linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1/*
   2 * bcache setup/teardown code, and some metadata io - read a superblock and
   3 * figure out what to do with it.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "extents.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/blkdev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/debugfs.h>
  19#include <linux/genhd.h>
  20#include <linux/idr.h>
  21#include <linux/kthread.h>
  22#include <linux/module.h>
  23#include <linux/random.h>
  24#include <linux/reboot.h>
  25#include <linux/sysfs.h>
  26
  27MODULE_LICENSE("GPL");
  28MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  29
  30static const char bcache_magic[] = {
  31        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  32        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  33};
  34
  35static const char invalid_uuid[] = {
  36        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  37        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  38};
  39
  40/* Default is -1; we skip past it for struct cached_dev's cache mode */
  41const char * const bch_cache_modes[] = {
  42        "default",
  43        "writethrough",
  44        "writeback",
  45        "writearound",
  46        "none",
  47        NULL
  48};
  49
  50static struct kobject *bcache_kobj;
  51struct mutex bch_register_lock;
  52LIST_HEAD(bch_cache_sets);
  53static LIST_HEAD(uncached_devices);
  54
  55static int bcache_major;
  56static DEFINE_IDA(bcache_minor);
  57static wait_queue_head_t unregister_wait;
  58struct workqueue_struct *bcache_wq;
  59
  60#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  61
  62/* Superblock */
  63
  64static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  65                              struct page **res)
  66{
  67        const char *err;
  68        struct cache_sb *s;
  69        struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  70        unsigned i;
  71
  72        if (!bh)
  73                return "IO error";
  74
  75        s = (struct cache_sb *) bh->b_data;
  76
  77        sb->offset              = le64_to_cpu(s->offset);
  78        sb->version             = le64_to_cpu(s->version);
  79
  80        memcpy(sb->magic,       s->magic, 16);
  81        memcpy(sb->uuid,        s->uuid, 16);
  82        memcpy(sb->set_uuid,    s->set_uuid, 16);
  83        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
  84
  85        sb->flags               = le64_to_cpu(s->flags);
  86        sb->seq                 = le64_to_cpu(s->seq);
  87        sb->last_mount          = le32_to_cpu(s->last_mount);
  88        sb->first_bucket        = le16_to_cpu(s->first_bucket);
  89        sb->keys                = le16_to_cpu(s->keys);
  90
  91        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  92                sb->d[i] = le64_to_cpu(s->d[i]);
  93
  94        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  95                 sb->version, sb->flags, sb->seq, sb->keys);
  96
  97        err = "Not a bcache superblock";
  98        if (sb->offset != SB_SECTOR)
  99                goto err;
 100
 101        if (memcmp(sb->magic, bcache_magic, 16))
 102                goto err;
 103
 104        err = "Too many journal buckets";
 105        if (sb->keys > SB_JOURNAL_BUCKETS)
 106                goto err;
 107
 108        err = "Bad checksum";
 109        if (s->csum != csum_set(s))
 110                goto err;
 111
 112        err = "Bad UUID";
 113        if (bch_is_zero(sb->uuid, 16))
 114                goto err;
 115
 116        sb->block_size  = le16_to_cpu(s->block_size);
 117
 118        err = "Superblock block size smaller than device block size";
 119        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 120                goto err;
 121
 122        switch (sb->version) {
 123        case BCACHE_SB_VERSION_BDEV:
 124                sb->data_offset = BDEV_DATA_START_DEFAULT;
 125                break;
 126        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 127                sb->data_offset = le64_to_cpu(s->data_offset);
 128
 129                err = "Bad data offset";
 130                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 131                        goto err;
 132
 133                break;
 134        case BCACHE_SB_VERSION_CDEV:
 135        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 136                sb->nbuckets    = le64_to_cpu(s->nbuckets);
 137                sb->block_size  = le16_to_cpu(s->block_size);
 138                sb->bucket_size = le16_to_cpu(s->bucket_size);
 139
 140                sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 141                sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 142
 143                err = "Too many buckets";
 144                if (sb->nbuckets > LONG_MAX)
 145                        goto err;
 146
 147                err = "Not enough buckets";
 148                if (sb->nbuckets < 1 << 7)
 149                        goto err;
 150
 151                err = "Bad block/bucket size";
 152                if (!is_power_of_2(sb->block_size) ||
 153                    sb->block_size > PAGE_SECTORS ||
 154                    !is_power_of_2(sb->bucket_size) ||
 155                    sb->bucket_size < PAGE_SECTORS)
 156                        goto err;
 157
 158                err = "Invalid superblock: device too small";
 159                if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
 160                        goto err;
 161
 162                err = "Bad UUID";
 163                if (bch_is_zero(sb->set_uuid, 16))
 164                        goto err;
 165
 166                err = "Bad cache device number in set";
 167                if (!sb->nr_in_set ||
 168                    sb->nr_in_set <= sb->nr_this_dev ||
 169                    sb->nr_in_set > MAX_CACHES_PER_SET)
 170                        goto err;
 171
 172                err = "Journal buckets not sequential";
 173                for (i = 0; i < sb->keys; i++)
 174                        if (sb->d[i] != sb->first_bucket + i)
 175                                goto err;
 176
 177                err = "Too many journal buckets";
 178                if (sb->first_bucket + sb->keys > sb->nbuckets)
 179                        goto err;
 180
 181                err = "Invalid superblock: first bucket comes before end of super";
 182                if (sb->first_bucket * sb->bucket_size < 16)
 183                        goto err;
 184
 185                break;
 186        default:
 187                err = "Unsupported superblock version";
 188                goto err;
 189        }
 190
 191        sb->last_mount = get_seconds();
 192        err = NULL;
 193
 194        get_page(bh->b_page);
 195        *res = bh->b_page;
 196err:
 197        put_bh(bh);
 198        return err;
 199}
 200
 201static void write_bdev_super_endio(struct bio *bio)
 202{
 203        struct cached_dev *dc = bio->bi_private;
 204        /* XXX: error checking */
 205
 206        closure_put(&dc->sb_write);
 207}
 208
 209static void __write_super(struct cache_sb *sb, struct bio *bio)
 210{
 211        struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
 212        unsigned i;
 213
 214        bio->bi_iter.bi_sector  = SB_SECTOR;
 215        bio->bi_rw              = REQ_SYNC|REQ_META;
 216        bio->bi_iter.bi_size    = SB_SIZE;
 217        bch_bio_map(bio, NULL);
 218
 219        out->offset             = cpu_to_le64(sb->offset);
 220        out->version            = cpu_to_le64(sb->version);
 221
 222        memcpy(out->uuid,       sb->uuid, 16);
 223        memcpy(out->set_uuid,   sb->set_uuid, 16);
 224        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 225
 226        out->flags              = cpu_to_le64(sb->flags);
 227        out->seq                = cpu_to_le64(sb->seq);
 228
 229        out->last_mount         = cpu_to_le32(sb->last_mount);
 230        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 231        out->keys               = cpu_to_le16(sb->keys);
 232
 233        for (i = 0; i < sb->keys; i++)
 234                out->d[i] = cpu_to_le64(sb->d[i]);
 235
 236        out->csum = csum_set(out);
 237
 238        pr_debug("ver %llu, flags %llu, seq %llu",
 239                 sb->version, sb->flags, sb->seq);
 240
 241        submit_bio(REQ_WRITE, bio);
 242}
 243
 244static void bch_write_bdev_super_unlock(struct closure *cl)
 245{
 246        struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 247
 248        up(&dc->sb_write_mutex);
 249}
 250
 251void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 252{
 253        struct closure *cl = &dc->sb_write;
 254        struct bio *bio = &dc->sb_bio;
 255
 256        down(&dc->sb_write_mutex);
 257        closure_init(cl, parent);
 258
 259        bio_reset(bio);
 260        bio->bi_bdev    = dc->bdev;
 261        bio->bi_end_io  = write_bdev_super_endio;
 262        bio->bi_private = dc;
 263
 264        closure_get(cl);
 265        __write_super(&dc->sb, bio);
 266
 267        closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 268}
 269
 270static void write_super_endio(struct bio *bio)
 271{
 272        struct cache *ca = bio->bi_private;
 273
 274        bch_count_io_errors(ca, bio->bi_error, "writing superblock");
 275        closure_put(&ca->set->sb_write);
 276}
 277
 278static void bcache_write_super_unlock(struct closure *cl)
 279{
 280        struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 281
 282        up(&c->sb_write_mutex);
 283}
 284
 285void bcache_write_super(struct cache_set *c)
 286{
 287        struct closure *cl = &c->sb_write;
 288        struct cache *ca;
 289        unsigned i;
 290
 291        down(&c->sb_write_mutex);
 292        closure_init(cl, &c->cl);
 293
 294        c->sb.seq++;
 295
 296        for_each_cache(ca, c, i) {
 297                struct bio *bio = &ca->sb_bio;
 298
 299                ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 300                ca->sb.seq              = c->sb.seq;
 301                ca->sb.last_mount       = c->sb.last_mount;
 302
 303                SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 304
 305                bio_reset(bio);
 306                bio->bi_bdev    = ca->bdev;
 307                bio->bi_end_io  = write_super_endio;
 308                bio->bi_private = ca;
 309
 310                closure_get(cl);
 311                __write_super(&ca->sb, bio);
 312        }
 313
 314        closure_return_with_destructor(cl, bcache_write_super_unlock);
 315}
 316
 317/* UUID io */
 318
 319static void uuid_endio(struct bio *bio)
 320{
 321        struct closure *cl = bio->bi_private;
 322        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 323
 324        cache_set_err_on(bio->bi_error, c, "accessing uuids");
 325        bch_bbio_free(bio, c);
 326        closure_put(cl);
 327}
 328
 329static void uuid_io_unlock(struct closure *cl)
 330{
 331        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 332
 333        up(&c->uuid_write_mutex);
 334}
 335
 336static void uuid_io(struct cache_set *c, unsigned long rw,
 337                    struct bkey *k, struct closure *parent)
 338{
 339        struct closure *cl = &c->uuid_write;
 340        struct uuid_entry *u;
 341        unsigned i;
 342        char buf[80];
 343
 344        BUG_ON(!parent);
 345        down(&c->uuid_write_mutex);
 346        closure_init(cl, parent);
 347
 348        for (i = 0; i < KEY_PTRS(k); i++) {
 349                struct bio *bio = bch_bbio_alloc(c);
 350
 351                bio->bi_rw      = REQ_SYNC|REQ_META|rw;
 352                bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 353
 354                bio->bi_end_io  = uuid_endio;
 355                bio->bi_private = cl;
 356                bch_bio_map(bio, c->uuids);
 357
 358                bch_submit_bbio(bio, c, k, i);
 359
 360                if (!(rw & WRITE))
 361                        break;
 362        }
 363
 364        bch_extent_to_text(buf, sizeof(buf), k);
 365        pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
 366
 367        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 368                if (!bch_is_zero(u->uuid, 16))
 369                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 370                                 u - c->uuids, u->uuid, u->label,
 371                                 u->first_reg, u->last_reg, u->invalidated);
 372
 373        closure_return_with_destructor(cl, uuid_io_unlock);
 374}
 375
 376static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 377{
 378        struct bkey *k = &j->uuid_bucket;
 379
 380        if (__bch_btree_ptr_invalid(c, k))
 381                return "bad uuid pointer";
 382
 383        bkey_copy(&c->uuid_bucket, k);
 384        uuid_io(c, READ_SYNC, k, cl);
 385
 386        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 387                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 388                struct uuid_entry       *u1 = (void *) c->uuids;
 389                int i;
 390
 391                closure_sync(cl);
 392
 393                /*
 394                 * Since the new uuid entry is bigger than the old, we have to
 395                 * convert starting at the highest memory address and work down
 396                 * in order to do it in place
 397                 */
 398
 399                for (i = c->nr_uuids - 1;
 400                     i >= 0;
 401                     --i) {
 402                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 403                        memcpy(u1[i].label,     u0[i].label, 32);
 404
 405                        u1[i].first_reg         = u0[i].first_reg;
 406                        u1[i].last_reg          = u0[i].last_reg;
 407                        u1[i].invalidated       = u0[i].invalidated;
 408
 409                        u1[i].flags     = 0;
 410                        u1[i].sectors   = 0;
 411                }
 412        }
 413
 414        return NULL;
 415}
 416
 417static int __uuid_write(struct cache_set *c)
 418{
 419        BKEY_PADDED(key) k;
 420        struct closure cl;
 421        closure_init_stack(&cl);
 422
 423        lockdep_assert_held(&bch_register_lock);
 424
 425        if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
 426                return 1;
 427
 428        SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 429        uuid_io(c, REQ_WRITE, &k.key, &cl);
 430        closure_sync(&cl);
 431
 432        bkey_copy(&c->uuid_bucket, &k.key);
 433        bkey_put(c, &k.key);
 434        return 0;
 435}
 436
 437int bch_uuid_write(struct cache_set *c)
 438{
 439        int ret = __uuid_write(c);
 440
 441        if (!ret)
 442                bch_journal_meta(c, NULL);
 443
 444        return ret;
 445}
 446
 447static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 448{
 449        struct uuid_entry *u;
 450
 451        for (u = c->uuids;
 452             u < c->uuids + c->nr_uuids; u++)
 453                if (!memcmp(u->uuid, uuid, 16))
 454                        return u;
 455
 456        return NULL;
 457}
 458
 459static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 460{
 461        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 462        return uuid_find(c, zero_uuid);
 463}
 464
 465/*
 466 * Bucket priorities/gens:
 467 *
 468 * For each bucket, we store on disk its
 469   * 8 bit gen
 470   * 16 bit priority
 471 *
 472 * See alloc.c for an explanation of the gen. The priority is used to implement
 473 * lru (and in the future other) cache replacement policies; for most purposes
 474 * it's just an opaque integer.
 475 *
 476 * The gens and the priorities don't have a whole lot to do with each other, and
 477 * it's actually the gens that must be written out at specific times - it's no
 478 * big deal if the priorities don't get written, if we lose them we just reuse
 479 * buckets in suboptimal order.
 480 *
 481 * On disk they're stored in a packed array, and in as many buckets are required
 482 * to fit them all. The buckets we use to store them form a list; the journal
 483 * header points to the first bucket, the first bucket points to the second
 484 * bucket, et cetera.
 485 *
 486 * This code is used by the allocation code; periodically (whenever it runs out
 487 * of buckets to allocate from) the allocation code will invalidate some
 488 * buckets, but it can't use those buckets until their new gens are safely on
 489 * disk.
 490 */
 491
 492static void prio_endio(struct bio *bio)
 493{
 494        struct cache *ca = bio->bi_private;
 495
 496        cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
 497        bch_bbio_free(bio, ca->set);
 498        closure_put(&ca->prio);
 499}
 500
 501static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
 502{
 503        struct closure *cl = &ca->prio;
 504        struct bio *bio = bch_bbio_alloc(ca->set);
 505
 506        closure_init_stack(cl);
 507
 508        bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
 509        bio->bi_bdev            = ca->bdev;
 510        bio->bi_rw              = REQ_SYNC|REQ_META|rw;
 511        bio->bi_iter.bi_size    = bucket_bytes(ca);
 512
 513        bio->bi_end_io  = prio_endio;
 514        bio->bi_private = ca;
 515        bch_bio_map(bio, ca->disk_buckets);
 516
 517        closure_bio_submit(bio, &ca->prio);
 518        closure_sync(cl);
 519}
 520
 521void bch_prio_write(struct cache *ca)
 522{
 523        int i;
 524        struct bucket *b;
 525        struct closure cl;
 526
 527        closure_init_stack(&cl);
 528
 529        lockdep_assert_held(&ca->set->bucket_lock);
 530
 531        ca->disk_buckets->seq++;
 532
 533        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 534                        &ca->meta_sectors_written);
 535
 536        //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 537        //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 538
 539        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 540                long bucket;
 541                struct prio_set *p = ca->disk_buckets;
 542                struct bucket_disk *d = p->data;
 543                struct bucket_disk *end = d + prios_per_bucket(ca);
 544
 545                for (b = ca->buckets + i * prios_per_bucket(ca);
 546                     b < ca->buckets + ca->sb.nbuckets && d < end;
 547                     b++, d++) {
 548                        d->prio = cpu_to_le16(b->prio);
 549                        d->gen = b->gen;
 550                }
 551
 552                p->next_bucket  = ca->prio_buckets[i + 1];
 553                p->magic        = pset_magic(&ca->sb);
 554                p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 555
 556                bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
 557                BUG_ON(bucket == -1);
 558
 559                mutex_unlock(&ca->set->bucket_lock);
 560                prio_io(ca, bucket, REQ_WRITE);
 561                mutex_lock(&ca->set->bucket_lock);
 562
 563                ca->prio_buckets[i] = bucket;
 564                atomic_dec_bug(&ca->buckets[bucket].pin);
 565        }
 566
 567        mutex_unlock(&ca->set->bucket_lock);
 568
 569        bch_journal_meta(ca->set, &cl);
 570        closure_sync(&cl);
 571
 572        mutex_lock(&ca->set->bucket_lock);
 573
 574        /*
 575         * Don't want the old priorities to get garbage collected until after we
 576         * finish writing the new ones, and they're journalled
 577         */
 578        for (i = 0; i < prio_buckets(ca); i++) {
 579                if (ca->prio_last_buckets[i])
 580                        __bch_bucket_free(ca,
 581                                &ca->buckets[ca->prio_last_buckets[i]]);
 582
 583                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 584        }
 585}
 586
 587static void prio_read(struct cache *ca, uint64_t bucket)
 588{
 589        struct prio_set *p = ca->disk_buckets;
 590        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 591        struct bucket *b;
 592        unsigned bucket_nr = 0;
 593
 594        for (b = ca->buckets;
 595             b < ca->buckets + ca->sb.nbuckets;
 596             b++, d++) {
 597                if (d == end) {
 598                        ca->prio_buckets[bucket_nr] = bucket;
 599                        ca->prio_last_buckets[bucket_nr] = bucket;
 600                        bucket_nr++;
 601
 602                        prio_io(ca, bucket, READ_SYNC);
 603
 604                        if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 605                                pr_warn("bad csum reading priorities");
 606
 607                        if (p->magic != pset_magic(&ca->sb))
 608                                pr_warn("bad magic reading priorities");
 609
 610                        bucket = p->next_bucket;
 611                        d = p->data;
 612                }
 613
 614                b->prio = le16_to_cpu(d->prio);
 615                b->gen = b->last_gc = d->gen;
 616        }
 617}
 618
 619/* Bcache device */
 620
 621static int open_dev(struct block_device *b, fmode_t mode)
 622{
 623        struct bcache_device *d = b->bd_disk->private_data;
 624        if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 625                return -ENXIO;
 626
 627        closure_get(&d->cl);
 628        return 0;
 629}
 630
 631static void release_dev(struct gendisk *b, fmode_t mode)
 632{
 633        struct bcache_device *d = b->private_data;
 634        closure_put(&d->cl);
 635}
 636
 637static int ioctl_dev(struct block_device *b, fmode_t mode,
 638                     unsigned int cmd, unsigned long arg)
 639{
 640        struct bcache_device *d = b->bd_disk->private_data;
 641        return d->ioctl(d, mode, cmd, arg);
 642}
 643
 644static const struct block_device_operations bcache_ops = {
 645        .open           = open_dev,
 646        .release        = release_dev,
 647        .ioctl          = ioctl_dev,
 648        .owner          = THIS_MODULE,
 649};
 650
 651void bcache_device_stop(struct bcache_device *d)
 652{
 653        if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 654                closure_queue(&d->cl);
 655}
 656
 657static void bcache_device_unlink(struct bcache_device *d)
 658{
 659        lockdep_assert_held(&bch_register_lock);
 660
 661        if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 662                unsigned i;
 663                struct cache *ca;
 664
 665                sysfs_remove_link(&d->c->kobj, d->name);
 666                sysfs_remove_link(&d->kobj, "cache");
 667
 668                for_each_cache(ca, d->c, i)
 669                        bd_unlink_disk_holder(ca->bdev, d->disk);
 670        }
 671}
 672
 673static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 674                               const char *name)
 675{
 676        unsigned i;
 677        struct cache *ca;
 678
 679        for_each_cache(ca, d->c, i)
 680                bd_link_disk_holder(ca->bdev, d->disk);
 681
 682        snprintf(d->name, BCACHEDEVNAME_SIZE,
 683                 "%s%u", name, d->id);
 684
 685        WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
 686             sysfs_create_link(&c->kobj, &d->kobj, d->name),
 687             "Couldn't create device <-> cache set symlinks");
 688}
 689
 690static void bcache_device_detach(struct bcache_device *d)
 691{
 692        lockdep_assert_held(&bch_register_lock);
 693
 694        if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 695                struct uuid_entry *u = d->c->uuids + d->id;
 696
 697                SET_UUID_FLASH_ONLY(u, 0);
 698                memcpy(u->uuid, invalid_uuid, 16);
 699                u->invalidated = cpu_to_le32(get_seconds());
 700                bch_uuid_write(d->c);
 701        }
 702
 703        bcache_device_unlink(d);
 704
 705        d->c->devices[d->id] = NULL;
 706        closure_put(&d->c->caching);
 707        d->c = NULL;
 708}
 709
 710static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 711                                 unsigned id)
 712{
 713        d->id = id;
 714        d->c = c;
 715        c->devices[id] = d;
 716
 717        closure_get(&c->caching);
 718}
 719
 720static void bcache_device_free(struct bcache_device *d)
 721{
 722        lockdep_assert_held(&bch_register_lock);
 723
 724        pr_info("%s stopped", d->disk->disk_name);
 725
 726        if (d->c)
 727                bcache_device_detach(d);
 728        if (d->disk && d->disk->flags & GENHD_FL_UP)
 729                del_gendisk(d->disk);
 730        if (d->disk && d->disk->queue)
 731                blk_cleanup_queue(d->disk->queue);
 732        if (d->disk) {
 733                ida_simple_remove(&bcache_minor, d->disk->first_minor);
 734                put_disk(d->disk);
 735        }
 736
 737        if (d->bio_split)
 738                bioset_free(d->bio_split);
 739        kvfree(d->full_dirty_stripes);
 740        kvfree(d->stripe_sectors_dirty);
 741
 742        closure_debug_destroy(&d->cl);
 743}
 744
 745static int bcache_device_init(struct bcache_device *d, unsigned block_size,
 746                              sector_t sectors)
 747{
 748        struct request_queue *q;
 749        size_t n;
 750        int minor;
 751
 752        if (!d->stripe_size)
 753                d->stripe_size = 1 << 31;
 754
 755        d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 756
 757        if (!d->nr_stripes ||
 758            d->nr_stripes > INT_MAX ||
 759            d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
 760                pr_err("nr_stripes too large");
 761                return -ENOMEM;
 762        }
 763
 764        n = d->nr_stripes * sizeof(atomic_t);
 765        d->stripe_sectors_dirty = n < PAGE_SIZE << 6
 766                ? kzalloc(n, GFP_KERNEL)
 767                : vzalloc(n);
 768        if (!d->stripe_sectors_dirty)
 769                return -ENOMEM;
 770
 771        n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 772        d->full_dirty_stripes = n < PAGE_SIZE << 6
 773                ? kzalloc(n, GFP_KERNEL)
 774                : vzalloc(n);
 775        if (!d->full_dirty_stripes)
 776                return -ENOMEM;
 777
 778        minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
 779        if (minor < 0)
 780                return minor;
 781
 782        if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
 783            !(d->disk = alloc_disk(1))) {
 784                ida_simple_remove(&bcache_minor, minor);
 785                return -ENOMEM;
 786        }
 787
 788        set_capacity(d->disk, sectors);
 789        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
 790
 791        d->disk->major          = bcache_major;
 792        d->disk->first_minor    = minor;
 793        d->disk->fops           = &bcache_ops;
 794        d->disk->private_data   = d;
 795
 796        q = blk_alloc_queue(GFP_KERNEL);
 797        if (!q)
 798                return -ENOMEM;
 799
 800        blk_queue_make_request(q, NULL);
 801        d->disk->queue                  = q;
 802        q->queuedata                    = d;
 803        q->backing_dev_info.congested_data = d;
 804        q->limits.max_hw_sectors        = UINT_MAX;
 805        q->limits.max_sectors           = UINT_MAX;
 806        q->limits.max_segment_size      = UINT_MAX;
 807        q->limits.max_segments          = BIO_MAX_PAGES;
 808        blk_queue_max_discard_sectors(q, UINT_MAX);
 809        q->limits.discard_granularity   = 512;
 810        q->limits.io_min                = block_size;
 811        q->limits.logical_block_size    = block_size;
 812        q->limits.physical_block_size   = block_size;
 813        set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
 814        clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
 815        set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
 816
 817        blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
 818
 819        return 0;
 820}
 821
 822/* Cached device */
 823
 824static void calc_cached_dev_sectors(struct cache_set *c)
 825{
 826        uint64_t sectors = 0;
 827        struct cached_dev *dc;
 828
 829        list_for_each_entry(dc, &c->cached_devs, list)
 830                sectors += bdev_sectors(dc->bdev);
 831
 832        c->cached_dev_sectors = sectors;
 833}
 834
 835void bch_cached_dev_run(struct cached_dev *dc)
 836{
 837        struct bcache_device *d = &dc->disk;
 838        char buf[SB_LABEL_SIZE + 1];
 839        char *env[] = {
 840                "DRIVER=bcache",
 841                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 842                NULL,
 843                NULL,
 844        };
 845
 846        memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
 847        buf[SB_LABEL_SIZE] = '\0';
 848        env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
 849
 850        if (atomic_xchg(&dc->running, 1))
 851                return;
 852
 853        if (!d->c &&
 854            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 855                struct closure cl;
 856                closure_init_stack(&cl);
 857
 858                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 859                bch_write_bdev_super(dc, &cl);
 860                closure_sync(&cl);
 861        }
 862
 863        add_disk(d->disk);
 864        bd_link_disk_holder(dc->bdev, dc->disk.disk);
 865        /* won't show up in the uevent file, use udevadm monitor -e instead
 866         * only class / kset properties are persistent */
 867        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 868        kfree(env[1]);
 869        kfree(env[2]);
 870
 871        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 872            sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
 873                pr_debug("error creating sysfs link");
 874}
 875
 876static void cached_dev_detach_finish(struct work_struct *w)
 877{
 878        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
 879        char buf[BDEVNAME_SIZE];
 880        struct closure cl;
 881        closure_init_stack(&cl);
 882
 883        BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
 884        BUG_ON(atomic_read(&dc->count));
 885
 886        mutex_lock(&bch_register_lock);
 887
 888        memset(&dc->sb.set_uuid, 0, 16);
 889        SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
 890
 891        bch_write_bdev_super(dc, &cl);
 892        closure_sync(&cl);
 893
 894        bcache_device_detach(&dc->disk);
 895        list_move(&dc->list, &uncached_devices);
 896
 897        clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
 898        clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
 899
 900        mutex_unlock(&bch_register_lock);
 901
 902        pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
 903
 904        /* Drop ref we took in cached_dev_detach() */
 905        closure_put(&dc->disk.cl);
 906}
 907
 908void bch_cached_dev_detach(struct cached_dev *dc)
 909{
 910        lockdep_assert_held(&bch_register_lock);
 911
 912        if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
 913                return;
 914
 915        if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
 916                return;
 917
 918        /*
 919         * Block the device from being closed and freed until we're finished
 920         * detaching
 921         */
 922        closure_get(&dc->disk.cl);
 923
 924        bch_writeback_queue(dc);
 925        cached_dev_put(dc);
 926}
 927
 928int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
 929{
 930        uint32_t rtime = cpu_to_le32(get_seconds());
 931        struct uuid_entry *u;
 932        char buf[BDEVNAME_SIZE];
 933
 934        bdevname(dc->bdev, buf);
 935
 936        if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
 937                return -ENOENT;
 938
 939        if (dc->disk.c) {
 940                pr_err("Can't attach %s: already attached", buf);
 941                return -EINVAL;
 942        }
 943
 944        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
 945                pr_err("Can't attach %s: shutting down", buf);
 946                return -EINVAL;
 947        }
 948
 949        if (dc->sb.block_size < c->sb.block_size) {
 950                /* Will die */
 951                pr_err("Couldn't attach %s: block size less than set's block size",
 952                       buf);
 953                return -EINVAL;
 954        }
 955
 956        u = uuid_find(c, dc->sb.uuid);
 957
 958        if (u &&
 959            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
 960             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
 961                memcpy(u->uuid, invalid_uuid, 16);
 962                u->invalidated = cpu_to_le32(get_seconds());
 963                u = NULL;
 964        }
 965
 966        if (!u) {
 967                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
 968                        pr_err("Couldn't find uuid for %s in set", buf);
 969                        return -ENOENT;
 970                }
 971
 972                u = uuid_find_empty(c);
 973                if (!u) {
 974                        pr_err("Not caching %s, no room for UUID", buf);
 975                        return -EINVAL;
 976                }
 977        }
 978
 979        /* Deadlocks since we're called via sysfs...
 980        sysfs_remove_file(&dc->kobj, &sysfs_attach);
 981         */
 982
 983        if (bch_is_zero(u->uuid, 16)) {
 984                struct closure cl;
 985                closure_init_stack(&cl);
 986
 987                memcpy(u->uuid, dc->sb.uuid, 16);
 988                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
 989                u->first_reg = u->last_reg = rtime;
 990                bch_uuid_write(c);
 991
 992                memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
 993                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
 994
 995                bch_write_bdev_super(dc, &cl);
 996                closure_sync(&cl);
 997        } else {
 998                u->last_reg = rtime;
 999                bch_uuid_write(c);
1000        }
1001
1002        bcache_device_attach(&dc->disk, c, u - c->uuids);
1003        list_move(&dc->list, &c->cached_devs);
1004        calc_cached_dev_sectors(c);
1005
1006        smp_wmb();
1007        /*
1008         * dc->c must be set before dc->count != 0 - paired with the mb in
1009         * cached_dev_get()
1010         */
1011        atomic_set(&dc->count, 1);
1012
1013        if (bch_cached_dev_writeback_start(dc))
1014                return -ENOMEM;
1015
1016        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1017                bch_sectors_dirty_init(dc);
1018                atomic_set(&dc->has_dirty, 1);
1019                atomic_inc(&dc->count);
1020                bch_writeback_queue(dc);
1021        }
1022
1023        bch_cached_dev_run(dc);
1024        bcache_device_link(&dc->disk, c, "bdev");
1025
1026        pr_info("Caching %s as %s on set %pU",
1027                bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1028                dc->disk.c->sb.set_uuid);
1029        return 0;
1030}
1031
1032void bch_cached_dev_release(struct kobject *kobj)
1033{
1034        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1035                                             disk.kobj);
1036        kfree(dc);
1037        module_put(THIS_MODULE);
1038}
1039
1040static void cached_dev_free(struct closure *cl)
1041{
1042        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1043
1044        cancel_delayed_work_sync(&dc->writeback_rate_update);
1045        if (!IS_ERR_OR_NULL(dc->writeback_thread))
1046                kthread_stop(dc->writeback_thread);
1047
1048        mutex_lock(&bch_register_lock);
1049
1050        if (atomic_read(&dc->running))
1051                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1052        bcache_device_free(&dc->disk);
1053        list_del(&dc->list);
1054
1055        mutex_unlock(&bch_register_lock);
1056
1057        if (!IS_ERR_OR_NULL(dc->bdev))
1058                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1059
1060        wake_up(&unregister_wait);
1061
1062        kobject_put(&dc->disk.kobj);
1063}
1064
1065static void cached_dev_flush(struct closure *cl)
1066{
1067        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1068        struct bcache_device *d = &dc->disk;
1069
1070        mutex_lock(&bch_register_lock);
1071        bcache_device_unlink(d);
1072        mutex_unlock(&bch_register_lock);
1073
1074        bch_cache_accounting_destroy(&dc->accounting);
1075        kobject_del(&d->kobj);
1076
1077        continue_at(cl, cached_dev_free, system_wq);
1078}
1079
1080static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1081{
1082        int ret;
1083        struct io *io;
1084        struct request_queue *q = bdev_get_queue(dc->bdev);
1085
1086        __module_get(THIS_MODULE);
1087        INIT_LIST_HEAD(&dc->list);
1088        closure_init(&dc->disk.cl, NULL);
1089        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1090        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1091        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1092        sema_init(&dc->sb_write_mutex, 1);
1093        INIT_LIST_HEAD(&dc->io_lru);
1094        spin_lock_init(&dc->io_lock);
1095        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1096
1097        dc->sequential_cutoff           = 4 << 20;
1098
1099        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1100                list_add(&io->lru, &dc->io_lru);
1101                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1102        }
1103
1104        dc->disk.stripe_size = q->limits.io_opt >> 9;
1105
1106        if (dc->disk.stripe_size)
1107                dc->partial_stripes_expensive =
1108                        q->limits.raid_partial_stripes_expensive;
1109
1110        ret = bcache_device_init(&dc->disk, block_size,
1111                         dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1112        if (ret)
1113                return ret;
1114
1115        set_capacity(dc->disk.disk,
1116                     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1117
1118        dc->disk.disk->queue->backing_dev_info.ra_pages =
1119                max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1120                    q->backing_dev_info.ra_pages);
1121
1122        bch_cached_dev_request_init(dc);
1123        bch_cached_dev_writeback_init(dc);
1124        return 0;
1125}
1126
1127/* Cached device - bcache superblock */
1128
1129static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1130                                 struct block_device *bdev,
1131                                 struct cached_dev *dc)
1132{
1133        char name[BDEVNAME_SIZE];
1134        const char *err = "cannot allocate memory";
1135        struct cache_set *c;
1136
1137        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1138        dc->bdev = bdev;
1139        dc->bdev->bd_holder = dc;
1140
1141        bio_init(&dc->sb_bio);
1142        dc->sb_bio.bi_max_vecs  = 1;
1143        dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1144        dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1145        get_page(sb_page);
1146
1147        if (cached_dev_init(dc, sb->block_size << 9))
1148                goto err;
1149
1150        err = "error creating kobject";
1151        if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1152                        "bcache"))
1153                goto err;
1154        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1155                goto err;
1156
1157        pr_info("registered backing device %s", bdevname(bdev, name));
1158
1159        list_add(&dc->list, &uncached_devices);
1160        list_for_each_entry(c, &bch_cache_sets, list)
1161                bch_cached_dev_attach(dc, c);
1162
1163        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1164            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1165                bch_cached_dev_run(dc);
1166
1167        return;
1168err:
1169        pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1170        bcache_device_stop(&dc->disk);
1171}
1172
1173/* Flash only volumes */
1174
1175void bch_flash_dev_release(struct kobject *kobj)
1176{
1177        struct bcache_device *d = container_of(kobj, struct bcache_device,
1178                                               kobj);
1179        kfree(d);
1180}
1181
1182static void flash_dev_free(struct closure *cl)
1183{
1184        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1185        mutex_lock(&bch_register_lock);
1186        bcache_device_free(d);
1187        mutex_unlock(&bch_register_lock);
1188        kobject_put(&d->kobj);
1189}
1190
1191static void flash_dev_flush(struct closure *cl)
1192{
1193        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1194
1195        mutex_lock(&bch_register_lock);
1196        bcache_device_unlink(d);
1197        mutex_unlock(&bch_register_lock);
1198        kobject_del(&d->kobj);
1199        continue_at(cl, flash_dev_free, system_wq);
1200}
1201
1202static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1203{
1204        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1205                                          GFP_KERNEL);
1206        if (!d)
1207                return -ENOMEM;
1208
1209        closure_init(&d->cl, NULL);
1210        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1211
1212        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1213
1214        if (bcache_device_init(d, block_bytes(c), u->sectors))
1215                goto err;
1216
1217        bcache_device_attach(d, c, u - c->uuids);
1218        bch_flash_dev_request_init(d);
1219        add_disk(d->disk);
1220
1221        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1222                goto err;
1223
1224        bcache_device_link(d, c, "volume");
1225
1226        return 0;
1227err:
1228        kobject_put(&d->kobj);
1229        return -ENOMEM;
1230}
1231
1232static int flash_devs_run(struct cache_set *c)
1233{
1234        int ret = 0;
1235        struct uuid_entry *u;
1236
1237        for (u = c->uuids;
1238             u < c->uuids + c->nr_uuids && !ret;
1239             u++)
1240                if (UUID_FLASH_ONLY(u))
1241                        ret = flash_dev_run(c, u);
1242
1243        return ret;
1244}
1245
1246int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1247{
1248        struct uuid_entry *u;
1249
1250        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1251                return -EINTR;
1252
1253        if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1254                return -EPERM;
1255
1256        u = uuid_find_empty(c);
1257        if (!u) {
1258                pr_err("Can't create volume, no room for UUID");
1259                return -EINVAL;
1260        }
1261
1262        get_random_bytes(u->uuid, 16);
1263        memset(u->label, 0, 32);
1264        u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1265
1266        SET_UUID_FLASH_ONLY(u, 1);
1267        u->sectors = size >> 9;
1268
1269        bch_uuid_write(c);
1270
1271        return flash_dev_run(c, u);
1272}
1273
1274/* Cache set */
1275
1276__printf(2, 3)
1277bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1278{
1279        va_list args;
1280
1281        if (c->on_error != ON_ERROR_PANIC &&
1282            test_bit(CACHE_SET_STOPPING, &c->flags))
1283                return false;
1284
1285        /* XXX: we can be called from atomic context
1286        acquire_console_sem();
1287        */
1288
1289        printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1290
1291        va_start(args, fmt);
1292        vprintk(fmt, args);
1293        va_end(args);
1294
1295        printk(", disabling caching\n");
1296
1297        if (c->on_error == ON_ERROR_PANIC)
1298                panic("panic forced after error\n");
1299
1300        bch_cache_set_unregister(c);
1301        return true;
1302}
1303
1304void bch_cache_set_release(struct kobject *kobj)
1305{
1306        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1307        kfree(c);
1308        module_put(THIS_MODULE);
1309}
1310
1311static void cache_set_free(struct closure *cl)
1312{
1313        struct cache_set *c = container_of(cl, struct cache_set, cl);
1314        struct cache *ca;
1315        unsigned i;
1316
1317        if (!IS_ERR_OR_NULL(c->debug))
1318                debugfs_remove(c->debug);
1319
1320        bch_open_buckets_free(c);
1321        bch_btree_cache_free(c);
1322        bch_journal_free(c);
1323
1324        for_each_cache(ca, c, i)
1325                if (ca) {
1326                        ca->set = NULL;
1327                        c->cache[ca->sb.nr_this_dev] = NULL;
1328                        kobject_put(&ca->kobj);
1329                }
1330
1331        bch_bset_sort_state_free(&c->sort);
1332        free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1333
1334        if (c->moving_gc_wq)
1335                destroy_workqueue(c->moving_gc_wq);
1336        if (c->bio_split)
1337                bioset_free(c->bio_split);
1338        if (c->fill_iter)
1339                mempool_destroy(c->fill_iter);
1340        if (c->bio_meta)
1341                mempool_destroy(c->bio_meta);
1342        if (c->search)
1343                mempool_destroy(c->search);
1344        kfree(c->devices);
1345
1346        mutex_lock(&bch_register_lock);
1347        list_del(&c->list);
1348        mutex_unlock(&bch_register_lock);
1349
1350        pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1351        wake_up(&unregister_wait);
1352
1353        closure_debug_destroy(&c->cl);
1354        kobject_put(&c->kobj);
1355}
1356
1357static void cache_set_flush(struct closure *cl)
1358{
1359        struct cache_set *c = container_of(cl, struct cache_set, caching);
1360        struct cache *ca;
1361        struct btree *b;
1362        unsigned i;
1363
1364        bch_cache_accounting_destroy(&c->accounting);
1365
1366        kobject_put(&c->internal);
1367        kobject_del(&c->kobj);
1368
1369        if (c->gc_thread)
1370                kthread_stop(c->gc_thread);
1371
1372        if (!IS_ERR_OR_NULL(c->root))
1373                list_add(&c->root->list, &c->btree_cache);
1374
1375        /* Should skip this if we're unregistering because of an error */
1376        list_for_each_entry(b, &c->btree_cache, list) {
1377                mutex_lock(&b->write_lock);
1378                if (btree_node_dirty(b))
1379                        __bch_btree_node_write(b, NULL);
1380                mutex_unlock(&b->write_lock);
1381        }
1382
1383        for_each_cache(ca, c, i)
1384                if (ca->alloc_thread)
1385                        kthread_stop(ca->alloc_thread);
1386
1387        if (c->journal.cur) {
1388                cancel_delayed_work_sync(&c->journal.work);
1389                /* flush last journal entry if needed */
1390                c->journal.work.work.func(&c->journal.work.work);
1391        }
1392
1393        closure_return(cl);
1394}
1395
1396static void __cache_set_unregister(struct closure *cl)
1397{
1398        struct cache_set *c = container_of(cl, struct cache_set, caching);
1399        struct cached_dev *dc;
1400        size_t i;
1401
1402        mutex_lock(&bch_register_lock);
1403
1404        for (i = 0; i < c->nr_uuids; i++)
1405                if (c->devices[i]) {
1406                        if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1407                            test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1408                                dc = container_of(c->devices[i],
1409                                                  struct cached_dev, disk);
1410                                bch_cached_dev_detach(dc);
1411                        } else {
1412                                bcache_device_stop(c->devices[i]);
1413                        }
1414                }
1415
1416        mutex_unlock(&bch_register_lock);
1417
1418        continue_at(cl, cache_set_flush, system_wq);
1419}
1420
1421void bch_cache_set_stop(struct cache_set *c)
1422{
1423        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1424                closure_queue(&c->caching);
1425}
1426
1427void bch_cache_set_unregister(struct cache_set *c)
1428{
1429        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1430        bch_cache_set_stop(c);
1431}
1432
1433#define alloc_bucket_pages(gfp, c)                      \
1434        ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1435
1436struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1437{
1438        int iter_size;
1439        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1440        if (!c)
1441                return NULL;
1442
1443        __module_get(THIS_MODULE);
1444        closure_init(&c->cl, NULL);
1445        set_closure_fn(&c->cl, cache_set_free, system_wq);
1446
1447        closure_init(&c->caching, &c->cl);
1448        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1449
1450        /* Maybe create continue_at_noreturn() and use it here? */
1451        closure_set_stopped(&c->cl);
1452        closure_put(&c->cl);
1453
1454        kobject_init(&c->kobj, &bch_cache_set_ktype);
1455        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1456
1457        bch_cache_accounting_init(&c->accounting, &c->cl);
1458
1459        memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1460        c->sb.block_size        = sb->block_size;
1461        c->sb.bucket_size       = sb->bucket_size;
1462        c->sb.nr_in_set         = sb->nr_in_set;
1463        c->sb.last_mount        = sb->last_mount;
1464        c->bucket_bits          = ilog2(sb->bucket_size);
1465        c->block_bits           = ilog2(sb->block_size);
1466        c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1467
1468        c->btree_pages          = bucket_pages(c);
1469        if (c->btree_pages > BTREE_MAX_PAGES)
1470                c->btree_pages = max_t(int, c->btree_pages / 4,
1471                                       BTREE_MAX_PAGES);
1472
1473        sema_init(&c->sb_write_mutex, 1);
1474        mutex_init(&c->bucket_lock);
1475        init_waitqueue_head(&c->btree_cache_wait);
1476        init_waitqueue_head(&c->bucket_wait);
1477        sema_init(&c->uuid_write_mutex, 1);
1478
1479        spin_lock_init(&c->btree_gc_time.lock);
1480        spin_lock_init(&c->btree_split_time.lock);
1481        spin_lock_init(&c->btree_read_time.lock);
1482
1483        bch_moving_init_cache_set(c);
1484
1485        INIT_LIST_HEAD(&c->list);
1486        INIT_LIST_HEAD(&c->cached_devs);
1487        INIT_LIST_HEAD(&c->btree_cache);
1488        INIT_LIST_HEAD(&c->btree_cache_freeable);
1489        INIT_LIST_HEAD(&c->btree_cache_freed);
1490        INIT_LIST_HEAD(&c->data_buckets);
1491
1492        c->search = mempool_create_slab_pool(32, bch_search_cache);
1493        if (!c->search)
1494                goto err;
1495
1496        iter_size = (sb->bucket_size / sb->block_size + 1) *
1497                sizeof(struct btree_iter_set);
1498
1499        if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1500            !(c->bio_meta = mempool_create_kmalloc_pool(2,
1501                                sizeof(struct bbio) + sizeof(struct bio_vec) *
1502                                bucket_pages(c))) ||
1503            !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1504            !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1505            !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1506            !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1507            bch_journal_alloc(c) ||
1508            bch_btree_cache_alloc(c) ||
1509            bch_open_buckets_alloc(c) ||
1510            bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1511                goto err;
1512
1513        c->congested_read_threshold_us  = 2000;
1514        c->congested_write_threshold_us = 20000;
1515        c->error_limit  = 8 << IO_ERROR_SHIFT;
1516
1517        return c;
1518err:
1519        bch_cache_set_unregister(c);
1520        return NULL;
1521}
1522
1523static void run_cache_set(struct cache_set *c)
1524{
1525        const char *err = "cannot allocate memory";
1526        struct cached_dev *dc, *t;
1527        struct cache *ca;
1528        struct closure cl;
1529        unsigned i;
1530
1531        closure_init_stack(&cl);
1532
1533        for_each_cache(ca, c, i)
1534                c->nbuckets += ca->sb.nbuckets;
1535
1536        if (CACHE_SYNC(&c->sb)) {
1537                LIST_HEAD(journal);
1538                struct bkey *k;
1539                struct jset *j;
1540
1541                err = "cannot allocate memory for journal";
1542                if (bch_journal_read(c, &journal))
1543                        goto err;
1544
1545                pr_debug("btree_journal_read() done");
1546
1547                err = "no journal entries found";
1548                if (list_empty(&journal))
1549                        goto err;
1550
1551                j = &list_entry(journal.prev, struct journal_replay, list)->j;
1552
1553                err = "IO error reading priorities";
1554                for_each_cache(ca, c, i)
1555                        prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1556
1557                /*
1558                 * If prio_read() fails it'll call cache_set_error and we'll
1559                 * tear everything down right away, but if we perhaps checked
1560                 * sooner we could avoid journal replay.
1561                 */
1562
1563                k = &j->btree_root;
1564
1565                err = "bad btree root";
1566                if (__bch_btree_ptr_invalid(c, k))
1567                        goto err;
1568
1569                err = "error reading btree root";
1570                c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1571                if (IS_ERR_OR_NULL(c->root))
1572                        goto err;
1573
1574                list_del_init(&c->root->list);
1575                rw_unlock(true, c->root);
1576
1577                err = uuid_read(c, j, &cl);
1578                if (err)
1579                        goto err;
1580
1581                err = "error in recovery";
1582                if (bch_btree_check(c))
1583                        goto err;
1584
1585                bch_journal_mark(c, &journal);
1586                bch_initial_gc_finish(c);
1587                pr_debug("btree_check() done");
1588
1589                /*
1590                 * bcache_journal_next() can't happen sooner, or
1591                 * btree_gc_finish() will give spurious errors about last_gc >
1592                 * gc_gen - this is a hack but oh well.
1593                 */
1594                bch_journal_next(&c->journal);
1595
1596                err = "error starting allocator thread";
1597                for_each_cache(ca, c, i)
1598                        if (bch_cache_allocator_start(ca))
1599                                goto err;
1600
1601                /*
1602                 * First place it's safe to allocate: btree_check() and
1603                 * btree_gc_finish() have to run before we have buckets to
1604                 * allocate, and bch_bucket_alloc_set() might cause a journal
1605                 * entry to be written so bcache_journal_next() has to be called
1606                 * first.
1607                 *
1608                 * If the uuids were in the old format we have to rewrite them
1609                 * before the next journal entry is written:
1610                 */
1611                if (j->version < BCACHE_JSET_VERSION_UUID)
1612                        __uuid_write(c);
1613
1614                bch_journal_replay(c, &journal);
1615        } else {
1616                pr_notice("invalidating existing data");
1617
1618                for_each_cache(ca, c, i) {
1619                        unsigned j;
1620
1621                        ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1622                                              2, SB_JOURNAL_BUCKETS);
1623
1624                        for (j = 0; j < ca->sb.keys; j++)
1625                                ca->sb.d[j] = ca->sb.first_bucket + j;
1626                }
1627
1628                bch_initial_gc_finish(c);
1629
1630                err = "error starting allocator thread";
1631                for_each_cache(ca, c, i)
1632                        if (bch_cache_allocator_start(ca))
1633                                goto err;
1634
1635                mutex_lock(&c->bucket_lock);
1636                for_each_cache(ca, c, i)
1637                        bch_prio_write(ca);
1638                mutex_unlock(&c->bucket_lock);
1639
1640                err = "cannot allocate new UUID bucket";
1641                if (__uuid_write(c))
1642                        goto err;
1643
1644                err = "cannot allocate new btree root";
1645                c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1646                if (IS_ERR_OR_NULL(c->root))
1647                        goto err;
1648
1649                mutex_lock(&c->root->write_lock);
1650                bkey_copy_key(&c->root->key, &MAX_KEY);
1651                bch_btree_node_write(c->root, &cl);
1652                mutex_unlock(&c->root->write_lock);
1653
1654                bch_btree_set_root(c->root);
1655                rw_unlock(true, c->root);
1656
1657                /*
1658                 * We don't want to write the first journal entry until
1659                 * everything is set up - fortunately journal entries won't be
1660                 * written until the SET_CACHE_SYNC() here:
1661                 */
1662                SET_CACHE_SYNC(&c->sb, true);
1663
1664                bch_journal_next(&c->journal);
1665                bch_journal_meta(c, &cl);
1666        }
1667
1668        err = "error starting gc thread";
1669        if (bch_gc_thread_start(c))
1670                goto err;
1671
1672        closure_sync(&cl);
1673        c->sb.last_mount = get_seconds();
1674        bcache_write_super(c);
1675
1676        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1677                bch_cached_dev_attach(dc, c);
1678
1679        flash_devs_run(c);
1680
1681        set_bit(CACHE_SET_RUNNING, &c->flags);
1682        return;
1683err:
1684        closure_sync(&cl);
1685        /* XXX: test this, it's broken */
1686        bch_cache_set_error(c, "%s", err);
1687}
1688
1689static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1690{
1691        return ca->sb.block_size        == c->sb.block_size &&
1692                ca->sb.bucket_size      == c->sb.bucket_size &&
1693                ca->sb.nr_in_set        == c->sb.nr_in_set;
1694}
1695
1696static const char *register_cache_set(struct cache *ca)
1697{
1698        char buf[12];
1699        const char *err = "cannot allocate memory";
1700        struct cache_set *c;
1701
1702        list_for_each_entry(c, &bch_cache_sets, list)
1703                if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1704                        if (c->cache[ca->sb.nr_this_dev])
1705                                return "duplicate cache set member";
1706
1707                        if (!can_attach_cache(ca, c))
1708                                return "cache sb does not match set";
1709
1710                        if (!CACHE_SYNC(&ca->sb))
1711                                SET_CACHE_SYNC(&c->sb, false);
1712
1713                        goto found;
1714                }
1715
1716        c = bch_cache_set_alloc(&ca->sb);
1717        if (!c)
1718                return err;
1719
1720        err = "error creating kobject";
1721        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1722            kobject_add(&c->internal, &c->kobj, "internal"))
1723                goto err;
1724
1725        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1726                goto err;
1727
1728        bch_debug_init_cache_set(c);
1729
1730        list_add(&c->list, &bch_cache_sets);
1731found:
1732        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1733        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1734            sysfs_create_link(&c->kobj, &ca->kobj, buf))
1735                goto err;
1736
1737        if (ca->sb.seq > c->sb.seq) {
1738                c->sb.version           = ca->sb.version;
1739                memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1740                c->sb.flags             = ca->sb.flags;
1741                c->sb.seq               = ca->sb.seq;
1742                pr_debug("set version = %llu", c->sb.version);
1743        }
1744
1745        kobject_get(&ca->kobj);
1746        ca->set = c;
1747        ca->set->cache[ca->sb.nr_this_dev] = ca;
1748        c->cache_by_alloc[c->caches_loaded++] = ca;
1749
1750        if (c->caches_loaded == c->sb.nr_in_set)
1751                run_cache_set(c);
1752
1753        return NULL;
1754err:
1755        bch_cache_set_unregister(c);
1756        return err;
1757}
1758
1759/* Cache device */
1760
1761void bch_cache_release(struct kobject *kobj)
1762{
1763        struct cache *ca = container_of(kobj, struct cache, kobj);
1764        unsigned i;
1765
1766        if (ca->set) {
1767                BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1768                ca->set->cache[ca->sb.nr_this_dev] = NULL;
1769        }
1770
1771        free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1772        kfree(ca->prio_buckets);
1773        vfree(ca->buckets);
1774
1775        free_heap(&ca->heap);
1776        free_fifo(&ca->free_inc);
1777
1778        for (i = 0; i < RESERVE_NR; i++)
1779                free_fifo(&ca->free[i]);
1780
1781        if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1782                put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1783
1784        if (!IS_ERR_OR_NULL(ca->bdev))
1785                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1786
1787        kfree(ca);
1788        module_put(THIS_MODULE);
1789}
1790
1791static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1792{
1793        size_t free;
1794        struct bucket *b;
1795
1796        __module_get(THIS_MODULE);
1797        kobject_init(&ca->kobj, &bch_cache_ktype);
1798
1799        bio_init(&ca->journal.bio);
1800        ca->journal.bio.bi_max_vecs = 8;
1801        ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1802
1803        free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1804
1805        if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1806            !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1807            !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1808            !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1809            !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1810            !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1811            !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1812                                          ca->sb.nbuckets)) ||
1813            !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1814                                          2, GFP_KERNEL)) ||
1815            !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1816                return -ENOMEM;
1817
1818        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1819
1820        for_each_bucket(b, ca)
1821                atomic_set(&b->pin, 0);
1822
1823        return 0;
1824}
1825
1826static void register_cache(struct cache_sb *sb, struct page *sb_page,
1827                                struct block_device *bdev, struct cache *ca)
1828{
1829        char name[BDEVNAME_SIZE];
1830        const char *err = "cannot allocate memory";
1831
1832        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1833        ca->bdev = bdev;
1834        ca->bdev->bd_holder = ca;
1835
1836        bio_init(&ca->sb_bio);
1837        ca->sb_bio.bi_max_vecs  = 1;
1838        ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1839        ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1840        get_page(sb_page);
1841
1842        if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1843                ca->discard = CACHE_DISCARD(&ca->sb);
1844
1845        if (cache_alloc(sb, ca) != 0)
1846                goto err;
1847
1848        err = "error creating kobject";
1849        if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1850                goto err;
1851
1852        mutex_lock(&bch_register_lock);
1853        err = register_cache_set(ca);
1854        mutex_unlock(&bch_register_lock);
1855
1856        if (err)
1857                goto err;
1858
1859        pr_info("registered cache device %s", bdevname(bdev, name));
1860out:
1861        kobject_put(&ca->kobj);
1862        return;
1863err:
1864        pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1865        goto out;
1866}
1867
1868/* Global interfaces/init */
1869
1870static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1871                               const char *, size_t);
1872
1873kobj_attribute_write(register,          register_bcache);
1874kobj_attribute_write(register_quiet,    register_bcache);
1875
1876static bool bch_is_open_backing(struct block_device *bdev) {
1877        struct cache_set *c, *tc;
1878        struct cached_dev *dc, *t;
1879
1880        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1881                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1882                        if (dc->bdev == bdev)
1883                                return true;
1884        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1885                if (dc->bdev == bdev)
1886                        return true;
1887        return false;
1888}
1889
1890static bool bch_is_open_cache(struct block_device *bdev) {
1891        struct cache_set *c, *tc;
1892        struct cache *ca;
1893        unsigned i;
1894
1895        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1896                for_each_cache(ca, c, i)
1897                        if (ca->bdev == bdev)
1898                                return true;
1899        return false;
1900}
1901
1902static bool bch_is_open(struct block_device *bdev) {
1903        return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1904}
1905
1906static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1907                               const char *buffer, size_t size)
1908{
1909        ssize_t ret = size;
1910        const char *err = "cannot allocate memory";
1911        char *path = NULL;
1912        struct cache_sb *sb = NULL;
1913        struct block_device *bdev = NULL;
1914        struct page *sb_page = NULL;
1915
1916        if (!try_module_get(THIS_MODULE))
1917                return -EBUSY;
1918
1919        if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1920            !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1921                goto err;
1922
1923        err = "failed to open device";
1924        bdev = blkdev_get_by_path(strim(path),
1925                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1926                                  sb);
1927        if (IS_ERR(bdev)) {
1928                if (bdev == ERR_PTR(-EBUSY)) {
1929                        bdev = lookup_bdev(strim(path));
1930                        mutex_lock(&bch_register_lock);
1931                        if (!IS_ERR(bdev) && bch_is_open(bdev))
1932                                err = "device already registered";
1933                        else
1934                                err = "device busy";
1935                        mutex_unlock(&bch_register_lock);
1936                }
1937                goto err;
1938        }
1939
1940        err = "failed to set blocksize";
1941        if (set_blocksize(bdev, 4096))
1942                goto err_close;
1943
1944        err = read_super(sb, bdev, &sb_page);
1945        if (err)
1946                goto err_close;
1947
1948        if (SB_IS_BDEV(sb)) {
1949                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1950                if (!dc)
1951                        goto err_close;
1952
1953                mutex_lock(&bch_register_lock);
1954                register_bdev(sb, sb_page, bdev, dc);
1955                mutex_unlock(&bch_register_lock);
1956        } else {
1957                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1958                if (!ca)
1959                        goto err_close;
1960
1961                register_cache(sb, sb_page, bdev, ca);
1962        }
1963out:
1964        if (sb_page)
1965                put_page(sb_page);
1966        kfree(sb);
1967        kfree(path);
1968        module_put(THIS_MODULE);
1969        return ret;
1970
1971err_close:
1972        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1973err:
1974        if (attr != &ksysfs_register_quiet)
1975                pr_info("error opening %s: %s", path, err);
1976        ret = -EINVAL;
1977        goto out;
1978}
1979
1980static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1981{
1982        if (code == SYS_DOWN ||
1983            code == SYS_HALT ||
1984            code == SYS_POWER_OFF) {
1985                DEFINE_WAIT(wait);
1986                unsigned long start = jiffies;
1987                bool stopped = false;
1988
1989                struct cache_set *c, *tc;
1990                struct cached_dev *dc, *tdc;
1991
1992                mutex_lock(&bch_register_lock);
1993
1994                if (list_empty(&bch_cache_sets) &&
1995                    list_empty(&uncached_devices))
1996                        goto out;
1997
1998                pr_info("Stopping all devices:");
1999
2000                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2001                        bch_cache_set_stop(c);
2002
2003                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2004                        bcache_device_stop(&dc->disk);
2005
2006                /* What's a condition variable? */
2007                while (1) {
2008                        long timeout = start + 2 * HZ - jiffies;
2009
2010                        stopped = list_empty(&bch_cache_sets) &&
2011                                list_empty(&uncached_devices);
2012
2013                        if (timeout < 0 || stopped)
2014                                break;
2015
2016                        prepare_to_wait(&unregister_wait, &wait,
2017                                        TASK_UNINTERRUPTIBLE);
2018
2019                        mutex_unlock(&bch_register_lock);
2020                        schedule_timeout(timeout);
2021                        mutex_lock(&bch_register_lock);
2022                }
2023
2024                finish_wait(&unregister_wait, &wait);
2025
2026                if (stopped)
2027                        pr_info("All devices stopped");
2028                else
2029                        pr_notice("Timeout waiting for devices to be closed");
2030out:
2031                mutex_unlock(&bch_register_lock);
2032        }
2033
2034        return NOTIFY_DONE;
2035}
2036
2037static struct notifier_block reboot = {
2038        .notifier_call  = bcache_reboot,
2039        .priority       = INT_MAX, /* before any real devices */
2040};
2041
2042static void bcache_exit(void)
2043{
2044        bch_debug_exit();
2045        bch_request_exit();
2046        if (bcache_kobj)
2047                kobject_put(bcache_kobj);
2048        if (bcache_wq)
2049                destroy_workqueue(bcache_wq);
2050        if (bcache_major)
2051                unregister_blkdev(bcache_major, "bcache");
2052        unregister_reboot_notifier(&reboot);
2053}
2054
2055static int __init bcache_init(void)
2056{
2057        static const struct attribute *files[] = {
2058                &ksysfs_register.attr,
2059                &ksysfs_register_quiet.attr,
2060                NULL
2061        };
2062
2063        mutex_init(&bch_register_lock);
2064        init_waitqueue_head(&unregister_wait);
2065        register_reboot_notifier(&reboot);
2066        closure_debug_init();
2067
2068        bcache_major = register_blkdev(0, "bcache");
2069        if (bcache_major < 0)
2070                return bcache_major;
2071
2072        if (!(bcache_wq = create_workqueue("bcache")) ||
2073            !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2074            sysfs_create_files(bcache_kobj, files) ||
2075            bch_request_init() ||
2076            bch_debug_init(bcache_kobj))
2077                goto err;
2078
2079        return 0;
2080err:
2081        bcache_exit();
2082        return -ENOMEM;
2083}
2084
2085module_exit(bcache_exit);
2086module_init(bcache_init);
2087