linux/drivers/md/persistent-data/dm-btree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20        __dm_written_to_disk(src)
  21{
  22        memcpy(dest, src, len);
  23        __dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27                         unsigned index, void *elt)
  28        __dm_written_to_disk(elt)
  29{
  30        if (index < nr_elts)
  31                memmove(base + (elt_size * (index + 1)),
  32                        base + (elt_size * index),
  33                        (nr_elts - index) * elt_size);
  34
  35        memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42{
  43        int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45        while (hi - lo > 1) {
  46                int mid = lo + ((hi - lo) / 2);
  47                uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49                if (mid_key == key)
  50                        return mid;
  51
  52                if (mid_key < key)
  53                        lo = mid;
  54                else
  55                        hi = mid;
  56        }
  57
  58        return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct btree_node *n, uint64_t key)
  62{
  63        return bsearch(n, key, 0);
  64}
  65
  66static int upper_bound(struct btree_node *n, uint64_t key)
  67{
  68        return bsearch(n, key, 1);
  69}
  70
  71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72                  struct dm_btree_value_type *vt)
  73{
  74        unsigned i;
  75        uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  76
  77        if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  78                for (i = 0; i < nr_entries; i++)
  79                        dm_tm_inc(tm, value64(n, i));
  80        else if (vt->inc)
  81                for (i = 0; i < nr_entries; i++)
  82                        vt->inc(vt->context, value_ptr(n, i));
  83}
  84
  85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  86                      uint64_t key, void *value)
  87                      __dm_written_to_disk(value)
  88{
  89        uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  90        __le64 key_le = cpu_to_le64(key);
  91
  92        if (index > nr_entries ||
  93            index >= le32_to_cpu(node->header.max_entries)) {
  94                DMERR("too many entries in btree node for insert");
  95                __dm_unbless_for_disk(value);
  96                return -ENOMEM;
  97        }
  98
  99        __dm_bless_for_disk(&key_le);
 100
 101        array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102        array_insert(value_base(node), value_size, nr_entries, index, value);
 103        node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104
 105        return 0;
 106}
 107
 108/*----------------------------------------------------------------*/
 109
 110/*
 111 * We want 3n entries (for some n).  This works more nicely for repeated
 112 * insert remove loops than (2n + 1).
 113 */
 114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115{
 116        uint32_t total, n;
 117        size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118
 119        block_size -= sizeof(struct node_header);
 120        total = block_size / elt_size;
 121        n = total / 3;          /* rounds down */
 122
 123        return 3 * n;
 124}
 125
 126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127{
 128        int r;
 129        struct dm_block *b;
 130        struct btree_node *n;
 131        size_t block_size;
 132        uint32_t max_entries;
 133
 134        r = new_block(info, &b);
 135        if (r < 0)
 136                return r;
 137
 138        block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139        max_entries = calc_max_entries(info->value_type.size, block_size);
 140
 141        n = dm_block_data(b);
 142        memset(n, 0, block_size);
 143        n->header.flags = cpu_to_le32(LEAF_NODE);
 144        n->header.nr_entries = cpu_to_le32(0);
 145        n->header.max_entries = cpu_to_le32(max_entries);
 146        n->header.value_size = cpu_to_le32(info->value_type.size);
 147
 148        *root = dm_block_location(b);
 149        unlock_block(info, b);
 150
 151        return 0;
 152}
 153EXPORT_SYMBOL_GPL(dm_btree_empty);
 154
 155/*----------------------------------------------------------------*/
 156
 157/*
 158 * Deletion uses a recursive algorithm, since we have limited stack space
 159 * we explicitly manage our own stack on the heap.
 160 */
 161#define MAX_SPINE_DEPTH 64
 162struct frame {
 163        struct dm_block *b;
 164        struct btree_node *n;
 165        unsigned level;
 166        unsigned nr_children;
 167        unsigned current_child;
 168};
 169
 170struct del_stack {
 171        struct dm_btree_info *info;
 172        struct dm_transaction_manager *tm;
 173        int top;
 174        struct frame spine[MAX_SPINE_DEPTH];
 175};
 176
 177static int top_frame(struct del_stack *s, struct frame **f)
 178{
 179        if (s->top < 0) {
 180                DMERR("btree deletion stack empty");
 181                return -EINVAL;
 182        }
 183
 184        *f = s->spine + s->top;
 185
 186        return 0;
 187}
 188
 189static int unprocessed_frames(struct del_stack *s)
 190{
 191        return s->top >= 0;
 192}
 193
 194static void prefetch_children(struct del_stack *s, struct frame *f)
 195{
 196        unsigned i;
 197        struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198
 199        for (i = 0; i < f->nr_children; i++)
 200                dm_bm_prefetch(bm, value64(f->n, i));
 201}
 202
 203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204{
 205        return f->level < (info->levels - 1);
 206}
 207
 208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209{
 210        int r;
 211        uint32_t ref_count;
 212
 213        if (s->top >= MAX_SPINE_DEPTH - 1) {
 214                DMERR("btree deletion stack out of memory");
 215                return -ENOMEM;
 216        }
 217
 218        r = dm_tm_ref(s->tm, b, &ref_count);
 219        if (r)
 220                return r;
 221
 222        if (ref_count > 1)
 223                /*
 224                 * This is a shared node, so we can just decrement it's
 225                 * reference counter and leave the children.
 226                 */
 227                dm_tm_dec(s->tm, b);
 228
 229        else {
 230                uint32_t flags;
 231                struct frame *f = s->spine + ++s->top;
 232
 233                r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234                if (r) {
 235                        s->top--;
 236                        return r;
 237                }
 238
 239                f->n = dm_block_data(f->b);
 240                f->level = level;
 241                f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242                f->current_child = 0;
 243
 244                flags = le32_to_cpu(f->n->header.flags);
 245                if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246                        prefetch_children(s, f);
 247        }
 248
 249        return 0;
 250}
 251
 252static void pop_frame(struct del_stack *s)
 253{
 254        struct frame *f = s->spine + s->top--;
 255
 256        dm_tm_dec(s->tm, dm_block_location(f->b));
 257        dm_tm_unlock(s->tm, f->b);
 258}
 259
 260static void unlock_all_frames(struct del_stack *s)
 261{
 262        struct frame *f;
 263
 264        while (unprocessed_frames(s)) {
 265                f = s->spine + s->top--;
 266                dm_tm_unlock(s->tm, f->b);
 267        }
 268}
 269
 270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271{
 272        int r;
 273        struct del_stack *s;
 274
 275        s = kmalloc(sizeof(*s), GFP_NOIO);
 276        if (!s)
 277                return -ENOMEM;
 278        s->info = info;
 279        s->tm = info->tm;
 280        s->top = -1;
 281
 282        r = push_frame(s, root, 0);
 283        if (r)
 284                goto out;
 285
 286        while (unprocessed_frames(s)) {
 287                uint32_t flags;
 288                struct frame *f;
 289                dm_block_t b;
 290
 291                r = top_frame(s, &f);
 292                if (r)
 293                        goto out;
 294
 295                if (f->current_child >= f->nr_children) {
 296                        pop_frame(s);
 297                        continue;
 298                }
 299
 300                flags = le32_to_cpu(f->n->header.flags);
 301                if (flags & INTERNAL_NODE) {
 302                        b = value64(f->n, f->current_child);
 303                        f->current_child++;
 304                        r = push_frame(s, b, f->level);
 305                        if (r)
 306                                goto out;
 307
 308                } else if (is_internal_level(info, f)) {
 309                        b = value64(f->n, f->current_child);
 310                        f->current_child++;
 311                        r = push_frame(s, b, f->level + 1);
 312                        if (r)
 313                                goto out;
 314
 315                } else {
 316                        if (info->value_type.dec) {
 317                                unsigned i;
 318
 319                                for (i = 0; i < f->nr_children; i++)
 320                                        info->value_type.dec(info->value_type.context,
 321                                                             value_ptr(f->n, i));
 322                        }
 323                        pop_frame(s);
 324                }
 325        }
 326out:
 327        if (r) {
 328                /* cleanup all frames of del_stack */
 329                unlock_all_frames(s);
 330        }
 331        kfree(s);
 332
 333        return r;
 334}
 335EXPORT_SYMBOL_GPL(dm_btree_del);
 336
 337/*----------------------------------------------------------------*/
 338
 339static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 340                            int (*search_fn)(struct btree_node *, uint64_t),
 341                            uint64_t *result_key, void *v, size_t value_size)
 342{
 343        int i, r;
 344        uint32_t flags, nr_entries;
 345
 346        do {
 347                r = ro_step(s, block);
 348                if (r < 0)
 349                        return r;
 350
 351                i = search_fn(ro_node(s), key);
 352
 353                flags = le32_to_cpu(ro_node(s)->header.flags);
 354                nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 355                if (i < 0 || i >= nr_entries)
 356                        return -ENODATA;
 357
 358                if (flags & INTERNAL_NODE)
 359                        block = value64(ro_node(s), i);
 360
 361        } while (!(flags & LEAF_NODE));
 362
 363        *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 364        memcpy(v, value_ptr(ro_node(s), i), value_size);
 365
 366        return 0;
 367}
 368
 369int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 370                    uint64_t *keys, void *value_le)
 371{
 372        unsigned level, last_level = info->levels - 1;
 373        int r = -ENODATA;
 374        uint64_t rkey;
 375        __le64 internal_value_le;
 376        struct ro_spine spine;
 377
 378        init_ro_spine(&spine, info);
 379        for (level = 0; level < info->levels; level++) {
 380                size_t size;
 381                void *value_p;
 382
 383                if (level == last_level) {
 384                        value_p = value_le;
 385                        size = info->value_type.size;
 386
 387                } else {
 388                        value_p = &internal_value_le;
 389                        size = sizeof(uint64_t);
 390                }
 391
 392                r = btree_lookup_raw(&spine, root, keys[level],
 393                                     lower_bound, &rkey,
 394                                     value_p, size);
 395
 396                if (!r) {
 397                        if (rkey != keys[level]) {
 398                                exit_ro_spine(&spine);
 399                                return -ENODATA;
 400                        }
 401                } else {
 402                        exit_ro_spine(&spine);
 403                        return r;
 404                }
 405
 406                root = le64_to_cpu(internal_value_le);
 407        }
 408        exit_ro_spine(&spine);
 409
 410        return r;
 411}
 412EXPORT_SYMBOL_GPL(dm_btree_lookup);
 413
 414static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 415                                       uint64_t key, uint64_t *rkey, void *value_le)
 416{
 417        int r, i;
 418        uint32_t flags, nr_entries;
 419        struct dm_block *node;
 420        struct btree_node *n;
 421
 422        r = bn_read_lock(info, root, &node);
 423        if (r)
 424                return r;
 425
 426        n = dm_block_data(node);
 427        flags = le32_to_cpu(n->header.flags);
 428        nr_entries = le32_to_cpu(n->header.nr_entries);
 429
 430        if (flags & INTERNAL_NODE) {
 431                i = lower_bound(n, key);
 432                if (i < 0 || i >= nr_entries) {
 433                        r = -ENODATA;
 434                        goto out;
 435                }
 436
 437                r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 438                if (r == -ENODATA && i < (nr_entries - 1)) {
 439                        i++;
 440                        r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 441                }
 442
 443        } else {
 444                i = upper_bound(n, key);
 445                if (i < 0 || i >= nr_entries) {
 446                        r = -ENODATA;
 447                        goto out;
 448                }
 449
 450                *rkey = le64_to_cpu(n->keys[i]);
 451                memcpy(value_le, value_ptr(n, i), info->value_type.size);
 452        }
 453out:
 454        dm_tm_unlock(info->tm, node);
 455        return r;
 456}
 457
 458int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 459                         uint64_t *keys, uint64_t *rkey, void *value_le)
 460{
 461        unsigned level;
 462        int r = -ENODATA;
 463        __le64 internal_value_le;
 464        struct ro_spine spine;
 465
 466        init_ro_spine(&spine, info);
 467        for (level = 0; level < info->levels - 1u; level++) {
 468                r = btree_lookup_raw(&spine, root, keys[level],
 469                                     lower_bound, rkey,
 470                                     &internal_value_le, sizeof(uint64_t));
 471                if (r)
 472                        goto out;
 473
 474                if (*rkey != keys[level]) {
 475                        r = -ENODATA;
 476                        goto out;
 477                }
 478
 479                root = le64_to_cpu(internal_value_le);
 480        }
 481
 482        r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 483out:
 484        exit_ro_spine(&spine);
 485        return r;
 486}
 487
 488EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 489
 490/*
 491 * Splits a node by creating a sibling node and shifting half the nodes
 492 * contents across.  Assumes there is a parent node, and it has room for
 493 * another child.
 494 *
 495 * Before:
 496 *        +--------+
 497 *        | Parent |
 498 *        +--------+
 499 *           |
 500 *           v
 501 *      +----------+
 502 *      | A ++++++ |
 503 *      +----------+
 504 *
 505 *
 506 * After:
 507 *              +--------+
 508 *              | Parent |
 509 *              +--------+
 510 *                |     |
 511 *                v     +------+
 512 *          +---------+        |
 513 *          | A* +++  |        v
 514 *          +---------+   +-------+
 515 *                        | B +++ |
 516 *                        +-------+
 517 *
 518 * Where A* is a shadow of A.
 519 */
 520static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
 521                               uint64_t key)
 522{
 523        int r;
 524        size_t size;
 525        unsigned nr_left, nr_right;
 526        struct dm_block *left, *right, *parent;
 527        struct btree_node *ln, *rn, *pn;
 528        __le64 location;
 529
 530        left = shadow_current(s);
 531
 532        r = new_block(s->info, &right);
 533        if (r < 0)
 534                return r;
 535
 536        ln = dm_block_data(left);
 537        rn = dm_block_data(right);
 538
 539        nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 540        nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 541
 542        ln->header.nr_entries = cpu_to_le32(nr_left);
 543
 544        rn->header.flags = ln->header.flags;
 545        rn->header.nr_entries = cpu_to_le32(nr_right);
 546        rn->header.max_entries = ln->header.max_entries;
 547        rn->header.value_size = ln->header.value_size;
 548        memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 549
 550        size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 551                sizeof(uint64_t) : s->info->value_type.size;
 552        memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 553               size * nr_right);
 554
 555        /*
 556         * Patch up the parent
 557         */
 558        parent = shadow_parent(s);
 559
 560        pn = dm_block_data(parent);
 561        location = cpu_to_le64(dm_block_location(left));
 562        __dm_bless_for_disk(&location);
 563        memcpy_disk(value_ptr(pn, parent_index),
 564                    &location, sizeof(__le64));
 565
 566        location = cpu_to_le64(dm_block_location(right));
 567        __dm_bless_for_disk(&location);
 568
 569        r = insert_at(sizeof(__le64), pn, parent_index + 1,
 570                      le64_to_cpu(rn->keys[0]), &location);
 571        if (r) {
 572                unlock_block(s->info, right);
 573                return r;
 574        }
 575
 576        if (key < le64_to_cpu(rn->keys[0])) {
 577                unlock_block(s->info, right);
 578                s->nodes[1] = left;
 579        } else {
 580                unlock_block(s->info, left);
 581                s->nodes[1] = right;
 582        }
 583
 584        return 0;
 585}
 586
 587/*
 588 * Splits a node by creating two new children beneath the given node.
 589 *
 590 * Before:
 591 *        +----------+
 592 *        | A ++++++ |
 593 *        +----------+
 594 *
 595 *
 596 * After:
 597 *      +------------+
 598 *      | A (shadow) |
 599 *      +------------+
 600 *          |   |
 601 *   +------+   +----+
 602 *   |               |
 603 *   v               v
 604 * +-------+     +-------+
 605 * | B +++ |     | C +++ |
 606 * +-------+     +-------+
 607 */
 608static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 609{
 610        int r;
 611        size_t size;
 612        unsigned nr_left, nr_right;
 613        struct dm_block *left, *right, *new_parent;
 614        struct btree_node *pn, *ln, *rn;
 615        __le64 val;
 616
 617        new_parent = shadow_current(s);
 618
 619        r = new_block(s->info, &left);
 620        if (r < 0)
 621                return r;
 622
 623        r = new_block(s->info, &right);
 624        if (r < 0) {
 625                unlock_block(s->info, left);
 626                return r;
 627        }
 628
 629        pn = dm_block_data(new_parent);
 630        ln = dm_block_data(left);
 631        rn = dm_block_data(right);
 632
 633        nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 634        nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 635
 636        ln->header.flags = pn->header.flags;
 637        ln->header.nr_entries = cpu_to_le32(nr_left);
 638        ln->header.max_entries = pn->header.max_entries;
 639        ln->header.value_size = pn->header.value_size;
 640
 641        rn->header.flags = pn->header.flags;
 642        rn->header.nr_entries = cpu_to_le32(nr_right);
 643        rn->header.max_entries = pn->header.max_entries;
 644        rn->header.value_size = pn->header.value_size;
 645
 646        memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 647        memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 648
 649        size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 650                sizeof(__le64) : s->info->value_type.size;
 651        memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 652        memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 653               nr_right * size);
 654
 655        /* new_parent should just point to l and r now */
 656        pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 657        pn->header.nr_entries = cpu_to_le32(2);
 658        pn->header.max_entries = cpu_to_le32(
 659                calc_max_entries(sizeof(__le64),
 660                                 dm_bm_block_size(
 661                                         dm_tm_get_bm(s->info->tm))));
 662        pn->header.value_size = cpu_to_le32(sizeof(__le64));
 663
 664        val = cpu_to_le64(dm_block_location(left));
 665        __dm_bless_for_disk(&val);
 666        pn->keys[0] = ln->keys[0];
 667        memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 668
 669        val = cpu_to_le64(dm_block_location(right));
 670        __dm_bless_for_disk(&val);
 671        pn->keys[1] = rn->keys[0];
 672        memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 673
 674        /*
 675         * rejig the spine.  This is ugly, since it knows too
 676         * much about the spine
 677         */
 678        if (s->nodes[0] != new_parent) {
 679                unlock_block(s->info, s->nodes[0]);
 680                s->nodes[0] = new_parent;
 681        }
 682        if (key < le64_to_cpu(rn->keys[0])) {
 683                unlock_block(s->info, right);
 684                s->nodes[1] = left;
 685        } else {
 686                unlock_block(s->info, left);
 687                s->nodes[1] = right;
 688        }
 689        s->count = 2;
 690
 691        return 0;
 692}
 693
 694static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 695                            struct dm_btree_value_type *vt,
 696                            uint64_t key, unsigned *index)
 697{
 698        int r, i = *index, top = 1;
 699        struct btree_node *node;
 700
 701        for (;;) {
 702                r = shadow_step(s, root, vt);
 703                if (r < 0)
 704                        return r;
 705
 706                node = dm_block_data(shadow_current(s));
 707
 708                /*
 709                 * We have to patch up the parent node, ugly, but I don't
 710                 * see a way to do this automatically as part of the spine
 711                 * op.
 712                 */
 713                if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 714                        __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 715
 716                        __dm_bless_for_disk(&location);
 717                        memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 718                                    &location, sizeof(__le64));
 719                }
 720
 721                node = dm_block_data(shadow_current(s));
 722
 723                if (node->header.nr_entries == node->header.max_entries) {
 724                        if (top)
 725                                r = btree_split_beneath(s, key);
 726                        else
 727                                r = btree_split_sibling(s, i, key);
 728
 729                        if (r < 0)
 730                                return r;
 731                }
 732
 733                node = dm_block_data(shadow_current(s));
 734
 735                i = lower_bound(node, key);
 736
 737                if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 738                        break;
 739
 740                if (i < 0) {
 741                        /* change the bounds on the lowest key */
 742                        node->keys[0] = cpu_to_le64(key);
 743                        i = 0;
 744                }
 745
 746                root = value64(node, i);
 747                top = 0;
 748        }
 749
 750        if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 751                i++;
 752
 753        *index = i;
 754        return 0;
 755}
 756
 757static int insert(struct dm_btree_info *info, dm_block_t root,
 758                  uint64_t *keys, void *value, dm_block_t *new_root,
 759                  int *inserted)
 760                  __dm_written_to_disk(value)
 761{
 762        int r, need_insert;
 763        unsigned level, index = -1, last_level = info->levels - 1;
 764        dm_block_t block = root;
 765        struct shadow_spine spine;
 766        struct btree_node *n;
 767        struct dm_btree_value_type le64_type;
 768
 769        init_le64_type(info->tm, &le64_type);
 770        init_shadow_spine(&spine, info);
 771
 772        for (level = 0; level < (info->levels - 1); level++) {
 773                r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 774                if (r < 0)
 775                        goto bad;
 776
 777                n = dm_block_data(shadow_current(&spine));
 778                need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
 779                               (le64_to_cpu(n->keys[index]) != keys[level]));
 780
 781                if (need_insert) {
 782                        dm_block_t new_tree;
 783                        __le64 new_le;
 784
 785                        r = dm_btree_empty(info, &new_tree);
 786                        if (r < 0)
 787                                goto bad;
 788
 789                        new_le = cpu_to_le64(new_tree);
 790                        __dm_bless_for_disk(&new_le);
 791
 792                        r = insert_at(sizeof(uint64_t), n, index,
 793                                      keys[level], &new_le);
 794                        if (r)
 795                                goto bad;
 796                }
 797
 798                if (level < last_level)
 799                        block = value64(n, index);
 800        }
 801
 802        r = btree_insert_raw(&spine, block, &info->value_type,
 803                             keys[level], &index);
 804        if (r < 0)
 805                goto bad;
 806
 807        n = dm_block_data(shadow_current(&spine));
 808        need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
 809                       (le64_to_cpu(n->keys[index]) != keys[level]));
 810
 811        if (need_insert) {
 812                if (inserted)
 813                        *inserted = 1;
 814
 815                r = insert_at(info->value_type.size, n, index,
 816                              keys[level], value);
 817                if (r)
 818                        goto bad_unblessed;
 819        } else {
 820                if (inserted)
 821                        *inserted = 0;
 822
 823                if (info->value_type.dec &&
 824                    (!info->value_type.equal ||
 825                     !info->value_type.equal(
 826                             info->value_type.context,
 827                             value_ptr(n, index),
 828                             value))) {
 829                        info->value_type.dec(info->value_type.context,
 830                                             value_ptr(n, index));
 831                }
 832                memcpy_disk(value_ptr(n, index),
 833                            value, info->value_type.size);
 834        }
 835
 836        *new_root = shadow_root(&spine);
 837        exit_shadow_spine(&spine);
 838
 839        return 0;
 840
 841bad:
 842        __dm_unbless_for_disk(value);
 843bad_unblessed:
 844        exit_shadow_spine(&spine);
 845        return r;
 846}
 847
 848int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 849                    uint64_t *keys, void *value, dm_block_t *new_root)
 850                    __dm_written_to_disk(value)
 851{
 852        return insert(info, root, keys, value, new_root, NULL);
 853}
 854EXPORT_SYMBOL_GPL(dm_btree_insert);
 855
 856int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 857                           uint64_t *keys, void *value, dm_block_t *new_root,
 858                           int *inserted)
 859                           __dm_written_to_disk(value)
 860{
 861        return insert(info, root, keys, value, new_root, inserted);
 862}
 863EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 864
 865/*----------------------------------------------------------------*/
 866
 867static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 868                    uint64_t *result_key, dm_block_t *next_block)
 869{
 870        int i, r;
 871        uint32_t flags;
 872
 873        do {
 874                r = ro_step(s, block);
 875                if (r < 0)
 876                        return r;
 877
 878                flags = le32_to_cpu(ro_node(s)->header.flags);
 879                i = le32_to_cpu(ro_node(s)->header.nr_entries);
 880                if (!i)
 881                        return -ENODATA;
 882                else
 883                        i--;
 884
 885                if (find_highest)
 886                        *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 887                else
 888                        *result_key = le64_to_cpu(ro_node(s)->keys[0]);
 889
 890                if (next_block || flags & INTERNAL_NODE)
 891                        block = value64(ro_node(s), i);
 892
 893        } while (flags & INTERNAL_NODE);
 894
 895        if (next_block)
 896                *next_block = block;
 897        return 0;
 898}
 899
 900static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 901                             bool find_highest, uint64_t *result_keys)
 902{
 903        int r = 0, count = 0, level;
 904        struct ro_spine spine;
 905
 906        init_ro_spine(&spine, info);
 907        for (level = 0; level < info->levels; level++) {
 908                r = find_key(&spine, root, find_highest, result_keys + level,
 909                             level == info->levels - 1 ? NULL : &root);
 910                if (r == -ENODATA) {
 911                        r = 0;
 912                        break;
 913
 914                } else if (r)
 915                        break;
 916
 917                count++;
 918        }
 919        exit_ro_spine(&spine);
 920
 921        return r ? r : count;
 922}
 923
 924int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 925                              uint64_t *result_keys)
 926{
 927        return dm_btree_find_key(info, root, true, result_keys);
 928}
 929EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 930
 931int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 932                             uint64_t *result_keys)
 933{
 934        return dm_btree_find_key(info, root, false, result_keys);
 935}
 936EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 937
 938/*----------------------------------------------------------------*/
 939
 940/*
 941 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 942 * space.  Also this only works for single level trees.
 943 */
 944static int walk_node(struct dm_btree_info *info, dm_block_t block,
 945                     int (*fn)(void *context, uint64_t *keys, void *leaf),
 946                     void *context)
 947{
 948        int r;
 949        unsigned i, nr;
 950        struct dm_block *node;
 951        struct btree_node *n;
 952        uint64_t keys;
 953
 954        r = bn_read_lock(info, block, &node);
 955        if (r)
 956                return r;
 957
 958        n = dm_block_data(node);
 959
 960        nr = le32_to_cpu(n->header.nr_entries);
 961        for (i = 0; i < nr; i++) {
 962                if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 963                        r = walk_node(info, value64(n, i), fn, context);
 964                        if (r)
 965                                goto out;
 966                } else {
 967                        keys = le64_to_cpu(*key_ptr(n, i));
 968                        r = fn(context, &keys, value_ptr(n, i));
 969                        if (r)
 970                                goto out;
 971                }
 972        }
 973
 974out:
 975        dm_tm_unlock(info->tm, node);
 976        return r;
 977}
 978
 979int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 980                  int (*fn)(void *context, uint64_t *keys, void *leaf),
 981                  void *context)
 982{
 983        BUG_ON(info->levels > 1);
 984        return walk_node(info, root, fn, context);
 985}
 986EXPORT_SYMBOL_GPL(dm_btree_walk);
 987