linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *    use_far_sets (stored in bit 17 of layout )
  42 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  43 *
  44 * The data to be stored is divided into chunks using chunksize.  Each device
  45 * is divided into far_copies sections.   In each section, chunks are laid out
  46 * in a style similar to raid0, but near_copies copies of each chunk is stored
  47 * (each on a different drive).  The starting device for each section is offset
  48 * near_copies from the starting device of the previous section.  Thus there
  49 * are (near_copies * far_copies) of each chunk, and each is on a different
  50 * drive.  near_copies and far_copies must be at least one, and their product
  51 * is at most raid_disks.
  52 *
  53 * If far_offset is true, then the far_copies are handled a bit differently.
  54 * The copies are still in different stripes, but instead of being very far
  55 * apart on disk, there are adjacent stripes.
  56 *
  57 * The far and offset algorithms are handled slightly differently if
  58 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  59 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  60 * are still shifted by 'near_copies' devices, but this shifting stays confined
  61 * to the set rather than the entire array.  This is done to improve the number
  62 * of device combinations that can fail without causing the array to fail.
  63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  64 * on a device):
  65 *    A B C D    A B C D E
  66 *      ...         ...
  67 *    D A B C    E A B C D
  68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  69 *    [A B] [C D]    [A B] [C D E]
  70 *    |...| |...|    |...| | ... |
  71 *    [B A] [D C]    [B A] [E C D]
  72 */
  73
  74/*
  75 * Number of guaranteed r10bios in case of extreme VM load:
  76 */
  77#define NR_RAID10_BIOS 256
  78
  79/* when we get a read error on a read-only array, we redirect to another
  80 * device without failing the first device, or trying to over-write to
  81 * correct the read error.  To keep track of bad blocks on a per-bio
  82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  83 */
  84#define IO_BLOCKED ((struct bio *)1)
  85/* When we successfully write to a known bad-block, we need to remove the
  86 * bad-block marking which must be done from process context.  So we record
  87 * the success by setting devs[n].bio to IO_MADE_GOOD
  88 */
  89#define IO_MADE_GOOD ((struct bio *)2)
  90
  91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  92
  93/* When there are this many requests queued to be written by
  94 * the raid10 thread, we become 'congested' to provide back-pressure
  95 * for writeback.
  96 */
  97static int max_queued_requests = 1024;
  98
  99static void allow_barrier(struct r10conf *conf);
 100static void lower_barrier(struct r10conf *conf);
 101static int _enough(struct r10conf *conf, int previous, int ignore);
 102static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 103                                int *skipped);
 104static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 105static void end_reshape_write(struct bio *bio);
 106static void end_reshape(struct r10conf *conf);
 107
 108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 109{
 110        struct r10conf *conf = data;
 111        int size = offsetof(struct r10bio, devs[conf->copies]);
 112
 113        /* allocate a r10bio with room for raid_disks entries in the
 114         * bios array */
 115        return kzalloc(size, gfp_flags);
 116}
 117
 118static void r10bio_pool_free(void *r10_bio, void *data)
 119{
 120        kfree(r10_bio);
 121}
 122
 123/* Maximum size of each resync request */
 124#define RESYNC_BLOCK_SIZE (64*1024)
 125#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 126/* amount of memory to reserve for resync requests */
 127#define RESYNC_WINDOW (1024*1024)
 128/* maximum number of concurrent requests, memory permitting */
 129#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 130
 131/*
 132 * When performing a resync, we need to read and compare, so
 133 * we need as many pages are there are copies.
 134 * When performing a recovery, we need 2 bios, one for read,
 135 * one for write (we recover only one drive per r10buf)
 136 *
 137 */
 138static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 139{
 140        struct r10conf *conf = data;
 141        struct page *page;
 142        struct r10bio *r10_bio;
 143        struct bio *bio;
 144        int i, j;
 145        int nalloc;
 146
 147        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 148        if (!r10_bio)
 149                return NULL;
 150
 151        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 152            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 153                nalloc = conf->copies; /* resync */
 154        else
 155                nalloc = 2; /* recovery */
 156
 157        /*
 158         * Allocate bios.
 159         */
 160        for (j = nalloc ; j-- ; ) {
 161                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 162                if (!bio)
 163                        goto out_free_bio;
 164                r10_bio->devs[j].bio = bio;
 165                if (!conf->have_replacement)
 166                        continue;
 167                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 168                if (!bio)
 169                        goto out_free_bio;
 170                r10_bio->devs[j].repl_bio = bio;
 171        }
 172        /*
 173         * Allocate RESYNC_PAGES data pages and attach them
 174         * where needed.
 175         */
 176        for (j = 0 ; j < nalloc; j++) {
 177                struct bio *rbio = r10_bio->devs[j].repl_bio;
 178                bio = r10_bio->devs[j].bio;
 179                for (i = 0; i < RESYNC_PAGES; i++) {
 180                        if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 181                                               &conf->mddev->recovery)) {
 182                                /* we can share bv_page's during recovery
 183                                 * and reshape */
 184                                struct bio *rbio = r10_bio->devs[0].bio;
 185                                page = rbio->bi_io_vec[i].bv_page;
 186                                get_page(page);
 187                        } else
 188                                page = alloc_page(gfp_flags);
 189                        if (unlikely(!page))
 190                                goto out_free_pages;
 191
 192                        bio->bi_io_vec[i].bv_page = page;
 193                        if (rbio)
 194                                rbio->bi_io_vec[i].bv_page = page;
 195                }
 196        }
 197
 198        return r10_bio;
 199
 200out_free_pages:
 201        for ( ; i > 0 ; i--)
 202                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 203        while (j--)
 204                for (i = 0; i < RESYNC_PAGES ; i++)
 205                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 206        j = 0;
 207out_free_bio:
 208        for ( ; j < nalloc; j++) {
 209                if (r10_bio->devs[j].bio)
 210                        bio_put(r10_bio->devs[j].bio);
 211                if (r10_bio->devs[j].repl_bio)
 212                        bio_put(r10_bio->devs[j].repl_bio);
 213        }
 214        r10bio_pool_free(r10_bio, conf);
 215        return NULL;
 216}
 217
 218static void r10buf_pool_free(void *__r10_bio, void *data)
 219{
 220        int i;
 221        struct r10conf *conf = data;
 222        struct r10bio *r10bio = __r10_bio;
 223        int j;
 224
 225        for (j=0; j < conf->copies; j++) {
 226                struct bio *bio = r10bio->devs[j].bio;
 227                if (bio) {
 228                        for (i = 0; i < RESYNC_PAGES; i++) {
 229                                safe_put_page(bio->bi_io_vec[i].bv_page);
 230                                bio->bi_io_vec[i].bv_page = NULL;
 231                        }
 232                        bio_put(bio);
 233                }
 234                bio = r10bio->devs[j].repl_bio;
 235                if (bio)
 236                        bio_put(bio);
 237        }
 238        r10bio_pool_free(r10bio, conf);
 239}
 240
 241static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 242{
 243        int i;
 244
 245        for (i = 0; i < conf->copies; i++) {
 246                struct bio **bio = & r10_bio->devs[i].bio;
 247                if (!BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250                bio = &r10_bio->devs[i].repl_bio;
 251                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 252                        bio_put(*bio);
 253                *bio = NULL;
 254        }
 255}
 256
 257static void free_r10bio(struct r10bio *r10_bio)
 258{
 259        struct r10conf *conf = r10_bio->mddev->private;
 260
 261        put_all_bios(conf, r10_bio);
 262        mempool_free(r10_bio, conf->r10bio_pool);
 263}
 264
 265static void put_buf(struct r10bio *r10_bio)
 266{
 267        struct r10conf *conf = r10_bio->mddev->private;
 268
 269        mempool_free(r10_bio, conf->r10buf_pool);
 270
 271        lower_barrier(conf);
 272}
 273
 274static void reschedule_retry(struct r10bio *r10_bio)
 275{
 276        unsigned long flags;
 277        struct mddev *mddev = r10_bio->mddev;
 278        struct r10conf *conf = mddev->private;
 279
 280        spin_lock_irqsave(&conf->device_lock, flags);
 281        list_add(&r10_bio->retry_list, &conf->retry_list);
 282        conf->nr_queued ++;
 283        spin_unlock_irqrestore(&conf->device_lock, flags);
 284
 285        /* wake up frozen array... */
 286        wake_up(&conf->wait_barrier);
 287
 288        md_wakeup_thread(mddev->thread);
 289}
 290
 291/*
 292 * raid_end_bio_io() is called when we have finished servicing a mirrored
 293 * operation and are ready to return a success/failure code to the buffer
 294 * cache layer.
 295 */
 296static void raid_end_bio_io(struct r10bio *r10_bio)
 297{
 298        struct bio *bio = r10_bio->master_bio;
 299        int done;
 300        struct r10conf *conf = r10_bio->mddev->private;
 301
 302        if (bio->bi_phys_segments) {
 303                unsigned long flags;
 304                spin_lock_irqsave(&conf->device_lock, flags);
 305                bio->bi_phys_segments--;
 306                done = (bio->bi_phys_segments == 0);
 307                spin_unlock_irqrestore(&conf->device_lock, flags);
 308        } else
 309                done = 1;
 310        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 311                bio->bi_error = -EIO;
 312        if (done) {
 313                bio_endio(bio);
 314                /*
 315                 * Wake up any possible resync thread that waits for the device
 316                 * to go idle.
 317                 */
 318                allow_barrier(conf);
 319        }
 320        free_r10bio(r10_bio);
 321}
 322
 323/*
 324 * Update disk head position estimator based on IRQ completion info.
 325 */
 326static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 327{
 328        struct r10conf *conf = r10_bio->mddev->private;
 329
 330        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 331                r10_bio->devs[slot].addr + (r10_bio->sectors);
 332}
 333
 334/*
 335 * Find the disk number which triggered given bio
 336 */
 337static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 338                         struct bio *bio, int *slotp, int *replp)
 339{
 340        int slot;
 341        int repl = 0;
 342
 343        for (slot = 0; slot < conf->copies; slot++) {
 344                if (r10_bio->devs[slot].bio == bio)
 345                        break;
 346                if (r10_bio->devs[slot].repl_bio == bio) {
 347                        repl = 1;
 348                        break;
 349                }
 350        }
 351
 352        BUG_ON(slot == conf->copies);
 353        update_head_pos(slot, r10_bio);
 354
 355        if (slotp)
 356                *slotp = slot;
 357        if (replp)
 358                *replp = repl;
 359        return r10_bio->devs[slot].devnum;
 360}
 361
 362static void raid10_end_read_request(struct bio *bio)
 363{
 364        int uptodate = !bio->bi_error;
 365        struct r10bio *r10_bio = bio->bi_private;
 366        int slot, dev;
 367        struct md_rdev *rdev;
 368        struct r10conf *conf = r10_bio->mddev->private;
 369
 370        slot = r10_bio->read_slot;
 371        dev = r10_bio->devs[slot].devnum;
 372        rdev = r10_bio->devs[slot].rdev;
 373        /*
 374         * this branch is our 'one mirror IO has finished' event handler:
 375         */
 376        update_head_pos(slot, r10_bio);
 377
 378        if (uptodate) {
 379                /*
 380                 * Set R10BIO_Uptodate in our master bio, so that
 381                 * we will return a good error code to the higher
 382                 * levels even if IO on some other mirrored buffer fails.
 383                 *
 384                 * The 'master' represents the composite IO operation to
 385                 * user-side. So if something waits for IO, then it will
 386                 * wait for the 'master' bio.
 387                 */
 388                set_bit(R10BIO_Uptodate, &r10_bio->state);
 389        } else {
 390                /* If all other devices that store this block have
 391                 * failed, we want to return the error upwards rather
 392                 * than fail the last device.  Here we redefine
 393                 * "uptodate" to mean "Don't want to retry"
 394                 */
 395                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 396                             rdev->raid_disk))
 397                        uptodate = 1;
 398        }
 399        if (uptodate) {
 400                raid_end_bio_io(r10_bio);
 401                rdev_dec_pending(rdev, conf->mddev);
 402        } else {
 403                /*
 404                 * oops, read error - keep the refcount on the rdev
 405                 */
 406                char b[BDEVNAME_SIZE];
 407                printk_ratelimited(KERN_ERR
 408                                   "md/raid10:%s: %s: rescheduling sector %llu\n",
 409                                   mdname(conf->mddev),
 410                                   bdevname(rdev->bdev, b),
 411                                   (unsigned long long)r10_bio->sector);
 412                set_bit(R10BIO_ReadError, &r10_bio->state);
 413                reschedule_retry(r10_bio);
 414        }
 415}
 416
 417static void close_write(struct r10bio *r10_bio)
 418{
 419        /* clear the bitmap if all writes complete successfully */
 420        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 421                        r10_bio->sectors,
 422                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 423                        0);
 424        md_write_end(r10_bio->mddev);
 425}
 426
 427static void one_write_done(struct r10bio *r10_bio)
 428{
 429        if (atomic_dec_and_test(&r10_bio->remaining)) {
 430                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 431                        reschedule_retry(r10_bio);
 432                else {
 433                        close_write(r10_bio);
 434                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 435                                reschedule_retry(r10_bio);
 436                        else
 437                                raid_end_bio_io(r10_bio);
 438                }
 439        }
 440}
 441
 442static void raid10_end_write_request(struct bio *bio)
 443{
 444        struct r10bio *r10_bio = bio->bi_private;
 445        int dev;
 446        int dec_rdev = 1;
 447        struct r10conf *conf = r10_bio->mddev->private;
 448        int slot, repl;
 449        struct md_rdev *rdev = NULL;
 450
 451        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 452
 453        if (repl)
 454                rdev = conf->mirrors[dev].replacement;
 455        if (!rdev) {
 456                smp_rmb();
 457                repl = 0;
 458                rdev = conf->mirrors[dev].rdev;
 459        }
 460        /*
 461         * this branch is our 'one mirror IO has finished' event handler:
 462         */
 463        if (bio->bi_error) {
 464                if (repl)
 465                        /* Never record new bad blocks to replacement,
 466                         * just fail it.
 467                         */
 468                        md_error(rdev->mddev, rdev);
 469                else {
 470                        set_bit(WriteErrorSeen, &rdev->flags);
 471                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 472                                set_bit(MD_RECOVERY_NEEDED,
 473                                        &rdev->mddev->recovery);
 474                        set_bit(R10BIO_WriteError, &r10_bio->state);
 475                        dec_rdev = 0;
 476                }
 477        } else {
 478                /*
 479                 * Set R10BIO_Uptodate in our master bio, so that
 480                 * we will return a good error code for to the higher
 481                 * levels even if IO on some other mirrored buffer fails.
 482                 *
 483                 * The 'master' represents the composite IO operation to
 484                 * user-side. So if something waits for IO, then it will
 485                 * wait for the 'master' bio.
 486                 */
 487                sector_t first_bad;
 488                int bad_sectors;
 489
 490                /*
 491                 * Do not set R10BIO_Uptodate if the current device is
 492                 * rebuilding or Faulty. This is because we cannot use
 493                 * such device for properly reading the data back (we could
 494                 * potentially use it, if the current write would have felt
 495                 * before rdev->recovery_offset, but for simplicity we don't
 496                 * check this here.
 497                 */
 498                if (test_bit(In_sync, &rdev->flags) &&
 499                    !test_bit(Faulty, &rdev->flags))
 500                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 501
 502                /* Maybe we can clear some bad blocks. */
 503                if (is_badblock(rdev,
 504                                r10_bio->devs[slot].addr,
 505                                r10_bio->sectors,
 506                                &first_bad, &bad_sectors)) {
 507                        bio_put(bio);
 508                        if (repl)
 509                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 510                        else
 511                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 512                        dec_rdev = 0;
 513                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 514                }
 515        }
 516
 517        /*
 518         *
 519         * Let's see if all mirrored write operations have finished
 520         * already.
 521         */
 522        one_write_done(r10_bio);
 523        if (dec_rdev)
 524                rdev_dec_pending(rdev, conf->mddev);
 525}
 526
 527/*
 528 * RAID10 layout manager
 529 * As well as the chunksize and raid_disks count, there are two
 530 * parameters: near_copies and far_copies.
 531 * near_copies * far_copies must be <= raid_disks.
 532 * Normally one of these will be 1.
 533 * If both are 1, we get raid0.
 534 * If near_copies == raid_disks, we get raid1.
 535 *
 536 * Chunks are laid out in raid0 style with near_copies copies of the
 537 * first chunk, followed by near_copies copies of the next chunk and
 538 * so on.
 539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 540 * as described above, we start again with a device offset of near_copies.
 541 * So we effectively have another copy of the whole array further down all
 542 * the drives, but with blocks on different drives.
 543 * With this layout, and block is never stored twice on the one device.
 544 *
 545 * raid10_find_phys finds the sector offset of a given virtual sector
 546 * on each device that it is on.
 547 *
 548 * raid10_find_virt does the reverse mapping, from a device and a
 549 * sector offset to a virtual address
 550 */
 551
 552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 553{
 554        int n,f;
 555        sector_t sector;
 556        sector_t chunk;
 557        sector_t stripe;
 558        int dev;
 559        int slot = 0;
 560        int last_far_set_start, last_far_set_size;
 561
 562        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 563        last_far_set_start *= geo->far_set_size;
 564
 565        last_far_set_size = geo->far_set_size;
 566        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 567
 568        /* now calculate first sector/dev */
 569        chunk = r10bio->sector >> geo->chunk_shift;
 570        sector = r10bio->sector & geo->chunk_mask;
 571
 572        chunk *= geo->near_copies;
 573        stripe = chunk;
 574        dev = sector_div(stripe, geo->raid_disks);
 575        if (geo->far_offset)
 576                stripe *= geo->far_copies;
 577
 578        sector += stripe << geo->chunk_shift;
 579
 580        /* and calculate all the others */
 581        for (n = 0; n < geo->near_copies; n++) {
 582                int d = dev;
 583                int set;
 584                sector_t s = sector;
 585                r10bio->devs[slot].devnum = d;
 586                r10bio->devs[slot].addr = s;
 587                slot++;
 588
 589                for (f = 1; f < geo->far_copies; f++) {
 590                        set = d / geo->far_set_size;
 591                        d += geo->near_copies;
 592
 593                        if ((geo->raid_disks % geo->far_set_size) &&
 594                            (d > last_far_set_start)) {
 595                                d -= last_far_set_start;
 596                                d %= last_far_set_size;
 597                                d += last_far_set_start;
 598                        } else {
 599                                d %= geo->far_set_size;
 600                                d += geo->far_set_size * set;
 601                        }
 602                        s += geo->stride;
 603                        r10bio->devs[slot].devnum = d;
 604                        r10bio->devs[slot].addr = s;
 605                        slot++;
 606                }
 607                dev++;
 608                if (dev >= geo->raid_disks) {
 609                        dev = 0;
 610                        sector += (geo->chunk_mask + 1);
 611                }
 612        }
 613}
 614
 615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 616{
 617        struct geom *geo = &conf->geo;
 618
 619        if (conf->reshape_progress != MaxSector &&
 620            ((r10bio->sector >= conf->reshape_progress) !=
 621             conf->mddev->reshape_backwards)) {
 622                set_bit(R10BIO_Previous, &r10bio->state);
 623                geo = &conf->prev;
 624        } else
 625                clear_bit(R10BIO_Previous, &r10bio->state);
 626
 627        __raid10_find_phys(geo, r10bio);
 628}
 629
 630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 631{
 632        sector_t offset, chunk, vchunk;
 633        /* Never use conf->prev as this is only called during resync
 634         * or recovery, so reshape isn't happening
 635         */
 636        struct geom *geo = &conf->geo;
 637        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 638        int far_set_size = geo->far_set_size;
 639        int last_far_set_start;
 640
 641        if (geo->raid_disks % geo->far_set_size) {
 642                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 643                last_far_set_start *= geo->far_set_size;
 644
 645                if (dev >= last_far_set_start) {
 646                        far_set_size = geo->far_set_size;
 647                        far_set_size += (geo->raid_disks % geo->far_set_size);
 648                        far_set_start = last_far_set_start;
 649                }
 650        }
 651
 652        offset = sector & geo->chunk_mask;
 653        if (geo->far_offset) {
 654                int fc;
 655                chunk = sector >> geo->chunk_shift;
 656                fc = sector_div(chunk, geo->far_copies);
 657                dev -= fc * geo->near_copies;
 658                if (dev < far_set_start)
 659                        dev += far_set_size;
 660        } else {
 661                while (sector >= geo->stride) {
 662                        sector -= geo->stride;
 663                        if (dev < (geo->near_copies + far_set_start))
 664                                dev += far_set_size - geo->near_copies;
 665                        else
 666                                dev -= geo->near_copies;
 667                }
 668                chunk = sector >> geo->chunk_shift;
 669        }
 670        vchunk = chunk * geo->raid_disks + dev;
 671        sector_div(vchunk, geo->near_copies);
 672        return (vchunk << geo->chunk_shift) + offset;
 673}
 674
 675/*
 676 * This routine returns the disk from which the requested read should
 677 * be done. There is a per-array 'next expected sequential IO' sector
 678 * number - if this matches on the next IO then we use the last disk.
 679 * There is also a per-disk 'last know head position' sector that is
 680 * maintained from IRQ contexts, both the normal and the resync IO
 681 * completion handlers update this position correctly. If there is no
 682 * perfect sequential match then we pick the disk whose head is closest.
 683 *
 684 * If there are 2 mirrors in the same 2 devices, performance degrades
 685 * because position is mirror, not device based.
 686 *
 687 * The rdev for the device selected will have nr_pending incremented.
 688 */
 689
 690/*
 691 * FIXME: possibly should rethink readbalancing and do it differently
 692 * depending on near_copies / far_copies geometry.
 693 */
 694static struct md_rdev *read_balance(struct r10conf *conf,
 695                                    struct r10bio *r10_bio,
 696                                    int *max_sectors)
 697{
 698        const sector_t this_sector = r10_bio->sector;
 699        int disk, slot;
 700        int sectors = r10_bio->sectors;
 701        int best_good_sectors;
 702        sector_t new_distance, best_dist;
 703        struct md_rdev *best_rdev, *rdev = NULL;
 704        int do_balance;
 705        int best_slot;
 706        struct geom *geo = &conf->geo;
 707
 708        raid10_find_phys(conf, r10_bio);
 709        rcu_read_lock();
 710retry:
 711        sectors = r10_bio->sectors;
 712        best_slot = -1;
 713        best_rdev = NULL;
 714        best_dist = MaxSector;
 715        best_good_sectors = 0;
 716        do_balance = 1;
 717        /*
 718         * Check if we can balance. We can balance on the whole
 719         * device if no resync is going on (recovery is ok), or below
 720         * the resync window. We take the first readable disk when
 721         * above the resync window.
 722         */
 723        if (conf->mddev->recovery_cp < MaxSector
 724            && (this_sector + sectors >= conf->next_resync))
 725                do_balance = 0;
 726
 727        for (slot = 0; slot < conf->copies ; slot++) {
 728                sector_t first_bad;
 729                int bad_sectors;
 730                sector_t dev_sector;
 731
 732                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 733                        continue;
 734                disk = r10_bio->devs[slot].devnum;
 735                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 736                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 737                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 738                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 739                if (rdev == NULL ||
 740                    test_bit(Faulty, &rdev->flags))
 741                        continue;
 742                if (!test_bit(In_sync, &rdev->flags) &&
 743                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 744                        continue;
 745
 746                dev_sector = r10_bio->devs[slot].addr;
 747                if (is_badblock(rdev, dev_sector, sectors,
 748                                &first_bad, &bad_sectors)) {
 749                        if (best_dist < MaxSector)
 750                                /* Already have a better slot */
 751                                continue;
 752                        if (first_bad <= dev_sector) {
 753                                /* Cannot read here.  If this is the
 754                                 * 'primary' device, then we must not read
 755                                 * beyond 'bad_sectors' from another device.
 756                                 */
 757                                bad_sectors -= (dev_sector - first_bad);
 758                                if (!do_balance && sectors > bad_sectors)
 759                                        sectors = bad_sectors;
 760                                if (best_good_sectors > sectors)
 761                                        best_good_sectors = sectors;
 762                        } else {
 763                                sector_t good_sectors =
 764                                        first_bad - dev_sector;
 765                                if (good_sectors > best_good_sectors) {
 766                                        best_good_sectors = good_sectors;
 767                                        best_slot = slot;
 768                                        best_rdev = rdev;
 769                                }
 770                                if (!do_balance)
 771                                        /* Must read from here */
 772                                        break;
 773                        }
 774                        continue;
 775                } else
 776                        best_good_sectors = sectors;
 777
 778                if (!do_balance)
 779                        break;
 780
 781                /* This optimisation is debatable, and completely destroys
 782                 * sequential read speed for 'far copies' arrays.  So only
 783                 * keep it for 'near' arrays, and review those later.
 784                 */
 785                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 786                        break;
 787
 788                /* for far > 1 always use the lowest address */
 789                if (geo->far_copies > 1)
 790                        new_distance = r10_bio->devs[slot].addr;
 791                else
 792                        new_distance = abs(r10_bio->devs[slot].addr -
 793                                           conf->mirrors[disk].head_position);
 794                if (new_distance < best_dist) {
 795                        best_dist = new_distance;
 796                        best_slot = slot;
 797                        best_rdev = rdev;
 798                }
 799        }
 800        if (slot >= conf->copies) {
 801                slot = best_slot;
 802                rdev = best_rdev;
 803        }
 804
 805        if (slot >= 0) {
 806                atomic_inc(&rdev->nr_pending);
 807                if (test_bit(Faulty, &rdev->flags)) {
 808                        /* Cannot risk returning a device that failed
 809                         * before we inc'ed nr_pending
 810                         */
 811                        rdev_dec_pending(rdev, conf->mddev);
 812                        goto retry;
 813                }
 814                r10_bio->read_slot = slot;
 815        } else
 816                rdev = NULL;
 817        rcu_read_unlock();
 818        *max_sectors = best_good_sectors;
 819
 820        return rdev;
 821}
 822
 823static int raid10_congested(struct mddev *mddev, int bits)
 824{
 825        struct r10conf *conf = mddev->private;
 826        int i, ret = 0;
 827
 828        if ((bits & (1 << WB_async_congested)) &&
 829            conf->pending_count >= max_queued_requests)
 830                return 1;
 831
 832        rcu_read_lock();
 833        for (i = 0;
 834             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 835                     && ret == 0;
 836             i++) {
 837                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 838                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 839                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 840
 841                        ret |= bdi_congested(&q->backing_dev_info, bits);
 842                }
 843        }
 844        rcu_read_unlock();
 845        return ret;
 846}
 847
 848static void flush_pending_writes(struct r10conf *conf)
 849{
 850        /* Any writes that have been queued but are awaiting
 851         * bitmap updates get flushed here.
 852         */
 853        spin_lock_irq(&conf->device_lock);
 854
 855        if (conf->pending_bio_list.head) {
 856                struct bio *bio;
 857                bio = bio_list_get(&conf->pending_bio_list);
 858                conf->pending_count = 0;
 859                spin_unlock_irq(&conf->device_lock);
 860                /* flush any pending bitmap writes to disk
 861                 * before proceeding w/ I/O */
 862                bitmap_unplug(conf->mddev->bitmap);
 863                wake_up(&conf->wait_barrier);
 864
 865                while (bio) { /* submit pending writes */
 866                        struct bio *next = bio->bi_next;
 867                        bio->bi_next = NULL;
 868                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 869                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 870                                /* Just ignore it */
 871                                bio_endio(bio);
 872                        else
 873                                generic_make_request(bio);
 874                        bio = next;
 875                }
 876        } else
 877                spin_unlock_irq(&conf->device_lock);
 878}
 879
 880/* Barriers....
 881 * Sometimes we need to suspend IO while we do something else,
 882 * either some resync/recovery, or reconfigure the array.
 883 * To do this we raise a 'barrier'.
 884 * The 'barrier' is a counter that can be raised multiple times
 885 * to count how many activities are happening which preclude
 886 * normal IO.
 887 * We can only raise the barrier if there is no pending IO.
 888 * i.e. if nr_pending == 0.
 889 * We choose only to raise the barrier if no-one is waiting for the
 890 * barrier to go down.  This means that as soon as an IO request
 891 * is ready, no other operations which require a barrier will start
 892 * until the IO request has had a chance.
 893 *
 894 * So: regular IO calls 'wait_barrier'.  When that returns there
 895 *    is no backgroup IO happening,  It must arrange to call
 896 *    allow_barrier when it has finished its IO.
 897 * backgroup IO calls must call raise_barrier.  Once that returns
 898 *    there is no normal IO happeing.  It must arrange to call
 899 *    lower_barrier when the particular background IO completes.
 900 */
 901
 902static void raise_barrier(struct r10conf *conf, int force)
 903{
 904        BUG_ON(force && !conf->barrier);
 905        spin_lock_irq(&conf->resync_lock);
 906
 907        /* Wait until no block IO is waiting (unless 'force') */
 908        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 909                            conf->resync_lock);
 910
 911        /* block any new IO from starting */
 912        conf->barrier++;
 913
 914        /* Now wait for all pending IO to complete */
 915        wait_event_lock_irq(conf->wait_barrier,
 916                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 917                            conf->resync_lock);
 918
 919        spin_unlock_irq(&conf->resync_lock);
 920}
 921
 922static void lower_barrier(struct r10conf *conf)
 923{
 924        unsigned long flags;
 925        spin_lock_irqsave(&conf->resync_lock, flags);
 926        conf->barrier--;
 927        spin_unlock_irqrestore(&conf->resync_lock, flags);
 928        wake_up(&conf->wait_barrier);
 929}
 930
 931static void wait_barrier(struct r10conf *conf)
 932{
 933        spin_lock_irq(&conf->resync_lock);
 934        if (conf->barrier) {
 935                conf->nr_waiting++;
 936                /* Wait for the barrier to drop.
 937                 * However if there are already pending
 938                 * requests (preventing the barrier from
 939                 * rising completely), and the
 940                 * pre-process bio queue isn't empty,
 941                 * then don't wait, as we need to empty
 942                 * that queue to get the nr_pending
 943                 * count down.
 944                 */
 945                wait_event_lock_irq(conf->wait_barrier,
 946                                    !conf->barrier ||
 947                                    (conf->nr_pending &&
 948                                     current->bio_list &&
 949                                     !bio_list_empty(current->bio_list)),
 950                                    conf->resync_lock);
 951                conf->nr_waiting--;
 952        }
 953        conf->nr_pending++;
 954        spin_unlock_irq(&conf->resync_lock);
 955}
 956
 957static void allow_barrier(struct r10conf *conf)
 958{
 959        unsigned long flags;
 960        spin_lock_irqsave(&conf->resync_lock, flags);
 961        conf->nr_pending--;
 962        spin_unlock_irqrestore(&conf->resync_lock, flags);
 963        wake_up(&conf->wait_barrier);
 964}
 965
 966static void freeze_array(struct r10conf *conf, int extra)
 967{
 968        /* stop syncio and normal IO and wait for everything to
 969         * go quiet.
 970         * We increment barrier and nr_waiting, and then
 971         * wait until nr_pending match nr_queued+extra
 972         * This is called in the context of one normal IO request
 973         * that has failed. Thus any sync request that might be pending
 974         * will be blocked by nr_pending, and we need to wait for
 975         * pending IO requests to complete or be queued for re-try.
 976         * Thus the number queued (nr_queued) plus this request (extra)
 977         * must match the number of pending IOs (nr_pending) before
 978         * we continue.
 979         */
 980        spin_lock_irq(&conf->resync_lock);
 981        conf->barrier++;
 982        conf->nr_waiting++;
 983        wait_event_lock_irq_cmd(conf->wait_barrier,
 984                                conf->nr_pending == conf->nr_queued+extra,
 985                                conf->resync_lock,
 986                                flush_pending_writes(conf));
 987
 988        spin_unlock_irq(&conf->resync_lock);
 989}
 990
 991static void unfreeze_array(struct r10conf *conf)
 992{
 993        /* reverse the effect of the freeze */
 994        spin_lock_irq(&conf->resync_lock);
 995        conf->barrier--;
 996        conf->nr_waiting--;
 997        wake_up(&conf->wait_barrier);
 998        spin_unlock_irq(&conf->resync_lock);
 999}
1000
1001static sector_t choose_data_offset(struct r10bio *r10_bio,
1002                                   struct md_rdev *rdev)
1003{
1004        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005            test_bit(R10BIO_Previous, &r10_bio->state))
1006                return rdev->data_offset;
1007        else
1008                return rdev->new_data_offset;
1009}
1010
1011struct raid10_plug_cb {
1012        struct blk_plug_cb      cb;
1013        struct bio_list         pending;
1014        int                     pending_cnt;
1015};
1016
1017static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018{
1019        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020                                                   cb);
1021        struct mddev *mddev = plug->cb.data;
1022        struct r10conf *conf = mddev->private;
1023        struct bio *bio;
1024
1025        if (from_schedule || current->bio_list) {
1026                spin_lock_irq(&conf->device_lock);
1027                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028                conf->pending_count += plug->pending_cnt;
1029                spin_unlock_irq(&conf->device_lock);
1030                wake_up(&conf->wait_barrier);
1031                md_wakeup_thread(mddev->thread);
1032                kfree(plug);
1033                return;
1034        }
1035
1036        /* we aren't scheduling, so we can do the write-out directly. */
1037        bio = bio_list_get(&plug->pending);
1038        bitmap_unplug(mddev->bitmap);
1039        wake_up(&conf->wait_barrier);
1040
1041        while (bio) { /* submit pending writes */
1042                struct bio *next = bio->bi_next;
1043                bio->bi_next = NULL;
1044                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046                        /* Just ignore it */
1047                        bio_endio(bio);
1048                else
1049                        generic_make_request(bio);
1050                bio = next;
1051        }
1052        kfree(plug);
1053}
1054
1055static void __make_request(struct mddev *mddev, struct bio *bio)
1056{
1057        struct r10conf *conf = mddev->private;
1058        struct r10bio *r10_bio;
1059        struct bio *read_bio;
1060        int i;
1061        const int rw = bio_data_dir(bio);
1062        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063        const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064        const unsigned long do_discard = (bio->bi_rw
1065                                          & (REQ_DISCARD | REQ_SECURE));
1066        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067        unsigned long flags;
1068        struct md_rdev *blocked_rdev;
1069        struct blk_plug_cb *cb;
1070        struct raid10_plug_cb *plug = NULL;
1071        int sectors_handled;
1072        int max_sectors;
1073        int sectors;
1074
1075        /*
1076         * Register the new request and wait if the reconstruction
1077         * thread has put up a bar for new requests.
1078         * Continue immediately if no resync is active currently.
1079         */
1080        wait_barrier(conf);
1081
1082        sectors = bio_sectors(bio);
1083        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084            bio->bi_iter.bi_sector < conf->reshape_progress &&
1085            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086                /* IO spans the reshape position.  Need to wait for
1087                 * reshape to pass
1088                 */
1089                allow_barrier(conf);
1090                wait_event(conf->wait_barrier,
1091                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1093                           sectors);
1094                wait_barrier(conf);
1095        }
1096        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097            bio_data_dir(bio) == WRITE &&
1098            (mddev->reshape_backwards
1099             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103                /* Need to update reshape_position in metadata */
1104                mddev->reshape_position = conf->reshape_progress;
1105                set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106                set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107                md_wakeup_thread(mddev->thread);
1108                wait_event(mddev->sb_wait,
1109                           !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110
1111                conf->reshape_safe = mddev->reshape_position;
1112        }
1113
1114        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115
1116        r10_bio->master_bio = bio;
1117        r10_bio->sectors = sectors;
1118
1119        r10_bio->mddev = mddev;
1120        r10_bio->sector = bio->bi_iter.bi_sector;
1121        r10_bio->state = 0;
1122
1123        /* We might need to issue multiple reads to different
1124         * devices if there are bad blocks around, so we keep
1125         * track of the number of reads in bio->bi_phys_segments.
1126         * If this is 0, there is only one r10_bio and no locking
1127         * will be needed when the request completes.  If it is
1128         * non-zero, then it is the number of not-completed requests.
1129         */
1130        bio->bi_phys_segments = 0;
1131        bio_clear_flag(bio, BIO_SEG_VALID);
1132
1133        if (rw == READ) {
1134                /*
1135                 * read balancing logic:
1136                 */
1137                struct md_rdev *rdev;
1138                int slot;
1139
1140read_again:
1141                rdev = read_balance(conf, r10_bio, &max_sectors);
1142                if (!rdev) {
1143                        raid_end_bio_io(r10_bio);
1144                        return;
1145                }
1146                slot = r10_bio->read_slot;
1147
1148                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149                bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150                         max_sectors);
1151
1152                r10_bio->devs[slot].bio = read_bio;
1153                r10_bio->devs[slot].rdev = rdev;
1154
1155                read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156                        choose_data_offset(r10_bio, rdev);
1157                read_bio->bi_bdev = rdev->bdev;
1158                read_bio->bi_end_io = raid10_end_read_request;
1159                read_bio->bi_rw = READ | do_sync;
1160                read_bio->bi_private = r10_bio;
1161
1162                if (max_sectors < r10_bio->sectors) {
1163                        /* Could not read all from this device, so we will
1164                         * need another r10_bio.
1165                         */
1166                        sectors_handled = (r10_bio->sector + max_sectors
1167                                           - bio->bi_iter.bi_sector);
1168                        r10_bio->sectors = max_sectors;
1169                        spin_lock_irq(&conf->device_lock);
1170                        if (bio->bi_phys_segments == 0)
1171                                bio->bi_phys_segments = 2;
1172                        else
1173                                bio->bi_phys_segments++;
1174                        spin_unlock_irq(&conf->device_lock);
1175                        /* Cannot call generic_make_request directly
1176                         * as that will be queued in __generic_make_request
1177                         * and subsequent mempool_alloc might block
1178                         * waiting for it.  so hand bio over to raid10d.
1179                         */
1180                        reschedule_retry(r10_bio);
1181
1182                        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183
1184                        r10_bio->master_bio = bio;
1185                        r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186                        r10_bio->state = 0;
1187                        r10_bio->mddev = mddev;
1188                        r10_bio->sector = bio->bi_iter.bi_sector +
1189                                sectors_handled;
1190                        goto read_again;
1191                } else
1192                        generic_make_request(read_bio);
1193                return;
1194        }
1195
1196        /*
1197         * WRITE:
1198         */
1199        if (conf->pending_count >= max_queued_requests) {
1200                md_wakeup_thread(mddev->thread);
1201                wait_event(conf->wait_barrier,
1202                           conf->pending_count < max_queued_requests);
1203        }
1204        /* first select target devices under rcu_lock and
1205         * inc refcount on their rdev.  Record them by setting
1206         * bios[x] to bio
1207         * If there are known/acknowledged bad blocks on any device
1208         * on which we have seen a write error, we want to avoid
1209         * writing to those blocks.  This potentially requires several
1210         * writes to write around the bad blocks.  Each set of writes
1211         * gets its own r10_bio with a set of bios attached.  The number
1212         * of r10_bios is recored in bio->bi_phys_segments just as with
1213         * the read case.
1214         */
1215
1216        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217        raid10_find_phys(conf, r10_bio);
1218retry_write:
1219        blocked_rdev = NULL;
1220        rcu_read_lock();
1221        max_sectors = r10_bio->sectors;
1222
1223        for (i = 0;  i < conf->copies; i++) {
1224                int d = r10_bio->devs[i].devnum;
1225                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226                struct md_rdev *rrdev = rcu_dereference(
1227                        conf->mirrors[d].replacement);
1228                if (rdev == rrdev)
1229                        rrdev = NULL;
1230                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231                        atomic_inc(&rdev->nr_pending);
1232                        blocked_rdev = rdev;
1233                        break;
1234                }
1235                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236                        atomic_inc(&rrdev->nr_pending);
1237                        blocked_rdev = rrdev;
1238                        break;
1239                }
1240                if (rdev && (test_bit(Faulty, &rdev->flags)))
1241                        rdev = NULL;
1242                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243                        rrdev = NULL;
1244
1245                r10_bio->devs[i].bio = NULL;
1246                r10_bio->devs[i].repl_bio = NULL;
1247
1248                if (!rdev && !rrdev) {
1249                        set_bit(R10BIO_Degraded, &r10_bio->state);
1250                        continue;
1251                }
1252                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253                        sector_t first_bad;
1254                        sector_t dev_sector = r10_bio->devs[i].addr;
1255                        int bad_sectors;
1256                        int is_bad;
1257
1258                        is_bad = is_badblock(rdev, dev_sector,
1259                                             max_sectors,
1260                                             &first_bad, &bad_sectors);
1261                        if (is_bad < 0) {
1262                                /* Mustn't write here until the bad block
1263                                 * is acknowledged
1264                                 */
1265                                atomic_inc(&rdev->nr_pending);
1266                                set_bit(BlockedBadBlocks, &rdev->flags);
1267                                blocked_rdev = rdev;
1268                                break;
1269                        }
1270                        if (is_bad && first_bad <= dev_sector) {
1271                                /* Cannot write here at all */
1272                                bad_sectors -= (dev_sector - first_bad);
1273                                if (bad_sectors < max_sectors)
1274                                        /* Mustn't write more than bad_sectors
1275                                         * to other devices yet
1276                                         */
1277                                        max_sectors = bad_sectors;
1278                                /* We don't set R10BIO_Degraded as that
1279                                 * only applies if the disk is missing,
1280                                 * so it might be re-added, and we want to
1281                                 * know to recover this chunk.
1282                                 * In this case the device is here, and the
1283                                 * fact that this chunk is not in-sync is
1284                                 * recorded in the bad block log.
1285                                 */
1286                                continue;
1287                        }
1288                        if (is_bad) {
1289                                int good_sectors = first_bad - dev_sector;
1290                                if (good_sectors < max_sectors)
1291                                        max_sectors = good_sectors;
1292                        }
1293                }
1294                if (rdev) {
1295                        r10_bio->devs[i].bio = bio;
1296                        atomic_inc(&rdev->nr_pending);
1297                }
1298                if (rrdev) {
1299                        r10_bio->devs[i].repl_bio = bio;
1300                        atomic_inc(&rrdev->nr_pending);
1301                }
1302        }
1303        rcu_read_unlock();
1304
1305        if (unlikely(blocked_rdev)) {
1306                /* Have to wait for this device to get unblocked, then retry */
1307                int j;
1308                int d;
1309
1310                for (j = 0; j < i; j++) {
1311                        if (r10_bio->devs[j].bio) {
1312                                d = r10_bio->devs[j].devnum;
1313                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314                        }
1315                        if (r10_bio->devs[j].repl_bio) {
1316                                struct md_rdev *rdev;
1317                                d = r10_bio->devs[j].devnum;
1318                                rdev = conf->mirrors[d].replacement;
1319                                if (!rdev) {
1320                                        /* Race with remove_disk */
1321                                        smp_mb();
1322                                        rdev = conf->mirrors[d].rdev;
1323                                }
1324                                rdev_dec_pending(rdev, mddev);
1325                        }
1326                }
1327                allow_barrier(conf);
1328                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329                wait_barrier(conf);
1330                goto retry_write;
1331        }
1332
1333        if (max_sectors < r10_bio->sectors) {
1334                /* We are splitting this into multiple parts, so
1335                 * we need to prepare for allocating another r10_bio.
1336                 */
1337                r10_bio->sectors = max_sectors;
1338                spin_lock_irq(&conf->device_lock);
1339                if (bio->bi_phys_segments == 0)
1340                        bio->bi_phys_segments = 2;
1341                else
1342                        bio->bi_phys_segments++;
1343                spin_unlock_irq(&conf->device_lock);
1344        }
1345        sectors_handled = r10_bio->sector + max_sectors -
1346                bio->bi_iter.bi_sector;
1347
1348        atomic_set(&r10_bio->remaining, 1);
1349        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350
1351        for (i = 0; i < conf->copies; i++) {
1352                struct bio *mbio;
1353                int d = r10_bio->devs[i].devnum;
1354                if (r10_bio->devs[i].bio) {
1355                        struct md_rdev *rdev = conf->mirrors[d].rdev;
1356                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358                                 max_sectors);
1359                        r10_bio->devs[i].bio = mbio;
1360
1361                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1362                                           choose_data_offset(r10_bio,
1363                                                              rdev));
1364                        mbio->bi_bdev = rdev->bdev;
1365                        mbio->bi_end_io = raid10_end_write_request;
1366                        mbio->bi_rw =
1367                                WRITE | do_sync | do_fua | do_discard | do_same;
1368                        mbio->bi_private = r10_bio;
1369
1370                        atomic_inc(&r10_bio->remaining);
1371
1372                        cb = blk_check_plugged(raid10_unplug, mddev,
1373                                               sizeof(*plug));
1374                        if (cb)
1375                                plug = container_of(cb, struct raid10_plug_cb,
1376                                                    cb);
1377                        else
1378                                plug = NULL;
1379                        spin_lock_irqsave(&conf->device_lock, flags);
1380                        if (plug) {
1381                                bio_list_add(&plug->pending, mbio);
1382                                plug->pending_cnt++;
1383                        } else {
1384                                bio_list_add(&conf->pending_bio_list, mbio);
1385                                conf->pending_count++;
1386                        }
1387                        spin_unlock_irqrestore(&conf->device_lock, flags);
1388                        if (!plug)
1389                                md_wakeup_thread(mddev->thread);
1390                }
1391
1392                if (r10_bio->devs[i].repl_bio) {
1393                        struct md_rdev *rdev = conf->mirrors[d].replacement;
1394                        if (rdev == NULL) {
1395                                /* Replacement just got moved to main 'rdev' */
1396                                smp_mb();
1397                                rdev = conf->mirrors[d].rdev;
1398                        }
1399                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401                                 max_sectors);
1402                        r10_bio->devs[i].repl_bio = mbio;
1403
1404                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1405                                           choose_data_offset(
1406                                                   r10_bio, rdev));
1407                        mbio->bi_bdev = rdev->bdev;
1408                        mbio->bi_end_io = raid10_end_write_request;
1409                        mbio->bi_rw =
1410                                WRITE | do_sync | do_fua | do_discard | do_same;
1411                        mbio->bi_private = r10_bio;
1412
1413                        atomic_inc(&r10_bio->remaining);
1414                        spin_lock_irqsave(&conf->device_lock, flags);
1415                        bio_list_add(&conf->pending_bio_list, mbio);
1416                        conf->pending_count++;
1417                        spin_unlock_irqrestore(&conf->device_lock, flags);
1418                        if (!mddev_check_plugged(mddev))
1419                                md_wakeup_thread(mddev->thread);
1420                }
1421        }
1422
1423        /* Don't remove the bias on 'remaining' (one_write_done) until
1424         * after checking if we need to go around again.
1425         */
1426
1427        if (sectors_handled < bio_sectors(bio)) {
1428                one_write_done(r10_bio);
1429                /* We need another r10_bio.  It has already been counted
1430                 * in bio->bi_phys_segments.
1431                 */
1432                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433
1434                r10_bio->master_bio = bio;
1435                r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436
1437                r10_bio->mddev = mddev;
1438                r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439                r10_bio->state = 0;
1440                goto retry_write;
1441        }
1442        one_write_done(r10_bio);
1443}
1444
1445static void make_request(struct mddev *mddev, struct bio *bio)
1446{
1447        struct r10conf *conf = mddev->private;
1448        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449        int chunk_sects = chunk_mask + 1;
1450
1451        struct bio *split;
1452
1453        if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454                md_flush_request(mddev, bio);
1455                return;
1456        }
1457
1458        md_write_start(mddev, bio);
1459
1460        do {
1461
1462                /*
1463                 * If this request crosses a chunk boundary, we need to split
1464                 * it.
1465                 */
1466                if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467                             bio_sectors(bio) > chunk_sects
1468                             && (conf->geo.near_copies < conf->geo.raid_disks
1469                                 || conf->prev.near_copies <
1470                                 conf->prev.raid_disks))) {
1471                        split = bio_split(bio, chunk_sects -
1472                                          (bio->bi_iter.bi_sector &
1473                                           (chunk_sects - 1)),
1474                                          GFP_NOIO, fs_bio_set);
1475                        bio_chain(split, bio);
1476                } else {
1477                        split = bio;
1478                }
1479
1480                __make_request(mddev, split);
1481        } while (split != bio);
1482
1483        /* In case raid10d snuck in to freeze_array */
1484        wake_up(&conf->wait_barrier);
1485}
1486
1487static void status(struct seq_file *seq, struct mddev *mddev)
1488{
1489        struct r10conf *conf = mddev->private;
1490        int i;
1491
1492        if (conf->geo.near_copies < conf->geo.raid_disks)
1493                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494        if (conf->geo.near_copies > 1)
1495                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496        if (conf->geo.far_copies > 1) {
1497                if (conf->geo.far_offset)
1498                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499                else
1500                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501                if (conf->geo.far_set_size != conf->geo.raid_disks)
1502                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503        }
1504        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505                                        conf->geo.raid_disks - mddev->degraded);
1506        for (i = 0; i < conf->geo.raid_disks; i++)
1507                seq_printf(seq, "%s",
1508                              conf->mirrors[i].rdev &&
1509                              test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510        seq_printf(seq, "]");
1511}
1512
1513/* check if there are enough drives for
1514 * every block to appear on atleast one.
1515 * Don't consider the device numbered 'ignore'
1516 * as we might be about to remove it.
1517 */
1518static int _enough(struct r10conf *conf, int previous, int ignore)
1519{
1520        int first = 0;
1521        int has_enough = 0;
1522        int disks, ncopies;
1523        if (previous) {
1524                disks = conf->prev.raid_disks;
1525                ncopies = conf->prev.near_copies;
1526        } else {
1527                disks = conf->geo.raid_disks;
1528                ncopies = conf->geo.near_copies;
1529        }
1530
1531        rcu_read_lock();
1532        do {
1533                int n = conf->copies;
1534                int cnt = 0;
1535                int this = first;
1536                while (n--) {
1537                        struct md_rdev *rdev;
1538                        if (this != ignore &&
1539                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540                            test_bit(In_sync, &rdev->flags))
1541                                cnt++;
1542                        this = (this+1) % disks;
1543                }
1544                if (cnt == 0)
1545                        goto out;
1546                first = (first + ncopies) % disks;
1547        } while (first != 0);
1548        has_enough = 1;
1549out:
1550        rcu_read_unlock();
1551        return has_enough;
1552}
1553
1554static int enough(struct r10conf *conf, int ignore)
1555{
1556        /* when calling 'enough', both 'prev' and 'geo' must
1557         * be stable.
1558         * This is ensured if ->reconfig_mutex or ->device_lock
1559         * is held.
1560         */
1561        return _enough(conf, 0, ignore) &&
1562                _enough(conf, 1, ignore);
1563}
1564
1565static void error(struct mddev *mddev, struct md_rdev *rdev)
1566{
1567        char b[BDEVNAME_SIZE];
1568        struct r10conf *conf = mddev->private;
1569        unsigned long flags;
1570
1571        /*
1572         * If it is not operational, then we have already marked it as dead
1573         * else if it is the last working disks, ignore the error, let the
1574         * next level up know.
1575         * else mark the drive as failed
1576         */
1577        spin_lock_irqsave(&conf->device_lock, flags);
1578        if (test_bit(In_sync, &rdev->flags)
1579            && !enough(conf, rdev->raid_disk)) {
1580                /*
1581                 * Don't fail the drive, just return an IO error.
1582                 */
1583                spin_unlock_irqrestore(&conf->device_lock, flags);
1584                return;
1585        }
1586        if (test_and_clear_bit(In_sync, &rdev->flags))
1587                mddev->degraded++;
1588        /*
1589         * If recovery is running, make sure it aborts.
1590         */
1591        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592        set_bit(Blocked, &rdev->flags);
1593        set_bit(Faulty, &rdev->flags);
1594        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595        set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596        spin_unlock_irqrestore(&conf->device_lock, flags);
1597        printk(KERN_ALERT
1598               "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599               "md/raid10:%s: Operation continuing on %d devices.\n",
1600               mdname(mddev), bdevname(rdev->bdev, b),
1601               mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602}
1603
1604static void print_conf(struct r10conf *conf)
1605{
1606        int i;
1607        struct raid10_info *tmp;
1608
1609        printk(KERN_DEBUG "RAID10 conf printout:\n");
1610        if (!conf) {
1611                printk(KERN_DEBUG "(!conf)\n");
1612                return;
1613        }
1614        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615                conf->geo.raid_disks);
1616
1617        for (i = 0; i < conf->geo.raid_disks; i++) {
1618                char b[BDEVNAME_SIZE];
1619                tmp = conf->mirrors + i;
1620                if (tmp->rdev)
1621                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622                                i, !test_bit(In_sync, &tmp->rdev->flags),
1623                                !test_bit(Faulty, &tmp->rdev->flags),
1624                                bdevname(tmp->rdev->bdev,b));
1625        }
1626}
1627
1628static void close_sync(struct r10conf *conf)
1629{
1630        wait_barrier(conf);
1631        allow_barrier(conf);
1632
1633        mempool_destroy(conf->r10buf_pool);
1634        conf->r10buf_pool = NULL;
1635}
1636
1637static int raid10_spare_active(struct mddev *mddev)
1638{
1639        int i;
1640        struct r10conf *conf = mddev->private;
1641        struct raid10_info *tmp;
1642        int count = 0;
1643        unsigned long flags;
1644
1645        /*
1646         * Find all non-in_sync disks within the RAID10 configuration
1647         * and mark them in_sync
1648         */
1649        for (i = 0; i < conf->geo.raid_disks; i++) {
1650                tmp = conf->mirrors + i;
1651                if (tmp->replacement
1652                    && tmp->replacement->recovery_offset == MaxSector
1653                    && !test_bit(Faulty, &tmp->replacement->flags)
1654                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655                        /* Replacement has just become active */
1656                        if (!tmp->rdev
1657                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658                                count++;
1659                        if (tmp->rdev) {
1660                                /* Replaced device not technically faulty,
1661                                 * but we need to be sure it gets removed
1662                                 * and never re-added.
1663                                 */
1664                                set_bit(Faulty, &tmp->rdev->flags);
1665                                sysfs_notify_dirent_safe(
1666                                        tmp->rdev->sysfs_state);
1667                        }
1668                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669                } else if (tmp->rdev
1670                           && tmp->rdev->recovery_offset == MaxSector
1671                           && !test_bit(Faulty, &tmp->rdev->flags)
1672                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673                        count++;
1674                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675                }
1676        }
1677        spin_lock_irqsave(&conf->device_lock, flags);
1678        mddev->degraded -= count;
1679        spin_unlock_irqrestore(&conf->device_lock, flags);
1680
1681        print_conf(conf);
1682        return count;
1683}
1684
1685static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1686{
1687        struct r10conf *conf = mddev->private;
1688        int err = -EEXIST;
1689        int mirror;
1690        int first = 0;
1691        int last = conf->geo.raid_disks - 1;
1692
1693        if (mddev->recovery_cp < MaxSector)
1694                /* only hot-add to in-sync arrays, as recovery is
1695                 * very different from resync
1696                 */
1697                return -EBUSY;
1698        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699                return -EINVAL;
1700
1701        if (rdev->raid_disk >= 0)
1702                first = last = rdev->raid_disk;
1703
1704        if (rdev->saved_raid_disk >= first &&
1705            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706                mirror = rdev->saved_raid_disk;
1707        else
1708                mirror = first;
1709        for ( ; mirror <= last ; mirror++) {
1710                struct raid10_info *p = &conf->mirrors[mirror];
1711                if (p->recovery_disabled == mddev->recovery_disabled)
1712                        continue;
1713                if (p->rdev) {
1714                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715                            p->replacement != NULL)
1716                                continue;
1717                        clear_bit(In_sync, &rdev->flags);
1718                        set_bit(Replacement, &rdev->flags);
1719                        rdev->raid_disk = mirror;
1720                        err = 0;
1721                        if (mddev->gendisk)
1722                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1723                                                  rdev->data_offset << 9);
1724                        conf->fullsync = 1;
1725                        rcu_assign_pointer(p->replacement, rdev);
1726                        break;
1727                }
1728
1729                if (mddev->gendisk)
1730                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1731                                          rdev->data_offset << 9);
1732
1733                p->head_position = 0;
1734                p->recovery_disabled = mddev->recovery_disabled - 1;
1735                rdev->raid_disk = mirror;
1736                err = 0;
1737                if (rdev->saved_raid_disk != mirror)
1738                        conf->fullsync = 1;
1739                rcu_assign_pointer(p->rdev, rdev);
1740                break;
1741        }
1742        mddev_suspend(mddev);
1743        md_integrity_add_rdev(rdev, mddev);
1744        mddev_resume(mddev);
1745        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1746                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1747
1748        print_conf(conf);
1749        return err;
1750}
1751
1752static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1753{
1754        struct r10conf *conf = mddev->private;
1755        int err = 0;
1756        int number = rdev->raid_disk;
1757        struct md_rdev **rdevp;
1758        struct raid10_info *p = conf->mirrors + number;
1759
1760        print_conf(conf);
1761        if (rdev == p->rdev)
1762                rdevp = &p->rdev;
1763        else if (rdev == p->replacement)
1764                rdevp = &p->replacement;
1765        else
1766                return 0;
1767
1768        if (test_bit(In_sync, &rdev->flags) ||
1769            atomic_read(&rdev->nr_pending)) {
1770                err = -EBUSY;
1771                goto abort;
1772        }
1773        /* Only remove faulty devices if recovery
1774         * is not possible.
1775         */
1776        if (!test_bit(Faulty, &rdev->flags) &&
1777            mddev->recovery_disabled != p->recovery_disabled &&
1778            (!p->replacement || p->replacement == rdev) &&
1779            number < conf->geo.raid_disks &&
1780            enough(conf, -1)) {
1781                err = -EBUSY;
1782                goto abort;
1783        }
1784        *rdevp = NULL;
1785        synchronize_rcu();
1786        if (atomic_read(&rdev->nr_pending)) {
1787                /* lost the race, try later */
1788                err = -EBUSY;
1789                *rdevp = rdev;
1790                goto abort;
1791        } else if (p->replacement) {
1792                /* We must have just cleared 'rdev' */
1793                p->rdev = p->replacement;
1794                clear_bit(Replacement, &p->replacement->flags);
1795                smp_mb(); /* Make sure other CPUs may see both as identical
1796                           * but will never see neither -- if they are careful.
1797                           */
1798                p->replacement = NULL;
1799                clear_bit(WantReplacement, &rdev->flags);
1800        } else
1801                /* We might have just remove the Replacement as faulty
1802                 * Clear the flag just in case
1803                 */
1804                clear_bit(WantReplacement, &rdev->flags);
1805
1806        err = md_integrity_register(mddev);
1807
1808abort:
1809
1810        print_conf(conf);
1811        return err;
1812}
1813
1814static void end_sync_read(struct bio *bio)
1815{
1816        struct r10bio *r10_bio = bio->bi_private;
1817        struct r10conf *conf = r10_bio->mddev->private;
1818        int d;
1819
1820        if (bio == r10_bio->master_bio) {
1821                /* this is a reshape read */
1822                d = r10_bio->read_slot; /* really the read dev */
1823        } else
1824                d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825
1826        if (!bio->bi_error)
1827                set_bit(R10BIO_Uptodate, &r10_bio->state);
1828        else
1829                /* The write handler will notice the lack of
1830                 * R10BIO_Uptodate and record any errors etc
1831                 */
1832                atomic_add(r10_bio->sectors,
1833                           &conf->mirrors[d].rdev->corrected_errors);
1834
1835        /* for reconstruct, we always reschedule after a read.
1836         * for resync, only after all reads
1837         */
1838        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840            atomic_dec_and_test(&r10_bio->remaining)) {
1841                /* we have read all the blocks,
1842                 * do the comparison in process context in raid10d
1843                 */
1844                reschedule_retry(r10_bio);
1845        }
1846}
1847
1848static void end_sync_request(struct r10bio *r10_bio)
1849{
1850        struct mddev *mddev = r10_bio->mddev;
1851
1852        while (atomic_dec_and_test(&r10_bio->remaining)) {
1853                if (r10_bio->master_bio == NULL) {
1854                        /* the primary of several recovery bios */
1855                        sector_t s = r10_bio->sectors;
1856                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857                            test_bit(R10BIO_WriteError, &r10_bio->state))
1858                                reschedule_retry(r10_bio);
1859                        else
1860                                put_buf(r10_bio);
1861                        md_done_sync(mddev, s, 1);
1862                        break;
1863                } else {
1864                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866                            test_bit(R10BIO_WriteError, &r10_bio->state))
1867                                reschedule_retry(r10_bio);
1868                        else
1869                                put_buf(r10_bio);
1870                        r10_bio = r10_bio2;
1871                }
1872        }
1873}
1874
1875static void end_sync_write(struct bio *bio)
1876{
1877        struct r10bio *r10_bio = bio->bi_private;
1878        struct mddev *mddev = r10_bio->mddev;
1879        struct r10conf *conf = mddev->private;
1880        int d;
1881        sector_t first_bad;
1882        int bad_sectors;
1883        int slot;
1884        int repl;
1885        struct md_rdev *rdev = NULL;
1886
1887        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888        if (repl)
1889                rdev = conf->mirrors[d].replacement;
1890        else
1891                rdev = conf->mirrors[d].rdev;
1892
1893        if (bio->bi_error) {
1894                if (repl)
1895                        md_error(mddev, rdev);
1896                else {
1897                        set_bit(WriteErrorSeen, &rdev->flags);
1898                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899                                set_bit(MD_RECOVERY_NEEDED,
1900                                        &rdev->mddev->recovery);
1901                        set_bit(R10BIO_WriteError, &r10_bio->state);
1902                }
1903        } else if (is_badblock(rdev,
1904                             r10_bio->devs[slot].addr,
1905                             r10_bio->sectors,
1906                             &first_bad, &bad_sectors))
1907                set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
1909        rdev_dec_pending(rdev, mddev);
1910
1911        end_sync_request(r10_bio);
1912}
1913
1914/*
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write.  The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1925 */
1926/*
1927 * We check if all blocks are in-sync and only write to blocks that
1928 * aren't in sync
1929 */
1930static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931{
1932        struct r10conf *conf = mddev->private;
1933        int i, first;
1934        struct bio *tbio, *fbio;
1935        int vcnt;
1936
1937        atomic_set(&r10_bio->remaining, 1);
1938
1939        /* find the first device with a block */
1940        for (i=0; i<conf->copies; i++)
1941                if (!r10_bio->devs[i].bio->bi_error)
1942                        break;
1943
1944        if (i == conf->copies)
1945                goto done;
1946
1947        first = i;
1948        fbio = r10_bio->devs[i].bio;
1949        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1950        fbio->bi_iter.bi_idx = 0;
1951
1952        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1953        /* now find blocks with errors */
1954        for (i=0 ; i < conf->copies ; i++) {
1955                int  j, d;
1956
1957                tbio = r10_bio->devs[i].bio;
1958
1959                if (tbio->bi_end_io != end_sync_read)
1960                        continue;
1961                if (i == first)
1962                        continue;
1963                if (!r10_bio->devs[i].bio->bi_error) {
1964                        /* We know that the bi_io_vec layout is the same for
1965                         * both 'first' and 'i', so we just compare them.
1966                         * All vec entries are PAGE_SIZE;
1967                         */
1968                        int sectors = r10_bio->sectors;
1969                        for (j = 0; j < vcnt; j++) {
1970                                int len = PAGE_SIZE;
1971                                if (sectors < (len / 512))
1972                                        len = sectors * 512;
1973                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1974                                           page_address(tbio->bi_io_vec[j].bv_page),
1975                                           len))
1976                                        break;
1977                                sectors -= len/512;
1978                        }
1979                        if (j == vcnt)
1980                                continue;
1981                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1982                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1983                                /* Don't fix anything. */
1984                                continue;
1985                }
1986                /* Ok, we need to write this bio, either to correct an
1987                 * inconsistency or to correct an unreadable block.
1988                 * First we need to fixup bv_offset, bv_len and
1989                 * bi_vecs, as the read request might have corrupted these
1990                 */
1991                bio_reset(tbio);
1992
1993                tbio->bi_vcnt = vcnt;
1994                tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1995                tbio->bi_rw = WRITE;
1996                tbio->bi_private = r10_bio;
1997                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1998                tbio->bi_end_io = end_sync_write;
1999
2000                bio_copy_data(tbio, fbio);
2001
2002                d = r10_bio->devs[i].devnum;
2003                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2004                atomic_inc(&r10_bio->remaining);
2005                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2006
2007                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2008                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2009                generic_make_request(tbio);
2010        }
2011
2012        /* Now write out to any replacement devices
2013         * that are active
2014         */
2015        for (i = 0; i < conf->copies; i++) {
2016                int d;
2017
2018                tbio = r10_bio->devs[i].repl_bio;
2019                if (!tbio || !tbio->bi_end_io)
2020                        continue;
2021                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2022                    && r10_bio->devs[i].bio != fbio)
2023                        bio_copy_data(tbio, fbio);
2024                d = r10_bio->devs[i].devnum;
2025                atomic_inc(&r10_bio->remaining);
2026                md_sync_acct(conf->mirrors[d].replacement->bdev,
2027                             bio_sectors(tbio));
2028                generic_make_request(tbio);
2029        }
2030
2031done:
2032        if (atomic_dec_and_test(&r10_bio->remaining)) {
2033                md_done_sync(mddev, r10_bio->sectors, 1);
2034                put_buf(r10_bio);
2035        }
2036}
2037
2038/*
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2046 *
2047 */
2048static void fix_recovery_read_error(struct r10bio *r10_bio)
2049{
2050        /* We got a read error during recovery.
2051         * We repeat the read in smaller page-sized sections.
2052         * If a read succeeds, write it to the new device or record
2053         * a bad block if we cannot.
2054         * If a read fails, record a bad block on both old and
2055         * new devices.
2056         */
2057        struct mddev *mddev = r10_bio->mddev;
2058        struct r10conf *conf = mddev->private;
2059        struct bio *bio = r10_bio->devs[0].bio;
2060        sector_t sect = 0;
2061        int sectors = r10_bio->sectors;
2062        int idx = 0;
2063        int dr = r10_bio->devs[0].devnum;
2064        int dw = r10_bio->devs[1].devnum;
2065
2066        while (sectors) {
2067                int s = sectors;
2068                struct md_rdev *rdev;
2069                sector_t addr;
2070                int ok;
2071
2072                if (s > (PAGE_SIZE>>9))
2073                        s = PAGE_SIZE >> 9;
2074
2075                rdev = conf->mirrors[dr].rdev;
2076                addr = r10_bio->devs[0].addr + sect,
2077                ok = sync_page_io(rdev,
2078                                  addr,
2079                                  s << 9,
2080                                  bio->bi_io_vec[idx].bv_page,
2081                                  READ, false);
2082                if (ok) {
2083                        rdev = conf->mirrors[dw].rdev;
2084                        addr = r10_bio->devs[1].addr + sect;
2085                        ok = sync_page_io(rdev,
2086                                          addr,
2087                                          s << 9,
2088                                          bio->bi_io_vec[idx].bv_page,
2089                                          WRITE, false);
2090                        if (!ok) {
2091                                set_bit(WriteErrorSeen, &rdev->flags);
2092                                if (!test_and_set_bit(WantReplacement,
2093                                                      &rdev->flags))
2094                                        set_bit(MD_RECOVERY_NEEDED,
2095                                                &rdev->mddev->recovery);
2096                        }
2097                }
2098                if (!ok) {
2099                        /* We don't worry if we cannot set a bad block -
2100                         * it really is bad so there is no loss in not
2101                         * recording it yet
2102                         */
2103                        rdev_set_badblocks(rdev, addr, s, 0);
2104
2105                        if (rdev != conf->mirrors[dw].rdev) {
2106                                /* need bad block on destination too */
2107                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2108                                addr = r10_bio->devs[1].addr + sect;
2109                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2110                                if (!ok) {
2111                                        /* just abort the recovery */
2112                                        printk(KERN_NOTICE
2113                                               "md/raid10:%s: recovery aborted"
2114                                               " due to read error\n",
2115                                               mdname(mddev));
2116
2117                                        conf->mirrors[dw].recovery_disabled
2118                                                = mddev->recovery_disabled;
2119                                        set_bit(MD_RECOVERY_INTR,
2120                                                &mddev->recovery);
2121                                        break;
2122                                }
2123                        }
2124                }
2125
2126                sectors -= s;
2127                sect += s;
2128                idx++;
2129        }
2130}
2131
2132static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2133{
2134        struct r10conf *conf = mddev->private;
2135        int d;
2136        struct bio *wbio, *wbio2;
2137
2138        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2139                fix_recovery_read_error(r10_bio);
2140                end_sync_request(r10_bio);
2141                return;
2142        }
2143
2144        /*
2145         * share the pages with the first bio
2146         * and submit the write request
2147         */
2148        d = r10_bio->devs[1].devnum;
2149        wbio = r10_bio->devs[1].bio;
2150        wbio2 = r10_bio->devs[1].repl_bio;
2151        /* Need to test wbio2->bi_end_io before we call
2152         * generic_make_request as if the former is NULL,
2153         * the latter is free to free wbio2.
2154         */
2155        if (wbio2 && !wbio2->bi_end_io)
2156                wbio2 = NULL;
2157        if (wbio->bi_end_io) {
2158                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2159                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2160                generic_make_request(wbio);
2161        }
2162        if (wbio2) {
2163                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2164                md_sync_acct(conf->mirrors[d].replacement->bdev,
2165                             bio_sectors(wbio2));
2166                generic_make_request(wbio2);
2167        }
2168}
2169
2170/*
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2174 *
2175 */
2176static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2177{
2178        struct timespec cur_time_mon;
2179        unsigned long hours_since_last;
2180        unsigned int read_errors = atomic_read(&rdev->read_errors);
2181
2182        ktime_get_ts(&cur_time_mon);
2183
2184        if (rdev->last_read_error.tv_sec == 0 &&
2185            rdev->last_read_error.tv_nsec == 0) {
2186                /* first time we've seen a read error */
2187                rdev->last_read_error = cur_time_mon;
2188                return;
2189        }
2190
2191        hours_since_last = (cur_time_mon.tv_sec -
2192                            rdev->last_read_error.tv_sec) / 3600;
2193
2194        rdev->last_read_error = cur_time_mon;
2195
2196        /*
2197         * if hours_since_last is > the number of bits in read_errors
2198         * just set read errors to 0. We do this to avoid
2199         * overflowing the shift of read_errors by hours_since_last.
2200         */
2201        if (hours_since_last >= 8 * sizeof(read_errors))
2202                atomic_set(&rdev->read_errors, 0);
2203        else
2204                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2205}
2206
2207static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2208                            int sectors, struct page *page, int rw)
2209{
2210        sector_t first_bad;
2211        int bad_sectors;
2212
2213        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2214            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2215                return -1;
2216        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2217                /* success */
2218                return 1;
2219        if (rw == WRITE) {
2220                set_bit(WriteErrorSeen, &rdev->flags);
2221                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2222                        set_bit(MD_RECOVERY_NEEDED,
2223                                &rdev->mddev->recovery);
2224        }
2225        /* need to record an error - either for the block or the device */
2226        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2227                md_error(rdev->mddev, rdev);
2228        return 0;
2229}
2230
2231/*
2232 * This is a kernel thread which:
2233 *
2234 *      1.      Retries failed read operations on working mirrors.
2235 *      2.      Updates the raid superblock when problems encounter.
2236 *      3.      Performs writes following reads for array synchronising.
2237 */
2238
2239static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2240{
2241        int sect = 0; /* Offset from r10_bio->sector */
2242        int sectors = r10_bio->sectors;
2243        struct md_rdev*rdev;
2244        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2245        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2246
2247        /* still own a reference to this rdev, so it cannot
2248         * have been cleared recently.
2249         */
2250        rdev = conf->mirrors[d].rdev;
2251
2252        if (test_bit(Faulty, &rdev->flags))
2253                /* drive has already been failed, just ignore any
2254                   more fix_read_error() attempts */
2255                return;
2256
2257        check_decay_read_errors(mddev, rdev);
2258        atomic_inc(&rdev->read_errors);
2259        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2260                char b[BDEVNAME_SIZE];
2261                bdevname(rdev->bdev, b);
2262
2263                printk(KERN_NOTICE
2264                       "md/raid10:%s: %s: Raid device exceeded "
2265                       "read_error threshold [cur %d:max %d]\n",
2266                       mdname(mddev), b,
2267                       atomic_read(&rdev->read_errors), max_read_errors);
2268                printk(KERN_NOTICE
2269                       "md/raid10:%s: %s: Failing raid device\n",
2270                       mdname(mddev), b);
2271                md_error(mddev, conf->mirrors[d].rdev);
2272                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2273                return;
2274        }
2275
2276        while(sectors) {
2277                int s = sectors;
2278                int sl = r10_bio->read_slot;
2279                int success = 0;
2280                int start;
2281
2282                if (s > (PAGE_SIZE>>9))
2283                        s = PAGE_SIZE >> 9;
2284
2285                rcu_read_lock();
2286                do {
2287                        sector_t first_bad;
2288                        int bad_sectors;
2289
2290                        d = r10_bio->devs[sl].devnum;
2291                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2292                        if (rdev &&
2293                            test_bit(In_sync, &rdev->flags) &&
2294                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2295                                        &first_bad, &bad_sectors) == 0) {
2296                                atomic_inc(&rdev->nr_pending);
2297                                rcu_read_unlock();
2298                                success = sync_page_io(rdev,
2299                                                       r10_bio->devs[sl].addr +
2300                                                       sect,
2301                                                       s<<9,
2302                                                       conf->tmppage, READ, false);
2303                                rdev_dec_pending(rdev, mddev);
2304                                rcu_read_lock();
2305                                if (success)
2306                                        break;
2307                        }
2308                        sl++;
2309                        if (sl == conf->copies)
2310                                sl = 0;
2311                } while (!success && sl != r10_bio->read_slot);
2312                rcu_read_unlock();
2313
2314                if (!success) {
2315                        /* Cannot read from anywhere, just mark the block
2316                         * as bad on the first device to discourage future
2317                         * reads.
2318                         */
2319                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2320                        rdev = conf->mirrors[dn].rdev;
2321
2322                        if (!rdev_set_badblocks(
2323                                    rdev,
2324                                    r10_bio->devs[r10_bio->read_slot].addr
2325                                    + sect,
2326                                    s, 0)) {
2327                                md_error(mddev, rdev);
2328                                r10_bio->devs[r10_bio->read_slot].bio
2329                                        = IO_BLOCKED;
2330                        }
2331                        break;
2332                }
2333
2334                start = sl;
2335                /* write it back and re-read */
2336                rcu_read_lock();
2337                while (sl != r10_bio->read_slot) {
2338                        char b[BDEVNAME_SIZE];
2339
2340                        if (sl==0)
2341                                sl = conf->copies;
2342                        sl--;
2343                        d = r10_bio->devs[sl].devnum;
2344                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2345                        if (!rdev ||
2346                            !test_bit(In_sync, &rdev->flags))
2347                                continue;
2348
2349                        atomic_inc(&rdev->nr_pending);
2350                        rcu_read_unlock();
2351                        if (r10_sync_page_io(rdev,
2352                                             r10_bio->devs[sl].addr +
2353                                             sect,
2354                                             s, conf->tmppage, WRITE)
2355                            == 0) {
2356                                /* Well, this device is dead */
2357                                printk(KERN_NOTICE
2358                                       "md/raid10:%s: read correction "
2359                                       "write failed"
2360                                       " (%d sectors at %llu on %s)\n",
2361                                       mdname(mddev), s,
2362                                       (unsigned long long)(
2363                                               sect +
2364                                               choose_data_offset(r10_bio,
2365                                                                  rdev)),
2366                                       bdevname(rdev->bdev, b));
2367                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2368                                       "drive\n",
2369                                       mdname(mddev),
2370                                       bdevname(rdev->bdev, b));
2371                        }
2372                        rdev_dec_pending(rdev, mddev);
2373                        rcu_read_lock();
2374                }
2375                sl = start;
2376                while (sl != r10_bio->read_slot) {
2377                        char b[BDEVNAME_SIZE];
2378
2379                        if (sl==0)
2380                                sl = conf->copies;
2381                        sl--;
2382                        d = r10_bio->devs[sl].devnum;
2383                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2384                        if (!rdev ||
2385                            !test_bit(In_sync, &rdev->flags))
2386                                continue;
2387
2388                        atomic_inc(&rdev->nr_pending);
2389                        rcu_read_unlock();
2390                        switch (r10_sync_page_io(rdev,
2391                                             r10_bio->devs[sl].addr +
2392                                             sect,
2393                                             s, conf->tmppage,
2394                                                 READ)) {
2395                        case 0:
2396                                /* Well, this device is dead */
2397                                printk(KERN_NOTICE
2398                                       "md/raid10:%s: unable to read back "
2399                                       "corrected sectors"
2400                                       " (%d sectors at %llu on %s)\n",
2401                                       mdname(mddev), s,
2402                                       (unsigned long long)(
2403                                               sect +
2404                                               choose_data_offset(r10_bio, rdev)),
2405                                       bdevname(rdev->bdev, b));
2406                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407                                       "drive\n",
2408                                       mdname(mddev),
2409                                       bdevname(rdev->bdev, b));
2410                                break;
2411                        case 1:
2412                                printk(KERN_INFO
2413                                       "md/raid10:%s: read error corrected"
2414                                       " (%d sectors at %llu on %s)\n",
2415                                       mdname(mddev), s,
2416                                       (unsigned long long)(
2417                                               sect +
2418                                               choose_data_offset(r10_bio, rdev)),
2419                                       bdevname(rdev->bdev, b));
2420                                atomic_add(s, &rdev->corrected_errors);
2421                        }
2422
2423                        rdev_dec_pending(rdev, mddev);
2424                        rcu_read_lock();
2425                }
2426                rcu_read_unlock();
2427
2428                sectors -= s;
2429                sect += s;
2430        }
2431}
2432
2433static int narrow_write_error(struct r10bio *r10_bio, int i)
2434{
2435        struct bio *bio = r10_bio->master_bio;
2436        struct mddev *mddev = r10_bio->mddev;
2437        struct r10conf *conf = mddev->private;
2438        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439        /* bio has the data to be written to slot 'i' where
2440         * we just recently had a write error.
2441         * We repeatedly clone the bio and trim down to one block,
2442         * then try the write.  Where the write fails we record
2443         * a bad block.
2444         * It is conceivable that the bio doesn't exactly align with
2445         * blocks.  We must handle this.
2446         *
2447         * We currently own a reference to the rdev.
2448         */
2449
2450        int block_sectors;
2451        sector_t sector;
2452        int sectors;
2453        int sect_to_write = r10_bio->sectors;
2454        int ok = 1;
2455
2456        if (rdev->badblocks.shift < 0)
2457                return 0;
2458
2459        block_sectors = roundup(1 << rdev->badblocks.shift,
2460                                bdev_logical_block_size(rdev->bdev) >> 9);
2461        sector = r10_bio->sector;
2462        sectors = ((r10_bio->sector + block_sectors)
2463                   & ~(sector_t)(block_sectors - 1))
2464                - sector;
2465
2466        while (sect_to_write) {
2467                struct bio *wbio;
2468                if (sectors > sect_to_write)
2469                        sectors = sect_to_write;
2470                /* Write at 'sector' for 'sectors' */
2471                wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2472                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2473                wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2474                                   choose_data_offset(r10_bio, rdev) +
2475                                   (sector - r10_bio->sector));
2476                wbio->bi_bdev = rdev->bdev;
2477                if (submit_bio_wait(WRITE, wbio) < 0)
2478                        /* Failure! */
2479                        ok = rdev_set_badblocks(rdev, sector,
2480                                                sectors, 0)
2481                                && ok;
2482
2483                bio_put(wbio);
2484                sect_to_write -= sectors;
2485                sector += sectors;
2486                sectors = block_sectors;
2487        }
2488        return ok;
2489}
2490
2491static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2492{
2493        int slot = r10_bio->read_slot;
2494        struct bio *bio;
2495        struct r10conf *conf = mddev->private;
2496        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2497        char b[BDEVNAME_SIZE];
2498        unsigned long do_sync;
2499        int max_sectors;
2500
2501        /* we got a read error. Maybe the drive is bad.  Maybe just
2502         * the block and we can fix it.
2503         * We freeze all other IO, and try reading the block from
2504         * other devices.  When we find one, we re-write
2505         * and check it that fixes the read error.
2506         * This is all done synchronously while the array is
2507         * frozen.
2508         */
2509        bio = r10_bio->devs[slot].bio;
2510        bdevname(bio->bi_bdev, b);
2511        bio_put(bio);
2512        r10_bio->devs[slot].bio = NULL;
2513
2514        if (mddev->ro == 0) {
2515                freeze_array(conf, 1);
2516                fix_read_error(conf, mddev, r10_bio);
2517                unfreeze_array(conf);
2518        } else
2519                r10_bio->devs[slot].bio = IO_BLOCKED;
2520
2521        rdev_dec_pending(rdev, mddev);
2522
2523read_more:
2524        rdev = read_balance(conf, r10_bio, &max_sectors);
2525        if (rdev == NULL) {
2526                printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2527                       " read error for block %llu\n",
2528                       mdname(mddev), b,
2529                       (unsigned long long)r10_bio->sector);
2530                raid_end_bio_io(r10_bio);
2531                return;
2532        }
2533
2534        do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2535        slot = r10_bio->read_slot;
2536        printk_ratelimited(
2537                KERN_ERR
2538                "md/raid10:%s: %s: redirecting "
2539                "sector %llu to another mirror\n",
2540                mdname(mddev),
2541                bdevname(rdev->bdev, b),
2542                (unsigned long long)r10_bio->sector);
2543        bio = bio_clone_mddev(r10_bio->master_bio,
2544                              GFP_NOIO, mddev);
2545        bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2546        r10_bio->devs[slot].bio = bio;
2547        r10_bio->devs[slot].rdev = rdev;
2548        bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2549                + choose_data_offset(r10_bio, rdev);
2550        bio->bi_bdev = rdev->bdev;
2551        bio->bi_rw = READ | do_sync;
2552        bio->bi_private = r10_bio;
2553        bio->bi_end_io = raid10_end_read_request;
2554        if (max_sectors < r10_bio->sectors) {
2555                /* Drat - have to split this up more */
2556                struct bio *mbio = r10_bio->master_bio;
2557                int sectors_handled =
2558                        r10_bio->sector + max_sectors
2559                        - mbio->bi_iter.bi_sector;
2560                r10_bio->sectors = max_sectors;
2561                spin_lock_irq(&conf->device_lock);
2562                if (mbio->bi_phys_segments == 0)
2563                        mbio->bi_phys_segments = 2;
2564                else
2565                        mbio->bi_phys_segments++;
2566                spin_unlock_irq(&conf->device_lock);
2567                generic_make_request(bio);
2568
2569                r10_bio = mempool_alloc(conf->r10bio_pool,
2570                                        GFP_NOIO);
2571                r10_bio->master_bio = mbio;
2572                r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2573                r10_bio->state = 0;
2574                set_bit(R10BIO_ReadError,
2575                        &r10_bio->state);
2576                r10_bio->mddev = mddev;
2577                r10_bio->sector = mbio->bi_iter.bi_sector
2578                        + sectors_handled;
2579
2580                goto read_more;
2581        } else
2582                generic_make_request(bio);
2583}
2584
2585static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2586{
2587        /* Some sort of write request has finished and it
2588         * succeeded in writing where we thought there was a
2589         * bad block.  So forget the bad block.
2590         * Or possibly if failed and we need to record
2591         * a bad block.
2592         */
2593        int m;
2594        struct md_rdev *rdev;
2595
2596        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2597            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2598                for (m = 0; m < conf->copies; m++) {
2599                        int dev = r10_bio->devs[m].devnum;
2600                        rdev = conf->mirrors[dev].rdev;
2601                        if (r10_bio->devs[m].bio == NULL)
2602                                continue;
2603                        if (!r10_bio->devs[m].bio->bi_error) {
2604                                rdev_clear_badblocks(
2605                                        rdev,
2606                                        r10_bio->devs[m].addr,
2607                                        r10_bio->sectors, 0);
2608                        } else {
2609                                if (!rdev_set_badblocks(
2610                                            rdev,
2611                                            r10_bio->devs[m].addr,
2612                                            r10_bio->sectors, 0))
2613                                        md_error(conf->mddev, rdev);
2614                        }
2615                        rdev = conf->mirrors[dev].replacement;
2616                        if (r10_bio->devs[m].repl_bio == NULL)
2617                                continue;
2618
2619                        if (!r10_bio->devs[m].repl_bio->bi_error) {
2620                                rdev_clear_badblocks(
2621                                        rdev,
2622                                        r10_bio->devs[m].addr,
2623                                        r10_bio->sectors, 0);
2624                        } else {
2625                                if (!rdev_set_badblocks(
2626                                            rdev,
2627                                            r10_bio->devs[m].addr,
2628                                            r10_bio->sectors, 0))
2629                                        md_error(conf->mddev, rdev);
2630                        }
2631                }
2632                put_buf(r10_bio);
2633        } else {
2634                bool fail = false;
2635                for (m = 0; m < conf->copies; m++) {
2636                        int dev = r10_bio->devs[m].devnum;
2637                        struct bio *bio = r10_bio->devs[m].bio;
2638                        rdev = conf->mirrors[dev].rdev;
2639                        if (bio == IO_MADE_GOOD) {
2640                                rdev_clear_badblocks(
2641                                        rdev,
2642                                        r10_bio->devs[m].addr,
2643                                        r10_bio->sectors, 0);
2644                                rdev_dec_pending(rdev, conf->mddev);
2645                        } else if (bio != NULL && bio->bi_error) {
2646                                fail = true;
2647                                if (!narrow_write_error(r10_bio, m)) {
2648                                        md_error(conf->mddev, rdev);
2649                                        set_bit(R10BIO_Degraded,
2650                                                &r10_bio->state);
2651                                }
2652                                rdev_dec_pending(rdev, conf->mddev);
2653                        }
2654                        bio = r10_bio->devs[m].repl_bio;
2655                        rdev = conf->mirrors[dev].replacement;
2656                        if (rdev && bio == IO_MADE_GOOD) {
2657                                rdev_clear_badblocks(
2658                                        rdev,
2659                                        r10_bio->devs[m].addr,
2660                                        r10_bio->sectors, 0);
2661                                rdev_dec_pending(rdev, conf->mddev);
2662                        }
2663                }
2664                if (fail) {
2665                        spin_lock_irq(&conf->device_lock);
2666                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2667                        spin_unlock_irq(&conf->device_lock);
2668                        md_wakeup_thread(conf->mddev->thread);
2669                } else {
2670                        if (test_bit(R10BIO_WriteError,
2671                                     &r10_bio->state))
2672                                close_write(r10_bio);
2673                        raid_end_bio_io(r10_bio);
2674                }
2675        }
2676}
2677
2678static void raid10d(struct md_thread *thread)
2679{
2680        struct mddev *mddev = thread->mddev;
2681        struct r10bio *r10_bio;
2682        unsigned long flags;
2683        struct r10conf *conf = mddev->private;
2684        struct list_head *head = &conf->retry_list;
2685        struct blk_plug plug;
2686
2687        md_check_recovery(mddev);
2688
2689        if (!list_empty_careful(&conf->bio_end_io_list) &&
2690            !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2691                LIST_HEAD(tmp);
2692                spin_lock_irqsave(&conf->device_lock, flags);
2693                if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2694                        list_add(&tmp, &conf->bio_end_io_list);
2695                        list_del_init(&conf->bio_end_io_list);
2696                }
2697                spin_unlock_irqrestore(&conf->device_lock, flags);
2698                while (!list_empty(&tmp)) {
2699                        r10_bio = list_first_entry(&tmp, struct r10bio,
2700                                                   retry_list);
2701                        list_del(&r10_bio->retry_list);
2702                        if (mddev->degraded)
2703                                set_bit(R10BIO_Degraded, &r10_bio->state);
2704
2705                        if (test_bit(R10BIO_WriteError,
2706                                     &r10_bio->state))
2707                                close_write(r10_bio);
2708                        raid_end_bio_io(r10_bio);
2709                }
2710        }
2711
2712        blk_start_plug(&plug);
2713        for (;;) {
2714
2715                flush_pending_writes(conf);
2716
2717                spin_lock_irqsave(&conf->device_lock, flags);
2718                if (list_empty(head)) {
2719                        spin_unlock_irqrestore(&conf->device_lock, flags);
2720                        break;
2721                }
2722                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2723                list_del(head->prev);
2724                conf->nr_queued--;
2725                spin_unlock_irqrestore(&conf->device_lock, flags);
2726
2727                mddev = r10_bio->mddev;
2728                conf = mddev->private;
2729                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2730                    test_bit(R10BIO_WriteError, &r10_bio->state))
2731                        handle_write_completed(conf, r10_bio);
2732                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2733                        reshape_request_write(mddev, r10_bio);
2734                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2735                        sync_request_write(mddev, r10_bio);
2736                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2737                        recovery_request_write(mddev, r10_bio);
2738                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2739                        handle_read_error(mddev, r10_bio);
2740                else {
2741                        /* just a partial read to be scheduled from a
2742                         * separate context
2743                         */
2744                        int slot = r10_bio->read_slot;
2745                        generic_make_request(r10_bio->devs[slot].bio);
2746                }
2747
2748                cond_resched();
2749                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2750                        md_check_recovery(mddev);
2751        }
2752        blk_finish_plug(&plug);
2753}
2754
2755static int init_resync(struct r10conf *conf)
2756{
2757        int buffs;
2758        int i;
2759
2760        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2761        BUG_ON(conf->r10buf_pool);
2762        conf->have_replacement = 0;
2763        for (i = 0; i < conf->geo.raid_disks; i++)
2764                if (conf->mirrors[i].replacement)
2765                        conf->have_replacement = 1;
2766        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2767        if (!conf->r10buf_pool)
2768                return -ENOMEM;
2769        conf->next_resync = 0;
2770        return 0;
2771}
2772
2773/*
2774 * perform a "sync" on one "block"
2775 *
2776 * We need to make sure that no normal I/O request - particularly write
2777 * requests - conflict with active sync requests.
2778 *
2779 * This is achieved by tracking pending requests and a 'barrier' concept
2780 * that can be installed to exclude normal IO requests.
2781 *
2782 * Resync and recovery are handled very differently.
2783 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2784 *
2785 * For resync, we iterate over virtual addresses, read all copies,
2786 * and update if there are differences.  If only one copy is live,
2787 * skip it.
2788 * For recovery, we iterate over physical addresses, read a good
2789 * value for each non-in_sync drive, and over-write.
2790 *
2791 * So, for recovery we may have several outstanding complex requests for a
2792 * given address, one for each out-of-sync device.  We model this by allocating
2793 * a number of r10_bio structures, one for each out-of-sync device.
2794 * As we setup these structures, we collect all bio's together into a list
2795 * which we then process collectively to add pages, and then process again
2796 * to pass to generic_make_request.
2797 *
2798 * The r10_bio structures are linked using a borrowed master_bio pointer.
2799 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2800 * has its remaining count decremented to 0, the whole complex operation
2801 * is complete.
2802 *
2803 */
2804
2805static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2806                             int *skipped)
2807{
2808        struct r10conf *conf = mddev->private;
2809        struct r10bio *r10_bio;
2810        struct bio *biolist = NULL, *bio;
2811        sector_t max_sector, nr_sectors;
2812        int i;
2813        int max_sync;
2814        sector_t sync_blocks;
2815        sector_t sectors_skipped = 0;
2816        int chunks_skipped = 0;
2817        sector_t chunk_mask = conf->geo.chunk_mask;
2818
2819        if (!conf->r10buf_pool)
2820                if (init_resync(conf))
2821                        return 0;
2822
2823        /*
2824         * Allow skipping a full rebuild for incremental assembly
2825         * of a clean array, like RAID1 does.
2826         */
2827        if (mddev->bitmap == NULL &&
2828            mddev->recovery_cp == MaxSector &&
2829            mddev->reshape_position == MaxSector &&
2830            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2831            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2832            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2833            conf->fullsync == 0) {
2834                *skipped = 1;
2835                return mddev->dev_sectors - sector_nr;
2836        }
2837
2838 skipped:
2839        max_sector = mddev->dev_sectors;
2840        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2841            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2842                max_sector = mddev->resync_max_sectors;
2843        if (sector_nr >= max_sector) {
2844                /* If we aborted, we need to abort the
2845                 * sync on the 'current' bitmap chucks (there can
2846                 * be several when recovering multiple devices).
2847                 * as we may have started syncing it but not finished.
2848                 * We can find the current address in
2849                 * mddev->curr_resync, but for recovery,
2850                 * we need to convert that to several
2851                 * virtual addresses.
2852                 */
2853                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2854                        end_reshape(conf);
2855                        close_sync(conf);
2856                        return 0;
2857                }
2858
2859                if (mddev->curr_resync < max_sector) { /* aborted */
2860                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2861                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2862                                                &sync_blocks, 1);
2863                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2864                                sector_t sect =
2865                                        raid10_find_virt(conf, mddev->curr_resync, i);
2866                                bitmap_end_sync(mddev->bitmap, sect,
2867                                                &sync_blocks, 1);
2868                        }
2869                } else {
2870                        /* completed sync */
2871                        if ((!mddev->bitmap || conf->fullsync)
2872                            && conf->have_replacement
2873                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2874                                /* Completed a full sync so the replacements
2875                                 * are now fully recovered.
2876                                 */
2877                                for (i = 0; i < conf->geo.raid_disks; i++)
2878                                        if (conf->mirrors[i].replacement)
2879                                                conf->mirrors[i].replacement
2880                                                        ->recovery_offset
2881                                                        = MaxSector;
2882                        }
2883                        conf->fullsync = 0;
2884                }
2885                bitmap_close_sync(mddev->bitmap);
2886                close_sync(conf);
2887                *skipped = 1;
2888                return sectors_skipped;
2889        }
2890
2891        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2892                return reshape_request(mddev, sector_nr, skipped);
2893
2894        if (chunks_skipped >= conf->geo.raid_disks) {
2895                /* if there has been nothing to do on any drive,
2896                 * then there is nothing to do at all..
2897                 */
2898                *skipped = 1;
2899                return (max_sector - sector_nr) + sectors_skipped;
2900        }
2901
2902        if (max_sector > mddev->resync_max)
2903                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2904
2905        /* make sure whole request will fit in a chunk - if chunks
2906         * are meaningful
2907         */
2908        if (conf->geo.near_copies < conf->geo.raid_disks &&
2909            max_sector > (sector_nr | chunk_mask))
2910                max_sector = (sector_nr | chunk_mask) + 1;
2911
2912        /* Again, very different code for resync and recovery.
2913         * Both must result in an r10bio with a list of bios that
2914         * have bi_end_io, bi_sector, bi_bdev set,
2915         * and bi_private set to the r10bio.
2916         * For recovery, we may actually create several r10bios
2917         * with 2 bios in each, that correspond to the bios in the main one.
2918         * In this case, the subordinate r10bios link back through a
2919         * borrowed master_bio pointer, and the counter in the master
2920         * includes a ref from each subordinate.
2921         */
2922        /* First, we decide what to do and set ->bi_end_io
2923         * To end_sync_read if we want to read, and
2924         * end_sync_write if we will want to write.
2925         */
2926
2927        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2928        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2929                /* recovery... the complicated one */
2930                int j;
2931                r10_bio = NULL;
2932
2933                for (i = 0 ; i < conf->geo.raid_disks; i++) {
2934                        int still_degraded;
2935                        struct r10bio *rb2;
2936                        sector_t sect;
2937                        int must_sync;
2938                        int any_working;
2939                        struct raid10_info *mirror = &conf->mirrors[i];
2940
2941                        if ((mirror->rdev == NULL ||
2942                             test_bit(In_sync, &mirror->rdev->flags))
2943                            &&
2944                            (mirror->replacement == NULL ||
2945                             test_bit(Faulty,
2946                                      &mirror->replacement->flags)))
2947                                continue;
2948
2949                        still_degraded = 0;
2950                        /* want to reconstruct this device */
2951                        rb2 = r10_bio;
2952                        sect = raid10_find_virt(conf, sector_nr, i);
2953                        if (sect >= mddev->resync_max_sectors) {
2954                                /* last stripe is not complete - don't
2955                                 * try to recover this sector.
2956                                 */
2957                                continue;
2958                        }
2959                        /* Unless we are doing a full sync, or a replacement
2960                         * we only need to recover the block if it is set in
2961                         * the bitmap
2962                         */
2963                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
2964                                                      &sync_blocks, 1);
2965                        if (sync_blocks < max_sync)
2966                                max_sync = sync_blocks;
2967                        if (!must_sync &&
2968                            mirror->replacement == NULL &&
2969                            !conf->fullsync) {
2970                                /* yep, skip the sync_blocks here, but don't assume
2971                                 * that there will never be anything to do here
2972                                 */
2973                                chunks_skipped = -1;
2974                                continue;
2975                        }
2976
2977                        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2978                        r10_bio->state = 0;
2979                        raise_barrier(conf, rb2 != NULL);
2980                        atomic_set(&r10_bio->remaining, 0);
2981
2982                        r10_bio->master_bio = (struct bio*)rb2;
2983                        if (rb2)
2984                                atomic_inc(&rb2->remaining);
2985                        r10_bio->mddev = mddev;
2986                        set_bit(R10BIO_IsRecover, &r10_bio->state);
2987                        r10_bio->sector = sect;
2988
2989                        raid10_find_phys(conf, r10_bio);
2990
2991                        /* Need to check if the array will still be
2992                         * degraded
2993                         */
2994                        for (j = 0; j < conf->geo.raid_disks; j++)
2995                                if (conf->mirrors[j].rdev == NULL ||
2996                                    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2997                                        still_degraded = 1;
2998                                        break;
2999                                }
3000
3001                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3002                                                      &sync_blocks, still_degraded);
3003
3004                        any_working = 0;
3005                        for (j=0; j<conf->copies;j++) {
3006                                int k;
3007                                int d = r10_bio->devs[j].devnum;
3008                                sector_t from_addr, to_addr;
3009                                struct md_rdev *rdev;
3010                                sector_t sector, first_bad;
3011                                int bad_sectors;
3012                                if (!conf->mirrors[d].rdev ||
3013                                    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3014                                        continue;
3015                                /* This is where we read from */
3016                                any_working = 1;
3017                                rdev = conf->mirrors[d].rdev;
3018                                sector = r10_bio->devs[j].addr;
3019
3020                                if (is_badblock(rdev, sector, max_sync,
3021                                                &first_bad, &bad_sectors)) {
3022                                        if (first_bad > sector)
3023                                                max_sync = first_bad - sector;
3024                                        else {
3025                                                bad_sectors -= (sector
3026                                                                - first_bad);
3027                                                if (max_sync > bad_sectors)
3028                                                        max_sync = bad_sectors;
3029                                                continue;
3030                                        }
3031                                }
3032                                bio = r10_bio->devs[0].bio;
3033                                bio_reset(bio);
3034                                bio->bi_next = biolist;
3035                                biolist = bio;
3036                                bio->bi_private = r10_bio;
3037                                bio->bi_end_io = end_sync_read;
3038                                bio->bi_rw = READ;
3039                                from_addr = r10_bio->devs[j].addr;
3040                                bio->bi_iter.bi_sector = from_addr +
3041                                        rdev->data_offset;
3042                                bio->bi_bdev = rdev->bdev;
3043                                atomic_inc(&rdev->nr_pending);
3044                                /* and we write to 'i' (if not in_sync) */
3045
3046                                for (k=0; k<conf->copies; k++)
3047                                        if (r10_bio->devs[k].devnum == i)
3048                                                break;
3049                                BUG_ON(k == conf->copies);
3050                                to_addr = r10_bio->devs[k].addr;
3051                                r10_bio->devs[0].devnum = d;
3052                                r10_bio->devs[0].addr = from_addr;
3053                                r10_bio->devs[1].devnum = i;
3054                                r10_bio->devs[1].addr = to_addr;
3055
3056                                rdev = mirror->rdev;
3057                                if (!test_bit(In_sync, &rdev->flags)) {
3058                                        bio = r10_bio->devs[1].bio;
3059                                        bio_reset(bio);
3060                                        bio->bi_next = biolist;
3061                                        biolist = bio;
3062                                        bio->bi_private = r10_bio;
3063                                        bio->bi_end_io = end_sync_write;
3064                                        bio->bi_rw = WRITE;
3065                                        bio->bi_iter.bi_sector = to_addr
3066                                                + rdev->data_offset;
3067                                        bio->bi_bdev = rdev->bdev;
3068                                        atomic_inc(&r10_bio->remaining);
3069                                } else
3070                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3071
3072                                /* and maybe write to replacement */
3073                                bio = r10_bio->devs[1].repl_bio;
3074                                if (bio)
3075                                        bio->bi_end_io = NULL;
3076                                rdev = mirror->replacement;
3077                                /* Note: if rdev != NULL, then bio
3078                                 * cannot be NULL as r10buf_pool_alloc will
3079                                 * have allocated it.
3080                                 * So the second test here is pointless.
3081                                 * But it keeps semantic-checkers happy, and
3082                                 * this comment keeps human reviewers
3083                                 * happy.
3084                                 */
3085                                if (rdev == NULL || bio == NULL ||
3086                                    test_bit(Faulty, &rdev->flags))
3087                                        break;
3088                                bio_reset(bio);
3089                                bio->bi_next = biolist;
3090                                biolist = bio;
3091                                bio->bi_private = r10_bio;
3092                                bio->bi_end_io = end_sync_write;
3093                                bio->bi_rw = WRITE;
3094                                bio->bi_iter.bi_sector = to_addr +
3095                                        rdev->data_offset;
3096                                bio->bi_bdev = rdev->bdev;
3097                                atomic_inc(&r10_bio->remaining);
3098                                break;
3099                        }
3100                        if (j == conf->copies) {
3101                                /* Cannot recover, so abort the recovery or
3102                                 * record a bad block */
3103                                if (any_working) {
3104                                        /* problem is that there are bad blocks
3105                                         * on other device(s)
3106                                         */
3107                                        int k;
3108                                        for (k = 0; k < conf->copies; k++)
3109                                                if (r10_bio->devs[k].devnum == i)
3110                                                        break;
3111                                        if (!test_bit(In_sync,
3112                                                      &mirror->rdev->flags)
3113                                            && !rdev_set_badblocks(
3114                                                    mirror->rdev,
3115                                                    r10_bio->devs[k].addr,
3116                                                    max_sync, 0))
3117                                                any_working = 0;
3118                                        if (mirror->replacement &&
3119                                            !rdev_set_badblocks(
3120                                                    mirror->replacement,
3121                                                    r10_bio->devs[k].addr,
3122                                                    max_sync, 0))
3123                                                any_working = 0;
3124                                }
3125                                if (!any_working)  {
3126                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3127                                                              &mddev->recovery))
3128                                                printk(KERN_INFO "md/raid10:%s: insufficient "
3129                                                       "working devices for recovery.\n",
3130                                                       mdname(mddev));
3131                                        mirror->recovery_disabled
3132                                                = mddev->recovery_disabled;
3133                                }
3134                                put_buf(r10_bio);
3135                                if (rb2)
3136                                        atomic_dec(&rb2->remaining);
3137                                r10_bio = rb2;
3138                                break;
3139                        }
3140                }
3141                if (biolist == NULL) {
3142                        while (r10_bio) {
3143                                struct r10bio *rb2 = r10_bio;
3144                                r10_bio = (struct r10bio*) rb2->master_bio;
3145                                rb2->master_bio = NULL;
3146                                put_buf(rb2);
3147                        }
3148                        goto giveup;
3149                }
3150        } else {
3151                /* resync. Schedule a read for every block at this virt offset */
3152                int count = 0;
3153
3154                bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3155
3156                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3157                                       &sync_blocks, mddev->degraded) &&
3158                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3159                                                 &mddev->recovery)) {
3160                        /* We can skip this block */
3161                        *skipped = 1;
3162                        return sync_blocks + sectors_skipped;
3163                }
3164                if (sync_blocks < max_sync)
3165                        max_sync = sync_blocks;
3166                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3167                r10_bio->state = 0;
3168
3169                r10_bio->mddev = mddev;
3170                atomic_set(&r10_bio->remaining, 0);
3171                raise_barrier(conf, 0);
3172                conf->next_resync = sector_nr;
3173
3174                r10_bio->master_bio = NULL;
3175                r10_bio->sector = sector_nr;
3176                set_bit(R10BIO_IsSync, &r10_bio->state);
3177                raid10_find_phys(conf, r10_bio);
3178                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3179
3180                for (i = 0; i < conf->copies; i++) {
3181                        int d = r10_bio->devs[i].devnum;
3182                        sector_t first_bad, sector;
3183                        int bad_sectors;
3184
3185                        if (r10_bio->devs[i].repl_bio)
3186                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3187
3188                        bio = r10_bio->devs[i].bio;
3189                        bio_reset(bio);
3190                        bio->bi_error = -EIO;
3191                        if (conf->mirrors[d].rdev == NULL ||
3192                            test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3193                                continue;
3194                        sector = r10_bio->devs[i].addr;
3195                        if (is_badblock(conf->mirrors[d].rdev,
3196                                        sector, max_sync,
3197                                        &first_bad, &bad_sectors)) {
3198                                if (first_bad > sector)
3199                                        max_sync = first_bad - sector;
3200                                else {
3201                                        bad_sectors -= (sector - first_bad);
3202                                        if (max_sync > bad_sectors)
3203                                                max_sync = bad_sectors;
3204                                        continue;
3205                                }
3206                        }
3207                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3208                        atomic_inc(&r10_bio->remaining);
3209                        bio->bi_next = biolist;
3210                        biolist = bio;
3211                        bio->bi_private = r10_bio;
3212                        bio->bi_end_io = end_sync_read;
3213                        bio->bi_rw = READ;
3214                        bio->bi_iter.bi_sector = sector +
3215                                conf->mirrors[d].rdev->data_offset;
3216                        bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3217                        count++;
3218
3219                        if (conf->mirrors[d].replacement == NULL ||
3220                            test_bit(Faulty,
3221                                     &conf->mirrors[d].replacement->flags))
3222                                continue;
3223
3224                        /* Need to set up for writing to the replacement */
3225                        bio = r10_bio->devs[i].repl_bio;
3226                        bio_reset(bio);
3227                        bio->bi_error = -EIO;
3228
3229                        sector = r10_bio->devs[i].addr;
3230                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3231                        bio->bi_next = biolist;
3232                        biolist = bio;
3233                        bio->bi_private = r10_bio;
3234                        bio->bi_end_io = end_sync_write;
3235                        bio->bi_rw = WRITE;
3236                        bio->bi_iter.bi_sector = sector +
3237                                conf->mirrors[d].replacement->data_offset;
3238                        bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3239                        count++;
3240                }
3241
3242                if (count < 2) {
3243                        for (i=0; i<conf->copies; i++) {
3244                                int d = r10_bio->devs[i].devnum;
3245                                if (r10_bio->devs[i].bio->bi_end_io)
3246                                        rdev_dec_pending(conf->mirrors[d].rdev,
3247                                                         mddev);
3248                                if (r10_bio->devs[i].repl_bio &&
3249                                    r10_bio->devs[i].repl_bio->bi_end_io)
3250                                        rdev_dec_pending(
3251                                                conf->mirrors[d].replacement,
3252                                                mddev);
3253                        }
3254                        put_buf(r10_bio);
3255                        biolist = NULL;
3256                        goto giveup;
3257                }
3258        }
3259
3260        nr_sectors = 0;
3261        if (sector_nr + max_sync < max_sector)
3262                max_sector = sector_nr + max_sync;
3263        do {
3264                struct page *page;
3265                int len = PAGE_SIZE;
3266                if (sector_nr + (len>>9) > max_sector)
3267                        len = (max_sector - sector_nr) << 9;
3268                if (len == 0)
3269                        break;
3270                for (bio= biolist ; bio ; bio=bio->bi_next) {
3271                        struct bio *bio2;
3272                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3273                        if (bio_add_page(bio, page, len, 0))
3274                                continue;
3275
3276                        /* stop here */
3277                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3278                        for (bio2 = biolist;
3279                             bio2 && bio2 != bio;
3280                             bio2 = bio2->bi_next) {
3281                                /* remove last page from this bio */
3282                                bio2->bi_vcnt--;
3283                                bio2->bi_iter.bi_size -= len;
3284                                bio_clear_flag(bio2, BIO_SEG_VALID);
3285                        }
3286                        goto bio_full;
3287                }
3288                nr_sectors += len>>9;
3289                sector_nr += len>>9;
3290        } while (biolist->bi_vcnt < RESYNC_PAGES);
3291 bio_full:
3292        r10_bio->sectors = nr_sectors;
3293
3294        while (biolist) {
3295                bio = biolist;
3296                biolist = biolist->bi_next;
3297
3298                bio->bi_next = NULL;
3299                r10_bio = bio->bi_private;
3300                r10_bio->sectors = nr_sectors;
3301
3302                if (bio->bi_end_io == end_sync_read) {
3303                        md_sync_acct(bio->bi_bdev, nr_sectors);
3304                        bio->bi_error = 0;
3305                        generic_make_request(bio);
3306                }
3307        }
3308
3309        if (sectors_skipped)
3310                /* pretend they weren't skipped, it makes
3311                 * no important difference in this case
3312                 */
3313                md_done_sync(mddev, sectors_skipped, 1);
3314
3315        return sectors_skipped + nr_sectors;
3316 giveup:
3317        /* There is nowhere to write, so all non-sync
3318         * drives must be failed or in resync, all drives
3319         * have a bad block, so try the next chunk...
3320         */
3321        if (sector_nr + max_sync < max_sector)
3322                max_sector = sector_nr + max_sync;
3323
3324        sectors_skipped += (max_sector - sector_nr);
3325        chunks_skipped ++;
3326        sector_nr = max_sector;
3327        goto skipped;
3328}
3329
3330static sector_t
3331raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3332{
3333        sector_t size;
3334        struct r10conf *conf = mddev->private;
3335
3336        if (!raid_disks)
3337                raid_disks = min(conf->geo.raid_disks,
3338                                 conf->prev.raid_disks);
3339        if (!sectors)
3340                sectors = conf->dev_sectors;
3341
3342        size = sectors >> conf->geo.chunk_shift;
3343        sector_div(size, conf->geo.far_copies);
3344        size = size * raid_disks;
3345        sector_div(size, conf->geo.near_copies);
3346
3347        return size << conf->geo.chunk_shift;
3348}
3349
3350static void calc_sectors(struct r10conf *conf, sector_t size)
3351{
3352        /* Calculate the number of sectors-per-device that will
3353         * actually be used, and set conf->dev_sectors and
3354         * conf->stride
3355         */
3356
3357        size = size >> conf->geo.chunk_shift;
3358        sector_div(size, conf->geo.far_copies);
3359        size = size * conf->geo.raid_disks;
3360        sector_div(size, conf->geo.near_copies);
3361        /* 'size' is now the number of chunks in the array */
3362        /* calculate "used chunks per device" */
3363        size = size * conf->copies;
3364
3365        /* We need to round up when dividing by raid_disks to
3366         * get the stride size.
3367         */
3368        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3369
3370        conf->dev_sectors = size << conf->geo.chunk_shift;
3371
3372        if (conf->geo.far_offset)
3373                conf->geo.stride = 1 << conf->geo.chunk_shift;
3374        else {
3375                sector_div(size, conf->geo.far_copies);
3376                conf->geo.stride = size << conf->geo.chunk_shift;
3377        }
3378}
3379
3380enum geo_type {geo_new, geo_old, geo_start};
3381static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3382{
3383        int nc, fc, fo;
3384        int layout, chunk, disks;
3385        switch (new) {
3386        case geo_old:
3387                layout = mddev->layout;
3388                chunk = mddev->chunk_sectors;
3389                disks = mddev->raid_disks - mddev->delta_disks;
3390                break;
3391        case geo_new:
3392                layout = mddev->new_layout;
3393                chunk = mddev->new_chunk_sectors;
3394                disks = mddev->raid_disks;
3395                break;
3396        default: /* avoid 'may be unused' warnings */
3397        case geo_start: /* new when starting reshape - raid_disks not
3398                         * updated yet. */
3399                layout = mddev->new_layout;
3400                chunk = mddev->new_chunk_sectors;
3401                disks = mddev->raid_disks + mddev->delta_disks;
3402                break;
3403        }
3404        if (layout >> 19)
3405                return -1;
3406        if (chunk < (PAGE_SIZE >> 9) ||
3407            !is_power_of_2(chunk))
3408                return -2;
3409        nc = layout & 255;
3410        fc = (layout >> 8) & 255;
3411        fo = layout & (1<<16);
3412        geo->raid_disks = disks;
3413        geo->near_copies = nc;
3414        geo->far_copies = fc;
3415        geo->far_offset = fo;
3416        switch (layout >> 17) {
3417        case 0: /* original layout.  simple but not always optimal */
3418                geo->far_set_size = disks;
3419                break;
3420        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3421                 * actually using this, but leave code here just in case.*/
3422                geo->far_set_size = disks/fc;
3423                WARN(geo->far_set_size < fc,
3424                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3425                break;
3426        case 2: /* "improved" layout fixed to match documentation */
3427                geo->far_set_size = fc * nc;
3428                break;
3429        default: /* Not a valid layout */
3430                return -1;
3431        }
3432        geo->chunk_mask = chunk - 1;
3433        geo->chunk_shift = ffz(~chunk);
3434        return nc*fc;
3435}
3436
3437static struct r10conf *setup_conf(struct mddev *mddev)
3438{
3439        struct r10conf *conf = NULL;
3440        int err = -EINVAL;
3441        struct geom geo;
3442        int copies;
3443
3444        copies = setup_geo(&geo, mddev, geo_new);
3445
3446        if (copies == -2) {
3447                printk(KERN_ERR "md/raid10:%s: chunk size must be "
3448                       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3449                       mdname(mddev), PAGE_SIZE);
3450                goto out;
3451        }
3452
3453        if (copies < 2 || copies > mddev->raid_disks) {
3454                printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3455                       mdname(mddev), mddev->new_layout);
3456                goto out;
3457        }
3458
3459        err = -ENOMEM;
3460        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3461        if (!conf)
3462                goto out;
3463
3464        /* FIXME calc properly */
3465        conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3466                                                            max(0,-mddev->delta_disks)),
3467                                GFP_KERNEL);
3468        if (!conf->mirrors)
3469                goto out;
3470
3471        conf->tmppage = alloc_page(GFP_KERNEL);
3472        if (!conf->tmppage)
3473                goto out;
3474
3475        conf->geo = geo;
3476        conf->copies = copies;
3477        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3478                                           r10bio_pool_free, conf);
3479        if (!conf->r10bio_pool)
3480                goto out;
3481
3482        calc_sectors(conf, mddev->dev_sectors);
3483        if (mddev->reshape_position == MaxSector) {
3484                conf->prev = conf->geo;
3485                conf->reshape_progress = MaxSector;
3486        } else {
3487                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3488                        err = -EINVAL;
3489                        goto out;
3490                }
3491                conf->reshape_progress = mddev->reshape_position;
3492                if (conf->prev.far_offset)
3493                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3494                else
3495                        /* far_copies must be 1 */
3496                        conf->prev.stride = conf->dev_sectors;
3497        }
3498        conf->reshape_safe = conf->reshape_progress;
3499        spin_lock_init(&conf->device_lock);
3500        INIT_LIST_HEAD(&conf->retry_list);
3501        INIT_LIST_HEAD(&conf->bio_end_io_list);
3502
3503        spin_lock_init(&conf->resync_lock);
3504        init_waitqueue_head(&conf->wait_barrier);
3505
3506        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3507        if (!conf->thread)
3508                goto out;
3509
3510        conf->mddev = mddev;
3511        return conf;
3512
3513 out:
3514        if (err == -ENOMEM)
3515                printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3516                       mdname(mddev));
3517        if (conf) {
3518                mempool_destroy(conf->r10bio_pool);
3519                kfree(conf->mirrors);
3520                safe_put_page(conf->tmppage);
3521                kfree(conf);
3522        }
3523        return ERR_PTR(err);
3524}
3525
3526static int run(struct mddev *mddev)
3527{
3528        struct r10conf *conf;
3529        int i, disk_idx, chunk_size;
3530        struct raid10_info *disk;
3531        struct md_rdev *rdev;
3532        sector_t size;
3533        sector_t min_offset_diff = 0;
3534        int first = 1;
3535        bool discard_supported = false;
3536
3537        if (mddev->private == NULL) {
3538                conf = setup_conf(mddev);
3539                if (IS_ERR(conf))
3540                        return PTR_ERR(conf);
3541                mddev->private = conf;
3542        }
3543        conf = mddev->private;
3544        if (!conf)
3545                goto out;
3546
3547        mddev->thread = conf->thread;
3548        conf->thread = NULL;
3549
3550        chunk_size = mddev->chunk_sectors << 9;
3551        if (mddev->queue) {
3552                blk_queue_max_discard_sectors(mddev->queue,
3553                                              mddev->chunk_sectors);
3554                blk_queue_max_write_same_sectors(mddev->queue, 0);
3555                blk_queue_io_min(mddev->queue, chunk_size);
3556                if (conf->geo.raid_disks % conf->geo.near_copies)
3557                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3558                else
3559                        blk_queue_io_opt(mddev->queue, chunk_size *
3560                                         (conf->geo.raid_disks / conf->geo.near_copies));
3561        }
3562
3563        rdev_for_each(rdev, mddev) {
3564                long long diff;
3565                struct request_queue *q;
3566
3567                disk_idx = rdev->raid_disk;
3568                if (disk_idx < 0)
3569                        continue;
3570                if (disk_idx >= conf->geo.raid_disks &&
3571                    disk_idx >= conf->prev.raid_disks)
3572                        continue;
3573                disk = conf->mirrors + disk_idx;
3574
3575                if (test_bit(Replacement, &rdev->flags)) {
3576                        if (disk->replacement)
3577                                goto out_free_conf;
3578                        disk->replacement = rdev;
3579                } else {
3580                        if (disk->rdev)
3581                                goto out_free_conf;
3582                        disk->rdev = rdev;
3583                }
3584                q = bdev_get_queue(rdev->bdev);
3585                diff = (rdev->new_data_offset - rdev->data_offset);
3586                if (!mddev->reshape_backwards)
3587                        diff = -diff;
3588                if (diff < 0)
3589                        diff = 0;
3590                if (first || diff < min_offset_diff)
3591                        min_offset_diff = diff;
3592
3593                if (mddev->gendisk)
3594                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3595                                          rdev->data_offset << 9);
3596
3597                disk->head_position = 0;
3598
3599                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3600                        discard_supported = true;
3601        }
3602
3603        if (mddev->queue) {
3604                if (discard_supported)
3605                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3606                                                mddev->queue);
3607                else
3608                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3609                                                  mddev->queue);
3610        }
3611        /* need to check that every block has at least one working mirror */
3612        if (!enough(conf, -1)) {
3613                printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3614                       mdname(mddev));
3615                goto out_free_conf;
3616        }
3617
3618        if (conf->reshape_progress != MaxSector) {
3619                /* must ensure that shape change is supported */
3620                if (conf->geo.far_copies != 1 &&
3621                    conf->geo.far_offset == 0)
3622                        goto out_free_conf;
3623                if (conf->prev.far_copies != 1 &&
3624                    conf->prev.far_offset == 0)
3625                        goto out_free_conf;
3626        }
3627
3628        mddev->degraded = 0;
3629        for (i = 0;
3630             i < conf->geo.raid_disks
3631                     || i < conf->prev.raid_disks;
3632             i++) {
3633
3634                disk = conf->mirrors + i;
3635
3636                if (!disk->rdev && disk->replacement) {
3637                        /* The replacement is all we have - use it */
3638                        disk->rdev = disk->replacement;
3639                        disk->replacement = NULL;
3640                        clear_bit(Replacement, &disk->rdev->flags);
3641                }
3642
3643                if (!disk->rdev ||
3644                    !test_bit(In_sync, &disk->rdev->flags)) {
3645                        disk->head_position = 0;
3646                        mddev->degraded++;
3647                        if (disk->rdev &&
3648                            disk->rdev->saved_raid_disk < 0)
3649                                conf->fullsync = 1;
3650                }
3651                disk->recovery_disabled = mddev->recovery_disabled - 1;
3652        }
3653
3654        if (mddev->recovery_cp != MaxSector)
3655                printk(KERN_NOTICE "md/raid10:%s: not clean"
3656                       " -- starting background reconstruction\n",
3657                       mdname(mddev));
3658        printk(KERN_INFO
3659                "md/raid10:%s: active with %d out of %d devices\n",
3660                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3661                conf->geo.raid_disks);
3662        /*
3663         * Ok, everything is just fine now
3664         */
3665        mddev->dev_sectors = conf->dev_sectors;
3666        size = raid10_size(mddev, 0, 0);
3667        md_set_array_sectors(mddev, size);
3668        mddev->resync_max_sectors = size;
3669
3670        if (mddev->queue) {
3671                int stripe = conf->geo.raid_disks *
3672                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3673
3674                /* Calculate max read-ahead size.
3675                 * We need to readahead at least twice a whole stripe....
3676                 * maybe...
3677                 */
3678                stripe /= conf->geo.near_copies;
3679                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3680                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3681        }
3682
3683        if (md_integrity_register(mddev))
3684                goto out_free_conf;
3685
3686        if (conf->reshape_progress != MaxSector) {
3687                unsigned long before_length, after_length;
3688
3689                before_length = ((1 << conf->prev.chunk_shift) *
3690                                 conf->prev.far_copies);
3691                after_length = ((1 << conf->geo.chunk_shift) *
3692                                conf->geo.far_copies);
3693
3694                if (max(before_length, after_length) > min_offset_diff) {
3695                        /* This cannot work */
3696                        printk("md/raid10: offset difference not enough to continue reshape\n");
3697                        goto out_free_conf;
3698                }
3699                conf->offset_diff = min_offset_diff;
3700
3701                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3702                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3703                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3704                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3705                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3706                                                        "reshape");
3707        }
3708
3709        return 0;
3710
3711out_free_conf:
3712        md_unregister_thread(&mddev->thread);
3713        mempool_destroy(conf->r10bio_pool);
3714        safe_put_page(conf->tmppage);
3715        kfree(conf->mirrors);
3716        kfree(conf);
3717        mddev->private = NULL;
3718out:
3719        return -EIO;
3720}
3721
3722static void raid10_free(struct mddev *mddev, void *priv)
3723{
3724        struct r10conf *conf = priv;
3725
3726        mempool_destroy(conf->r10bio_pool);
3727        safe_put_page(conf->tmppage);
3728        kfree(conf->mirrors);
3729        kfree(conf->mirrors_old);
3730        kfree(conf->mirrors_new);
3731        kfree(conf);
3732}
3733
3734static void raid10_quiesce(struct mddev *mddev, int state)
3735{
3736        struct r10conf *conf = mddev->private;
3737
3738        switch(state) {
3739        case 1:
3740                raise_barrier(conf, 0);
3741                break;
3742        case 0:
3743                lower_barrier(conf);
3744                break;
3745        }
3746}
3747
3748static int raid10_resize(struct mddev *mddev, sector_t sectors)
3749{
3750        /* Resize of 'far' arrays is not supported.
3751         * For 'near' and 'offset' arrays we can set the
3752         * number of sectors used to be an appropriate multiple
3753         * of the chunk size.
3754         * For 'offset', this is far_copies*chunksize.
3755         * For 'near' the multiplier is the LCM of
3756         * near_copies and raid_disks.
3757         * So if far_copies > 1 && !far_offset, fail.
3758         * Else find LCM(raid_disks, near_copy)*far_copies and
3759         * multiply by chunk_size.  Then round to this number.
3760         * This is mostly done by raid10_size()
3761         */
3762        struct r10conf *conf = mddev->private;
3763        sector_t oldsize, size;
3764
3765        if (mddev->reshape_position != MaxSector)
3766                return -EBUSY;
3767
3768        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3769                return -EINVAL;
3770
3771        oldsize = raid10_size(mddev, 0, 0);
3772        size = raid10_size(mddev, sectors, 0);
3773        if (mddev->external_size &&
3774            mddev->array_sectors > size)
3775                return -EINVAL;
3776        if (mddev->bitmap) {
3777                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3778                if (ret)
3779                        return ret;
3780        }
3781        md_set_array_sectors(mddev, size);
3782        set_capacity(mddev->gendisk, mddev->array_sectors);
3783        revalidate_disk(mddev->gendisk);
3784        if (sectors > mddev->dev_sectors &&
3785            mddev->recovery_cp > oldsize) {
3786                mddev->recovery_cp = oldsize;
3787                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3788        }
3789        calc_sectors(conf, sectors);
3790        mddev->dev_sectors = conf->dev_sectors;
3791        mddev->resync_max_sectors = size;
3792        return 0;
3793}
3794
3795static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3796{
3797        struct md_rdev *rdev;
3798        struct r10conf *conf;
3799
3800        if (mddev->degraded > 0) {
3801                printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3802                       mdname(mddev));
3803                return ERR_PTR(-EINVAL);
3804        }
3805        sector_div(size, devs);
3806
3807        /* Set new parameters */
3808        mddev->new_level = 10;
3809        /* new layout: far_copies = 1, near_copies = 2 */
3810        mddev->new_layout = (1<<8) + 2;
3811        mddev->new_chunk_sectors = mddev->chunk_sectors;
3812        mddev->delta_disks = mddev->raid_disks;
3813        mddev->raid_disks *= 2;
3814        /* make sure it will be not marked as dirty */
3815        mddev->recovery_cp = MaxSector;
3816        mddev->dev_sectors = size;
3817
3818        conf = setup_conf(mddev);
3819        if (!IS_ERR(conf)) {
3820                rdev_for_each(rdev, mddev)
3821                        if (rdev->raid_disk >= 0) {
3822                                rdev->new_raid_disk = rdev->raid_disk * 2;
3823                                rdev->sectors = size;
3824                        }
3825                conf->barrier = 1;
3826        }
3827
3828        return conf;
3829}
3830
3831static void *raid10_takeover(struct mddev *mddev)
3832{
3833        struct r0conf *raid0_conf;
3834
3835        /* raid10 can take over:
3836         *  raid0 - providing it has only two drives
3837         */
3838        if (mddev->level == 0) {
3839                /* for raid0 takeover only one zone is supported */
3840                raid0_conf = mddev->private;
3841                if (raid0_conf->nr_strip_zones > 1) {
3842                        printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3843                               " with more than one zone.\n",
3844                               mdname(mddev));
3845                        return ERR_PTR(-EINVAL);
3846                }
3847                return raid10_takeover_raid0(mddev,
3848                        raid0_conf->strip_zone->zone_end,
3849                        raid0_conf->strip_zone->nb_dev);
3850        }
3851        return ERR_PTR(-EINVAL);
3852}
3853
3854static int raid10_check_reshape(struct mddev *mddev)
3855{
3856        /* Called when there is a request to change
3857         * - layout (to ->new_layout)
3858         * - chunk size (to ->new_chunk_sectors)
3859         * - raid_disks (by delta_disks)
3860         * or when trying to restart a reshape that was ongoing.
3861         *
3862         * We need to validate the request and possibly allocate
3863         * space if that might be an issue later.
3864         *
3865         * Currently we reject any reshape of a 'far' mode array,
3866         * allow chunk size to change if new is generally acceptable,
3867         * allow raid_disks to increase, and allow
3868         * a switch between 'near' mode and 'offset' mode.
3869         */
3870        struct r10conf *conf = mddev->private;
3871        struct geom geo;
3872
3873        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3874                return -EINVAL;
3875
3876        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3877                /* mustn't change number of copies */
3878                return -EINVAL;
3879        if (geo.far_copies > 1 && !geo.far_offset)
3880                /* Cannot switch to 'far' mode */
3881                return -EINVAL;
3882
3883        if (mddev->array_sectors & geo.chunk_mask)
3884                        /* not factor of array size */
3885                        return -EINVAL;
3886
3887        if (!enough(conf, -1))
3888                return -EINVAL;
3889
3890        kfree(conf->mirrors_new);
3891        conf->mirrors_new = NULL;
3892        if (mddev->delta_disks > 0) {
3893                /* allocate new 'mirrors' list */
3894                conf->mirrors_new = kzalloc(
3895                        sizeof(struct raid10_info)
3896                        *(mddev->raid_disks +
3897                          mddev->delta_disks),
3898                        GFP_KERNEL);
3899                if (!conf->mirrors_new)
3900                        return -ENOMEM;
3901        }
3902        return 0;
3903}
3904
3905/*
3906 * Need to check if array has failed when deciding whether to:
3907 *  - start an array
3908 *  - remove non-faulty devices
3909 *  - add a spare
3910 *  - allow a reshape
3911 * This determination is simple when no reshape is happening.
3912 * However if there is a reshape, we need to carefully check
3913 * both the before and after sections.
3914 * This is because some failed devices may only affect one
3915 * of the two sections, and some non-in_sync devices may
3916 * be insync in the section most affected by failed devices.
3917 */
3918static int calc_degraded(struct r10conf *conf)
3919{
3920        int degraded, degraded2;
3921        int i;
3922
3923        rcu_read_lock();
3924        degraded = 0;
3925        /* 'prev' section first */
3926        for (i = 0; i < conf->prev.raid_disks; i++) {
3927                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3928                if (!rdev || test_bit(Faulty, &rdev->flags))
3929                        degraded++;
3930                else if (!test_bit(In_sync, &rdev->flags))
3931                        /* When we can reduce the number of devices in
3932                         * an array, this might not contribute to
3933                         * 'degraded'.  It does now.
3934                         */
3935                        degraded++;
3936        }
3937        rcu_read_unlock();
3938        if (conf->geo.raid_disks == conf->prev.raid_disks)
3939                return degraded;
3940        rcu_read_lock();
3941        degraded2 = 0;
3942        for (i = 0; i < conf->geo.raid_disks; i++) {
3943                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3944                if (!rdev || test_bit(Faulty, &rdev->flags))
3945                        degraded2++;
3946                else if (!test_bit(In_sync, &rdev->flags)) {
3947                        /* If reshape is increasing the number of devices,
3948                         * this section has already been recovered, so
3949                         * it doesn't contribute to degraded.
3950                         * else it does.
3951                         */
3952                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
3953                                degraded2++;
3954                }
3955        }
3956        rcu_read_unlock();
3957        if (degraded2 > degraded)
3958                return degraded2;
3959        return degraded;
3960}
3961
3962static int raid10_start_reshape(struct mddev *mddev)
3963{
3964        /* A 'reshape' has been requested. This commits
3965         * the various 'new' fields and sets MD_RECOVER_RESHAPE
3966         * This also checks if there are enough spares and adds them
3967         * to the array.
3968         * We currently require enough spares to make the final
3969         * array non-degraded.  We also require that the difference
3970         * between old and new data_offset - on each device - is
3971         * enough that we never risk over-writing.
3972         */
3973
3974        unsigned long before_length, after_length;
3975        sector_t min_offset_diff = 0;
3976        int first = 1;
3977        struct geom new;
3978        struct r10conf *conf = mddev->private;
3979        struct md_rdev *rdev;
3980        int spares = 0;
3981        int ret;
3982
3983        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3984                return -EBUSY;
3985
3986        if (setup_geo(&new, mddev, geo_start) != conf->copies)
3987                return -EINVAL;
3988
3989        before_length = ((1 << conf->prev.chunk_shift) *
3990                         conf->prev.far_copies);
3991        after_length = ((1 << conf->geo.chunk_shift) *
3992                        conf->geo.far_copies);
3993
3994        rdev_for_each(rdev, mddev) {
3995                if (!test_bit(In_sync, &rdev->flags)
3996                    && !test_bit(Faulty, &rdev->flags))
3997                        spares++;
3998                if (rdev->raid_disk >= 0) {
3999                        long long diff = (rdev->new_data_offset
4000                                          - rdev->data_offset);
4001                        if (!mddev->reshape_backwards)
4002                                diff = -diff;
4003                        if (diff < 0)
4004                                diff = 0;
4005                        if (first || diff < min_offset_diff)
4006                                min_offset_diff = diff;
4007                }
4008        }
4009
4010        if (max(before_length, after_length) > min_offset_diff)
4011                return -EINVAL;
4012
4013        if (spares < mddev->delta_disks)
4014                return -EINVAL;
4015
4016        conf->offset_diff = min_offset_diff;
4017        spin_lock_irq(&conf->device_lock);
4018        if (conf->mirrors_new) {
4019                memcpy(conf->mirrors_new, conf->mirrors,
4020                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4021                smp_mb();
4022                kfree(conf->mirrors_old);
4023                conf->mirrors_old = conf->mirrors;
4024                conf->mirrors = conf->mirrors_new;
4025                conf->mirrors_new = NULL;
4026        }
4027        setup_geo(&conf->geo, mddev, geo_start);
4028        smp_mb();
4029        if (mddev->reshape_backwards) {
4030                sector_t size = raid10_size(mddev, 0, 0);
4031                if (size < mddev->array_sectors) {
4032                        spin_unlock_irq(&conf->device_lock);
4033                        printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4034                               mdname(mddev));
4035                        return -EINVAL;
4036                }
4037                mddev->resync_max_sectors = size;
4038                conf->reshape_progress = size;
4039        } else
4040                conf->reshape_progress = 0;
4041        conf->reshape_safe = conf->reshape_progress;
4042        spin_unlock_irq(&conf->device_lock);
4043
4044        if (mddev->delta_disks && mddev->bitmap) {
4045                ret = bitmap_resize(mddev->bitmap,
4046                                    raid10_size(mddev, 0,
4047                                                conf->geo.raid_disks),
4048                                    0, 0);
4049                if (ret)
4050                        goto abort;
4051        }
4052        if (mddev->delta_disks > 0) {
4053                rdev_for_each(rdev, mddev)
4054                        if (rdev->raid_disk < 0 &&
4055                            !test_bit(Faulty, &rdev->flags)) {
4056                                if (raid10_add_disk(mddev, rdev) == 0) {
4057                                        if (rdev->raid_disk >=
4058                                            conf->prev.raid_disks)
4059                                                set_bit(In_sync, &rdev->flags);
4060                                        else
4061                                                rdev->recovery_offset = 0;
4062
4063                                        if (sysfs_link_rdev(mddev, rdev))
4064                                                /* Failure here  is OK */;
4065                                }
4066                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4067                                   && !test_bit(Faulty, &rdev->flags)) {
4068                                /* This is a spare that was manually added */
4069                                set_bit(In_sync, &rdev->flags);
4070                        }
4071        }
4072        /* When a reshape changes the number of devices,
4073         * ->degraded is measured against the larger of the
4074         * pre and  post numbers.
4075         */
4076        spin_lock_irq(&conf->device_lock);
4077        mddev->degraded = calc_degraded(conf);
4078        spin_unlock_irq(&conf->device_lock);
4079        mddev->raid_disks = conf->geo.raid_disks;
4080        mddev->reshape_position = conf->reshape_progress;
4081        set_bit(MD_CHANGE_DEVS, &mddev->flags);
4082
4083        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4084        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4085        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4086        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4087        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4088
4089        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4090                                                "reshape");
4091        if (!mddev->sync_thread) {
4092                ret = -EAGAIN;
4093                goto abort;
4094        }
4095        conf->reshape_checkpoint = jiffies;
4096        md_wakeup_thread(mddev->sync_thread);
4097        md_new_event(mddev);
4098        return 0;
4099
4100abort:
4101        mddev->recovery = 0;
4102        spin_lock_irq(&conf->device_lock);
4103        conf->geo = conf->prev;
4104        mddev->raid_disks = conf->geo.raid_disks;
4105        rdev_for_each(rdev, mddev)
4106                rdev->new_data_offset = rdev->data_offset;
4107        smp_wmb();
4108        conf->reshape_progress = MaxSector;
4109        conf->reshape_safe = MaxSector;
4110        mddev->reshape_position = MaxSector;
4111        spin_unlock_irq(&conf->device_lock);
4112        return ret;
4113}
4114
4115/* Calculate the last device-address that could contain
4116 * any block from the chunk that includes the array-address 's'
4117 * and report the next address.
4118 * i.e. the address returned will be chunk-aligned and after
4119 * any data that is in the chunk containing 's'.
4120 */
4121static sector_t last_dev_address(sector_t s, struct geom *geo)
4122{
4123        s = (s | geo->chunk_mask) + 1;
4124        s >>= geo->chunk_shift;
4125        s *= geo->near_copies;
4126        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4127        s *= geo->far_copies;
4128        s <<= geo->chunk_shift;
4129        return s;
4130}
4131
4132/* Calculate the first device-address that could contain
4133 * any block from the chunk that includes the array-address 's'.
4134 * This too will be the start of a chunk
4135 */
4136static sector_t first_dev_address(sector_t s, struct geom *geo)
4137{
4138        s >>= geo->chunk_shift;
4139        s *= geo->near_copies;
4140        sector_div(s, geo->raid_disks);
4141        s *= geo->far_copies;
4142        s <<= geo->chunk_shift;
4143        return s;
4144}
4145
4146static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4147                                int *skipped)
4148{
4149        /* We simply copy at most one chunk (smallest of old and new)
4150         * at a time, possibly less if that exceeds RESYNC_PAGES,
4151         * or we hit a bad block or something.
4152         * This might mean we pause for normal IO in the middle of
4153         * a chunk, but that is not a problem as mddev->reshape_position
4154         * can record any location.
4155         *
4156         * If we will want to write to a location that isn't
4157         * yet recorded as 'safe' (i.e. in metadata on disk) then
4158         * we need to flush all reshape requests and update the metadata.
4159         *
4160         * When reshaping forwards (e.g. to more devices), we interpret
4161         * 'safe' as the earliest block which might not have been copied
4162         * down yet.  We divide this by previous stripe size and multiply
4163         * by previous stripe length to get lowest device offset that we
4164         * cannot write to yet.
4165         * We interpret 'sector_nr' as an address that we want to write to.
4166         * From this we use last_device_address() to find where we might
4167         * write to, and first_device_address on the  'safe' position.
4168         * If this 'next' write position is after the 'safe' position,
4169         * we must update the metadata to increase the 'safe' position.
4170         *
4171         * When reshaping backwards, we round in the opposite direction
4172         * and perform the reverse test:  next write position must not be
4173         * less than current safe position.
4174         *
4175         * In all this the minimum difference in data offsets
4176         * (conf->offset_diff - always positive) allows a bit of slack,
4177         * so next can be after 'safe', but not by more than offset_diff
4178         *
4179         * We need to prepare all the bios here before we start any IO
4180         * to ensure the size we choose is acceptable to all devices.
4181         * The means one for each copy for write-out and an extra one for
4182         * read-in.
4183         * We store the read-in bio in ->master_bio and the others in
4184         * ->devs[x].bio and ->devs[x].repl_bio.
4185         */
4186        struct r10conf *conf = mddev->private;
4187        struct r10bio *r10_bio;
4188        sector_t next, safe, last;
4189        int max_sectors;
4190        int nr_sectors;
4191        int s;
4192        struct md_rdev *rdev;
4193        int need_flush = 0;
4194        struct bio *blist;
4195        struct bio *bio, *read_bio;
4196        int sectors_done = 0;
4197
4198        if (sector_nr == 0) {
4199                /* If restarting in the middle, skip the initial sectors */
4200                if (mddev->reshape_backwards &&
4201                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4202                        sector_nr = (raid10_size(mddev, 0, 0)
4203                                     - conf->reshape_progress);
4204                } else if (!mddev->reshape_backwards &&
4205                           conf->reshape_progress > 0)
4206                        sector_nr = conf->reshape_progress;
4207                if (sector_nr) {
4208                        mddev->curr_resync_completed = sector_nr;
4209                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4210                        *skipped = 1;
4211                        return sector_nr;
4212                }
4213        }
4214
4215        /* We don't use sector_nr to track where we are up to
4216         * as that doesn't work well for ->reshape_backwards.
4217         * So just use ->reshape_progress.
4218         */
4219        if (mddev->reshape_backwards) {
4220                /* 'next' is the earliest device address that we might
4221                 * write to for this chunk in the new layout
4222                 */
4223                next = first_dev_address(conf->reshape_progress - 1,
4224                                         &conf->geo);
4225
4226                /* 'safe' is the last device address that we might read from
4227                 * in the old layout after a restart
4228                 */
4229                safe = last_dev_address(conf->reshape_safe - 1,
4230                                        &conf->prev);
4231
4232                if (next + conf->offset_diff < safe)
4233                        need_flush = 1;
4234
4235                last = conf->reshape_progress - 1;
4236                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4237                                               & conf->prev.chunk_mask);
4238                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4239                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4240        } else {
4241                /* 'next' is after the last device address that we
4242                 * might write to for this chunk in the new layout
4243                 */
4244                next = last_dev_address(conf->reshape_progress, &conf->geo);
4245
4246                /* 'safe' is the earliest device address that we might
4247                 * read from in the old layout after a restart
4248                 */
4249                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4250
4251                /* Need to update metadata if 'next' might be beyond 'safe'
4252                 * as that would possibly corrupt data
4253                 */
4254                if (next > safe + conf->offset_diff)
4255                        need_flush = 1;
4256
4257                sector_nr = conf->reshape_progress;
4258                last  = sector_nr | (conf->geo.chunk_mask
4259                                     & conf->prev.chunk_mask);
4260
4261                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4262                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4263        }
4264
4265        if (need_flush ||
4266            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4267                /* Need to update reshape_position in metadata */
4268                wait_barrier(conf);
4269                mddev->reshape_position = conf->reshape_progress;
4270                if (mddev->reshape_backwards)
4271                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4272                                - conf->reshape_progress;
4273                else
4274                        mddev->curr_resync_completed = conf->reshape_progress;
4275                conf->reshape_checkpoint = jiffies;
4276                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4277                md_wakeup_thread(mddev->thread);
4278                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4279                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4280                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4281                        allow_barrier(conf);
4282                        return sectors_done;
4283                }
4284                conf->reshape_safe = mddev->reshape_position;
4285                allow_barrier(conf);
4286        }
4287
4288read_more:
4289        /* Now schedule reads for blocks from sector_nr to last */
4290        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4291        r10_bio->state = 0;
4292        raise_barrier(conf, sectors_done != 0);
4293        atomic_set(&r10_bio->remaining, 0);
4294        r10_bio->mddev = mddev;
4295        r10_bio->sector = sector_nr;
4296        set_bit(R10BIO_IsReshape, &r10_bio->state);
4297        r10_bio->sectors = last - sector_nr + 1;
4298        rdev = read_balance(conf, r10_bio, &max_sectors);
4299        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4300
4301        if (!rdev) {
4302                /* Cannot read from here, so need to record bad blocks
4303                 * on all the target devices.
4304                 */
4305                // FIXME
4306                mempool_free(r10_bio, conf->r10buf_pool);
4307                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4308                return sectors_done;
4309        }
4310
4311        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4312
4313        read_bio->bi_bdev = rdev->bdev;
4314        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4315                               + rdev->data_offset);
4316        read_bio->bi_private = r10_bio;
4317        read_bio->bi_end_io = end_sync_read;
4318        read_bio->bi_rw = READ;
4319        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4320        read_bio->bi_error = 0;
4321        read_bio->bi_vcnt = 0;
4322        read_bio->bi_iter.bi_size = 0;
4323        r10_bio->master_bio = read_bio;
4324        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4325
4326        /* Now find the locations in the new layout */
4327        __raid10_find_phys(&conf->geo, r10_bio);
4328
4329        blist = read_bio;
4330        read_bio->bi_next = NULL;
4331
4332        for (s = 0; s < conf->copies*2; s++) {
4333                struct bio *b;
4334                int d = r10_bio->devs[s/2].devnum;
4335                struct md_rdev *rdev2;
4336                if (s&1) {
4337                        rdev2 = conf->mirrors[d].replacement;
4338                        b = r10_bio->devs[s/2].repl_bio;
4339                } else {
4340                        rdev2 = conf->mirrors[d].rdev;
4341                        b = r10_bio->devs[s/2].bio;
4342                }
4343                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4344                        continue;
4345
4346                bio_reset(b);
4347                b->bi_bdev = rdev2->bdev;
4348                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4349                        rdev2->new_data_offset;
4350                b->bi_private = r10_bio;
4351                b->bi_end_io = end_reshape_write;
4352                b->bi_rw = WRITE;
4353                b->bi_next = blist;
4354                blist = b;
4355        }
4356
4357        /* Now add as many pages as possible to all of these bios. */
4358
4359        nr_sectors = 0;
4360        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4361                struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4362                int len = (max_sectors - s) << 9;
4363                if (len > PAGE_SIZE)
4364                        len = PAGE_SIZE;
4365                for (bio = blist; bio ; bio = bio->bi_next) {
4366                        struct bio *bio2;
4367                        if (bio_add_page(bio, page, len, 0))
4368                                continue;
4369
4370                        /* Didn't fit, must stop */
4371                        for (bio2 = blist;
4372                             bio2 && bio2 != bio;
4373                             bio2 = bio2->bi_next) {
4374                                /* Remove last page from this bio */
4375                                bio2->bi_vcnt--;
4376                                bio2->bi_iter.bi_size -= len;
4377                                bio_clear_flag(bio2, BIO_SEG_VALID);
4378                        }
4379                        goto bio_full;
4380                }
4381                sector_nr += len >> 9;
4382                nr_sectors += len >> 9;
4383        }
4384bio_full:
4385        r10_bio->sectors = nr_sectors;
4386
4387        /* Now submit the read */
4388        md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4389        atomic_inc(&r10_bio->remaining);
4390        read_bio->bi_next = NULL;
4391        generic_make_request(read_bio);
4392        sector_nr += nr_sectors;
4393        sectors_done += nr_sectors;
4394        if (sector_nr <= last)
4395                goto read_more;
4396
4397        /* Now that we have done the whole section we can
4398         * update reshape_progress
4399         */
4400        if (mddev->reshape_backwards)
4401                conf->reshape_progress -= sectors_done;
4402        else
4403                conf->reshape_progress += sectors_done;
4404
4405        return sectors_done;
4406}
4407
4408static void end_reshape_request(struct r10bio *r10_bio);
4409static int handle_reshape_read_error(struct mddev *mddev,
4410                                     struct r10bio *r10_bio);
4411static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4412{
4413        /* Reshape read completed.  Hopefully we have a block
4414         * to write out.
4415         * If we got a read error then we do sync 1-page reads from
4416         * elsewhere until we find the data - or give up.
4417         */
4418        struct r10conf *conf = mddev->private;
4419        int s;
4420
4421        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4422                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4423                        /* Reshape has been aborted */
4424                        md_done_sync(mddev, r10_bio->sectors, 0);
4425                        return;
4426                }
4427
4428        /* We definitely have the data in the pages, schedule the
4429         * writes.
4430         */
4431        atomic_set(&r10_bio->remaining, 1);
4432        for (s = 0; s < conf->copies*2; s++) {
4433                struct bio *b;
4434                int d = r10_bio->devs[s/2].devnum;
4435                struct md_rdev *rdev;
4436                if (s&1) {
4437                        rdev = conf->mirrors[d].replacement;
4438                        b = r10_bio->devs[s/2].repl_bio;
4439                } else {
4440                        rdev = conf->mirrors[d].rdev;
4441                        b = r10_bio->devs[s/2].bio;
4442                }
4443                if (!rdev || test_bit(Faulty, &rdev->flags))
4444                        continue;
4445                atomic_inc(&rdev->nr_pending);
4446                md_sync_acct(b->bi_bdev, r10_bio->sectors);
4447                atomic_inc(&r10_bio->remaining);
4448                b->bi_next = NULL;
4449                generic_make_request(b);
4450        }
4451        end_reshape_request(r10_bio);
4452}
4453
4454static void end_reshape(struct r10conf *conf)
4455{
4456        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4457                return;
4458
4459        spin_lock_irq(&conf->device_lock);
4460        conf->prev = conf->geo;
4461        md_finish_reshape(conf->mddev);
4462        smp_wmb();
4463        conf->reshape_progress = MaxSector;
4464        conf->reshape_safe = MaxSector;
4465        spin_unlock_irq(&conf->device_lock);
4466
4467        /* read-ahead size must cover two whole stripes, which is
4468         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4469         */
4470        if (conf->mddev->queue) {
4471                int stripe = conf->geo.raid_disks *
4472                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4473                stripe /= conf->geo.near_copies;
4474                if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4475                        conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4476        }
4477        conf->fullsync = 0;
4478}
4479
4480static int handle_reshape_read_error(struct mddev *mddev,
4481                                     struct r10bio *r10_bio)
4482{
4483        /* Use sync reads to get the blocks from somewhere else */
4484        int sectors = r10_bio->sectors;
4485        struct r10conf *conf = mddev->private;
4486        struct {
4487                struct r10bio r10_bio;
4488                struct r10dev devs[conf->copies];
4489        } on_stack;
4490        struct r10bio *r10b = &on_stack.r10_bio;
4491        int slot = 0;
4492        int idx = 0;
4493        struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4494
4495        r10b->sector = r10_bio->sector;
4496        __raid10_find_phys(&conf->prev, r10b);
4497
4498        while (sectors) {
4499                int s = sectors;
4500                int success = 0;
4501                int first_slot = slot;
4502
4503                if (s > (PAGE_SIZE >> 9))
4504                        s = PAGE_SIZE >> 9;
4505
4506                while (!success) {
4507                        int d = r10b->devs[slot].devnum;
4508                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4509                        sector_t addr;
4510                        if (rdev == NULL ||
4511                            test_bit(Faulty, &rdev->flags) ||
4512                            !test_bit(In_sync, &rdev->flags))
4513                                goto failed;
4514
4515                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4516                        success = sync_page_io(rdev,
4517                                               addr,
4518                                               s << 9,
4519                                               bvec[idx].bv_page,
4520                                               READ, false);
4521                        if (success)
4522                                break;
4523                failed:
4524                        slot++;
4525                        if (slot >= conf->copies)
4526                                slot = 0;
4527                        if (slot == first_slot)
4528                                break;
4529                }
4530                if (!success) {
4531                        /* couldn't read this block, must give up */
4532                        set_bit(MD_RECOVERY_INTR,
4533                                &mddev->recovery);
4534                        return -EIO;
4535                }
4536                sectors -= s;
4537                idx++;
4538        }
4539        return 0;
4540}
4541
4542static void end_reshape_write(struct bio *bio)
4543{
4544        struct r10bio *r10_bio = bio->bi_private;
4545        struct mddev *mddev = r10_bio->mddev;
4546        struct r10conf *conf = mddev->private;
4547        int d;
4548        int slot;
4549        int repl;
4550        struct md_rdev *rdev = NULL;
4551
4552        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4553        if (repl)
4554                rdev = conf->mirrors[d].replacement;
4555        if (!rdev) {
4556                smp_mb();
4557                rdev = conf->mirrors[d].rdev;
4558        }
4559
4560        if (bio->bi_error) {
4561                /* FIXME should record badblock */
4562                md_error(mddev, rdev);
4563        }
4564
4565        rdev_dec_pending(rdev, mddev);
4566        end_reshape_request(r10_bio);
4567}
4568
4569static void end_reshape_request(struct r10bio *r10_bio)
4570{
4571        if (!atomic_dec_and_test(&r10_bio->remaining))
4572                return;
4573        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4574        bio_put(r10_bio->master_bio);
4575        put_buf(r10_bio);
4576}
4577
4578static void raid10_finish_reshape(struct mddev *mddev)
4579{
4580        struct r10conf *conf = mddev->private;
4581
4582        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4583                return;
4584
4585        if (mddev->delta_disks > 0) {
4586                sector_t size = raid10_size(mddev, 0, 0);
4587                md_set_array_sectors(mddev, size);
4588                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4589                        mddev->recovery_cp = mddev->resync_max_sectors;
4590                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4591                }
4592                mddev->resync_max_sectors = size;
4593                set_capacity(mddev->gendisk, mddev->array_sectors);
4594                revalidate_disk(mddev->gendisk);
4595        } else {
4596                int d;
4597                for (d = conf->geo.raid_disks ;
4598                     d < conf->geo.raid_disks - mddev->delta_disks;
4599                     d++) {
4600                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4601                        if (rdev)
4602                                clear_bit(In_sync, &rdev->flags);
4603                        rdev = conf->mirrors[d].replacement;
4604                        if (rdev)
4605                                clear_bit(In_sync, &rdev->flags);
4606                }
4607        }
4608        mddev->layout = mddev->new_layout;
4609        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4610        mddev->reshape_position = MaxSector;
4611        mddev->delta_disks = 0;
4612        mddev->reshape_backwards = 0;
4613}
4614
4615static struct md_personality raid10_personality =
4616{
4617        .name           = "raid10",
4618        .level          = 10,
4619        .owner          = THIS_MODULE,
4620        .make_request   = make_request,
4621        .run            = run,
4622        .free           = raid10_free,
4623        .status         = status,
4624        .error_handler  = error,
4625        .hot_add_disk   = raid10_add_disk,
4626        .hot_remove_disk= raid10_remove_disk,
4627        .spare_active   = raid10_spare_active,
4628        .sync_request   = sync_request,
4629        .quiesce        = raid10_quiesce,
4630        .size           = raid10_size,
4631        .resize         = raid10_resize,
4632        .takeover       = raid10_takeover,
4633        .check_reshape  = raid10_check_reshape,
4634        .start_reshape  = raid10_start_reshape,
4635        .finish_reshape = raid10_finish_reshape,
4636        .congested      = raid10_congested,
4637};
4638
4639static int __init raid_init(void)
4640{
4641        return register_md_personality(&raid10_personality);
4642}
4643
4644static void raid_exit(void)
4645{
4646        unregister_md_personality(&raid10_personality);
4647}
4648
4649module_init(raid_init);
4650module_exit(raid_exit);
4651MODULE_LICENSE("GPL");
4652MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4653MODULE_ALIAS("md-personality-9"); /* RAID10 */
4654MODULE_ALIAS("md-raid10");
4655MODULE_ALIAS("md-level-10");
4656
4657module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4658