linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/reset.h>
  14
  15#include <soc/tegra/pmc.h>
  16
  17#include "dc.h"
  18#include "drm.h"
  19#include "gem.h"
  20
  21#include <drm/drm_atomic.h>
  22#include <drm/drm_atomic_helper.h>
  23#include <drm/drm_plane_helper.h>
  24
  25struct tegra_dc_soc_info {
  26        bool supports_border_color;
  27        bool supports_interlacing;
  28        bool supports_cursor;
  29        bool supports_block_linear;
  30        unsigned int pitch_align;
  31        bool has_powergate;
  32};
  33
  34struct tegra_plane {
  35        struct drm_plane base;
  36        unsigned int index;
  37};
  38
  39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  40{
  41        return container_of(plane, struct tegra_plane, base);
  42}
  43
  44struct tegra_dc_state {
  45        struct drm_crtc_state base;
  46
  47        struct clk *clk;
  48        unsigned long pclk;
  49        unsigned int div;
  50
  51        u32 planes;
  52};
  53
  54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  55{
  56        if (state)
  57                return container_of(state, struct tegra_dc_state, base);
  58
  59        return NULL;
  60}
  61
  62struct tegra_plane_state {
  63        struct drm_plane_state base;
  64
  65        struct tegra_bo_tiling tiling;
  66        u32 format;
  67        u32 swap;
  68};
  69
  70static inline struct tegra_plane_state *
  71to_tegra_plane_state(struct drm_plane_state *state)
  72{
  73        if (state)
  74                return container_of(state, struct tegra_plane_state, base);
  75
  76        return NULL;
  77}
  78
  79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  80{
  81        stats->frames = 0;
  82        stats->vblank = 0;
  83        stats->underflow = 0;
  84        stats->overflow = 0;
  85}
  86
  87/*
  88 * Reads the active copy of a register. This takes the dc->lock spinlock to
  89 * prevent races with the VBLANK processing which also needs access to the
  90 * active copy of some registers.
  91 */
  92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  93{
  94        unsigned long flags;
  95        u32 value;
  96
  97        spin_lock_irqsave(&dc->lock, flags);
  98
  99        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 100        value = tegra_dc_readl(dc, offset);
 101        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 102
 103        spin_unlock_irqrestore(&dc->lock, flags);
 104        return value;
 105}
 106
 107/*
 108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 110 * Latching happens mmediately if the display controller is in STOP mode or
 111 * on the next frame boundary otherwise.
 112 *
 113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 116 * into the ACTIVE copy, either immediately if the display controller is in
 117 * STOP mode, or at the next frame boundary otherwise.
 118 */
 119void tegra_dc_commit(struct tegra_dc *dc)
 120{
 121        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 122        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 123}
 124
 125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 126{
 127        /* assume no swapping of fetched data */
 128        if (swap)
 129                *swap = BYTE_SWAP_NOSWAP;
 130
 131        switch (fourcc) {
 132        case DRM_FORMAT_XBGR8888:
 133                *format = WIN_COLOR_DEPTH_R8G8B8A8;
 134                break;
 135
 136        case DRM_FORMAT_XRGB8888:
 137                *format = WIN_COLOR_DEPTH_B8G8R8A8;
 138                break;
 139
 140        case DRM_FORMAT_RGB565:
 141                *format = WIN_COLOR_DEPTH_B5G6R5;
 142                break;
 143
 144        case DRM_FORMAT_UYVY:
 145                *format = WIN_COLOR_DEPTH_YCbCr422;
 146                break;
 147
 148        case DRM_FORMAT_YUYV:
 149                if (swap)
 150                        *swap = BYTE_SWAP_SWAP2;
 151
 152                *format = WIN_COLOR_DEPTH_YCbCr422;
 153                break;
 154
 155        case DRM_FORMAT_YUV420:
 156                *format = WIN_COLOR_DEPTH_YCbCr420P;
 157                break;
 158
 159        case DRM_FORMAT_YUV422:
 160                *format = WIN_COLOR_DEPTH_YCbCr422P;
 161                break;
 162
 163        default:
 164                return -EINVAL;
 165        }
 166
 167        return 0;
 168}
 169
 170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 171{
 172        switch (format) {
 173        case WIN_COLOR_DEPTH_YCbCr422:
 174        case WIN_COLOR_DEPTH_YUV422:
 175                if (planar)
 176                        *planar = false;
 177
 178                return true;
 179
 180        case WIN_COLOR_DEPTH_YCbCr420P:
 181        case WIN_COLOR_DEPTH_YUV420P:
 182        case WIN_COLOR_DEPTH_YCbCr422P:
 183        case WIN_COLOR_DEPTH_YUV422P:
 184        case WIN_COLOR_DEPTH_YCbCr422R:
 185        case WIN_COLOR_DEPTH_YUV422R:
 186        case WIN_COLOR_DEPTH_YCbCr422RA:
 187        case WIN_COLOR_DEPTH_YUV422RA:
 188                if (planar)
 189                        *planar = true;
 190
 191                return true;
 192        }
 193
 194        if (planar)
 195                *planar = false;
 196
 197        return false;
 198}
 199
 200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 201                                  unsigned int bpp)
 202{
 203        fixed20_12 outf = dfixed_init(out);
 204        fixed20_12 inf = dfixed_init(in);
 205        u32 dda_inc;
 206        int max;
 207
 208        if (v)
 209                max = 15;
 210        else {
 211                switch (bpp) {
 212                case 2:
 213                        max = 8;
 214                        break;
 215
 216                default:
 217                        WARN_ON_ONCE(1);
 218                        /* fallthrough */
 219                case 4:
 220                        max = 4;
 221                        break;
 222                }
 223        }
 224
 225        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 226        inf.full -= dfixed_const(1);
 227
 228        dda_inc = dfixed_div(inf, outf);
 229        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 230
 231        return dda_inc;
 232}
 233
 234static inline u32 compute_initial_dda(unsigned int in)
 235{
 236        fixed20_12 inf = dfixed_init(in);
 237        return dfixed_frac(inf);
 238}
 239
 240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 241                                  const struct tegra_dc_window *window)
 242{
 243        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 244        unsigned long value, flags;
 245        bool yuv, planar;
 246
 247        /*
 248         * For YUV planar modes, the number of bytes per pixel takes into
 249         * account only the luma component and therefore is 1.
 250         */
 251        yuv = tegra_dc_format_is_yuv(window->format, &planar);
 252        if (!yuv)
 253                bpp = window->bits_per_pixel / 8;
 254        else
 255                bpp = planar ? 1 : 2;
 256
 257        spin_lock_irqsave(&dc->lock, flags);
 258
 259        value = WINDOW_A_SELECT << index;
 260        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 261
 262        tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 263        tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 264
 265        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 266        tegra_dc_writel(dc, value, DC_WIN_POSITION);
 267
 268        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 269        tegra_dc_writel(dc, value, DC_WIN_SIZE);
 270
 271        h_offset = window->src.x * bpp;
 272        v_offset = window->src.y;
 273        h_size = window->src.w * bpp;
 274        v_size = window->src.h;
 275
 276        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 277        tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 278
 279        /*
 280         * For DDA computations the number of bytes per pixel for YUV planar
 281         * modes needs to take into account all Y, U and V components.
 282         */
 283        if (yuv && planar)
 284                bpp = 2;
 285
 286        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 287        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 288
 289        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 290        tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 291
 292        h_dda = compute_initial_dda(window->src.x);
 293        v_dda = compute_initial_dda(window->src.y);
 294
 295        tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 296        tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 297
 298        tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 299        tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 300
 301        tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 302
 303        if (yuv && planar) {
 304                tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 305                tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 306                value = window->stride[1] << 16 | window->stride[0];
 307                tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 308        } else {
 309                tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 310        }
 311
 312        if (window->bottom_up)
 313                v_offset += window->src.h - 1;
 314
 315        tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 316        tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 317
 318        if (dc->soc->supports_block_linear) {
 319                unsigned long height = window->tiling.value;
 320
 321                switch (window->tiling.mode) {
 322                case TEGRA_BO_TILING_MODE_PITCH:
 323                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 324                        break;
 325
 326                case TEGRA_BO_TILING_MODE_TILED:
 327                        value = DC_WINBUF_SURFACE_KIND_TILED;
 328                        break;
 329
 330                case TEGRA_BO_TILING_MODE_BLOCK:
 331                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 332                                DC_WINBUF_SURFACE_KIND_BLOCK;
 333                        break;
 334                }
 335
 336                tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 337        } else {
 338                switch (window->tiling.mode) {
 339                case TEGRA_BO_TILING_MODE_PITCH:
 340                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 341                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 342                        break;
 343
 344                case TEGRA_BO_TILING_MODE_TILED:
 345                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 346                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 347                        break;
 348
 349                case TEGRA_BO_TILING_MODE_BLOCK:
 350                        /*
 351                         * No need to handle this here because ->atomic_check
 352                         * will already have filtered it out.
 353                         */
 354                        break;
 355                }
 356
 357                tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 358        }
 359
 360        value = WIN_ENABLE;
 361
 362        if (yuv) {
 363                /* setup default colorspace conversion coefficients */
 364                tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 365                tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 366                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 367                tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 368                tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 369                tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 370                tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 371                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 372
 373                value |= CSC_ENABLE;
 374        } else if (window->bits_per_pixel < 24) {
 375                value |= COLOR_EXPAND;
 376        }
 377
 378        if (window->bottom_up)
 379                value |= V_DIRECTION;
 380
 381        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 382
 383        /*
 384         * Disable blending and assume Window A is the bottom-most window,
 385         * Window C is the top-most window and Window B is in the middle.
 386         */
 387        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 388        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 389
 390        switch (index) {
 391        case 0:
 392                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 393                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 394                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 395                break;
 396
 397        case 1:
 398                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 399                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 400                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 401                break;
 402
 403        case 2:
 404                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 405                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 406                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 407                break;
 408        }
 409
 410        spin_unlock_irqrestore(&dc->lock, flags);
 411}
 412
 413static void tegra_plane_destroy(struct drm_plane *plane)
 414{
 415        struct tegra_plane *p = to_tegra_plane(plane);
 416
 417        drm_plane_cleanup(plane);
 418        kfree(p);
 419}
 420
 421static const u32 tegra_primary_plane_formats[] = {
 422        DRM_FORMAT_XBGR8888,
 423        DRM_FORMAT_XRGB8888,
 424        DRM_FORMAT_RGB565,
 425};
 426
 427static void tegra_primary_plane_destroy(struct drm_plane *plane)
 428{
 429        tegra_plane_destroy(plane);
 430}
 431
 432static void tegra_plane_reset(struct drm_plane *plane)
 433{
 434        struct tegra_plane_state *state;
 435
 436        if (plane->state)
 437                __drm_atomic_helper_plane_destroy_state(plane, plane->state);
 438
 439        kfree(plane->state);
 440        plane->state = NULL;
 441
 442        state = kzalloc(sizeof(*state), GFP_KERNEL);
 443        if (state) {
 444                plane->state = &state->base;
 445                plane->state->plane = plane;
 446        }
 447}
 448
 449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 450{
 451        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 452        struct tegra_plane_state *copy;
 453
 454        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 455        if (!copy)
 456                return NULL;
 457
 458        __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 459        copy->tiling = state->tiling;
 460        copy->format = state->format;
 461        copy->swap = state->swap;
 462
 463        return &copy->base;
 464}
 465
 466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 467                                             struct drm_plane_state *state)
 468{
 469        __drm_atomic_helper_plane_destroy_state(plane, state);
 470        kfree(state);
 471}
 472
 473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 474        .update_plane = drm_atomic_helper_update_plane,
 475        .disable_plane = drm_atomic_helper_disable_plane,
 476        .destroy = tegra_primary_plane_destroy,
 477        .reset = tegra_plane_reset,
 478        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 479        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 480};
 481
 482static int tegra_plane_prepare_fb(struct drm_plane *plane,
 483                                  const struct drm_plane_state *new_state)
 484{
 485        return 0;
 486}
 487
 488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
 489                                   const struct drm_plane_state *old_fb)
 490{
 491}
 492
 493static int tegra_plane_state_add(struct tegra_plane *plane,
 494                                 struct drm_plane_state *state)
 495{
 496        struct drm_crtc_state *crtc_state;
 497        struct tegra_dc_state *tegra;
 498
 499        /* Propagate errors from allocation or locking failures. */
 500        crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 501        if (IS_ERR(crtc_state))
 502                return PTR_ERR(crtc_state);
 503
 504        tegra = to_dc_state(crtc_state);
 505
 506        tegra->planes |= WIN_A_ACT_REQ << plane->index;
 507
 508        return 0;
 509}
 510
 511static int tegra_plane_atomic_check(struct drm_plane *plane,
 512                                    struct drm_plane_state *state)
 513{
 514        struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 515        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 516        struct tegra_plane *tegra = to_tegra_plane(plane);
 517        struct tegra_dc *dc = to_tegra_dc(state->crtc);
 518        int err;
 519
 520        /* no need for further checks if the plane is being disabled */
 521        if (!state->crtc)
 522                return 0;
 523
 524        err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
 525                              &plane_state->swap);
 526        if (err < 0)
 527                return err;
 528
 529        err = tegra_fb_get_tiling(state->fb, tiling);
 530        if (err < 0)
 531                return err;
 532
 533        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 534            !dc->soc->supports_block_linear) {
 535                DRM_ERROR("hardware doesn't support block linear mode\n");
 536                return -EINVAL;
 537        }
 538
 539        /*
 540         * Tegra doesn't support different strides for U and V planes so we
 541         * error out if the user tries to display a framebuffer with such a
 542         * configuration.
 543         */
 544        if (drm_format_num_planes(state->fb->pixel_format) > 2) {
 545                if (state->fb->pitches[2] != state->fb->pitches[1]) {
 546                        DRM_ERROR("unsupported UV-plane configuration\n");
 547                        return -EINVAL;
 548                }
 549        }
 550
 551        err = tegra_plane_state_add(tegra, state);
 552        if (err < 0)
 553                return err;
 554
 555        return 0;
 556}
 557
 558static void tegra_plane_atomic_update(struct drm_plane *plane,
 559                                      struct drm_plane_state *old_state)
 560{
 561        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 562        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 563        struct drm_framebuffer *fb = plane->state->fb;
 564        struct tegra_plane *p = to_tegra_plane(plane);
 565        struct tegra_dc_window window;
 566        unsigned int i;
 567
 568        /* rien ne va plus */
 569        if (!plane->state->crtc || !plane->state->fb)
 570                return;
 571
 572        memset(&window, 0, sizeof(window));
 573        window.src.x = plane->state->src_x >> 16;
 574        window.src.y = plane->state->src_y >> 16;
 575        window.src.w = plane->state->src_w >> 16;
 576        window.src.h = plane->state->src_h >> 16;
 577        window.dst.x = plane->state->crtc_x;
 578        window.dst.y = plane->state->crtc_y;
 579        window.dst.w = plane->state->crtc_w;
 580        window.dst.h = plane->state->crtc_h;
 581        window.bits_per_pixel = fb->bits_per_pixel;
 582        window.bottom_up = tegra_fb_is_bottom_up(fb);
 583
 584        /* copy from state */
 585        window.tiling = state->tiling;
 586        window.format = state->format;
 587        window.swap = state->swap;
 588
 589        for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
 590                struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 591
 592                window.base[i] = bo->paddr + fb->offsets[i];
 593                window.stride[i] = fb->pitches[i];
 594        }
 595
 596        tegra_dc_setup_window(dc, p->index, &window);
 597}
 598
 599static void tegra_plane_atomic_disable(struct drm_plane *plane,
 600                                       struct drm_plane_state *old_state)
 601{
 602        struct tegra_plane *p = to_tegra_plane(plane);
 603        struct tegra_dc *dc;
 604        unsigned long flags;
 605        u32 value;
 606
 607        /* rien ne va plus */
 608        if (!old_state || !old_state->crtc)
 609                return;
 610
 611        dc = to_tegra_dc(old_state->crtc);
 612
 613        spin_lock_irqsave(&dc->lock, flags);
 614
 615        value = WINDOW_A_SELECT << p->index;
 616        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 617
 618        value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 619        value &= ~WIN_ENABLE;
 620        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 621
 622        spin_unlock_irqrestore(&dc->lock, flags);
 623}
 624
 625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 626        .prepare_fb = tegra_plane_prepare_fb,
 627        .cleanup_fb = tegra_plane_cleanup_fb,
 628        .atomic_check = tegra_plane_atomic_check,
 629        .atomic_update = tegra_plane_atomic_update,
 630        .atomic_disable = tegra_plane_atomic_disable,
 631};
 632
 633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 634                                                       struct tegra_dc *dc)
 635{
 636        /*
 637         * Ideally this would use drm_crtc_mask(), but that would require the
 638         * CRTC to already be in the mode_config's list of CRTCs. However, it
 639         * will only be added to that list in the drm_crtc_init_with_planes()
 640         * (in tegra_dc_init()), which in turn requires registration of these
 641         * planes. So we have ourselves a nice little chicken and egg problem
 642         * here.
 643         *
 644         * We work around this by manually creating the mask from the number
 645         * of CRTCs that have been registered, and should therefore always be
 646         * the same as drm_crtc_index() after registration.
 647         */
 648        unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 649        struct tegra_plane *plane;
 650        unsigned int num_formats;
 651        const u32 *formats;
 652        int err;
 653
 654        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 655        if (!plane)
 656                return ERR_PTR(-ENOMEM);
 657
 658        num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 659        formats = tegra_primary_plane_formats;
 660
 661        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 662                                       &tegra_primary_plane_funcs, formats,
 663                                       num_formats, DRM_PLANE_TYPE_PRIMARY);
 664        if (err < 0) {
 665                kfree(plane);
 666                return ERR_PTR(err);
 667        }
 668
 669        drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 670
 671        return &plane->base;
 672}
 673
 674static const u32 tegra_cursor_plane_formats[] = {
 675        DRM_FORMAT_RGBA8888,
 676};
 677
 678static int tegra_cursor_atomic_check(struct drm_plane *plane,
 679                                     struct drm_plane_state *state)
 680{
 681        struct tegra_plane *tegra = to_tegra_plane(plane);
 682        int err;
 683
 684        /* no need for further checks if the plane is being disabled */
 685        if (!state->crtc)
 686                return 0;
 687
 688        /* scaling not supported for cursor */
 689        if ((state->src_w >> 16 != state->crtc_w) ||
 690            (state->src_h >> 16 != state->crtc_h))
 691                return -EINVAL;
 692
 693        /* only square cursors supported */
 694        if (state->src_w != state->src_h)
 695                return -EINVAL;
 696
 697        if (state->crtc_w != 32 && state->crtc_w != 64 &&
 698            state->crtc_w != 128 && state->crtc_w != 256)
 699                return -EINVAL;
 700
 701        err = tegra_plane_state_add(tegra, state);
 702        if (err < 0)
 703                return err;
 704
 705        return 0;
 706}
 707
 708static void tegra_cursor_atomic_update(struct drm_plane *plane,
 709                                       struct drm_plane_state *old_state)
 710{
 711        struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 712        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 713        struct drm_plane_state *state = plane->state;
 714        u32 value = CURSOR_CLIP_DISPLAY;
 715
 716        /* rien ne va plus */
 717        if (!plane->state->crtc || !plane->state->fb)
 718                return;
 719
 720        switch (state->crtc_w) {
 721        case 32:
 722                value |= CURSOR_SIZE_32x32;
 723                break;
 724
 725        case 64:
 726                value |= CURSOR_SIZE_64x64;
 727                break;
 728
 729        case 128:
 730                value |= CURSOR_SIZE_128x128;
 731                break;
 732
 733        case 256:
 734                value |= CURSOR_SIZE_256x256;
 735                break;
 736
 737        default:
 738                WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 739                     state->crtc_h);
 740                return;
 741        }
 742
 743        value |= (bo->paddr >> 10) & 0x3fffff;
 744        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 745
 746#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 747        value = (bo->paddr >> 32) & 0x3;
 748        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 749#endif
 750
 751        /* enable cursor and set blend mode */
 752        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 753        value |= CURSOR_ENABLE;
 754        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 755
 756        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 757        value &= ~CURSOR_DST_BLEND_MASK;
 758        value &= ~CURSOR_SRC_BLEND_MASK;
 759        value |= CURSOR_MODE_NORMAL;
 760        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 761        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 762        value |= CURSOR_ALPHA;
 763        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 764
 765        /* position the cursor */
 766        value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 767        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 768}
 769
 770static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 771                                        struct drm_plane_state *old_state)
 772{
 773        struct tegra_dc *dc;
 774        u32 value;
 775
 776        /* rien ne va plus */
 777        if (!old_state || !old_state->crtc)
 778                return;
 779
 780        dc = to_tegra_dc(old_state->crtc);
 781
 782        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 783        value &= ~CURSOR_ENABLE;
 784        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 785}
 786
 787static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 788        .update_plane = drm_atomic_helper_update_plane,
 789        .disable_plane = drm_atomic_helper_disable_plane,
 790        .destroy = tegra_plane_destroy,
 791        .reset = tegra_plane_reset,
 792        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 793        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 794};
 795
 796static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 797        .prepare_fb = tegra_plane_prepare_fb,
 798        .cleanup_fb = tegra_plane_cleanup_fb,
 799        .atomic_check = tegra_cursor_atomic_check,
 800        .atomic_update = tegra_cursor_atomic_update,
 801        .atomic_disable = tegra_cursor_atomic_disable,
 802};
 803
 804static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 805                                                      struct tegra_dc *dc)
 806{
 807        struct tegra_plane *plane;
 808        unsigned int num_formats;
 809        const u32 *formats;
 810        int err;
 811
 812        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 813        if (!plane)
 814                return ERR_PTR(-ENOMEM);
 815
 816        /*
 817         * This index is kind of fake. The cursor isn't a regular plane, but
 818         * its update and activation request bits in DC_CMD_STATE_CONTROL do
 819         * use the same programming. Setting this fake index here allows the
 820         * code in tegra_add_plane_state() to do the right thing without the
 821         * need to special-casing the cursor plane.
 822         */
 823        plane->index = 6;
 824
 825        num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 826        formats = tegra_cursor_plane_formats;
 827
 828        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 829                                       &tegra_cursor_plane_funcs, formats,
 830                                       num_formats, DRM_PLANE_TYPE_CURSOR);
 831        if (err < 0) {
 832                kfree(plane);
 833                return ERR_PTR(err);
 834        }
 835
 836        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 837
 838        return &plane->base;
 839}
 840
 841static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 842{
 843        tegra_plane_destroy(plane);
 844}
 845
 846static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 847        .update_plane = drm_atomic_helper_update_plane,
 848        .disable_plane = drm_atomic_helper_disable_plane,
 849        .destroy = tegra_overlay_plane_destroy,
 850        .reset = tegra_plane_reset,
 851        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 852        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 853};
 854
 855static const uint32_t tegra_overlay_plane_formats[] = {
 856        DRM_FORMAT_XBGR8888,
 857        DRM_FORMAT_XRGB8888,
 858        DRM_FORMAT_RGB565,
 859        DRM_FORMAT_UYVY,
 860        DRM_FORMAT_YUYV,
 861        DRM_FORMAT_YUV420,
 862        DRM_FORMAT_YUV422,
 863};
 864
 865static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 866        .prepare_fb = tegra_plane_prepare_fb,
 867        .cleanup_fb = tegra_plane_cleanup_fb,
 868        .atomic_check = tegra_plane_atomic_check,
 869        .atomic_update = tegra_plane_atomic_update,
 870        .atomic_disable = tegra_plane_atomic_disable,
 871};
 872
 873static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 874                                                       struct tegra_dc *dc,
 875                                                       unsigned int index)
 876{
 877        struct tegra_plane *plane;
 878        unsigned int num_formats;
 879        const u32 *formats;
 880        int err;
 881
 882        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 883        if (!plane)
 884                return ERR_PTR(-ENOMEM);
 885
 886        plane->index = index;
 887
 888        num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 889        formats = tegra_overlay_plane_formats;
 890
 891        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 892                                       &tegra_overlay_plane_funcs, formats,
 893                                       num_formats, DRM_PLANE_TYPE_OVERLAY);
 894        if (err < 0) {
 895                kfree(plane);
 896                return ERR_PTR(err);
 897        }
 898
 899        drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 900
 901        return &plane->base;
 902}
 903
 904static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 905{
 906        struct drm_plane *plane;
 907        unsigned int i;
 908
 909        for (i = 0; i < 2; i++) {
 910                plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 911                if (IS_ERR(plane))
 912                        return PTR_ERR(plane);
 913        }
 914
 915        return 0;
 916}
 917
 918u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
 919{
 920        if (dc->syncpt)
 921                return host1x_syncpt_read(dc->syncpt);
 922
 923        /* fallback to software emulated VBLANK counter */
 924        return drm_crtc_vblank_count(&dc->base);
 925}
 926
 927void tegra_dc_enable_vblank(struct tegra_dc *dc)
 928{
 929        unsigned long value, flags;
 930
 931        spin_lock_irqsave(&dc->lock, flags);
 932
 933        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 934        value |= VBLANK_INT;
 935        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 936
 937        spin_unlock_irqrestore(&dc->lock, flags);
 938}
 939
 940void tegra_dc_disable_vblank(struct tegra_dc *dc)
 941{
 942        unsigned long value, flags;
 943
 944        spin_lock_irqsave(&dc->lock, flags);
 945
 946        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 947        value &= ~VBLANK_INT;
 948        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 949
 950        spin_unlock_irqrestore(&dc->lock, flags);
 951}
 952
 953static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 954{
 955        struct drm_device *drm = dc->base.dev;
 956        struct drm_crtc *crtc = &dc->base;
 957        unsigned long flags, base;
 958        struct tegra_bo *bo;
 959
 960        spin_lock_irqsave(&drm->event_lock, flags);
 961
 962        if (!dc->event) {
 963                spin_unlock_irqrestore(&drm->event_lock, flags);
 964                return;
 965        }
 966
 967        bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 968
 969        spin_lock(&dc->lock);
 970
 971        /* check if new start address has been latched */
 972        tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 973        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 974        base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 975        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 976
 977        spin_unlock(&dc->lock);
 978
 979        if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 980                drm_crtc_send_vblank_event(crtc, dc->event);
 981                drm_crtc_vblank_put(crtc);
 982                dc->event = NULL;
 983        }
 984
 985        spin_unlock_irqrestore(&drm->event_lock, flags);
 986}
 987
 988void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
 989{
 990        struct tegra_dc *dc = to_tegra_dc(crtc);
 991        struct drm_device *drm = crtc->dev;
 992        unsigned long flags;
 993
 994        spin_lock_irqsave(&drm->event_lock, flags);
 995
 996        if (dc->event && dc->event->base.file_priv == file) {
 997                dc->event->base.destroy(&dc->event->base);
 998                drm_crtc_vblank_put(crtc);
 999                dc->event = NULL;
1000        }
1001
1002        spin_unlock_irqrestore(&drm->event_lock, flags);
1003}
1004
1005static void tegra_dc_destroy(struct drm_crtc *crtc)
1006{
1007        drm_crtc_cleanup(crtc);
1008}
1009
1010static void tegra_crtc_reset(struct drm_crtc *crtc)
1011{
1012        struct tegra_dc_state *state;
1013
1014        if (crtc->state)
1015                __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1016
1017        kfree(crtc->state);
1018        crtc->state = NULL;
1019
1020        state = kzalloc(sizeof(*state), GFP_KERNEL);
1021        if (state) {
1022                crtc->state = &state->base;
1023                crtc->state->crtc = crtc;
1024        }
1025
1026        drm_crtc_vblank_reset(crtc);
1027}
1028
1029static struct drm_crtc_state *
1030tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1031{
1032        struct tegra_dc_state *state = to_dc_state(crtc->state);
1033        struct tegra_dc_state *copy;
1034
1035        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1036        if (!copy)
1037                return NULL;
1038
1039        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1040        copy->clk = state->clk;
1041        copy->pclk = state->pclk;
1042        copy->div = state->div;
1043        copy->planes = state->planes;
1044
1045        return &copy->base;
1046}
1047
1048static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1049                                            struct drm_crtc_state *state)
1050{
1051        __drm_atomic_helper_crtc_destroy_state(crtc, state);
1052        kfree(state);
1053}
1054
1055static const struct drm_crtc_funcs tegra_crtc_funcs = {
1056        .page_flip = drm_atomic_helper_page_flip,
1057        .set_config = drm_atomic_helper_set_config,
1058        .destroy = tegra_dc_destroy,
1059        .reset = tegra_crtc_reset,
1060        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1061        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1062};
1063
1064static int tegra_dc_set_timings(struct tegra_dc *dc,
1065                                struct drm_display_mode *mode)
1066{
1067        unsigned int h_ref_to_sync = 1;
1068        unsigned int v_ref_to_sync = 1;
1069        unsigned long value;
1070
1071        tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1072
1073        value = (v_ref_to_sync << 16) | h_ref_to_sync;
1074        tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1075
1076        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1077                ((mode->hsync_end - mode->hsync_start) <<  0);
1078        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1079
1080        value = ((mode->vtotal - mode->vsync_end) << 16) |
1081                ((mode->htotal - mode->hsync_end) <<  0);
1082        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1083
1084        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1085                ((mode->hsync_start - mode->hdisplay) <<  0);
1086        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1087
1088        value = (mode->vdisplay << 16) | mode->hdisplay;
1089        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1090
1091        return 0;
1092}
1093
1094/**
1095 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1096 *     state
1097 * @dc: display controller
1098 * @crtc_state: CRTC atomic state
1099 * @clk: parent clock for display controller
1100 * @pclk: pixel clock
1101 * @div: shift clock divider
1102 *
1103 * Returns:
1104 * 0 on success or a negative error-code on failure.
1105 */
1106int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1107                               struct drm_crtc_state *crtc_state,
1108                               struct clk *clk, unsigned long pclk,
1109                               unsigned int div)
1110{
1111        struct tegra_dc_state *state = to_dc_state(crtc_state);
1112
1113        if (!clk_has_parent(dc->clk, clk))
1114                return -EINVAL;
1115
1116        state->clk = clk;
1117        state->pclk = pclk;
1118        state->div = div;
1119
1120        return 0;
1121}
1122
1123static void tegra_dc_commit_state(struct tegra_dc *dc,
1124                                  struct tegra_dc_state *state)
1125{
1126        u32 value;
1127        int err;
1128
1129        err = clk_set_parent(dc->clk, state->clk);
1130        if (err < 0)
1131                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1132
1133        /*
1134         * Outputs may not want to change the parent clock rate. This is only
1135         * relevant to Tegra20 where only a single display PLL is available.
1136         * Since that PLL would typically be used for HDMI, an internal LVDS
1137         * panel would need to be driven by some other clock such as PLL_P
1138         * which is shared with other peripherals. Changing the clock rate
1139         * should therefore be avoided.
1140         */
1141        if (state->pclk > 0) {
1142                err = clk_set_rate(state->clk, state->pclk);
1143                if (err < 0)
1144                        dev_err(dc->dev,
1145                                "failed to set clock rate to %lu Hz\n",
1146                                state->pclk);
1147        }
1148
1149        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1150                      state->div);
1151        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1152
1153        value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1154        tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1155}
1156
1157static void tegra_dc_stop(struct tegra_dc *dc)
1158{
1159        u32 value;
1160
1161        /* stop the display controller */
1162        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1163        value &= ~DISP_CTRL_MODE_MASK;
1164        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1165
1166        tegra_dc_commit(dc);
1167}
1168
1169static bool tegra_dc_idle(struct tegra_dc *dc)
1170{
1171        u32 value;
1172
1173        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1174
1175        return (value & DISP_CTRL_MODE_MASK) == 0;
1176}
1177
1178static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1179{
1180        timeout = jiffies + msecs_to_jiffies(timeout);
1181
1182        while (time_before(jiffies, timeout)) {
1183                if (tegra_dc_idle(dc))
1184                        return 0;
1185
1186                usleep_range(1000, 2000);
1187        }
1188
1189        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1190        return -ETIMEDOUT;
1191}
1192
1193static void tegra_crtc_disable(struct drm_crtc *crtc)
1194{
1195        struct tegra_dc *dc = to_tegra_dc(crtc);
1196        u32 value;
1197
1198        if (!tegra_dc_idle(dc)) {
1199                tegra_dc_stop(dc);
1200
1201                /*
1202                 * Ignore the return value, there isn't anything useful to do
1203                 * in case this fails.
1204                 */
1205                tegra_dc_wait_idle(dc, 100);
1206        }
1207
1208        /*
1209         * This should really be part of the RGB encoder driver, but clearing
1210         * these bits has the side-effect of stopping the display controller.
1211         * When that happens no VBLANK interrupts will be raised. At the same
1212         * time the encoder is disabled before the display controller, so the
1213         * above code is always going to timeout waiting for the controller
1214         * to go idle.
1215         *
1216         * Given the close coupling between the RGB encoder and the display
1217         * controller doing it here is still kind of okay. None of the other
1218         * encoder drivers require these bits to be cleared.
1219         *
1220         * XXX: Perhaps given that the display controller is switched off at
1221         * this point anyway maybe clearing these bits isn't even useful for
1222         * the RGB encoder?
1223         */
1224        if (dc->rgb) {
1225                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1226                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1227                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1228                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1229        }
1230
1231        tegra_dc_stats_reset(&dc->stats);
1232        drm_crtc_vblank_off(crtc);
1233}
1234
1235static void tegra_crtc_enable(struct drm_crtc *crtc)
1236{
1237        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1238        struct tegra_dc_state *state = to_dc_state(crtc->state);
1239        struct tegra_dc *dc = to_tegra_dc(crtc);
1240        u32 value;
1241
1242        tegra_dc_commit_state(dc, state);
1243
1244        /* program display mode */
1245        tegra_dc_set_timings(dc, mode);
1246
1247        /* interlacing isn't supported yet, so disable it */
1248        if (dc->soc->supports_interlacing) {
1249                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1250                value &= ~INTERLACE_ENABLE;
1251                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1252        }
1253
1254        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1255        value &= ~DISP_CTRL_MODE_MASK;
1256        value |= DISP_CTRL_MODE_C_DISPLAY;
1257        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1258
1259        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1260        value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1261                 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1262        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1263
1264        tegra_dc_commit(dc);
1265
1266        drm_crtc_vblank_on(crtc);
1267}
1268
1269static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1270                                   struct drm_crtc_state *state)
1271{
1272        return 0;
1273}
1274
1275static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1276                                    struct drm_crtc_state *old_crtc_state)
1277{
1278        struct tegra_dc *dc = to_tegra_dc(crtc);
1279
1280        if (crtc->state->event) {
1281                crtc->state->event->pipe = drm_crtc_index(crtc);
1282
1283                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1284
1285                dc->event = crtc->state->event;
1286                crtc->state->event = NULL;
1287        }
1288}
1289
1290static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1291                                    struct drm_crtc_state *old_crtc_state)
1292{
1293        struct tegra_dc_state *state = to_dc_state(crtc->state);
1294        struct tegra_dc *dc = to_tegra_dc(crtc);
1295
1296        tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1297        tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1298}
1299
1300static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1301        .disable = tegra_crtc_disable,
1302        .enable = tegra_crtc_enable,
1303        .atomic_check = tegra_crtc_atomic_check,
1304        .atomic_begin = tegra_crtc_atomic_begin,
1305        .atomic_flush = tegra_crtc_atomic_flush,
1306};
1307
1308static irqreturn_t tegra_dc_irq(int irq, void *data)
1309{
1310        struct tegra_dc *dc = data;
1311        unsigned long status;
1312
1313        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1314        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1315
1316        if (status & FRAME_END_INT) {
1317                /*
1318                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1319                */
1320                dc->stats.frames++;
1321        }
1322
1323        if (status & VBLANK_INT) {
1324                /*
1325                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1326                */
1327                drm_crtc_handle_vblank(&dc->base);
1328                tegra_dc_finish_page_flip(dc);
1329                dc->stats.vblank++;
1330        }
1331
1332        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1333                /*
1334                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1335                */
1336                dc->stats.underflow++;
1337        }
1338
1339        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1340                /*
1341                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1342                */
1343                dc->stats.overflow++;
1344        }
1345
1346        return IRQ_HANDLED;
1347}
1348
1349static int tegra_dc_show_regs(struct seq_file *s, void *data)
1350{
1351        struct drm_info_node *node = s->private;
1352        struct tegra_dc *dc = node->info_ent->data;
1353        int err = 0;
1354
1355        drm_modeset_lock_crtc(&dc->base, NULL);
1356
1357        if (!dc->base.state->active) {
1358                err = -EBUSY;
1359                goto unlock;
1360        }
1361
1362#define DUMP_REG(name)                                          \
1363        seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1364                   tegra_dc_readl(dc, name))
1365
1366        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1367        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1368        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1369        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1370        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1371        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1372        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1373        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1374        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1375        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1376        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1377        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1378        DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1379        DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1380        DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1381        DUMP_REG(DC_CMD_SIGNAL_RAISE);
1382        DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1383        DUMP_REG(DC_CMD_INT_STATUS);
1384        DUMP_REG(DC_CMD_INT_MASK);
1385        DUMP_REG(DC_CMD_INT_ENABLE);
1386        DUMP_REG(DC_CMD_INT_TYPE);
1387        DUMP_REG(DC_CMD_INT_POLARITY);
1388        DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1389        DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1390        DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1391        DUMP_REG(DC_CMD_STATE_ACCESS);
1392        DUMP_REG(DC_CMD_STATE_CONTROL);
1393        DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1394        DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1395        DUMP_REG(DC_COM_CRC_CONTROL);
1396        DUMP_REG(DC_COM_CRC_CHECKSUM);
1397        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1398        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1399        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1400        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1401        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1402        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1403        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1404        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1405        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1406        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1407        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1408        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1409        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1410        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1411        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1412        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1413        DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1414        DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1415        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1416        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1417        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1418        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1419        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1420        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1421        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1422        DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1423        DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1424        DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1425        DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1426        DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1427        DUMP_REG(DC_COM_SPI_CONTROL);
1428        DUMP_REG(DC_COM_SPI_START_BYTE);
1429        DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1430        DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1431        DUMP_REG(DC_COM_HSPI_CS_DC);
1432        DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1433        DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1434        DUMP_REG(DC_COM_GPIO_CTRL);
1435        DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1436        DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1437        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1438        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1439        DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1440        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1441        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1442        DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1443        DUMP_REG(DC_DISP_REF_TO_SYNC);
1444        DUMP_REG(DC_DISP_SYNC_WIDTH);
1445        DUMP_REG(DC_DISP_BACK_PORCH);
1446        DUMP_REG(DC_DISP_ACTIVE);
1447        DUMP_REG(DC_DISP_FRONT_PORCH);
1448        DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1449        DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1450        DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1451        DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1452        DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1453        DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1454        DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1455        DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1456        DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1457        DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1458        DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1459        DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1460        DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1461        DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1462        DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1463        DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1464        DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1465        DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1466        DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1467        DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1468        DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1469        DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1470        DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1471        DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1472        DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1473        DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1474        DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1475        DUMP_REG(DC_DISP_M0_CONTROL);
1476        DUMP_REG(DC_DISP_M1_CONTROL);
1477        DUMP_REG(DC_DISP_DI_CONTROL);
1478        DUMP_REG(DC_DISP_PP_CONTROL);
1479        DUMP_REG(DC_DISP_PP_SELECT_A);
1480        DUMP_REG(DC_DISP_PP_SELECT_B);
1481        DUMP_REG(DC_DISP_PP_SELECT_C);
1482        DUMP_REG(DC_DISP_PP_SELECT_D);
1483        DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1484        DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1485        DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1486        DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1487        DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1488        DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1489        DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1490        DUMP_REG(DC_DISP_BORDER_COLOR);
1491        DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1492        DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1493        DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1494        DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1495        DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1496        DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1497        DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1498        DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1499        DUMP_REG(DC_DISP_CURSOR_POSITION);
1500        DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1501        DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1502        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1503        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1504        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1505        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1506        DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1507        DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1508        DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1509        DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1510        DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1511        DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1512        DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1513        DUMP_REG(DC_DISP_SD_CONTROL);
1514        DUMP_REG(DC_DISP_SD_CSC_COEFF);
1515        DUMP_REG(DC_DISP_SD_LUT(0));
1516        DUMP_REG(DC_DISP_SD_LUT(1));
1517        DUMP_REG(DC_DISP_SD_LUT(2));
1518        DUMP_REG(DC_DISP_SD_LUT(3));
1519        DUMP_REG(DC_DISP_SD_LUT(4));
1520        DUMP_REG(DC_DISP_SD_LUT(5));
1521        DUMP_REG(DC_DISP_SD_LUT(6));
1522        DUMP_REG(DC_DISP_SD_LUT(7));
1523        DUMP_REG(DC_DISP_SD_LUT(8));
1524        DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1525        DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1526        DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1527        DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1528        DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1529        DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1530        DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1531        DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1532        DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1533        DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1534        DUMP_REG(DC_DISP_SD_BL_TF(0));
1535        DUMP_REG(DC_DISP_SD_BL_TF(1));
1536        DUMP_REG(DC_DISP_SD_BL_TF(2));
1537        DUMP_REG(DC_DISP_SD_BL_TF(3));
1538        DUMP_REG(DC_DISP_SD_BL_CONTROL);
1539        DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1540        DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1541        DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1542        DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1543        DUMP_REG(DC_WIN_WIN_OPTIONS);
1544        DUMP_REG(DC_WIN_BYTE_SWAP);
1545        DUMP_REG(DC_WIN_BUFFER_CONTROL);
1546        DUMP_REG(DC_WIN_COLOR_DEPTH);
1547        DUMP_REG(DC_WIN_POSITION);
1548        DUMP_REG(DC_WIN_SIZE);
1549        DUMP_REG(DC_WIN_PRESCALED_SIZE);
1550        DUMP_REG(DC_WIN_H_INITIAL_DDA);
1551        DUMP_REG(DC_WIN_V_INITIAL_DDA);
1552        DUMP_REG(DC_WIN_DDA_INC);
1553        DUMP_REG(DC_WIN_LINE_STRIDE);
1554        DUMP_REG(DC_WIN_BUF_STRIDE);
1555        DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1556        DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1557        DUMP_REG(DC_WIN_DV_CONTROL);
1558        DUMP_REG(DC_WIN_BLEND_NOKEY);
1559        DUMP_REG(DC_WIN_BLEND_1WIN);
1560        DUMP_REG(DC_WIN_BLEND_2WIN_X);
1561        DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1562        DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1563        DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1564        DUMP_REG(DC_WINBUF_START_ADDR);
1565        DUMP_REG(DC_WINBUF_START_ADDR_NS);
1566        DUMP_REG(DC_WINBUF_START_ADDR_U);
1567        DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1568        DUMP_REG(DC_WINBUF_START_ADDR_V);
1569        DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1570        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1571        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1572        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1573        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1574        DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1575        DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1576        DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1577        DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1578
1579#undef DUMP_REG
1580
1581unlock:
1582        drm_modeset_unlock_crtc(&dc->base);
1583        return err;
1584}
1585
1586static int tegra_dc_show_crc(struct seq_file *s, void *data)
1587{
1588        struct drm_info_node *node = s->private;
1589        struct tegra_dc *dc = node->info_ent->data;
1590        int err = 0;
1591        u32 value;
1592
1593        drm_modeset_lock_crtc(&dc->base, NULL);
1594
1595        if (!dc->base.state->active) {
1596                err = -EBUSY;
1597                goto unlock;
1598        }
1599
1600        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1601        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1602        tegra_dc_commit(dc);
1603
1604        drm_crtc_wait_one_vblank(&dc->base);
1605        drm_crtc_wait_one_vblank(&dc->base);
1606
1607        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1608        seq_printf(s, "%08x\n", value);
1609
1610        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1611
1612unlock:
1613        drm_modeset_unlock_crtc(&dc->base);
1614        return err;
1615}
1616
1617static int tegra_dc_show_stats(struct seq_file *s, void *data)
1618{
1619        struct drm_info_node *node = s->private;
1620        struct tegra_dc *dc = node->info_ent->data;
1621
1622        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1623        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1624        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1625        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1626
1627        return 0;
1628}
1629
1630static struct drm_info_list debugfs_files[] = {
1631        { "regs", tegra_dc_show_regs, 0, NULL },
1632        { "crc", tegra_dc_show_crc, 0, NULL },
1633        { "stats", tegra_dc_show_stats, 0, NULL },
1634};
1635
1636static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1637{
1638        unsigned int i;
1639        char *name;
1640        int err;
1641
1642        name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1643        dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1644        kfree(name);
1645
1646        if (!dc->debugfs)
1647                return -ENOMEM;
1648
1649        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1650                                    GFP_KERNEL);
1651        if (!dc->debugfs_files) {
1652                err = -ENOMEM;
1653                goto remove;
1654        }
1655
1656        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1657                dc->debugfs_files[i].data = dc;
1658
1659        err = drm_debugfs_create_files(dc->debugfs_files,
1660                                       ARRAY_SIZE(debugfs_files),
1661                                       dc->debugfs, minor);
1662        if (err < 0)
1663                goto free;
1664
1665        dc->minor = minor;
1666
1667        return 0;
1668
1669free:
1670        kfree(dc->debugfs_files);
1671        dc->debugfs_files = NULL;
1672remove:
1673        debugfs_remove(dc->debugfs);
1674        dc->debugfs = NULL;
1675
1676        return err;
1677}
1678
1679static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1680{
1681        drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1682                                 dc->minor);
1683        dc->minor = NULL;
1684
1685        kfree(dc->debugfs_files);
1686        dc->debugfs_files = NULL;
1687
1688        debugfs_remove(dc->debugfs);
1689        dc->debugfs = NULL;
1690
1691        return 0;
1692}
1693
1694static int tegra_dc_init(struct host1x_client *client)
1695{
1696        struct drm_device *drm = dev_get_drvdata(client->parent);
1697        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1698        struct tegra_dc *dc = host1x_client_to_dc(client);
1699        struct tegra_drm *tegra = drm->dev_private;
1700        struct drm_plane *primary = NULL;
1701        struct drm_plane *cursor = NULL;
1702        u32 value;
1703        int err;
1704
1705        dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1706        if (!dc->syncpt)
1707                dev_warn(dc->dev, "failed to allocate syncpoint\n");
1708
1709        if (tegra->domain) {
1710                err = iommu_attach_device(tegra->domain, dc->dev);
1711                if (err < 0) {
1712                        dev_err(dc->dev, "failed to attach to domain: %d\n",
1713                                err);
1714                        return err;
1715                }
1716
1717                dc->domain = tegra->domain;
1718        }
1719
1720        primary = tegra_dc_primary_plane_create(drm, dc);
1721        if (IS_ERR(primary)) {
1722                err = PTR_ERR(primary);
1723                goto cleanup;
1724        }
1725
1726        if (dc->soc->supports_cursor) {
1727                cursor = tegra_dc_cursor_plane_create(drm, dc);
1728                if (IS_ERR(cursor)) {
1729                        err = PTR_ERR(cursor);
1730                        goto cleanup;
1731                }
1732        }
1733
1734        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1735                                        &tegra_crtc_funcs);
1736        if (err < 0)
1737                goto cleanup;
1738
1739        drm_mode_crtc_set_gamma_size(&dc->base, 256);
1740        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1741
1742        /*
1743         * Keep track of the minimum pitch alignment across all display
1744         * controllers.
1745         */
1746        if (dc->soc->pitch_align > tegra->pitch_align)
1747                tegra->pitch_align = dc->soc->pitch_align;
1748
1749        err = tegra_dc_rgb_init(drm, dc);
1750        if (err < 0 && err != -ENODEV) {
1751                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1752                goto cleanup;
1753        }
1754
1755        err = tegra_dc_add_planes(drm, dc);
1756        if (err < 0)
1757                goto cleanup;
1758
1759        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1760                err = tegra_dc_debugfs_init(dc, drm->primary);
1761                if (err < 0)
1762                        dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1763        }
1764
1765        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1766                               dev_name(dc->dev), dc);
1767        if (err < 0) {
1768                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1769                        err);
1770                goto cleanup;
1771        }
1772
1773        /* initialize display controller */
1774        if (dc->syncpt) {
1775                u32 syncpt = host1x_syncpt_id(dc->syncpt);
1776
1777                value = SYNCPT_CNTRL_NO_STALL;
1778                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1779
1780                value = SYNCPT_VSYNC_ENABLE | syncpt;
1781                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1782        }
1783
1784        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1785                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1786        tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1787
1788        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1789                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1790        tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1791
1792        /* initialize timer */
1793        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1794                WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1795        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1796
1797        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1798                WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1799        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1800
1801        value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1802                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1803        tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1804
1805        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1806                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1807        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1808
1809        if (dc->soc->supports_border_color)
1810                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1811
1812        tegra_dc_stats_reset(&dc->stats);
1813
1814        return 0;
1815
1816cleanup:
1817        if (cursor)
1818                drm_plane_cleanup(cursor);
1819
1820        if (primary)
1821                drm_plane_cleanup(primary);
1822
1823        if (tegra->domain) {
1824                iommu_detach_device(tegra->domain, dc->dev);
1825                dc->domain = NULL;
1826        }
1827
1828        return err;
1829}
1830
1831static int tegra_dc_exit(struct host1x_client *client)
1832{
1833        struct tegra_dc *dc = host1x_client_to_dc(client);
1834        int err;
1835
1836        devm_free_irq(dc->dev, dc->irq, dc);
1837
1838        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1839                err = tegra_dc_debugfs_exit(dc);
1840                if (err < 0)
1841                        dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1842        }
1843
1844        err = tegra_dc_rgb_exit(dc);
1845        if (err) {
1846                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1847                return err;
1848        }
1849
1850        if (dc->domain) {
1851                iommu_detach_device(dc->domain, dc->dev);
1852                dc->domain = NULL;
1853        }
1854
1855        host1x_syncpt_free(dc->syncpt);
1856
1857        return 0;
1858}
1859
1860static const struct host1x_client_ops dc_client_ops = {
1861        .init = tegra_dc_init,
1862        .exit = tegra_dc_exit,
1863};
1864
1865static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1866        .supports_border_color = true,
1867        .supports_interlacing = false,
1868        .supports_cursor = false,
1869        .supports_block_linear = false,
1870        .pitch_align = 8,
1871        .has_powergate = false,
1872};
1873
1874static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1875        .supports_border_color = true,
1876        .supports_interlacing = false,
1877        .supports_cursor = false,
1878        .supports_block_linear = false,
1879        .pitch_align = 8,
1880        .has_powergate = false,
1881};
1882
1883static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1884        .supports_border_color = true,
1885        .supports_interlacing = false,
1886        .supports_cursor = false,
1887        .supports_block_linear = false,
1888        .pitch_align = 64,
1889        .has_powergate = true,
1890};
1891
1892static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1893        .supports_border_color = false,
1894        .supports_interlacing = true,
1895        .supports_cursor = true,
1896        .supports_block_linear = true,
1897        .pitch_align = 64,
1898        .has_powergate = true,
1899};
1900
1901static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1902        .supports_border_color = false,
1903        .supports_interlacing = true,
1904        .supports_cursor = true,
1905        .supports_block_linear = true,
1906        .pitch_align = 64,
1907        .has_powergate = true,
1908};
1909
1910static const struct of_device_id tegra_dc_of_match[] = {
1911        {
1912                .compatible = "nvidia,tegra210-dc",
1913                .data = &tegra210_dc_soc_info,
1914        }, {
1915                .compatible = "nvidia,tegra124-dc",
1916                .data = &tegra124_dc_soc_info,
1917        }, {
1918                .compatible = "nvidia,tegra114-dc",
1919                .data = &tegra114_dc_soc_info,
1920        }, {
1921                .compatible = "nvidia,tegra30-dc",
1922                .data = &tegra30_dc_soc_info,
1923        }, {
1924                .compatible = "nvidia,tegra20-dc",
1925                .data = &tegra20_dc_soc_info,
1926        }, {
1927                /* sentinel */
1928        }
1929};
1930MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1931
1932static int tegra_dc_parse_dt(struct tegra_dc *dc)
1933{
1934        struct device_node *np;
1935        u32 value = 0;
1936        int err;
1937
1938        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1939        if (err < 0) {
1940                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1941
1942                /*
1943                 * If the nvidia,head property isn't present, try to find the
1944                 * correct head number by looking up the position of this
1945                 * display controller's node within the device tree. Assuming
1946                 * that the nodes are ordered properly in the DTS file and
1947                 * that the translation into a flattened device tree blob
1948                 * preserves that ordering this will actually yield the right
1949                 * head number.
1950                 *
1951                 * If those assumptions don't hold, this will still work for
1952                 * cases where only a single display controller is used.
1953                 */
1954                for_each_matching_node(np, tegra_dc_of_match) {
1955                        if (np == dc->dev->of_node)
1956                                break;
1957
1958                        value++;
1959                }
1960        }
1961
1962        dc->pipe = value;
1963
1964        return 0;
1965}
1966
1967static int tegra_dc_probe(struct platform_device *pdev)
1968{
1969        const struct of_device_id *id;
1970        struct resource *regs;
1971        struct tegra_dc *dc;
1972        int err;
1973
1974        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1975        if (!dc)
1976                return -ENOMEM;
1977
1978        id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1979        if (!id)
1980                return -ENODEV;
1981
1982        spin_lock_init(&dc->lock);
1983        INIT_LIST_HEAD(&dc->list);
1984        dc->dev = &pdev->dev;
1985        dc->soc = id->data;
1986
1987        err = tegra_dc_parse_dt(dc);
1988        if (err < 0)
1989                return err;
1990
1991        dc->clk = devm_clk_get(&pdev->dev, NULL);
1992        if (IS_ERR(dc->clk)) {
1993                dev_err(&pdev->dev, "failed to get clock\n");
1994                return PTR_ERR(dc->clk);
1995        }
1996
1997        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1998        if (IS_ERR(dc->rst)) {
1999                dev_err(&pdev->dev, "failed to get reset\n");
2000                return PTR_ERR(dc->rst);
2001        }
2002
2003        if (dc->soc->has_powergate) {
2004                if (dc->pipe == 0)
2005                        dc->powergate = TEGRA_POWERGATE_DIS;
2006                else
2007                        dc->powergate = TEGRA_POWERGATE_DISB;
2008
2009                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2010                                                        dc->rst);
2011                if (err < 0) {
2012                        dev_err(&pdev->dev, "failed to power partition: %d\n",
2013                                err);
2014                        return err;
2015                }
2016        } else {
2017                err = clk_prepare_enable(dc->clk);
2018                if (err < 0) {
2019                        dev_err(&pdev->dev, "failed to enable clock: %d\n",
2020                                err);
2021                        return err;
2022                }
2023
2024                err = reset_control_deassert(dc->rst);
2025                if (err < 0) {
2026                        dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2027                                err);
2028                        return err;
2029                }
2030        }
2031
2032        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2033        dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2034        if (IS_ERR(dc->regs))
2035                return PTR_ERR(dc->regs);
2036
2037        dc->irq = platform_get_irq(pdev, 0);
2038        if (dc->irq < 0) {
2039                dev_err(&pdev->dev, "failed to get IRQ\n");
2040                return -ENXIO;
2041        }
2042
2043        INIT_LIST_HEAD(&dc->client.list);
2044        dc->client.ops = &dc_client_ops;
2045        dc->client.dev = &pdev->dev;
2046
2047        err = tegra_dc_rgb_probe(dc);
2048        if (err < 0 && err != -ENODEV) {
2049                dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2050                return err;
2051        }
2052
2053        err = host1x_client_register(&dc->client);
2054        if (err < 0) {
2055                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2056                        err);
2057                return err;
2058        }
2059
2060        platform_set_drvdata(pdev, dc);
2061
2062        return 0;
2063}
2064
2065static int tegra_dc_remove(struct platform_device *pdev)
2066{
2067        struct tegra_dc *dc = platform_get_drvdata(pdev);
2068        int err;
2069
2070        err = host1x_client_unregister(&dc->client);
2071        if (err < 0) {
2072                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2073                        err);
2074                return err;
2075        }
2076
2077        err = tegra_dc_rgb_remove(dc);
2078        if (err < 0) {
2079                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2080                return err;
2081        }
2082
2083        reset_control_assert(dc->rst);
2084
2085        if (dc->soc->has_powergate)
2086                tegra_powergate_power_off(dc->powergate);
2087
2088        clk_disable_unprepare(dc->clk);
2089
2090        return 0;
2091}
2092
2093struct platform_driver tegra_dc_driver = {
2094        .driver = {
2095                .name = "tegra-dc",
2096                .of_match_table = tegra_dc_of_match,
2097        },
2098        .probe = tegra_dc_probe,
2099        .remove = tegra_dc_remove,
2100};
2101