,
4136                                    struct drm_crtc *crtc,
4137                                    uint32_t sprite_width,
4138                                    uint32_t sprite_height,
4139                                    int pixel_size,
4140                                    bool enabled, bool scaled)
4141{
4142        struct drm_i915_private *dev_priv = plane->dev->dev_private;
4143
4144        if (dev_priv->display.update_sprite_wm)
4145                dev_priv->display.update_sprite_wm(plane, crtc,
4146                                                   sprite_width, sprite_height,
4147                                                   pixel_size, enabled, scaled);
4148}
4149
4150/**
4151 * Lock protecting IPS related data structures
4152 */
4153DEFINE_SPINLOCK(mchdev_lock);
4154
4155/* Global for IPS driver to get at the current i915 device. Protected by
4156 * mchdev_lock. */
4157static struct drm_i915_private *i915_mch_dev;
4158
4159bool ironlake_set_drps(struct drm_device *dev, u8 val)
4160{
4161        struct drm_i915_private *dev_priv = dev->dev_private;
4162        u16 rgvswctl;
4163
4164        assert_spin_locked(&mchdev_lock);
4165
4166        rgvswctl = I915_READ16(MEMSWCTL);
4167        if (rgvswctl & MEMCTL_CMD_STS) {
4168                DRM_DEBUG("gpu busy, RCS change rejected\n");
4169                return false; /* still busy with another command */
4170        }
4171
4172        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4173                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4174        I915_WRITE16(MEMSWCTL, rgvswctl);
4175        POSTING_READ16(MEMSWCTL);
4176
4177        rgvswctl |= MEMCTL_CMD_STS;
4178        I915_WRITE16(MEMSWCTL, rgvswctl);
4179
4180        return true;
4181}
4182
4183static void ironlake_enable_drps(struct drm_device *dev)
4184{
4185        struct drm_i915_private *dev_priv = dev->dev_private;
4186        u32 rgvmodectl = I915_READ(MEMMODECTL);
4187        u8 fmax, fmin, fstart, vstart;
4188
4189        spin_lock_irq(&mchdev_lock);
4190
4191        /* Enable temp reporting */
4192        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4193        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4194
4195        /* 100ms RC evaluation intervals */
4196        I915_WRITE(RCUPEI, 100000);
4197        I915_WRITE(RCDNEI, 100000);
4198
4199        /* Set max/min thresholds to 90ms and 80ms respectively */
4200        I915_WRITE(RCBMAXAVG, 90000);
4201        I915_WRITE(RCBMINAVG, 80000);
4202
4203        I915_WRITE(MEMIHYST, 1);
4204
4205        /* Set up min, max, and cur for interrupt handling */
4206        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4207        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4208        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4209                MEMMODE_FSTART_SHIFT;
4210
4211        vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4212                PXVFREQ_PX_SHIFT;
4213
4214        dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4215        dev_priv->ips.fstart = fstart;
4216
4217        dev_priv->ips.max_delay = fstart;
4218        dev_priv->ips.min_delay = fmin;
4219        dev_priv->ips.cur_delay = fstart;
4220
4221        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4222                         fmax, fmin, fstart);
4223
4224        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4225
4226        /*
4227         * Interrupts will be enabled in ironlake_irq_postinstall
4228         */
4229
4230        I915_WRITE(VIDSTART, vstart);
4231        POSTING_READ(VIDSTART);
4232
4233        rgvmodectl |= MEMMODE_SWMODE_EN;
4234        I915_WRITE(MEMMODECTL, rgvmodectl);
4235
4236        if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4237                DRM_ERROR("stuck trying to change perf mode\n");
4238        mdelay(1);
4239
4240        ironlake_set_drps(dev, fstart);
4241
4242        dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4243                I915_READ(DDREC) + I915_READ(CSIEC);
4244        dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4245        dev_priv->ips.last_count2 = I915_READ(GFXEC);
4246        dev_priv->ips.last_time2 = ktime_get_raw_ns();
4247
4248        spin_unlock_irq(&mchdev_lock);
4249}
4250
4251static void ironlake_disable_drps(struct drm_device *dev)
4252{
4253        struct drm_i915_private *dev_priv = dev->dev_private;
4254        u16 rgvswctl;
4255
4256        spin_lock_irq(&mchdev_lock);
4257
4258        rgvswctl = I915_READ16(MEMSWCTL);
4259
4260        /* Ack interrupts, disable EFC interrupt */
4261        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4262        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4263        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4264        I915_WRITE(DEIIR, DE_PCU_EVENT);
4265        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4266
4267        /* Go back to the starting frequency */
4268        ironlake_set_drps(dev, dev_priv->ips.fstart);
4269        mdelay(1);
4270        rgvswctl |= MEMCTL_CMD_STS;
4271        I915_WRITE(MEMSWCTL, rgvswctl);
4272        mdelay(1);
4273
4274        spin_unlock_irq(&mchdev_lock);
4275}
4276
4277/* There's a funny hw issue where the hw returns all 0 when reading from
4278 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4279 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4280 * all limits and the gpu stuck at whatever frequency it is at atm).
4281 */
4282static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4283{
4284        u32 limits;
4285
4286        /* Only set the down limit when we've reached the lowest level to avoid
4287         * getting more interrupts, otherwise leave this clear. This prevents a
4288         * race in the hw when coming out of rc6: There's a tiny window where
4289         * the hw runs at the minimal clock before selecting the desired
4290         * frequency, if the down threshold expires in that window we will not
4291         * receive a down interrupt. */
4292        if (IS_GEN9(dev_priv->dev)) {
4293                limits = (dev_priv->rps.max_freq_softlimit) << 23;
4294                if (val <= dev_priv->rps.min_freq_softlimit)
4295                        limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4296        } else {
4297                limits = dev_priv->rps.max_freq_softlimit << 24;
4298                if (val <= dev_priv->rps.min_freq_softlimit)
4299                        limits |= dev_priv->rps.min_freq_softlimit << 16;
4300        }
4301
4302        return limits;
4303}
4304
4305static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4306{
4307        int new_power;
4308        u32 threshold_up = 0, threshold_down = 0; /* in % */
4309        u32 ei_up = 0, ei_down = 0;
4310
4311        new_power = dev_priv->rps.power;
4312        switch (dev_priv->rps.power) {
4313        case LOW_POWER:
4314                if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4315                        new_power = BETWEEN;
4316                break;
4317
4318        case BETWEEN:
4319                if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4320                        new_power = LOW_POWER;
4321                else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4322                        new_power = HIGH_POWER;
4323                break;
4324
4325        case HIGH_POWER:
4326                if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4327                        new_power = BETWEEN;
4328                break;
4329        }
4330        /* Max/min bins are special */
4331        if (val <= dev_priv->rps.min_freq_softlimit)
4332                new_power = LOW_POWER;
4333        if (val >= dev_priv->rps.max_freq_softlimit)
4334                new_power = HIGH_POWER;
4335        if (new_power == dev_priv->rps.power)
4336                return;
4337
4338        /* Note the units here are not exactly 1us, but 1280ns. */
4339        switch (new_power) {
4340        case LOW_POWER:
4341                /* Upclock if more than 95% busy over 16ms */
4342                ei_up = 16000;
4343                threshold_up = 95;
4344
4345                /* Downclock if less than 85% busy over 32ms */
4346                ei_down = 32000;
4347                threshold_down = 85;
4348                break;
4349
4350        case BETWEEN:
4351                /* Upclock if more than 90% busy over 13ms */
4352                ei_up = 13000;
4353                threshold_up = 90;
4354
4355                /* Downclock if less than 75% busy over 32ms */
4356                ei_down = 32000;
4357                threshold_down = 75;
4358                break;
4359
4360        case HIGH_POWER:
4361                /* Upclock if more than 85% busy over 10ms */
4362                ei_up = 10000;
4363                threshold_up = 85;
4364
4365                /* Downclock if less than 60% busy over 32ms */
4366                ei_down = 32000;
4367                threshold_down = 60;
4368                break;
4369        }
4370
4371        I915_WRITE(GEN6_RP_UP_EI,
4372                GT_INTERVAL_FROM_US(dev_priv, ei_up));
4373        I915_WRITE(GEN6_RP_UP_THRESHOLD,
4374                GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4375
4376        I915_WRITE(GEN6_RP_DOWN_EI,
4377                GT_INTERVAL_FROM_US(dev_priv, ei_down));
4378        I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4379                GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4380
4381         I915_WRITE(GEN6_RP_CONTROL,
4382                    GEN6_RP_MEDIA_TURBO |
4383                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4384                    GEN6_RP_MEDIA_IS_GFX |
4385                    GEN6_RP_ENABLE |
4386                    GEN6_RP_UP_BUSY_AVG |
4387                    GEN6_RP_DOWN_IDLE_AVG);
4388
4389        dev_priv->rps.power = new_power;
4390        dev_priv->rps.up_threshold = threshold_up;
4391        dev_priv->rps.down_threshold = threshold_down;
4392        dev_priv->rps.last_adj = 0;
4393}
4394
4395static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4396{
4397        u32 mask = 0;
4398
4399        if (val > dev_priv->rps.min_freq_softlimit)
4400                mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4401        if (val < dev_priv->rps.max_freq_softlimit)
4402                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4403
4404        mask &= dev_priv->pm_rps_events;
4405
4406        return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4407}
4408
4409/* gen6_set_rps is called to update the frequency request, but should also be
4410 * called when the range (min_delay and max_delay) is modified so that we can
4411 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4412static void gen6_set_rps(struct drm_device *dev, u8 val)
4413{
4414        struct drm_i915_private *dev_priv = dev->dev_private;
4415
4416        /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4417        if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4418                return;
4419
4420        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4421        WARN_ON(val > dev_priv->rps.max_freq);
4422        WARN_ON(val < dev_priv->rps.min_freq);
4423
4424        /* min/max delay may still have been modified so be sure to
4425         * write the limits value.
4426         */
4427        if (val != dev_priv->rps.cur_freq) {
4428                gen6_set_rps_thresholds(dev_priv, val);
4429
4430                if (IS_GEN9(dev))
4431                        I915_WRITE(GEN6_RPNSWREQ,
4432                                   GEN9_FREQUENCY(val));
4433                else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4434                        I915_WRITE(GEN6_RPNSWREQ,
4435                                   HSW_FREQUENCY(val));
4436                else
4437                        I915_WRITE(GEN6_RPNSWREQ,
4438                                   GEN6_FREQUENCY(val) |
4439                                   GEN6_OFFSET(0) |
4440                                   GEN6_AGGRESSIVE_TURBO);
4441        }
4442
4443        /* Make sure we continue to get interrupts
4444         * until we hit the minimum or maximum frequencies.
4445         */
4446        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4447        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4448
4449        POSTING_READ(GEN6_RPNSWREQ);
4450
4451        dev_priv->rps.cur_freq = val;
4452        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4453}
4454
4455static void valleyview_set_rps(struct drm_device *dev, u8 val)
4456{
4457        struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4460        WARN_ON(val > dev_priv->rps.max_freq);
4461        WARN_ON(val < dev_priv->rps.min_freq);
4462
4463        if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4464                      "Odd GPU freq value\n"))
4465                val &= ~1;
4466
4467        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4468
4469        if (val != dev_priv->rps.cur_freq) {
4470                vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4471                if (!IS_CHERRYVIEW(dev_priv))
4472                        gen6_set_rps_thresholds(dev_priv, val);
4473        }
4474
4475        dev_priv->rps.cur_freq = val;
4476        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4477}
4478
4479/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4480 *
4481 * * If Gfx is Idle, then
4482 * 1. Forcewake Media well.
4483 * 2. Request idle freq.
4484 * 3. Release Forcewake of Media well.
4485*/
4486static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4487{
4488        u32 val = dev_priv->rps.idle_freq;
4489
4490        if (dev_priv->rps.cur_freq <= val)
4491                return;
4492
4493        /* Wake up the media well, as that takes a lot less
4494         * power than the Render well. */
4495        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4496        valleyview_set_rps(dev_priv->dev, val);
4497        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4498}
4499
4500void gen6_rps_busy(struct drm_i915_private *dev_priv)
4501{
4502        mutex_lock(&dev_priv->rps.hw_lock);
4503        if (dev_priv->rps.enabled) {
4504                if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4505                        gen6_rps_reset_ei(dev_priv);
4506                I915_WRITE(GEN6_PMINTRMSK,
4507                           gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4508        }
4509        mutex_unlock(&dev_priv->rps.hw_lock);
4510}
4511
4512void gen6_rps_idle(struct drm_i915_private *dev_priv)
4513{
4514        struct drm_device *dev = dev_priv->dev;
4515
4516        mutex_lock(&dev_priv->rps.hw_lock);
4517        if (dev_priv->rps.enabled) {
4518                if (IS_VALLEYVIEW(dev))
4519                        vlv_set_rps_idle(dev_priv);
4520                else
4521                        gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4522                dev_priv->rps.last_adj = 0;
4523                I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4524        }
4525        mutex_unlock(&dev_priv->rps.hw_lock);
4526
4527        spin_lock(&dev_priv->rps.client_lock);
4528        while (!list_empty(&dev_priv->rps.clients))
4529                list_del_init(dev_priv->rps.clients.next);
4530        spin_unlock(&dev_priv->rps.client_lock);
4531}
4532
4533void gen6_rps_boost(struct drm_i915_private *dev_priv,
4534                    struct intel_rps_client *rps,
4535                    unsigned long submitted)
4536{
4537        /* This is intentionally racy! We peek at the state here, then
4538         * validate inside the RPS worker.
4539         */
4540        if (!(dev_priv->mm.busy &&
4541              dev_priv->rps.enabled &&
4542              dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4543                return;
4544
4545        /* Force a RPS boost (and don't count it against the client) if
4546         * the GPU is severely congested.
4547         */
4548        if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4549                rps = NULL;
4550
4551        spin_lock(&dev_priv->rps.client_lock);
4552        if (rps == NULL || list_empty(&rps->link)) {
4553                spin_lock_irq(&dev_priv->irq_lock);
4554                if (dev_priv->rps.interrupts_enabled) {
4555                        dev_priv->rps.client_boost = true;
4556                        queue_work(dev_priv->wq, &dev_priv->rps.work);
4557                }
4558                spin_unlock_irq(&dev_priv->irq_lock);
4559
4560                if (rps != NULL) {
4561                        list_add(&rps->link, &dev_priv->rps.clients);
4562                        rps->boosts++;
4563                } else
4564                        dev_priv->rps.boosts++;
4565        }
4566        spin_unlock(&dev_priv->rps.client_lock);
4567}
4568
4569void intel_set_rps(struct drm_device *dev, u8 val)
4570{
4571        if (IS_VALLEYVIEW(dev))
4572                valleyview_set_rps(dev, val);
4573        else
4574                gen6_set_rps(dev, val);
4575}
4576
4577static void gen9_disable_rps(struct drm_device *dev)
4578{
4579        struct drm_i915_private *dev_priv = dev->dev_private;
4580
4581        I915_WRITE(GEN6_RC_CONTROL, 0);
4582        I915_WRITE(GEN9_PG_ENABLE, 0);
4583}
4584
4585static void gen6_disable_rps(struct drm_device *dev)
4586{
4587        struct drm_i915_private *dev_priv = dev->dev_private;
4588
4589        I915_WRITE(GEN6_RC_CONTROL, 0);
4590        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4591}
4592
4593static void cherryview_disable_rps(struct drm_device *dev)
4594{
4595        struct drm_i915_private *dev_priv = dev->dev_private;
4596
4597        I915_WRITE(GEN6_RC_CONTROL, 0);
4598}
4599
4600static void valleyview_disable_rps(struct drm_device *dev)
4601{
4602        struct drm_i915_private *dev_priv = dev->dev_private;
4603
4604        /* we're doing forcewake before Disabling RC6,
4605         * This what the BIOS expects when going into suspend */
4606        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4607
4608        I915_WRITE(GEN6_RC_CONTROL, 0);
4609
4610        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4611}
4612
4613static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4614{
4615        if (IS_VALLEYVIEW(dev)) {
4616                if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4617                        mode = GEN6_RC_CTL_RC6_ENABLE;
4618                else
4619                        mode = 0;
4620        }
4621        if (HAS_RC6p(dev))
4622                DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4623                              (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4624                              (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4625                              (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4626
4627        else
4628                DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4629                              (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4630}
4631
4632static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4633{
4634        /* No RC6 before Ironlake and code is gone for ilk. */
4635        if (INTEL_INFO(dev)->gen < 6)
4636                return 0;
4637
4638        /* Respect the kernel parameter if it is set */
4639        if (enable_rc6 >= 0) {
4640                int mask;
4641
4642                if (HAS_RC6p(dev))
4643                        mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4644                               INTEL_RC6pp_ENABLE;
4645                else
4646                        mask = INTEL_RC6_ENABLE;
4647
4648                if ((enable_rc6 & mask) != enable_rc6)
4649                        DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4650                                      enable_rc6 & mask, enable_rc6, mask);
4651
4652                return enable_rc6 & mask;
4653        }
4654
4655        if (IS_IVYBRIDGE(dev))
4656                return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4657
4658        return INTEL_RC6_ENABLE;
4659}
4660
4661int intel_enable_rc6(const struct drm_device *dev)
4662{
4663        return i915.enable_rc6;
4664}
4665
4666static void gen6_init_rps_frequencies(struct drm_device *dev)
4667{
4668        struct drm_i915_private *dev_priv = dev->dev_private;
4669        uint32_t rp_state_cap;
4670        u32 ddcc_status = 0;
4671        int ret;
4672
4673        /* All of these values are in units of 50MHz */
4674        dev_priv->rps.cur_freq          = 0;
4675        /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4676        if (IS_BROXTON(dev)) {
4677                rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4678                dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4679                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4680                dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4681        } else {
4682                rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4683                dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4684                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4685                dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4686        }
4687
4688        /* hw_max = RP0 until we check for overclocking */
4689        dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4690
4691        dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4692        if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4693                ret = sandybridge_pcode_read(dev_priv,
4694                                        HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4695                                        &ddcc_status);
4696                if (0 == ret)
4697                        dev_priv->rps.efficient_freq =
4698                                clamp_t(u8,
4699                                        ((ddcc_status >> 8) & 0xff),
4700                                        dev_priv->rps.min_freq,
4701                                        dev_priv->rps.max_freq);
4702        }
4703
4704        if (IS_SKYLAKE(dev)) {
4705                /* Store the frequency values in 16.66 MHZ units, which is
4706                   the natural hardware unit for SKL */
4707                dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4708                dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4709                dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4710                dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4711                dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4712        }
4713
4714        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4715
4716        /* Preserve min/max settings in case of re-init */
4717        if (dev_priv->rps.max_freq_softlimit == 0)
4718                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4719
4720        if (dev_priv->rps.min_freq_softlimit == 0) {
4721                if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4722                        dev_priv->rps.min_freq_softlimit =
4723                                max_t(int, dev_priv->rps.efficient_freq,
4724                                      intel_freq_opcode(dev_priv, 450));
4725                else
4726                        dev_priv->rps.min_freq_softlimit =
4727                                dev_priv->rps.min_freq;
4728        }
4729}
4730
4731/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4732static void gen9_enable_rps(struct drm_device *dev)
4733{
4734        struct drm_i915_private *dev_priv = dev->dev_private;
4735
4736        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4737
4738        gen6_init_rps_frequencies(dev);
4739
4740        /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4741        if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4742                intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4743                return;
4744        }
4745
4746        /* Program defaults and thresholds for RPS*/
4747        I915_WRITE(GEN6_RC_VIDEO_FREQ,
4748                GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4749
4750        /* 1 second timeout*/
4751        I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4752                GT_INTERVAL_FROM_US(dev_priv, 1000000));
4753
4754        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4755
4756        /* Leaning on the below call to gen6_set_rps to program/setup the
4757         * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4758         * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4759        dev_priv->rps.power = HIGH_POWER; /* force a reset */
4760        gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4761
4762        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4763}
4764
4765static void gen9_enable_rc6(struct drm_device *dev)
4766{
4767        struct drm_i915_private *dev_priv = dev->dev_private;
4768        struct intel_engine_cs *ring;
4769        uint32_t rc6_mask = 0;
4770        int unused;
4771
4772        /* 1a: Software RC state - RC0 */
4773        I915_WRITE(GEN6_RC_STATE, 0);
4774
4775        /* 1b: Get forcewake during program sequence. Although the driver
4776         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4777        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4778
4779        /* 2a: Disable RC states. */
4780        I915_WRITE(GEN6_RC_CONTROL, 0);
4781
4782        /* 2b: Program RC6 thresholds.*/
4783
4784        /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4785        if (IS_SKYLAKE(dev))
4786                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4787        else
4788                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4789        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4790        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4791        for_each_ring(ring, dev_priv, unused)
4792                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4793
4794        if (HAS_GUC_UCODE(dev))
4795                I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4796
4797        I915_WRITE(GEN6_RC_SLEEP, 0);
4798
4799        /* 2c: Program Coarse Power Gating Policies. */
4800        I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4801        I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4802
4803        /* 3a: Enable RC6 */
4804        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4805                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4806        DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4807                        "on" : "off");
4808        /* WaRsUseTimeoutMode */
4809        if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4810            (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4811                I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4812                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4813                           GEN7_RC_CTL_TO_MODE |
4814                           rc6_mask);
4815        } else {
4816                I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4817                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4818                           GEN6_RC_CTL_EI_MODE(1) |
4819                           rc6_mask);
4820        }
4821
4822        /*
4823         * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4824         * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4825         */
4826        if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4827            ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4828                I915_WRITE(GEN9_PG_ENABLE, 0);
4829        else
4830                I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4831                                (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4832
4833        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4834
4835}
4836
4837static void gen8_enable_rps(struct drm_device *dev)
4838{
4839        struct drm_i915_private *dev_priv = dev->dev_private;
4840        struct intel_engine_cs *ring;
4841        uint32_t rc6_mask = 0;
4842        int unused;
4843
4844        /* 1a: Software RC state - RC0 */
4845        I915_WRITE(GEN6_RC_STATE, 0);
4846
4847        /* 1c & 1d: Get forcewake during program sequence. Although the driver
4848         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4849        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4850
4851        /* 2a: Disable RC states. */
4852        I915_WRITE(GEN6_RC_CONTROL, 0);
4853
4854        /* Initialize rps frequencies */
4855        gen6_init_rps_frequencies(dev);
4856
4857        /* 2b: Program RC6 thresholds.*/
4858        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4859        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4860        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4861        for_each_ring(ring, dev_priv, unused)
4862                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4863        I915_WRITE(GEN6_RC_SLEEP, 0);
4864        if (IS_BROADWELL(dev))
4865                I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4866        else
4867                I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4868
4869        /* 3: Enable RC6 */
4870        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4871                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4872        intel_print_rc6_info(dev, rc6_mask);
4873        if (IS_BROADWELL(dev))
4874                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4875                                GEN7_RC_CTL_TO_MODE |
4876                                rc6_mask);
4877        else
4878                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4879                                GEN6_RC_CTL_EI_MODE(1) |
4880                                rc6_mask);
4881
4882        /* 4 Program defaults and thresholds for RPS*/
4883        I915_WRITE(GEN6_RPNSWREQ,
4884                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4885        I915_WRITE(GEN6_RC_VIDEO_FREQ,
4886                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4887        /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4888        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4889
4890        /* Docs recommend 900MHz, and 300 MHz respectively */
4891        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4892                   dev_priv->rps.max_freq_softlimit << 24 |
4893                   dev_priv->rps.min_freq_softlimit << 16);
4894
4895        I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4896        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4897        I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4898        I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4899
4900        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4901
4902        /* 5: Enable RPS */
4903        I915_WRITE(GEN6_RP_CONTROL,
4904                   GEN6_RP_MEDIA_TURBO |
4905                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4906                   GEN6_RP_MEDIA_IS_GFX |
4907                   GEN6_RP_ENABLE |
4908                   GEN6_RP_UP_BUSY_AVG |
4909                   GEN6_RP_DOWN_IDLE_AVG);
4910
4911        /* 6: Ring frequency + overclocking (our driver does this later */
4912
4913        dev_priv->rps.power = HIGH_POWER; /* force a reset */
4914        gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4915
4916        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4917}
4918
4919static void gen6_enable_rps(struct drm_device *dev)
4920{
4921        struct drm_i915_private *dev_priv = dev->dev_private;
4922        struct intel_engine_cs *ring;
4923        u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4924        u32 gtfifodbg;
4925        int rc6_mode;
4926        int i, ret;
4927
4928        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4929
4930        /* Here begins a magic sequence of register writes to enable
4931         * auto-downclocking.
4932         *
4933         * Perhaps there might be some value in exposing these to
4934         * userspace...
4935         */
4936        I915_WRITE(GEN6_RC_STATE, 0);
4937
4938        /* Clear the DBG now so we don't confuse earlier errors */
4939        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4940                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4941                I915_WRITE(GTFIFODBG, gtfifodbg);
4942        }
4943
4944        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4945
4946        /* Initialize rps frequencies */
4947        gen6_init_rps_frequencies(dev);
4948
4949        /* disable the counters and set deterministic thresholds */
4950        I915_WRITE(GEN6_RC_CONTROL, 0);
4951
4952        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4953        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4954        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4955        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4956        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4957
4958        for_each_ring(ring, dev_priv, i)
4959                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4960
4961        I915_WRITE(GEN6_RC_SLEEP, 0);
4962        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4963        if (IS_IVYBRIDGE(dev))
4964                I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4965        else
4966                I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4967        I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4968        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4969
4970        /* Check if we are enabling RC6 */
4971        rc6_mode = intel_enable_rc6(dev_priv->dev);
4972        if (rc6_mode & INTEL_RC6_ENABLE)
4973                rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4974
4975        /* We don't use those on Haswell */
4976        if (!IS_HASWELL(dev)) {
4977                if (rc6_mode & INTEL_RC6p_ENABLE)
4978                        rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4979
4980                if (rc6_mode & INTEL_RC6pp_ENABLE)
4981                        rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4982        }
4983
4984        intel_print_rc6_info(dev, rc6_mask);
4985
4986        I915_WRITE(GEN6_RC_CONTROL,
4987                   rc6_mask |
4988                   GEN6_RC_CTL_EI_MODE(1) |
4989                   GEN6_RC_CTL_HW_ENABLE);
4990
4991        /* Power down if completely idle for over 50ms */
4992        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4993        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4994
4995        ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4996        if (ret)
4997                DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4998
4999        ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5000        if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5001                DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5002                                 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5003                                 (pcu_mbox & 0xff) * 50);
5004                dev_priv->rps.max_freq = pcu_mbox & 0xff;
5005        }
5006
5007        dev_priv->rps.power = HIGH_POWER; /* force a reset */
5008        gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5009
5010        rc6vids = 0;
5011        ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5012        if (IS_GEN6(dev) && ret) {
5013                DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5014        } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5015                DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5016                          GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5017                rc6vids &= 0xffff00;
5018                rc6vids |= GEN6_ENCODE_RC6_VID(450);
5019                ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5020                if (ret)
5021                        DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5022        }
5023
5024        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5025}
5026
5027static void __gen6_update_ring_freq(struct drm_device *dev)
5028{
5029        struct drm_i915_private *dev_priv = dev->dev_private;
5030        int min_freq = 15;
5031        unsigned int gpu_freq;
5032        unsigned int max_ia_freq, min_ring_freq;
5033        unsigned int max_gpu_freq, min_gpu_freq;
5034        int scaling_factor = 180;
5035        struct cpufreq_policy *policy;
5036
5037        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5038
5039        policy = cpufreq_cpu_get(0);
5040        if (policy) {
5041                max_ia_freq = policy->cpuinfo.max_freq;
5042                cpufreq_cpu_put(policy);
5043        } else {
5044                /*
5045                 * Default to measured freq if none found, PCU will ensure we
5046                 * don't go over
5047                 */
5048                max_ia_freq = tsc_khz;
5049        }
5050
5051        /* Convert from kHz to MHz */
5052        max_ia_freq /= 1000;
5053
5054        min_ring_freq = I915_READ(DCLK) & 0xf;
5055        /* convert DDR frequency from units of 266.6MHz to bandwidth */
5056        min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5057
5058        if (IS_SKYLAKE(dev)) {
5059                /* Convert GT frequency to 50 HZ units */
5060                min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5061                max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5062        } else {
5063                min_gpu_freq = dev_priv->rps.min_freq;
5064                max_gpu_freq = dev_priv->rps.max_freq;
5065        }
5066
5067        /*
5068         * For each potential GPU frequency, load a ring frequency we'd like
5069         * to use for memory access.  We do this by specifying the IA frequency
5070         * the PCU should use as a reference to determine the ring frequency.
5071         */
5072        for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5073                int diff = max_gpu_freq - gpu_freq;
5074                unsigned int ia_freq = 0, ring_freq = 0;
5075
5076                if (IS_SKYLAKE(dev)) {
5077                        /*
5078                         * ring_freq = 2 * GT. ring_freq is in 100MHz units
5079                         * No floor required for ring frequency on SKL.
5080                         */
5081                        ring_freq = gpu_freq;
5082                } else if (INTEL_INFO(dev)->gen >= 8) {
5083                        /* max(2 * GT, DDR). NB: GT is 50MHz units */
5084                        ring_freq = max(min_ring_freq, gpu_freq);
5085                } else if (IS_HASWELL(dev)) {
5086                        ring_freq = mult_frac(gpu_freq, 5, 4);
5087                        ring_freq = max(min_ring_freq, ring_freq);
5088                        /* leave ia_freq as the default, chosen by cpufreq */
5089                } else {
5090                        /* On older processors, there is no separate ring
5091                         * clock domain, so in order to boost the bandwidth
5092                         * of the ring, we need to upclock the CPU (ia_freq).
5093                         *
5094                         * For GPU frequencies less than 750MHz,
5095                         * just use the lowest ring freq.
5096                         */
5097                        if (gpu_freq < min_freq)
5098                                ia_freq = 800;
5099                        else
5100                                ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5101                        ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5102                }
5103
5104                sandybridge_pcode_write(dev_priv,
5105                                        GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5106                                        ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5107                                        ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5108                                        gpu_freq);
5109        }
5110}
5111
5112void gen6_update_ring_freq(struct drm_device *dev)
5113{
5114        struct drm_i915_private *dev_priv = dev->dev_private;
5115
5116        if (!HAS_CORE_RING_FREQ(dev))
5117                return;
5118
5119        mutex_lock(&dev_priv->rps.hw_lock);
5120        __gen6_update_ring_freq(dev);
5121        mutex_unlock(&dev_priv->rps.hw_lock);
5122}
5123
5124static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5125{
5126        struct drm_device *dev = dev_priv->dev;
5127        u32 val, rp0;
5128
5129        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5130
5131        switch (INTEL_INFO(dev)->eu_total) {
5132        case 8:
5133                /* (2 * 4) config */
5134                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5135                break;
5136        case 12:
5137                /* (2 * 6) config */
5138                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5139                break;
5140        case 16:
5141                /* (2 * 8) config */
5142        default:
5143                /* Setting (2 * 8) Min RP0 for any other combination */
5144                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5145                break;
5146        }
5147
5148        rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5149
5150        return rp0;
5151}
5152
5153static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5154{
5155        u32 val, rpe;
5156
5157        val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5158        rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5159
5160        return rpe;
5161}
5162
5163static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5164{
5165        u32 val, rp1;
5166
5167        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5168        rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5169
5170        return rp1;
5171}
5172
5173static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5174{
5175        u32 val, rp1;
5176
5177        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5178
5179        rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5180
5181        return rp1;
5182}
5183
5184static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5185{
5186        u32 val, rp0;
5187
5188        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5189
5190        rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5191        /* Clamp to max */
5192        rp0 = min_t(u32, rp0, 0xea);
5193
5194        return rp0;
5195}
5196
5197static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5198{
5199        u32 val, rpe;
5200
5201        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5202        rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5203        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5204        rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5205
5206        return rpe;
5207}
5208
5209static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5210{
5211        return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5212}
5213
5214/* Check that the pctx buffer wasn't move under us. */
5215static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5216{
5217        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5218
5219        WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5220                             dev_priv->vlv_pctx->stolen->start);
5221}
5222
5223
5224/* Check that the pcbr address is not empty. */
5225static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5226{
5227        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5228
5229        WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5230}
5231
5232static void cherryview_setup_pctx(struct drm_device *dev)
5233{
5234        struct drm_i915_private *dev_priv = dev->dev_private;
5235        unsigned long pctx_paddr, paddr;
5236        struct i915_gtt *gtt = &dev_priv->gtt;
5237        u32 pcbr;
5238        int pctx_size = 32*1024;
5239
5240        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5241
5242        pcbr = I915_READ(VLV_PCBR);
5243        if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5244                DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5245                paddr = (dev_priv->mm.stolen_base +
5246                         (gtt->stolen_size - pctx_size));
5247
5248                pctx_paddr = (paddr & (~4095));
5249                I915_WRITE(VLV_PCBR, pctx_paddr);
5250        }
5251
5252        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5253}
5254
5255static void valleyview_setup_pctx(struct drm_device *dev)
5256{
5257        struct drm_i915_private *dev_priv = dev->dev_private;
5258        struct drm_i915_gem_object *pctx;
5259        unsigned long pctx_paddr;
5260        u32 pcbr;
5261        int pctx_size = 24*1024;
5262
5263        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5264
5265        pcbr = I915_READ(VLV_PCBR);
5266        if (pcbr) {
5267                /* BIOS set it up already, grab the pre-alloc'd space */
5268                int pcbr_offset;
5269
5270                pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5271                pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5272                                                                      pcbr_offset,
5273                                                                      I915_GTT_OFFSET_NONE,
5274                                                                      pctx_size);
5275                goto out;
5276        }
5277
5278        DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5279
5280        /*
5281         * From the Gunit register HAS:
5282         * The Gfx driver is expected to program this register and ensure
5283         * proper allocation within Gfx stolen memory.  For example, this
5284         * register should be programmed such than the PCBR range does not
5285         * overlap with other ranges, such as the frame buffer, protected
5286         * memory, or any other relevant ranges.
5287         */
5288        pctx = i915_gem_object_create_stolen(dev, pctx_size);
5289        if (!pctx) {
5290                DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5291                return;
5292        }
5293
5294        pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5295        I915_WRITE(VLV_PCBR, pctx_paddr);
5296
5297out:
5298        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5299        dev_priv->vlv_pctx = pctx;
5300}
5301
5302static void valleyview_cleanup_pctx(struct drm_device *dev)
5303{
5304        struct drm_i915_private *dev_priv = dev->dev_private;
5305
5306        if (WARN_ON(!dev_priv->vlv_pctx))
5307                return;
5308
5309        drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5310        dev_priv->vlv_pctx = NULL;
5311}
5312
5313static void valleyview_init_gt_powersave(struct drm_device *dev)
5314{
5315        struct drm_i915_private *dev_priv = dev->dev_private;
5316        u32 val;
5317
5318        valleyview_setup_pctx(dev);
5319
5320        mutex_lock(&dev_priv->rps.hw_lock);
5321
5322        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5323        switch ((val >> 6) & 3) {
5324        case 0:
5325        case 1:
5326                dev_priv->mem_freq = 800;
5327                break;
5328        case 2:
5329                dev_priv->mem_freq = 1066;
5330                break;
5331        case 3:
5332                dev_priv->mem_freq = 1333;
5333                break;
5334        }
5335        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5336
5337        dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5338        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5339        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5340                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5341                         dev_priv->rps.max_freq);
5342
5343        dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5344        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5345                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5346                         dev_priv->rps.efficient_freq);
5347
5348        dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5349        DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5350                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5351                         dev_priv->rps.rp1_freq);
5352
5353        dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5354        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5355                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5356                         dev_priv->rps.min_freq);
5357
5358        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5359
5360        /* Preserve min/max settings in case of re-init */
5361        if (dev_priv->rps.max_freq_softlimit == 0)
5362                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5363
5364        if (dev_priv->rps.min_freq_softlimit == 0)
5365                dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5366
5367        mutex_unlock(&dev_priv->rps.hw_lock);
5368}
5369
5370static void cherryview_init_gt_powersave(struct drm_device *dev)
5371{
5372        struct drm_i915_private *dev_priv = dev->dev_private;
5373        u32 val;
5374
5375        cherryview_setup_pctx(dev);
5376
5377        mutex_lock(&dev_priv->rps.hw_lock);
5378
5379        mutex_lock(&dev_priv->sb_lock);
5380        val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5381        mutex_unlock(&dev_priv->sb_lock);
5382
5383        switch ((val >> 2) & 0x7) {
5384        case 3:
5385                dev_priv->mem_freq = 2000;
5386                break;
5387        default:
5388                dev_priv->mem_freq = 1600;
5389                break;
5390        }
5391        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5392
5393        dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5394        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5395        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5396                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5397                         dev_priv->rps.max_freq);
5398
5399        dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5400        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5401                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5402                         dev_priv->rps.efficient_freq);
5403
5404        dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5405        DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5406                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5407                         dev_priv->rps.rp1_freq);
5408
5409        /* PUnit validated range is only [RPe, RP0] */
5410        dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5411        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5412                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5413                         dev_priv->rps.min_freq);
5414
5415        WARN_ONCE((dev_priv->rps.max_freq |
5416                   dev_priv->rps.efficient_freq |
5417                   dev_priv->rps.rp1_freq |
5418                   dev_priv->rps.min_freq) & 1,
5419                  "Odd GPU freq values\n");
5420
5421        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5422
5423        /* Preserve min/max settings in case of re-init */
5424        if (dev_priv->rps.max_freq_softlimit == 0)
5425                dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5426
5427        if (dev_priv->rps.min_freq_softlimit == 0)
5428                dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5429
5430        mutex_unlock(&dev_priv->rps.hw_lock);
5431}
5432
5433static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5434{
5435        valleyview_cleanup_pctx(dev);
5436}
5437
5438static void cherryview_enable_rps(struct drm_device *dev)
5439{
5440        struct drm_i915_private *dev_priv = dev->dev_private;
5441        struct intel_engine_cs *ring;
5442        u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5443        int i;
5444
5445        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5446
5447        gtfifodbg = I915_READ(GTFIFODBG);
5448        if (gtfifodbg) {
5449                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5450                                 gtfifodbg);
5451                I915_WRITE(GTFIFODBG, gtfifodbg);
5452        }
5453
5454        cherryview_check_pctx(dev_priv);
5455
5456        /* 1a & 1b: Get forcewake during program sequence. Although the driver
5457         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5458        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5459
5460        /*  Disable RC states. */
5461        I915_WRITE(GEN6_RC_CONTROL, 0);
5462
5463        /* 2a: Program RC6 thresholds.*/
5464        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5465        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5466        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5467
5468        for_each_ring(ring, dev_priv, i)
5469                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5470        I915_WRITE(GEN6_RC_SLEEP, 0);
5471
5472        /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5473        I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5474
5475        /* allows RC6 residency counter to work */
5476        I915_WRITE(VLV_COUNTER_CONTROL,
5477                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5478                                      VLV_MEDIA_RC6_COUNT_EN |
5479                                      VLV_RENDER_RC6_COUNT_EN));
5480
5481        /* For now we assume BIOS is allocating and populating the PCBR  */
5482        pcbr = I915_READ(VLV_PCBR);
5483
5484        /* 3: Enable RC6 */
5485        if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5486                                                (pcbr >> VLV_PCBR_ADDR_SHIFT))
5487                rc6_mode = GEN7_RC_CTL_TO_MODE;
5488
5489        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5490
5491        /* 4 Program defaults and thresholds for RPS*/
5492        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5493        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5494        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5495        I915_WRITE(GEN6_RP_UP_EI, 66000);
5496        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5497
5498        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5499
5500        /* 5: Enable RPS */
5501        I915_WRITE(GEN6_RP_CONTROL,
5502                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5503                   GEN6_RP_MEDIA_IS_GFX |
5504                   GEN6_RP_ENABLE |
5505                   GEN6_RP_UP_BUSY_AVG |
5506                   GEN6_RP_DOWN_IDLE_AVG);
5507
5508        /* Setting Fixed Bias */
5509        val = VLV_OVERRIDE_EN |
5510                  VLV_SOC_TDP_EN |
5511                  CHV_BIAS_CPU_50_SOC_50;
5512        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5513
5514        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5515
5516        /* RPS code assumes GPLL is used */
5517        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5518
5519        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5520        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5521
5522        dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5523        DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5524                         intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5525                         dev_priv->rps.cur_freq);
5526
5527        DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5528                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5529                         dev_priv->rps.efficient_freq);
5530
5531        valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5532
5533        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5534}
5535
5536static void valleyview_enable_rps(struct drm_device *dev)
5537{
5538        struct drm_i915_private *dev_priv = dev->dev_private;
5539        struct intel_engine_cs *ring;
5540        u32 gtfifodbg, val, rc6_mode = 0;
5541        int i;
5542
5543        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5544
5545        valleyview_check_pctx(dev_priv);
5546
5547        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5548                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5549                                 gtfifodbg);
5550                I915_WRITE(GTFIFODBG, gtfifodbg);
5551        }
5552
5553        /* If VLV, Forcewake all wells, else re-direct to regular path */
5554        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5555
5556        /*  Disable RC states. */
5557        I915_WRITE(GEN6_RC_CONTROL, 0);
5558
5559        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5560        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5561        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5562        I915_WRITE(GEN6_RP_UP_EI, 66000);
5563        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5564
5565        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5566
5567        I915_WRITE(GEN6_RP_CONTROL,
5568                   GEN6_RP_MEDIA_TURBO |
5569                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5570                   GEN6_RP_MEDIA_IS_GFX |
5571                   GEN6_RP_ENABLE |
5572                   GEN6_RP_UP_BUSY_AVG |
5573                   GEN6_RP_DOWN_IDLE_CONT);
5574
5575        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5576        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5577        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5578
5579        for_each_ring(ring, dev_priv, i)
5580                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5581
5582        I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5583
5584        /* allows RC6 residency counter to work */
5585        I915_WRITE(VLV_COUNTER_CONTROL,
5586                   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5587                                      VLV_RENDER_RC0_COUNT_EN |
5588                                      VLV_MEDIA_RC6_COUNT_EN |
5589                                      VLV_RENDER_RC6_COUNT_EN));
5590
5591        if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5592                rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5593
5594        intel_print_rc6_info(dev, rc6_mode);
5595
5596        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5597
5598        /* Setting Fixed Bias */
5599        val = VLV_OVERRIDE_EN |
5600                  VLV_SOC_TDP_EN |
5601                  VLV_BIAS_CPU_125_SOC_875;
5602        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5603
5604        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5605
5606        /* RPS code assumes GPLL is used */
5607        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5608
5609        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5610        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5611
5612        dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5613        DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5614                         intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5615                         dev_priv->rps.cur_freq);
5616
5617        DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5618                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5619                         dev_priv->rps.efficient_freq);
5620
5621        valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5622
5623        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5624}
5625
5626static unsigned long intel_pxfreq(u32 vidfreq)
5627{
5628        unsigned long freq;
5629        int div = (vidfreq & 0x3f0000) >> 16;
5630        int post = (vidfreq & 0x3000) >> 12;
5631        int pre = (vidfreq & 0x7);
5632
5633        if (!pre)
5634                return 0;
5635
5636        freq = ((div * 133333) / ((1<<post) * pre));
5637
5638        return freq;
5639}
5640
5641static const struct cparams {
5642        u16 i;
5643        u16 t;
5644        u16 m;
5645        u16 c;
5646} cparams[] = {
5647        { 1, 1333, 301, 28664 },
5648        { 1, 1066, 294, 24460 },
5649        { 1, 800, 294, 25192 },
5650        { 0, 1333, 276, 27605 },
5651        { 0, 1066, 276, 27605 },
5652        { 0, 800, 231, 23784 },
5653};
5654
5655static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5656{
5657        u64 total_count, diff, ret;
5658        u32 count1, count2, count3, m = 0, c = 0;
5659        unsigned long now = jiffies_to_msecs(jiffies), diff1;
5660        int i;
5661
5662        assert_spin_locked(&mchdev_lock);
5663
5664        diff1 = now - dev_priv->ips.last_time1;
5665
5666        /* Prevent division-by-zero if we are asking too fast.
5667         * Also, we don't get interesting results if we are polling
5668         * faster than once in 10ms, so just return the saved value
5669         * in such cases.
5670         */
5671        if (diff1 <= 10)
5672                return dev_priv->ips.chipset_power;
5673
5674        count1 = I915_READ(DMIEC);
5675        count2 = I915_READ(DDREC);
5676        count3 = I915_READ(CSIEC);
5677
5678        total_count = count1 + count2 + count3;
5679
5680        /* FIXME: handle per-counter overflow */
5681        if (total_count < dev_priv->ips.last_count1) {
5682                diff = ~0UL - dev_priv->ips.last_count1;
5683                diff += total_count;
5684        } else {
5685                diff = total_count - dev_priv->ips.last_count1;
5686        }
5687
5688        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5689                if (cparams[i].i == dev_priv->ips.c_m &&
5690                    cparams[i].t == dev_priv->ips.r_t) {
5691                        m = cparams[i].m;
5692                        c = cparams[i].c;
5693                        break;
5694                }
5695        }
5696
5697        diff = div_u64(diff, diff1);
5698        ret = ((m * diff) + c);
5699        ret = div_u64(ret, 10);
5700
5701        dev_priv->ips.last_count1 = total_count;
5702        dev_priv->ips.last_time1 = now;
5703
5704        dev_priv->ips.chipset_power = ret;
5705
5706        return ret;
5707}
5708
5709unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5710{
5711        struct drm_device *dev = dev_priv->dev;
5712        unsigned long val;
5713
5714        if (INTEL_INFO(dev)->gen != 5)
5715                return 0;
5716
5717        spin_lock_irq(&mchdev_lock);
5718
5719        val = __i915_chipset_val(dev_priv);
5720
5721        spin_unlock_irq(&mchdev_lock);
5722
5723        return val;
5724}
5725
5726unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5727{
5728        unsigned long m, x, b;
5729        u32 tsfs;
5730
5731        tsfs = I915_READ(TSFS);
5732
5733        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5734        x = I915_READ8(TR1);
5735
5736        b = tsfs & TSFS_INTR_MASK;
5737
5738        return ((m * x) / 127) - b;
5739}
5740
5741static int _pxvid_to_vd(u8 pxvid)
5742{
5743        if (pxvid == 0)
5744                return 0;
5745
5746        if (pxvid >= 8 && pxvid < 31)
5747                pxvid = 31;
5748
5749        return (pxvid + 2) * 125;
5750}
5751
5752static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5753{
5754        struct drm_device *dev = dev_priv->dev;
5755        const int vd = _pxvid_to_vd(pxvid);
5756        const int vm = vd - 1125;
5757
5758        if (INTEL_INFO(dev)->is_mobile)
5759                return vm > 0 ? vm : 0;
5760
5761        return vd;
5762}
5763
5764static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5765{
5766        u64 now, diff, diffms;
5767        u32 count;
5768
5769        assert_spin_locked(&mchdev_lock);
5770
5771        now = ktime_get_raw_ns();
5772        diffms = now - dev_priv->ips.last_time2;
5773        do_div(diffms, NSEC_PER_MSEC);
5774
5775        /* Don't divide by 0 */
5776        if (!diffms)
5777                return;
5778
5779        count = I915_READ(GFXEC);
5780
5781        if (count < dev_priv->ips.last_count2) {
5782                diff = ~0UL - dev_priv->ips.last_count2;
5783                diff += count;
5784        } else {
5785                diff = count - dev_priv->ips.last_count2;
5786        }
5787
5788        dev_priv->ips.last_count2 = count;
5789        dev_priv->ips.last_time2 = now;
5790
5791        /* More magic constants... */
5792        diff = diff * 1181;
5793        diff = div_u64(diff, diffms * 10);
5794        dev_priv->ips.gfx_power = diff;
5795}
5796
5797void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5798{
5799        struct drm_device *dev = dev_priv->dev;
5800
5801        if (INTEL_INFO(dev)->gen != 5)
5802                return;
5803
5804        spin_lock_irq(&mchdev_lock);
5805
5806        __i915_update_gfx_val(dev_priv);
5807
5808        spin_unlock_irq(&mchdev_lock);
5809}
5810
5811static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5812{
5813        unsigned long t, corr, state1, corr2, state2;
5814        u32 pxvid, ext_v;
5815
5816        assert_spin_locked(&mchdev_lock);
5817
5818        pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5819        pxvid = (pxvid >> 24) & 0x7f;
5820        ext_v = pvid_to_extvid(dev_priv, pxvid);
5821
5822        state1 = ext_v;
5823
5824        t = i915_mch_val(dev_priv);
5825
5826        /* Revel in the empirically derived constants */
5827
5828        /* Correction factor in 1/100000 units */
5829        if (t > 80)
5830                corr = ((t * 2349) + 135940);
5831        else if (t >= 50)
5832                corr = ((t * 964) + 29317);
5833        else /* < 50 */
5834                corr = ((t * 301) + 1004);
5835
5836        corr = corr * ((150142 * state1) / 10000 - 78642);
5837        corr /= 100000;
5838        corr2 = (corr * dev_priv->ips.corr);
5839
5840        state2 = (corr2 * state1) / 10000;
5841        state2 /= 100; /* convert to mW */
5842
5843        __i915_update_gfx_val(dev_priv);
5844
5845        return dev_priv->ips.gfx_power + state2;
5846}
5847
5848unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5849{
5850        struct drm_device *dev = dev_priv->dev;
5851        unsigned long val;
5852
5853        if (INTEL_INFO(dev)->gen != 5)
5854                return 0;
5855
5856        spin_lock_irq(&mchdev_lock);
5857
5858        val = __i915_gfx_val(dev_priv);
5859
5860        spin_unlock_irq(&mchdev_lock);
5861
5862        return val;
5863}
5864
5865/**
5866 * i915_read_mch_val - return value for IPS use
5867 *
5868 * Calculate and return a value for the IPS driver to use when deciding whether
5869 * we have thermal and power headroom to increase CPU or GPU power budget.
5870 */
5871unsigned long i915_read_mch_val(void)
5872{
5873        struct drm_i915_private *dev_priv;
5874        unsigned long chipset_val, graphics_val, ret = 0;
5875
5876        spin_lock_irq(&mchdev_lock);
5877        if (!i915_mch_dev)
5878                goto out_unlock;
5879        dev_priv = i915_mch_dev;
5880
5881        chipset_val = __i915_chipset_val(dev_priv);
5882        graphics_val = __i915_gfx_val(dev_priv);
5883
5884        ret = chipset_val + graphics_val;
5885
5886out_unlock:
5887        spin_unlock_irq(&mchdev_lock);
5888
5889        return ret;
5890}
5891EXPORT_SYMBOL_GPL(i915_read_mch_val);
5892
5893/**
5894 * i915_gpu_raise - raise GPU frequency limit
5895 *
5896 * Raise the limit; IPS indicates we have thermal headroom.
5897 */
5898bool i915_gpu_raise(void)
5899{
5900        struct drm_i915_private *dev_priv;
5901        bool ret = true;
5902
5903        spin_lock_irq(&mchdev_lock);
5904        if (!i915_mch_dev) {
5905                ret = false;
5906                goto out_unlock;
5907        }
5908        dev_priv = i915_mch_dev;
5909
5910        if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5911                dev_priv->ips.max_delay--;
5912
5913out_unlock:
5914        spin_unlock_irq(&mchdev_lock);
5915
5916        return ret;
5917}
5918EXPORT_SYMBOL_GPL(i915_gpu_raise);
5919
5920/**
5921 * i915_gpu_lower - lower GPU frequency limit
5922 *
5923 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5924 * frequency maximum.
5925 */
5926bool i915_gpu_lower(void)
5927{
5928        struct drm_i915_private *dev_priv;
5929        bool ret = true;
5930
5931        spin_lock_irq(&mchdev_lock);
5932        if (!i915_mch_dev) {
5933                ret = false;
5934                goto out_unlock;
5935        }
5936        dev_priv = i915_mch_dev;
5937
5938        if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5939                dev_priv->ips.max_delay++;
5940
5941out_unlock:
5942        spin_unlock_irq(&mchdev_lock);
5943
5944        return ret;
5945}
5946EXPORT_SYMBOL_GPL(i915_gpu_lower);
5947
5948/**
5949 * i915_gpu_busy - indicate GPU business to IPS
5950 *
5951 * Tell the IPS driver whether or not the GPU is busy.
5952 */
5953bool i915_gpu_busy(void)
5954{
5955        struct drm_i915_private *dev_priv;
5956        struct intel_engine_cs *ring;
5957        bool ret = false;
5958        int i;
5959
5960        spin_lock_irq(&mchdev_lock);
5961        if (!i915_mch_dev)
5962                goto out_unlock;
5963        dev_priv = i915_mch_dev;
5964
5965        for_each_ring(ring, dev_priv, i)
5966                ret |= !list_empty(&ring->request_list);
5967
5968out_unlock:
5969        spin_unlock_irq(&mchdev_lock);
5970
5971        return ret;
5972}
5973EXPORT_SYMBOL_GPL(i915_gpu_busy);
5974
5975/**
5976 * i915_gpu_turbo_disable - disable graphics turbo
5977 *
5978 * Disable graphics turbo by resetting the max frequency and setting the
5979 * current frequency to the default.
5980 */
5981bool i915_gpu_turbo_disable(void)
5982{
5983        struct drm_i915_private *dev_priv;
5984        bool ret = true;
5985
5986        spin_lock_irq(&mchdev_lock);
5987        if (!i915_mch_dev) {
5988                ret = false;
5989                goto out_unlock;
5990        }
5991        dev_priv = i915_mch_dev;
5992
5993        dev_priv->ips.max_delay = dev_priv->ips.fstart;
5994
5995        if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5996                ret = false;
5997
5998out_unlock:
5999        spin_unlock_irq(&mchdev_lock);
6000
6001        return ret;
6002}
6003EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6004
6005/**
6006 * Tells the intel_ips driver that the i915 driver is now loaded, if
6007 * IPS got loaded first.
6008 *
6009 * This awkward dance is so that neither module has to depend on the
6010 * other in order for IPS to do the appropriate communication of
6011 * GPU turbo limits to i915.
6012 */
6013static void
6014ips_ping_for_i915_load(void)
6015{
6016        void (*link)(void);
6017
6018        link = symbol_get(ips_link_to_i915_driver);
6019        if (link) {
6020                link();
6021                symbol_put(ips_link_to_i915_driver);
6022        }
6023}
6024
6025void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6026{
6027        /* We only register the i915 ips part with intel-ips once everything is
6028         * set up, to avoid intel-ips sneaking in and reading bogus values. */
6029        spin_lock_irq(&mchdev_lock);
6030        i915_mch_dev = dev_priv;
6031        spin_unlock_irq(&mchdev_lock);
6032
6033        ips_ping_for_i915_load();
6034}
6035
6036void intel_gpu_ips_teardown(void)
6037{
6038        spin_lock_irq(&mchdev_lock);
6039        i915_mch_dev = NULL;
6040        spin_unlock_irq(&mchdev_lock);
6041}
6042
6043static void intel_init_emon(struct drm_device *dev)
6044{
6045        struct drm_i915_private *dev_priv = dev->dev_private;
6046        u32 lcfuse;
6047        u8 pxw[16];
6048        int i;
6049
6050        /* Disable to program */
6051        I915_WRITE(ECR, 0);
6052        POSTING_READ(ECR);
6053
6054        /* Program energy weights for various events */
6055        I915_WRITE(SDEW, 0x15040d00);
6056        I915_WRITE(CSIEW0, 0x007f0000);
6057        I915_WRITE(CSIEW1, 0x1e220004);
6058        I915_WRITE(CSIEW2, 0x04000004);
6059
6060        for (i = 0; i < 5; i++)
6061                I915_WRITE(PEW(i), 0);
6062        for (i = 0; i < 3; i++)
6063                I915_WRITE(DEW(i), 0);
6064
6065        /* Program P-state weights to account for frequency power adjustment */
6066        for (i = 0; i < 16; i++) {
6067                u32 pxvidfreq = I915_READ(PXVFREQ(i));
6068                unsigned long freq = intel_pxfreq(pxvidfreq);
6069                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6070                        PXVFREQ_PX_SHIFT;
6071                unsigned long val;
6072
6073                val = vid * vid;
6074                val *= (freq / 1000);
6075                val *= 255;
6076                val /= (127*127*900);
6077                if (val > 0xff)
6078                        DRM_ERROR("bad pxval: %ld\n", val);
6079                pxw[i] = val;
6080        }
6081        /* Render standby states get 0 weight */
6082        pxw[14] = 0;
6083        pxw[15] = 0;
6084
6085        for (i = 0; i < 4; i++) {
6086                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6087                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6088                I915_WRITE(PXW(i), val);
6089        }
6090
6091        /* Adjust magic regs to magic values (more experimental results) */
6092        I915_WRITE(OGW0, 0);
6093        I915_WRITE(OGW1, 0);
6094        I915_WRITE(EG0, 0x00007f00);
6095        I915_WRITE(EG1, 0x0000000e);
6096        I915_WRITE(EG2, 0x000e0000);
6097        I915_WRITE(EG3, 0x68000300);
6098        I915_WRITE(EG4, 0x42000000);
6099        I915_WRITE(EG5, 0x00140031);
6100        I915_WRITE(EG6, 0);
6101        I915_WRITE(EG7, 0);
6102
6103        for (i = 0; i < 8; i++)
6104                I915_WRITE(PXWL(i), 0);
6105
6106        /* Enable PMON + select events */
6107        I915_WRITE(ECR, 0x80000019);
6108
6109        lcfuse = I915_READ(LCFUSE02);
6110
6111        dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6112}
6113
6114void intel_init_gt_powersave(struct drm_device *dev)
6115{
6116        i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6117
6118        if (IS_CHERRYVIEW(dev))
6119                cherryview_init_gt_powersave(dev);
6120        else if (IS_VALLEYVIEW(dev))
6121                valleyview_init_gt_powersave(dev);
6122}
6123
6124void intel_cleanup_gt_powersave(struct drm_device *dev)
6125{
6126        if (IS_CHERRYVIEW(dev))
6127                return;
6128        else if (IS_VALLEYVIEW(dev))
6129                valleyview_cleanup_gt_powersave(dev);
6130}
6131
6132static void gen6_suspend_rps(struct drm_device *dev)
6133{
6134        struct drm_i915_private *dev_priv = dev->dev_private;
6135
6136        flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6137
6138        gen6_disable_rps_interrupts(dev);
6139}
6140
6141/**
6142 * intel_suspend_gt_powersave - suspend PM work and helper threads
6143 * @dev: drm device
6144 *
6145 * We don't want to disable RC6 or other features here, we just want
6146 * to make sure any work we've queued has finished and won't bother
6147 * us while we're suspended.
6148 */
6149void intel_suspend_gt_powersave(struct drm_device *dev)
6150{
6151        struct drm_i915_private *dev_priv = dev->dev_private;
6152
6153        if (INTEL_INFO(dev)->gen < 6)
6154                return;
6155
6156        gen6_suspend_rps(dev);
6157
6158        /* Force GPU to min freq during suspend */
6159        gen6_rps_idle(dev_priv);
6160}
6161
6162void intel_disable_gt_powersave(struct drm_device *dev)
6163{
6164        struct drm_i915_private *dev_priv = dev->dev_private;
6165
6166        if (IS_IRONLAKE_M(dev)) {
6167                ironlake_disable_drps(dev);
6168        } else if (INTEL_INFO(dev)->gen >= 6) {
6169                intel_suspend_gt_powersave(dev);
6170
6171                mutex_lock(&dev_priv->rps.hw_lock);
6172                if (INTEL_INFO(dev)->gen >= 9)
6173                        gen9_disable_rps(dev);
6174                else if (IS_CHERRYVIEW(dev))
6175                        cherryview_disable_rps(dev);
6176                else if (IS_VALLEYVIEW(dev))
6177                        valleyview_disable_rps(dev);
6178                else
6179                        gen6_disable_rps(dev);
6180
6181                dev_priv->rps.enabled = false;
6182                mutex_unlock(&dev_priv->rps.hw_lock);
6183        }
6184}
6185
6186static void intel_gen6_powersave_work(struct work_struct *work)
6187{
6188        struct drm_i915_private *dev_priv =
6189                container_of(work, struct drm_i915_private,
6190                             rps.delayed_resume_work.work);
6191        struct drm_device *dev = dev_priv->dev;
6192
6193        mutex_lock(&dev_priv->rps.hw_lock);
6194
6195        gen6_reset_rps_interrupts(dev);
6196
6197        if (IS_CHERRYVIEW(dev)) {
6198                cherryview_enable_rps(dev);
6199        } else if (IS_VALLEYVIEW(dev)) {
6200                valleyview_enable_rps(dev);
6201        } else if (INTEL_INFO(dev)->gen >= 9) {
6202                gen9_enable_rc6(dev);
6203                gen9_enable_rps(dev);
6204                if (IS_SKYLAKE(dev))
6205                        __gen6_update_ring_freq(dev);
6206        } else if (IS_BROADWELL(dev)) {
6207                gen8_enable_rps(dev);
6208                __gen6_update_ring_freq(dev);
6209        } else {
6210                gen6_enable_rps(dev);
6211                __gen6_update_ring_freq(dev);
6212        }
6213
6214        WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6215        WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6216
6217        WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6218        WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6219
6220        dev_priv->rps.enabled = true;
6221
6222        gen6_enable_rps_interrupts(dev);
6223
6224        mutex_unlock(&dev_priv->rps.hw_lock);
6225
6226        intel_runtime_pm_put(dev_priv);
6227}
6228
6229void intel_enable_gt_powersave(struct drm_device *dev)
6230{
6231        struct drm_i915_private *dev_priv = dev->dev_private;
6232
6233        /* Powersaving is controlled by the host when inside a VM */
6234        if (intel_vgpu_active(dev))
6235                return;
6236
6237        if (IS_IRONLAKE_M(dev)) {
6238                mutex_lock(&dev->struct_mutex);
6239                ironlake_enable_drps(dev);
6240                intel_init_emon(dev);
6241                mutex_unlock(&dev->struct_mutex);
6242        } else if (INTEL_INFO(dev)->gen >= 6) {
6243                /*
6244                 * PCU communication is slow and this doesn't need to be
6245                 * done at any specific time, so do this out of our fast path
6246                 * to make resume and init faster.
6247                 *
6248                 * We depend on the HW RC6 power context save/restore
6249                 * mechanism when entering D3 through runtime PM suspend. So
6250                 * disable RPM until RPS/RC6 is properly setup. We can only
6251                 * get here via the driver load/system resume/runtime resume
6252                 * paths, so the _noresume version is enough (and in case of
6253                 * runtime resume it's necessary).
6254                 */
6255                if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6256                                           round_jiffies_up_relative(HZ)))
6257                        intel_runtime_pm_get_noresume(dev_priv);
6258        }
6259}
6260
6261void intel_reset_gt_powersave(struct drm_device *dev)
6262{
6263        struct drm_i915_private *dev_priv = dev->dev_private;
6264
6265        if (INTEL_INFO(dev)->gen < 6)
6266                return;
6267
6268        gen6_suspend_rps(dev);
6269        dev_priv->rps.enabled = false;
6270}
6271
6272static void ibx_init_clock_gating(struct drm_device *dev)
6273{
6274        struct drm_i915_private *dev_priv = dev->dev_private;
6275
6276        /*
6277         * On Ibex Peak and Cougar Point, we need to disable clock
6278         * gating for the panel power sequencer or it will fail to
6279         * start up when no ports are active.
6280         */
6281        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6282}
6283
6284static void g4x_disable_trickle_feed(struct drm_device *dev)
6285{
6286        struct drm_i915_private *dev_priv = dev->dev_private;
6287        enum pipe pipe;
6288
6289        for_each_pipe(dev_priv, pipe) {
6290                I915_WRITE(DSPCNTR(pipe),
6291                           I915_READ(DSPCNTR(pipe)) |
6292                           DISPPLANE_TRICKLE_FEED_DISABLE);
6293
6294                I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6295                POSTING_READ(DSPSURF(pipe));
6296        }
6297}
6298
6299static void ilk_init_lp_watermarks(struct drm_device *dev)
6300{
6301        struct drm_i915_private *dev_priv = dev->dev_private;
6302
6303        I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6304        I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6305        I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6306
6307        /*
6308         * Don't touch WM1S_LP_EN here.
6309         * Doing so could cause underruns.
6310         */
6311}
6312
6313static void ironlake_init_clock_gating(struct drm_device *dev)
6314{
6315        struct drm_i915_private *dev_priv = dev->dev_private;
6316        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6317
6318        /*
6319         * Required for FBC
6320         * WaFbcDisableDpfcClockGating:ilk
6321         */
6322        dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6323                   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6324                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6325
6326        I915_WRITE(PCH_3DCGDIS0,
6327                   MARIUNIT_CLOCK_GATE_DISABLE |
6328                   SVSMUNIT_CLOCK_GATE_DISABLE);
6329        I915_WRITE(PCH_3DCGDIS1,
6330                   VFMUNIT_CLOCK_GATE_DISABLE);
6331
6332        /*
6333         * According to the spec the following bits should be set in
6334         * order to enable memory self-refresh
6335         * The bit 22/21 of 0x42004
6336         * The bit 5 of 0x42020
6337         * The bit 15 of 0x45000
6338         */
6339        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6340                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6341                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6342        dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6343        I915_WRITE(DISP_ARB_CTL,
6344                   (I915_READ(DISP_ARB_CTL) |
6345                    DISP_FBC_WM_DIS));
6346
6347        ilk_init_lp_watermarks(dev);
6348
6349        /*
6350         * Based on the document from hardware guys the following bits
6351         * should be set unconditionally in order to enable FBC.
6352         * The bit 22 of 0x42000
6353         * The bit 22 of 0x42004
6354         * The bit 7,8,9 of 0x42020.
6355         */
6356        if (IS_IRONLAKE_M(dev)) {
6357                /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6358                I915_WRITE(ILK_DISPLAY_CHICKEN1,
6359                           I915_READ(ILK_DISPLAY_CHICKEN1) |
6360                           ILK_FBCQ_DIS);
6361                I915_WRITE(ILK_DISPLAY_CHICKEN2,
6362                           I915_READ(ILK_DISPLAY_CHICKEN2) |
6363                           ILK_DPARB_GATE);
6364        }
6365
6366        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6367
6368        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6369                   I915_READ(ILK_DISPLAY_CHICKEN2) |
6370                   ILK_ELPIN_409_SELECT);
6371        I915_WRITE(_3D_CHICKEN2,
6372                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6373                   _3D_CHICKEN2_WM_READ_PIPELINED);
6374
6375        /* WaDisableRenderCachePipelinedFlush:ilk */
6376        I915_WRITE(CACHE_MODE_0,
6377                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6378
6379        /* WaDisable_RenderCache_OperationalFlush:ilk */
6380        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6381
6382        g4x_disable_trickle_feed(dev);
6383
6384        ibx_init_clock_gating(dev);
6385}
6386
6387static void cpt_init_clock_gating(struct drm_device *dev)
6388{
6389        struct drm_i915_private *dev_priv = dev->dev_private;
6390        int pipe;
6391        uint32_t val;
6392
6393        /*
6394         * On Ibex Peak and Cougar Point, we need to disable clock
6395         * gating for the panel power sequencer or it will fail to
6396         * start up when no ports are active.
6397         */
6398        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6399                   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6400                   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6401        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6402                   DPLS_EDP_PPS_FIX_DIS);
6403        /* The below fixes the weird display corruption, a few pixels shifted
6404         * downward, on (only) LVDS of some HP laptops with IVY.
6405         */
6406        for_each_pipe(dev_priv, pipe) {
6407                val = I915_READ(TRANS_CHICKEN2(pipe));
6408                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6409                val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6410                if (dev_priv->vbt.fdi_rx_polarity_inverted)
6411                        val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6412                val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6413                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6414                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6415                I915_WRITE(TRANS_CHICKEN2(pipe), val);
6416        }
6417        /* WADP0ClockGatingDisable */
6418        for_each_pipe(dev_priv, pipe) {
6419                I915_WRITE(TRANS_CHICKEN1(pipe),
6420                           TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6421        }
6422}
6423
6424static void gen6_check_mch_setup(struct drm_device *dev)
6425{
6426        struct drm_i915_private *dev_priv = dev->dev_private;
6427        uint32_t tmp;
6428
6429        tmp = I915_READ(MCH_SSKPD);
6430        if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6431                DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6432                              tmp);
6433}
6434
6435static void gen6_init_clock_gating(struct drm_device *dev)
6436{
6437        struct drm_i915_private *dev_priv = dev->dev_private;
6438        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6439
6440        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6441
6442        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6443                   I915_READ(ILK_DISPLAY_CHICKEN2) |
6444                   ILK_ELPIN_409_SELECT);
6445
6446        /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6447        I915_WRITE(_3D_CHICKEN,
6448                   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6449
6450        /* WaDisable_RenderCache_OperationalFlush:snb */
6451        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6452
6453        /*
6454         * BSpec recoomends 8x4 when MSAA is used,
6455         * however in practice 16x4 seems fastest.
6456         *
6457         * Note that PS/WM thread counts depend on the WIZ hashing
6458         * disable bit, which we don't touch here, but it's good
6459         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6460         */
6461        I915_WRITE(GEN6_GT_MODE,
6462                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6463
6464        ilk_init_lp_watermarks(dev);
6465
6466        I915_WRITE(CACHE_MODE_0,
6467                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6468
6469        I915_WRITE(GEN6_UCGCTL1,
6470                   I915_READ(GEN6_UCGCTL1) |
6471                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6472                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6473
6474        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6475         * gating disable must be set.  Failure to set it results in
6476         * flickering pixels due to Z write ordering failures after
6477         * some amount of runtime in the Mesa "fire" demo, and Unigine
6478         * Sanctuary and Tropics, and apparently anything else with
6479         * alpha test or pixel discard.
6480         *
6481         * According to the spec, bit 11 (RCCUNIT) must also be set,
6482         * but we didn't debug actual testcases to find it out.
6483         *
6484         * WaDisableRCCUnitClockGating:snb
6485         * WaDisableRCPBUnitClockGating:snb
6486         */
6487        I915_WRITE(GEN6_UCGCTL2,
6488                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6489                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6490
6491        /* WaStripsFansDisableFastClipPerformanceFix:snb */
6492        I915_WRITE(_3D_CHICKEN3,
6493                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6494
6495        /*
6496         * Bspec says:
6497         * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6498         * 3DSTATE_SF number of SF output attributes is more than 16."
6499         */
6500        I915_WRITE(_3D_CHICKEN3,
6501                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6502
6503        /*
6504         * According to the spec the following bits should be
6505         * set in order to enable memory self-refresh and fbc:
6506         * The bit21 and bit22 of 0x42000
6507         * The bit21 and bit22 of 0x42004
6508         * The bit5 and bit7 of 0x42020
6509         * The bit14 of 0x70180
6510         * The bit14 of 0x71180
6511         *
6512         * WaFbcAsynchFlipDisableFbcQueue:snb
6513         */
6514        I915_WRITE(ILK_DISPLAY_CHICKEN1,
6515                   I915_READ(ILK_DISPLAY_CHICKEN1) |
6516                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6517        I915_WRITE(ILK_DISPLAY_CHICKEN2,
6518                   I915_READ(ILK_DISPLAY_CHICKEN2) |
6519                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6520        I915_WRITE(ILK_DSPCLK_GATE_D,
6521                   I915_READ(ILK_DSPCLK_GATE_D) |
6522                   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6523                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6524
6525        g4x_disable_trickle_feed(dev);
6526
6527        cpt_init_clock_gating(dev);
6528
6529        gen6_check_mch_setup(dev);
6530}
6531
6532static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6533{
6534        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6535
6536        /*
6537         * WaVSThreadDispatchOverride:ivb,vlv
6538         *
6539         * This actually overrides the dispatch
6540         * mode for all thread types.
6541         */
6542        reg &= ~GEN7_FF_SCHED_MASK;
6543        reg |= GEN7_FF_TS_SCHED_HW;
6544        reg |= GEN7_FF_VS_SCHED_HW;
6545        reg |= GEN7_FF_DS_SCHED_HW;
6546
6547        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6548}
6549
6550static void lpt_init_clock_gating(struct drm_device *dev)
6551{
6552        struct drm_i915_private *dev_priv = dev->dev_private;
6553
6554        /*
6555         * TODO: this bit should only be enabled when really needed, then
6556         * disabled when not needed anymore in order to save power.
6557         */
6558        if (HAS_PCH_LPT_LP(dev))
6559                I915_WRITE(SOUTH_DSPCLK_GATE_D,
6560                           I915_READ(SOUTH_DSPCLK_GATE_D) |
6561                           PCH_LP_PARTITION_LEVEL_DISABLE);
6562
6563        /* WADPOClockGatingDisable:hsw */
6564        I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6565                   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6566                   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6567}
6568
6569static void lpt_suspend_hw(struct drm_device *dev)
6570{
6571        struct drm_i915_private *dev_priv = dev->dev_private;
6572
6573        if (HAS_PCH_LPT_LP(dev)) {
6574                uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6575
6576                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6577                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6578        }
6579}
6580
6581static void broadwell_init_clock_gating(struct drm_device *dev)
6582{
6583        struct drm_i915_private *dev_priv = dev->dev_private;
6584        enum pipe pipe;
6585        uint32_t misccpctl;
6586
6587        ilk_init_lp_watermarks(dev);
6588
6589        /* WaSwitchSolVfFArbitrationPriority:bdw */
6590        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6591
6592        /* WaPsrDPAMaskVBlankInSRD:bdw */
6593        I915_WRITE(CHICKEN_PAR1_1,
6594                   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6595
6596        /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6597        for_each_pipe(dev_priv, pipe) {
6598                I915_WRITE(CHICKEN_PIPESL_1(pipe),
6599                           I915_READ(CHICKEN_PIPESL_1(pipe)) |
6600                           BDW_DPRS_MASK_VBLANK_SRD);
6601        }
6602
6603        /* WaVSRefCountFullforceMissDisable:bdw */
6604        /* WaDSRefCountFullforceMissDisable:bdw */
6605        I915_WRITE(GEN7_FF_THREAD_MODE,
6606                   I915_READ(GEN7_FF_THREAD_MODE) &
6607                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6608
6609        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6610                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6611
6612        /* WaDisableSDEUnitClockGating:bdw */
6613        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6614                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6615
6616        /*
6617         * WaProgramL3SqcReg1Default:bdw
6618         * WaTempDisableDOPClkGating:bdw
6619         */
6620        misccpctl = I915_READ(GEN7_MISCCPCTL);
6621        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6622        I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6623        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6624
6625        /*
6626         * WaGttCachingOffByDefault:bdw
6627         * GTT cache may not work with big pages, so if those
6628         * are ever enabled GTT cache may need to be disabled.
6629         */
6630        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6631
6632        lpt_init_clock_gating(dev);
6633}
6634
6635static void haswell_init_clock_gating(struct drm_device *dev)
6636{
6637        struct drm_i915_private *dev_priv = dev->dev_private;
6638
6639        ilk_init_lp_watermarks(dev);
6640
6641        /* L3 caching of data atomics doesn't work -- disable it. */
6642        I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6643        I915_WRITE(HSW_ROW_CHICKEN3,
6644                   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6645
6646        /* This is required by WaCatErrorRejectionIssue:hsw */
6647        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6648                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6649                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6650
6651        /* WaVSRefCountFullforceMissDisable:hsw */
6652        I915_WRITE(GEN7_FF_THREAD_MODE,
6653                   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6654
6655        /* WaDisable_RenderCache_OperationalFlush:hsw */
6656        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6657
6658        /* enable HiZ Raw Stall Optimization */
6659        I915_WRITE(CACHE_MODE_0_GEN7,
6660                   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6661
6662        /* WaDisable4x2SubspanOptimization:hsw */
6663        I915_WRITE(CACHE_MODE_1,
6664                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6665
6666        /*
6667         * BSpec recommends 8x4 when MSAA is used,
6668         * however in practice 16x4 seems fastest.
6669         *
6670         * Note that PS/WM thread counts depend on the WIZ hashing
6671         * disable bit, which we don't touch here, but it's good
6672         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6673         */
6674        I915_WRITE(GEN7_GT_MODE,
6675                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6676
6677        /* WaSampleCChickenBitEnable:hsw */
6678        I915_WRITE(HALF_SLICE_CHICKEN3,
6679                   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6680
6681        /* WaSwitchSolVfFArbitrationPriority:hsw */
6682        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6683
6684        /* WaRsPkgCStateDisplayPMReq:hsw */
6685        I915_WRITE(CHICKEN_PAR1_1,
6686                   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6687
6688        lpt_init_clock_gating(dev);
6689}
6690
6691static void ivybridge_init_clock_gating(struct drm_device *dev)
6692{
6693        struct drm_i915_private *dev_priv = dev->dev_private;
6694        uint32_t snpcr;
6695
6696        ilk_init_lp_watermarks(dev);
6697
6698        I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6699
6700        /* WaDisableEarlyCull:ivb */
6701        I915_WRITE(_3D_CHICKEN3,
6702                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6703
6704        /* WaDisableBackToBackFlipFix:ivb */
6705        I915_WRITE(IVB_CHICKEN3,
6706                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6707                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6708
6709        /* WaDisablePSDDualDispatchEnable:ivb */
6710        if (IS_IVB_GT1(dev))
6711                I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6712                           _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6713
6714        /* WaDisable_RenderCache_OperationalFlush:ivb */
6715        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6716
6717        /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6718        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6719                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6720
6721        /* WaApplyL3ControlAndL3ChickenMode:ivb */
6722        I915_WRITE(GEN7_L3CNTLREG1,
6723                        GEN7_WA_FOR_GEN7_L3_CONTROL);
6724        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6725                   GEN7_WA_L3_CHICKEN_MODE);
6726        if (IS_IVB_GT1(dev))
6727                I915_WRITE(GEN7_ROW_CHICKEN2,
6728                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6729        else {
6730                /* must write both registers */
6731                I915_WRITE(GEN7_ROW_CHICKEN2,
6732                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6733                I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6734                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6735        }
6736
6737        /* WaForceL3Serialization:ivb */
6738        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6739                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6740
6741        /*
6742         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6743         * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6744         */
6745        I915_WRITE(GEN6_UCGCTL2,
6746                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6747
6748        /* This is required by WaCatErrorRejectionIssue:ivb */
6749        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6750                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6751                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6752
6753        g4x_disable_trickle_feed(dev);
6754
6755        gen7_setup_fixed_func_scheduler(dev_priv);
6756
6757        if (0) { /* causes HiZ corruption on ivb:gt1 */
6758                /* enable HiZ Raw Stall Optimization */
6759                I915_WRITE(CACHE_MODE_0_GEN7,
6760                           _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6761        }
6762
6763        /* WaDisable4x2SubspanOptimization:ivb */
6764        I915_WRITE(CACHE_MODE_1,
6765                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6766
6767        /*
6768         * BSpec recommends 8x4 when MSAA is used,
6769         * however in practice 16x4 seems fastest.
6770         *
6771         * Note that PS/WM thread counts depend on the WIZ hashing
6772         * disable bit, which we don't touch here, but it's good
6773         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6774         */
6775        I915_WRITE(GEN7_GT_MODE,
6776                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6777
6778        snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6779        snpcr &= ~GEN6_MBC_SNPCR_MASK;
6780        snpcr |= GEN6_MBC_SNPCR_MED;
6781        I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6782
6783        if (!HAS_PCH_NOP(dev))
6784                cpt_init_clock_gating(dev);
6785
6786        gen6_check_mch_setup(dev);
6787}
6788
6789static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6790{
6791        I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6792
6793        /*
6794         * Disable trickle feed and enable pnd deadline calculation
6795         */
6796        I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6797        I915_WRITE(CBR1_VLV, 0);
6798}
6799
6800static void valleyview_init_clock_gating(struct drm_device *dev)
6801{
6802        struct drm_i915_private *dev_priv = dev->dev_private;
6803
6804        vlv_init_display_clock_gating(dev_priv);
6805
6806        /* WaDisableEarlyCull:vlv */
6807        I915_WRITE(_3D_CHICKEN3,
6808                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6809
6810        /* WaDisableBackToBackFlipFix:vlv */
6811        I915_WRITE(IVB_CHICKEN3,
6812                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6813                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6814
6815        /* WaPsdDispatchEnable:vlv */
6816        /* WaDisablePSDDualDispatchEnable:vlv */
6817        I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6818                   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6819                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6820
6821        /* WaDisable_RenderCache_OperationalFlush:vlv */
6822        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6823
6824        /* WaForceL3Serialization:vlv */
6825        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6826                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6827
6828        /* WaDisableDopClockGating:vlv */
6829        I915_WRITE(GEN7_ROW_CHICKEN2,
6830                   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6831
6832        /* This is required by WaCatErrorRejectionIssue:vlv */
6833        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6834                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6835                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6836
6837        gen7_setup_fixed_func_scheduler(dev_priv);
6838
6839        /*
6840         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6841         * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6842         */
6843        I915_WRITE(GEN6_UCGCTL2,
6844                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6845
6846        /* WaDisableL3Bank2xClockGate:vlv
6847         * Disabling L3 clock gating- MMIO 940c[25] = 1
6848         * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6849        I915_WRITE(GEN7_UCGCTL4,
6850                   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6851
6852        /*
6853         * BSpec says this must be set, even though
6854         * WaDisable4x2SubspanOptimization isn't listed for VLV.
6855         */
6856        I915_WRITE(CACHE_MODE_1,
6857                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6858
6859        /*
6860         * BSpec recommends 8x4 when MSAA is used,
6861         * however in practice 16x4 seems fastest.
6862         *
6863         * Note that PS/WM thread counts depend on the WIZ hashing
6864         * disable bit, which we don't touch here, but it's good
6865         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6866         */
6867        I915_WRITE(GEN7_GT_MODE,
6868                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6869
6870        /*
6871         * WaIncreaseL3CreditsForVLVB0:vlv
6872         * This is the hardware default actually.
6873         */
6874        I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6875
6876        /*
6877         * WaDisableVLVClockGating_VBIIssue:vlv
6878         * Disable clock gating on th GCFG unit to prevent a delay
6879         * in the reporting of vblank events.
6880         */
6881        I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6882}
6883
6884static void cherryview_init_clock_gating(struct drm_device *dev)
6885{
6886        struct drm_i915_private *dev_priv = dev->dev_private;
6887
6888        vlv_init_display_clock_gating(dev_priv);
6889
6890        /* WaVSRefCountFullforceMissDisable:chv */
6891        /* WaDSRefCountFullforceMissDisable:chv */
6892        I915_WRITE(GEN7_FF_THREAD_MODE,
6893                   I915_READ(GEN7_FF_THREAD_MODE) &
6894                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6895
6896        /* WaDisableSemaphoreAndSyncFlipWait:chv */
6897        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6898                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6899
6900        /* WaDisableCSUnitClockGating:chv */
6901        I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6902                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6903
6904        /* WaDisableSDEUnitClockGating:chv */
6905        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6906                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6907
6908        /*
6909         * GTT cache may not work with big pages, so if those
6910         * are ever enabled GTT cache may need to be disabled.
6911         */
6912        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6913}
6914
6915static void g4x_init_clock_gating(struct drm_device *dev)
6916{
6917        struct drm_i915_private *dev_priv = dev->dev_private;
6918        uint32_t dspclk_gate;
6919
6920        I915_WRITE(RENCLK_GATE_D1, 0);
6921        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6922                   GS_UNIT_CLOCK_GATE_DISABLE |
6923                   CL_UNIT_CLOCK_GATE_DISABLE);
6924        I915_WRITE(RAMCLK_GATE_D, 0);
6925        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6926                OVRUNIT_CLOCK_GATE_DISABLE |
6927                OVCUNIT_CLOCK_GATE_DISABLE;
6928        if (IS_GM45(dev))
6929                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6930        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6931
6932        /* WaDisableRenderCachePipelinedFlush */
6933        I915_WRITE(CACHE_MODE_0,
6934                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6935
6936        /* WaDisable_RenderCache_OperationalFlush:g4x */
6937        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6938
6939        g4x_disable_trickle_feed(dev);
6940}
6941
6942static void crestline_init_clock_gating(struct drm_device *dev)
6943{
6944        struct drm_i915_private *dev_priv = dev->dev_private;
6945
6946        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6947        I915_WRITE(RENCLK_GATE_D2, 0);
6948        I915_WRITE(DSPCLK_GATE_D, 0);
6949        I915_WRITE(RAMCLK_GATE_D, 0);
6950        I915_WRITE16(DEUC, 0);
6951        I915_WRITE(MI_ARB_STATE,
6952                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6953
6954        /* WaDisable_RenderCache_OperationalFlush:gen4 */
6955        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6956}
6957
6958static void broadwater_init_clock_gating(struct drm_device *dev)
6959{
6960        struct drm_i915_private *dev_priv = dev->dev_private;
6961
6962        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6963                   I965_RCC_CLOCK_GATE_DISABLE |
6964                   I965_RCPB_CLOCK_GATE_DISABLE |
6965                   I965_ISC_CLOCK_GATE_DISABLE |
6966                   I965_FBC_CLOCK_GATE_DISABLE);
6967        I915_WRITE(RENCLK_GATE_D2, 0);
6968        I915_WRITE(MI_ARB_STATE,
6969                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6970
6971        /* WaDisable_RenderCache_OperationalFlush:gen4 */
6972        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6973}
6974
6975static void gen3_init_clock_gating(struct drm_device *dev)
6976{
6977        struct drm_i915_private *dev_priv = dev->dev_private;
6978        u32 dstate = I915_READ(D_STATE);
6979
6980        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6981                DSTATE_DOT_CLOCK_GATING;
6982        I915_WRITE(D_STATE, dstate);
6983
6984        if (IS_PINEVIEW(dev))
6985                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6986
6987        /* IIR "flip pending" means done if this bit is set */
6988        I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6989
6990        /* interrupts should cause a wake up from C3 */
6991        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6992
6993        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6994        I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6995
6996        I915_WRITE(MI_ARB_STATE,
6997                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6998}
6999
7000static void i85x_init_clock_gating(struct drm_device *dev)
7001{
7002        struct drm_i915_private *dev_priv = dev->dev_private;
7003
7004        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7005
7006        /* interrupts should cause a wake up from C3 */
7007        I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7008                   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7009
7010        I915_WRITE(MEM_MODE,
7011                   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7012}
7013
7014static void i830_init_clock_gating(struct drm_device *dev)
7015{
7016        struct drm_i915_private *dev_priv = dev->dev_private;
7017
7018        I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7019
7020        I915_WRITE(MEM_MODE,
7021                   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7022                   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7023}
7024
7025void intel_init_clock_gating(struct drm_device *dev)
7026{
7027        struct drm_i915_private *dev_priv = dev->dev_private;
7028
7029        if (dev_priv->display.init_clock_gating)
7030                dev_priv->display.init_clock_gating(dev);
7031}
7032
7033void intel_suspend_hw(struct drm_device *dev)
7034{
7035        if (HAS_PCH_LPT(dev))
7036                lpt_suspend_hw(dev);
7037}
7038
7039/* Set up chip specific power management-related functions */
7040void intel_init_pm(struct drm_device *dev)
7041{
7042        struct drm_i915_private *dev_priv = dev->dev_private;
7043
7044        intel_fbc_init(dev_priv);
7045
7046        /* For cxsr */
7047        if (IS_PINEVIEW(dev))
7048                i915_pineview_get_mem_freq(dev);
7049        else if (IS_GEN5(dev))
7050                i915_ironlake_get_mem_freq(dev);
7051
7052        /* For FIFO watermark updates */
7053        if (INTEL_INFO(dev)->gen >= 9) {
7054                skl_setup_wm_latency(dev);
7055
7056                if (IS_BROXTON(dev))
7057                        dev_priv->display.init_clock_gating =
7058                                bxt_init_clock_gating;
7059                dev_priv->display.update_wm = skl_update_wm;
7060                dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7061        } else if (HAS_PCH_SPLIT(dev)) {
7062                ilk_setup_wm_latency(dev);
7063
7064                if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7065                     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7066                    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7067                     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7068                        dev_priv->display.update_wm = ilk_update_wm;
7069                        dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7070                } else {
7071                        DRM_DEBUG_KMS("Failed to read display plane latency. "
7072                                      "Disable CxSR\n");
7073                }
7074
7075                if (IS_GEN5(dev))
7076                        dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7077                else if (IS_GEN6(dev))
7078                        dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7079                else if (IS_IVYBRIDGE(dev))
7080                        dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7081                else if (IS_HASWELL(dev))
7082                        dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7083                else if (INTEL_INFO(dev)->gen == 8)
7084                        dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7085        } else if (IS_CHERRYVIEW(dev)) {
7086                vlv_setup_wm_latency(dev);
7087
7088                dev_priv->display.update_wm = vlv_update_wm;
7089                dev_priv->display.init_clock_gating =
7090                        cherryview_init_clock_gating;
7091        } else if (IS_VALLEYVIEW(dev)) {
7092                vlv_setup_wm_latency(dev);
7093
7094                dev_priv->display.update_wm = vlv_update_wm;
7095                dev_priv->display.init_clock_gating =
7096                        valleyview_init_clock_gating;
7097        } else if (IS_PINEVIEW(dev)) {
7098                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7099                                            dev_priv->is_ddr3,
7100                                            dev_priv->fsb_freq,
7101                                            dev_priv->mem_freq)) {
7102                        DRM_INFO("failed to find known CxSR latency "
7103                                 "(found ddr%s fsb freq %d, mem freq %d), "
7104                                 "disabling CxSR\n",
7105                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7106                                 dev_priv->fsb_freq, dev_priv->mem_freq);
7107                        /* Disable CxSR and never update its watermark again */
7108                        intel_set_memory_cxsr(dev_priv, false);
7109                        dev_priv->display.update_wm = NULL;
7110                } else
7111                        dev_priv->display.update_wm = pineview_update_wm;
7112                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7113        } else if (IS_G4X(dev)) {
7114                dev_priv->display.update_wm = g4x_update_wm;
7115                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7116        } else if (IS_GEN4(dev)) {
7117                dev_priv->display.update_wm = i965_update_wm;
7118                if (IS_CRESTLINE(dev))
7119                        dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7120                else if (IS_BROADWATER(dev))
7121                        dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7122        } else if (IS_GEN3(dev)) {
7123                dev_priv->display.update_wm = i9xx_update_wm;
7124                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7125                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7126        } else if (IS_GEN2(dev)) {
7127                if (INTEL_INFO(dev)->num_pipes == 1) {
7128                        dev_priv->display.update_wm = i845_update_wm;
7129                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
7130                } else {
7131                        dev_priv->display.update_wm = i9xx_update_wm;
7132                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
7133                }
7134
7135                if (IS_I85X(dev) || IS_I865G(dev))
7136                        dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7137                else
7138                        dev_priv->display.init_clock_gating = i830_init_clock_gating;
7139        } else {
7140                DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7141        }
7142}
7143
7144int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7145{
7146        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7147
7148        if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7149                DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7150                return -EAGAIN;
7151        }
7152
7153        I915_WRITE(GEN6_PCODE_DATA, *val);
7154        I915_WRITE(GEN6_PCODE_DATA1, 0);
7155        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7156
7157        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7158                     500)) {
7159                DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7160                return -ETIMEDOUT;
7161        }
7162
7163        *val = I915_READ(GEN6_PCODE_DATA);
7164        I915_WRITE(GEN6_PCODE_DATA, 0);
7165
7166        return 0;
7167}
7168
7169int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7170{
7171        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7172
7173        if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7174                DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7175                return -EAGAIN;
7176        }
7177
7178        I915_WRITE(GEN6_PCODE_DATA, val);
7179        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7180
7181        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7182                     500)) {
7183                DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7184                return -ETIMEDOUT;
7185        }
7186
7187        I915_WRITE(GEN6_PCODE_DATA, 0);
7188
7189        return 0;
7190}
7191
7192static int vlv_gpu_freq_div(unsigned int czclk_freq)
7193{
7194        switch (czclk_freq) {
7195        case 200:
7196                return 10;
7197        case 267:
7198                return 12;
7199        case 320:
7200        case 333:
7201                return 16;
7202        case 400:
7203                return 20;
7204        default:
7205                return -1;
7206        }
7207}
7208
7209static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7210{
7211        int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7212
7213        div = vlv_gpu_freq_div(czclk_freq);
7214        if (div < 0)
7215                return div;
7216
7217        return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7218}
7219
7220static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7221{
7222        int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7223
7224        mul = vlv_gpu_freq_div(czclk_freq);
7225        if (mul < 0)
7226                return mul;
7227
7228        return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7229}
7230
7231static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7232{
7233        int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7234
7235        div = vlv_gpu_freq_div(czclk_freq) / 2;
7236        if (div < 0)
7237                return div;
7238
7239        return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7240}
7241
7242static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7243{
7244        int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7245
7246        mul = vlv_gpu_freq_div(czclk_freq) / 2;
7247        if (mul < 0)
7248                return mul;
7249
7250        /* CHV needs even values */
7251        return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7252}
7253
7254int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7255{
7256        if (IS_GEN9(dev_priv->dev))
7257                return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7258                                         GEN9_FREQ_SCALER);
7259        else if (IS_CHERRYVIEW(dev_priv->dev))
7260                return chv_gpu_freq(dev_priv, val);
7261        else if (IS_VALLEYVIEW(dev_priv->dev))
7262                return byt_gpu_freq(dev_priv, val);
7263        else
7264                return val * GT_FREQUENCY_MULTIPLIER;
7265}
7266
7267int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7268{
7269        if (IS_GEN9(dev_priv->dev))
7270                return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7271                                         GT_FREQUENCY_MULTIPLIER);
7272        else if (IS_CHERRYVIEW(dev_priv->dev))
7273                return chv_freq_opcode(dev_priv, val);
7274        else if (IS_VALLEYVIEW(dev_priv->dev))
7275                return byt_freq_opcode(dev_priv, val);
7276        else
7277                return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7278}
7279
7280struct request_boost {
7281        struct work_struct work;
7282        struct drm_i915_gem_request *req;
7283};
7284
7285static void __intel_rps_boost_work(struct work_struct *work)
7286{
7287        struct request_boost *boost = container_of(work, struct request_boost, work);
7288        struct drm_i915_gem_request *req = boost->req;
7289
7290        if (!i915_gem_request_completed(req, true))
7291                gen6_rps_boost(to_i915(req->ring->dev), NULL,
7292                               req->emitted_jiffies);
7293
7294        i915_gem_request_unreference__unlocked(req);
7295        kfree(boost);
7296}
7297
7298void intel_queue_rps_boost_for_request(struct drm_device *dev,
7299                                       struct drm_i915_gem_request *req)
7300{
7301        struct request_boost *boost;
7302
7303        if (req == NULL || INTEL_INFO(dev)->gen < 6)
7304                return;
7305
7306        if (i915_gem_request_completed(req, true))
7307                return;
7308
7309        boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7310        if (boost == NULL)
7311                return;
7312
7313        i915_gem_request_reference(req);
7314        boost->req = req;
7315
7316        INIT_WORK(&boost->work, __intel_rps_boost_work);
7317        queue_work(to_i915(dev)->wq, &boost->work);
7318}
7319
7320void intel_pm_setup(struct drm_device *dev)
7321{
7322        struct drm_i915_private *dev_priv = dev->dev_private;
7323
7324        mutex_init(&dev_priv->rps.hw_lock);
7325        spin_lock_init(&dev_priv->rps.client_lock);
7326
7327        INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7328                          intel_gen6_powersave_work);
7329        INIT_LIST_HEAD(&dev_priv->rps.clients);
7330        INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7331        INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7332
7333        dev_priv->pm.suspended = false;
7334}
7335