linux/drivers/media/platform/ti-vpe/vpe.c
<<
>>
Prefs
   1/*
   2 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
   3 *
   4 * Copyright (c) 2013 Texas Instruments Inc.
   5 * David Griego, <dagriego@biglakesoftware.com>
   6 * Dale Farnsworth, <dale@farnsworth.org>
   7 * Archit Taneja, <archit@ti.com>
   8 *
   9 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
  10 * Pawel Osciak, <pawel@osciak.com>
  11 * Marek Szyprowski, <m.szyprowski@samsung.com>
  12 *
  13 * Based on the virtual v4l2-mem2mem example device
  14 *
  15 * This program is free software; you can redistribute it and/or modify it
  16 * under the terms of the GNU General Public License version 2 as published by
  17 * the Free Software Foundation
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/err.h>
  23#include <linux/fs.h>
  24#include <linux/interrupt.h>
  25#include <linux/io.h>
  26#include <linux/ioctl.h>
  27#include <linux/module.h>
  28#include <linux/of.h>
  29#include <linux/platform_device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sched.h>
  32#include <linux/slab.h>
  33#include <linux/videodev2.h>
  34#include <linux/log2.h>
  35#include <linux/sizes.h>
  36
  37#include <media/v4l2-common.h>
  38#include <media/v4l2-ctrls.h>
  39#include <media/v4l2-device.h>
  40#include <media/v4l2-event.h>
  41#include <media/v4l2-ioctl.h>
  42#include <media/v4l2-mem2mem.h>
  43#include <media/videobuf2-v4l2.h>
  44#include <media/videobuf2-dma-contig.h>
  45
  46#include "vpdma.h"
  47#include "vpe_regs.h"
  48#include "sc.h"
  49#include "csc.h"
  50
  51#define VPE_MODULE_NAME "vpe"
  52
  53/* minimum and maximum frame sizes */
  54#define MIN_W           32
  55#define MIN_H           32
  56#define MAX_W           1920
  57#define MAX_H           1080
  58
  59/* required alignments */
  60#define S_ALIGN         0       /* multiple of 1 */
  61#define H_ALIGN         1       /* multiple of 2 */
  62
  63/* flags that indicate a format can be used for capture/output */
  64#define VPE_FMT_TYPE_CAPTURE    (1 << 0)
  65#define VPE_FMT_TYPE_OUTPUT     (1 << 1)
  66
  67/* used as plane indices */
  68#define VPE_MAX_PLANES  2
  69#define VPE_LUMA        0
  70#define VPE_CHROMA      1
  71
  72/* per m2m context info */
  73#define VPE_MAX_SRC_BUFS        3       /* need 3 src fields to de-interlace */
  74
  75#define VPE_DEF_BUFS_PER_JOB    1       /* default one buffer per batch job */
  76
  77/*
  78 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
  79 * 3 output descriptors, and 10 control descriptors
  80 */
  81#define VPE_DESC_LIST_SIZE      (10 * VPDMA_DTD_DESC_SIZE +     \
  82                                        13 * VPDMA_CFD_CTD_DESC_SIZE)
  83
  84#define vpe_dbg(vpedev, fmt, arg...)    \
  85                dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
  86#define vpe_err(vpedev, fmt, arg...)    \
  87                dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
  88
  89struct vpe_us_coeffs {
  90        unsigned short  anchor_fid0_c0;
  91        unsigned short  anchor_fid0_c1;
  92        unsigned short  anchor_fid0_c2;
  93        unsigned short  anchor_fid0_c3;
  94        unsigned short  interp_fid0_c0;
  95        unsigned short  interp_fid0_c1;
  96        unsigned short  interp_fid0_c2;
  97        unsigned short  interp_fid0_c3;
  98        unsigned short  anchor_fid1_c0;
  99        unsigned short  anchor_fid1_c1;
 100        unsigned short  anchor_fid1_c2;
 101        unsigned short  anchor_fid1_c3;
 102        unsigned short  interp_fid1_c0;
 103        unsigned short  interp_fid1_c1;
 104        unsigned short  interp_fid1_c2;
 105        unsigned short  interp_fid1_c3;
 106};
 107
 108/*
 109 * Default upsampler coefficients
 110 */
 111static const struct vpe_us_coeffs us_coeffs[] = {
 112        {
 113                /* Coefficients for progressive input */
 114                0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
 115                0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
 116        },
 117        {
 118                /* Coefficients for Top Field Interlaced input */
 119                0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
 120                /* Coefficients for Bottom Field Interlaced input */
 121                0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
 122        },
 123};
 124
 125/*
 126 * the following registers are for configuring some of the parameters of the
 127 * motion and edge detection blocks inside DEI, these generally remain the same,
 128 * these could be passed later via userspace if some one needs to tweak these.
 129 */
 130struct vpe_dei_regs {
 131        unsigned long mdt_spacial_freq_thr_reg;         /* VPE_DEI_REG2 */
 132        unsigned long edi_config_reg;                   /* VPE_DEI_REG3 */
 133        unsigned long edi_lut_reg0;                     /* VPE_DEI_REG4 */
 134        unsigned long edi_lut_reg1;                     /* VPE_DEI_REG5 */
 135        unsigned long edi_lut_reg2;                     /* VPE_DEI_REG6 */
 136        unsigned long edi_lut_reg3;                     /* VPE_DEI_REG7 */
 137};
 138
 139/*
 140 * default expert DEI register values, unlikely to be modified.
 141 */
 142static const struct vpe_dei_regs dei_regs = {
 143        .mdt_spacial_freq_thr_reg = 0x020C0804u,
 144        .edi_config_reg = 0x0118100Fu,
 145        .edi_lut_reg0 = 0x08040200u,
 146        .edi_lut_reg1 = 0x1010100Cu,
 147        .edi_lut_reg2 = 0x10101010u,
 148        .edi_lut_reg3 = 0x10101010u,
 149};
 150
 151/*
 152 * The port_data structure contains per-port data.
 153 */
 154struct vpe_port_data {
 155        enum vpdma_channel channel;     /* VPDMA channel */
 156        u8      vb_index;               /* input frame f, f-1, f-2 index */
 157        u8      vb_part;                /* plane index for co-panar formats */
 158};
 159
 160/*
 161 * Define indices into the port_data tables
 162 */
 163#define VPE_PORT_LUMA1_IN       0
 164#define VPE_PORT_CHROMA1_IN     1
 165#define VPE_PORT_LUMA2_IN       2
 166#define VPE_PORT_CHROMA2_IN     3
 167#define VPE_PORT_LUMA3_IN       4
 168#define VPE_PORT_CHROMA3_IN     5
 169#define VPE_PORT_MV_IN          6
 170#define VPE_PORT_MV_OUT         7
 171#define VPE_PORT_LUMA_OUT       8
 172#define VPE_PORT_CHROMA_OUT     9
 173#define VPE_PORT_RGB_OUT        10
 174
 175static const struct vpe_port_data port_data[11] = {
 176        [VPE_PORT_LUMA1_IN] = {
 177                .channel        = VPE_CHAN_LUMA1_IN,
 178                .vb_index       = 0,
 179                .vb_part        = VPE_LUMA,
 180        },
 181        [VPE_PORT_CHROMA1_IN] = {
 182                .channel        = VPE_CHAN_CHROMA1_IN,
 183                .vb_index       = 0,
 184                .vb_part        = VPE_CHROMA,
 185        },
 186        [VPE_PORT_LUMA2_IN] = {
 187                .channel        = VPE_CHAN_LUMA2_IN,
 188                .vb_index       = 1,
 189                .vb_part        = VPE_LUMA,
 190        },
 191        [VPE_PORT_CHROMA2_IN] = {
 192                .channel        = VPE_CHAN_CHROMA2_IN,
 193                .vb_index       = 1,
 194                .vb_part        = VPE_CHROMA,
 195        },
 196        [VPE_PORT_LUMA3_IN] = {
 197                .channel        = VPE_CHAN_LUMA3_IN,
 198                .vb_index       = 2,
 199                .vb_part        = VPE_LUMA,
 200        },
 201        [VPE_PORT_CHROMA3_IN] = {
 202                .channel        = VPE_CHAN_CHROMA3_IN,
 203                .vb_index       = 2,
 204                .vb_part        = VPE_CHROMA,
 205        },
 206        [VPE_PORT_MV_IN] = {
 207                .channel        = VPE_CHAN_MV_IN,
 208        },
 209        [VPE_PORT_MV_OUT] = {
 210                .channel        = VPE_CHAN_MV_OUT,
 211        },
 212        [VPE_PORT_LUMA_OUT] = {
 213                .channel        = VPE_CHAN_LUMA_OUT,
 214                .vb_part        = VPE_LUMA,
 215        },
 216        [VPE_PORT_CHROMA_OUT] = {
 217                .channel        = VPE_CHAN_CHROMA_OUT,
 218                .vb_part        = VPE_CHROMA,
 219        },
 220        [VPE_PORT_RGB_OUT] = {
 221                .channel        = VPE_CHAN_RGB_OUT,
 222                .vb_part        = VPE_LUMA,
 223        },
 224};
 225
 226
 227/* driver info for each of the supported video formats */
 228struct vpe_fmt {
 229        char    *name;                  /* human-readable name */
 230        u32     fourcc;                 /* standard format identifier */
 231        u8      types;                  /* CAPTURE and/or OUTPUT */
 232        u8      coplanar;               /* set for unpacked Luma and Chroma */
 233        /* vpdma format info for each plane */
 234        struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
 235};
 236
 237static struct vpe_fmt vpe_formats[] = {
 238        {
 239                .name           = "YUV 422 co-planar",
 240                .fourcc         = V4L2_PIX_FMT_NV16,
 241                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 242                .coplanar       = 1,
 243                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
 244                                    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
 245                                  },
 246        },
 247        {
 248                .name           = "YUV 420 co-planar",
 249                .fourcc         = V4L2_PIX_FMT_NV12,
 250                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 251                .coplanar       = 1,
 252                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
 253                                    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
 254                                  },
 255        },
 256        {
 257                .name           = "YUYV 422 packed",
 258                .fourcc         = V4L2_PIX_FMT_YUYV,
 259                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 260                .coplanar       = 0,
 261                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YC422],
 262                                  },
 263        },
 264        {
 265                .name           = "UYVY 422 packed",
 266                .fourcc         = V4L2_PIX_FMT_UYVY,
 267                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 268                .coplanar       = 0,
 269                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CY422],
 270                                  },
 271        },
 272        {
 273                .name           = "RGB888 packed",
 274                .fourcc         = V4L2_PIX_FMT_RGB24,
 275                .types          = VPE_FMT_TYPE_CAPTURE,
 276                .coplanar       = 0,
 277                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
 278                                  },
 279        },
 280        {
 281                .name           = "ARGB32",
 282                .fourcc         = V4L2_PIX_FMT_RGB32,
 283                .types          = VPE_FMT_TYPE_CAPTURE,
 284                .coplanar       = 0,
 285                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
 286                                  },
 287        },
 288        {
 289                .name           = "BGR888 packed",
 290                .fourcc         = V4L2_PIX_FMT_BGR24,
 291                .types          = VPE_FMT_TYPE_CAPTURE,
 292                .coplanar       = 0,
 293                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
 294                                  },
 295        },
 296        {
 297                .name           = "ABGR32",
 298                .fourcc         = V4L2_PIX_FMT_BGR32,
 299                .types          = VPE_FMT_TYPE_CAPTURE,
 300                .coplanar       = 0,
 301                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
 302                                  },
 303        },
 304};
 305
 306/*
 307 * per-queue, driver-specific private data.
 308 * there is one source queue and one destination queue for each m2m context.
 309 */
 310struct vpe_q_data {
 311        unsigned int            width;                          /* frame width */
 312        unsigned int            height;                         /* frame height */
 313        unsigned int            bytesperline[VPE_MAX_PLANES];   /* bytes per line in memory */
 314        enum v4l2_colorspace    colorspace;
 315        enum v4l2_field         field;                          /* supported field value */
 316        unsigned int            flags;
 317        unsigned int            sizeimage[VPE_MAX_PLANES];      /* image size in memory */
 318        struct v4l2_rect        c_rect;                         /* crop/compose rectangle */
 319        struct vpe_fmt          *fmt;                           /* format info */
 320};
 321
 322/* vpe_q_data flag bits */
 323#define Q_DATA_FRAME_1D         (1 << 0)
 324#define Q_DATA_MODE_TILED       (1 << 1)
 325#define Q_DATA_INTERLACED       (1 << 2)
 326
 327enum {
 328        Q_DATA_SRC = 0,
 329        Q_DATA_DST = 1,
 330};
 331
 332/* find our format description corresponding to the passed v4l2_format */
 333static struct vpe_fmt *find_format(struct v4l2_format *f)
 334{
 335        struct vpe_fmt *fmt;
 336        unsigned int k;
 337
 338        for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
 339                fmt = &vpe_formats[k];
 340                if (fmt->fourcc == f->fmt.pix.pixelformat)
 341                        return fmt;
 342        }
 343
 344        return NULL;
 345}
 346
 347/*
 348 * there is one vpe_dev structure in the driver, it is shared by
 349 * all instances.
 350 */
 351struct vpe_dev {
 352        struct v4l2_device      v4l2_dev;
 353        struct video_device     vfd;
 354        struct v4l2_m2m_dev     *m2m_dev;
 355
 356        atomic_t                num_instances;  /* count of driver instances */
 357        dma_addr_t              loaded_mmrs;    /* shadow mmrs in device */
 358        struct mutex            dev_mutex;
 359        spinlock_t              lock;
 360
 361        int                     irq;
 362        void __iomem            *base;
 363        struct resource         *res;
 364
 365        struct vb2_alloc_ctx    *alloc_ctx;
 366        struct vpdma_data       *vpdma;         /* vpdma data handle */
 367        struct sc_data          *sc;            /* scaler data handle */
 368        struct csc_data         *csc;           /* csc data handle */
 369};
 370
 371/*
 372 * There is one vpe_ctx structure for each m2m context.
 373 */
 374struct vpe_ctx {
 375        struct v4l2_fh          fh;
 376        struct vpe_dev          *dev;
 377        struct v4l2_ctrl_handler hdl;
 378
 379        unsigned int            field;                  /* current field */
 380        unsigned int            sequence;               /* current frame/field seq */
 381        unsigned int            aborting;               /* abort after next irq */
 382
 383        unsigned int            bufs_per_job;           /* input buffers per batch */
 384        unsigned int            bufs_completed;         /* bufs done in this batch */
 385
 386        struct vpe_q_data       q_data[2];              /* src & dst queue data */
 387        struct vb2_v4l2_buffer  *src_vbs[VPE_MAX_SRC_BUFS];
 388        struct vb2_v4l2_buffer  *dst_vb;
 389
 390        dma_addr_t              mv_buf_dma[2];          /* dma addrs of motion vector in/out bufs */
 391        void                    *mv_buf[2];             /* virtual addrs of motion vector bufs */
 392        size_t                  mv_buf_size;            /* current motion vector buffer size */
 393        struct vpdma_buf        mmr_adb;                /* shadow reg addr/data block */
 394        struct vpdma_buf        sc_coeff_h;             /* h coeff buffer */
 395        struct vpdma_buf        sc_coeff_v;             /* v coeff buffer */
 396        struct vpdma_desc_list  desc_list;              /* DMA descriptor list */
 397
 398        bool                    deinterlacing;          /* using de-interlacer */
 399        bool                    load_mmrs;              /* have new shadow reg values */
 400
 401        unsigned int            src_mv_buf_selector;
 402};
 403
 404
 405/*
 406 * M2M devices get 2 queues.
 407 * Return the queue given the type.
 408 */
 409static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
 410                                     enum v4l2_buf_type type)
 411{
 412        switch (type) {
 413        case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
 414        case V4L2_BUF_TYPE_VIDEO_OUTPUT:
 415                return &ctx->q_data[Q_DATA_SRC];
 416        case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
 417        case V4L2_BUF_TYPE_VIDEO_CAPTURE:
 418                return &ctx->q_data[Q_DATA_DST];
 419        default:
 420                BUG();
 421        }
 422        return NULL;
 423}
 424
 425static u32 read_reg(struct vpe_dev *dev, int offset)
 426{
 427        return ioread32(dev->base + offset);
 428}
 429
 430static void write_reg(struct vpe_dev *dev, int offset, u32 value)
 431{
 432        iowrite32(value, dev->base + offset);
 433}
 434
 435/* register field read/write helpers */
 436static int get_field(u32 value, u32 mask, int shift)
 437{
 438        return (value & (mask << shift)) >> shift;
 439}
 440
 441static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
 442{
 443        return get_field(read_reg(dev, offset), mask, shift);
 444}
 445
 446static void write_field(u32 *valp, u32 field, u32 mask, int shift)
 447{
 448        u32 val = *valp;
 449
 450        val &= ~(mask << shift);
 451        val |= (field & mask) << shift;
 452        *valp = val;
 453}
 454
 455static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
 456                u32 mask, int shift)
 457{
 458        u32 val = read_reg(dev, offset);
 459
 460        write_field(&val, field, mask, shift);
 461
 462        write_reg(dev, offset, val);
 463}
 464
 465/*
 466 * DMA address/data block for the shadow registers
 467 */
 468struct vpe_mmr_adb {
 469        struct vpdma_adb_hdr    out_fmt_hdr;
 470        u32                     out_fmt_reg[1];
 471        u32                     out_fmt_pad[3];
 472        struct vpdma_adb_hdr    us1_hdr;
 473        u32                     us1_regs[8];
 474        struct vpdma_adb_hdr    us2_hdr;
 475        u32                     us2_regs[8];
 476        struct vpdma_adb_hdr    us3_hdr;
 477        u32                     us3_regs[8];
 478        struct vpdma_adb_hdr    dei_hdr;
 479        u32                     dei_regs[8];
 480        struct vpdma_adb_hdr    sc_hdr0;
 481        u32                     sc_regs0[7];
 482        u32                     sc_pad0[1];
 483        struct vpdma_adb_hdr    sc_hdr8;
 484        u32                     sc_regs8[6];
 485        u32                     sc_pad8[2];
 486        struct vpdma_adb_hdr    sc_hdr17;
 487        u32                     sc_regs17[9];
 488        u32                     sc_pad17[3];
 489        struct vpdma_adb_hdr    csc_hdr;
 490        u32                     csc_regs[6];
 491        u32                     csc_pad[2];
 492};
 493
 494#define GET_OFFSET_TOP(ctx, obj, reg)   \
 495        ((obj)->res->start - ctx->dev->res->start + reg)
 496
 497#define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a)   \
 498        VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
 499/*
 500 * Set the headers for all of the address/data block structures.
 501 */
 502static void init_adb_hdrs(struct vpe_ctx *ctx)
 503{
 504        VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
 505        VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
 506        VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
 507        VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
 508        VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
 509        VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
 510                GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
 511        VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
 512                GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
 513        VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
 514                GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
 515        VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
 516                GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
 517};
 518
 519/*
 520 * Allocate or re-allocate the motion vector DMA buffers
 521 * There are two buffers, one for input and one for output.
 522 * However, the roles are reversed after each field is processed.
 523 * In other words, after each field is processed, the previous
 524 * output (dst) MV buffer becomes the new input (src) MV buffer.
 525 */
 526static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
 527{
 528        struct device *dev = ctx->dev->v4l2_dev.dev;
 529
 530        if (ctx->mv_buf_size == size)
 531                return 0;
 532
 533        if (ctx->mv_buf[0])
 534                dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
 535                        ctx->mv_buf_dma[0]);
 536
 537        if (ctx->mv_buf[1])
 538                dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
 539                        ctx->mv_buf_dma[1]);
 540
 541        if (size == 0)
 542                return 0;
 543
 544        ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
 545                                GFP_KERNEL);
 546        if (!ctx->mv_buf[0]) {
 547                vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
 548                return -ENOMEM;
 549        }
 550
 551        ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
 552                                GFP_KERNEL);
 553        if (!ctx->mv_buf[1]) {
 554                vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
 555                dma_free_coherent(dev, size, ctx->mv_buf[0],
 556                        ctx->mv_buf_dma[0]);
 557
 558                return -ENOMEM;
 559        }
 560
 561        ctx->mv_buf_size = size;
 562        ctx->src_mv_buf_selector = 0;
 563
 564        return 0;
 565}
 566
 567static void free_mv_buffers(struct vpe_ctx *ctx)
 568{
 569        realloc_mv_buffers(ctx, 0);
 570}
 571
 572/*
 573 * While de-interlacing, we keep the two most recent input buffers
 574 * around.  This function frees those two buffers when we have
 575 * finished processing the current stream.
 576 */
 577static void free_vbs(struct vpe_ctx *ctx)
 578{
 579        struct vpe_dev *dev = ctx->dev;
 580        unsigned long flags;
 581
 582        if (ctx->src_vbs[2] == NULL)
 583                return;
 584
 585        spin_lock_irqsave(&dev->lock, flags);
 586        if (ctx->src_vbs[2]) {
 587                v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
 588                v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
 589        }
 590        spin_unlock_irqrestore(&dev->lock, flags);
 591}
 592
 593/*
 594 * Enable or disable the VPE clocks
 595 */
 596static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
 597{
 598        u32 val = 0;
 599
 600        if (on)
 601                val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
 602        write_reg(dev, VPE_CLK_ENABLE, val);
 603}
 604
 605static void vpe_top_reset(struct vpe_dev *dev)
 606{
 607
 608        write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
 609                VPE_DATA_PATH_CLK_RESET_SHIFT);
 610
 611        usleep_range(100, 150);
 612
 613        write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
 614                VPE_DATA_PATH_CLK_RESET_SHIFT);
 615}
 616
 617static void vpe_top_vpdma_reset(struct vpe_dev *dev)
 618{
 619        write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
 620                VPE_VPDMA_CLK_RESET_SHIFT);
 621
 622        usleep_range(100, 150);
 623
 624        write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
 625                VPE_VPDMA_CLK_RESET_SHIFT);
 626}
 627
 628/*
 629 * Load the correct of upsampler coefficients into the shadow MMRs
 630 */
 631static void set_us_coefficients(struct vpe_ctx *ctx)
 632{
 633        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 634        struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
 635        u32 *us1_reg = &mmr_adb->us1_regs[0];
 636        u32 *us2_reg = &mmr_adb->us2_regs[0];
 637        u32 *us3_reg = &mmr_adb->us3_regs[0];
 638        const unsigned short *cp, *end_cp;
 639
 640        cp = &us_coeffs[0].anchor_fid0_c0;
 641
 642        if (s_q_data->flags & Q_DATA_INTERLACED)        /* interlaced */
 643                cp += sizeof(us_coeffs[0]) / sizeof(*cp);
 644
 645        end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
 646
 647        while (cp < end_cp) {
 648                write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
 649                write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
 650                *us2_reg++ = *us1_reg;
 651                *us3_reg++ = *us1_reg++;
 652        }
 653        ctx->load_mmrs = true;
 654}
 655
 656/*
 657 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
 658 */
 659static void set_cfg_and_line_modes(struct vpe_ctx *ctx)
 660{
 661        struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
 662        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 663        u32 *us1_reg0 = &mmr_adb->us1_regs[0];
 664        u32 *us2_reg0 = &mmr_adb->us2_regs[0];
 665        u32 *us3_reg0 = &mmr_adb->us3_regs[0];
 666        int line_mode = 1;
 667        int cfg_mode = 1;
 668
 669        /*
 670         * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
 671         * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
 672         */
 673
 674        if (fmt->fourcc == V4L2_PIX_FMT_NV12) {
 675                cfg_mode = 0;
 676                line_mode = 0;          /* double lines to line buffer */
 677        }
 678
 679        write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
 680        write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
 681        write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
 682
 683        /* regs for now */
 684        vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
 685        vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
 686        vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
 687
 688        /* frame start for input luma */
 689        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 690                VPE_CHAN_LUMA1_IN);
 691        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 692                VPE_CHAN_LUMA2_IN);
 693        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 694                VPE_CHAN_LUMA3_IN);
 695
 696        /* frame start for input chroma */
 697        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 698                VPE_CHAN_CHROMA1_IN);
 699        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 700                VPE_CHAN_CHROMA2_IN);
 701        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 702                VPE_CHAN_CHROMA3_IN);
 703
 704        /* frame start for MV in client */
 705        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 706                VPE_CHAN_MV_IN);
 707
 708        ctx->load_mmrs = true;
 709}
 710
 711/*
 712 * Set the shadow registers that are modified when the source
 713 * format changes.
 714 */
 715static void set_src_registers(struct vpe_ctx *ctx)
 716{
 717        set_us_coefficients(ctx);
 718}
 719
 720/*
 721 * Set the shadow registers that are modified when the destination
 722 * format changes.
 723 */
 724static void set_dst_registers(struct vpe_ctx *ctx)
 725{
 726        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 727        enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
 728        struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
 729        u32 val = 0;
 730
 731        if (clrspc == V4L2_COLORSPACE_SRGB)
 732                val |= VPE_RGB_OUT_SELECT;
 733        else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
 734                val |= VPE_COLOR_SEPARATE_422;
 735
 736        /*
 737         * the source of CHR_DS and CSC is always the scaler, irrespective of
 738         * whether it's used or not
 739         */
 740        val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
 741
 742        if (fmt->fourcc != V4L2_PIX_FMT_NV12)
 743                val |= VPE_DS_BYPASS;
 744
 745        mmr_adb->out_fmt_reg[0] = val;
 746
 747        ctx->load_mmrs = true;
 748}
 749
 750/*
 751 * Set the de-interlacer shadow register values
 752 */
 753static void set_dei_regs(struct vpe_ctx *ctx)
 754{
 755        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 756        struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
 757        unsigned int src_h = s_q_data->c_rect.height;
 758        unsigned int src_w = s_q_data->c_rect.width;
 759        u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
 760        bool deinterlace = true;
 761        u32 val = 0;
 762
 763        /*
 764         * according to TRM, we should set DEI in progressive bypass mode when
 765         * the input content is progressive, however, DEI is bypassed correctly
 766         * for both progressive and interlace content in interlace bypass mode.
 767         * It has been recommended not to use progressive bypass mode.
 768         */
 769        if ((!ctx->deinterlacing && (s_q_data->flags & Q_DATA_INTERLACED)) ||
 770                        !(s_q_data->flags & Q_DATA_INTERLACED)) {
 771                deinterlace = false;
 772                val = VPE_DEI_INTERLACE_BYPASS;
 773        }
 774
 775        src_h = deinterlace ? src_h * 2 : src_h;
 776
 777        val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
 778                (src_w << VPE_DEI_WIDTH_SHIFT) |
 779                VPE_DEI_FIELD_FLUSH;
 780
 781        *dei_mmr0 = val;
 782
 783        ctx->load_mmrs = true;
 784}
 785
 786static void set_dei_shadow_registers(struct vpe_ctx *ctx)
 787{
 788        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 789        u32 *dei_mmr = &mmr_adb->dei_regs[0];
 790        const struct vpe_dei_regs *cur = &dei_regs;
 791
 792        dei_mmr[2]  = cur->mdt_spacial_freq_thr_reg;
 793        dei_mmr[3]  = cur->edi_config_reg;
 794        dei_mmr[4]  = cur->edi_lut_reg0;
 795        dei_mmr[5]  = cur->edi_lut_reg1;
 796        dei_mmr[6]  = cur->edi_lut_reg2;
 797        dei_mmr[7]  = cur->edi_lut_reg3;
 798
 799        ctx->load_mmrs = true;
 800}
 801
 802/*
 803 * Set the shadow registers whose values are modified when either the
 804 * source or destination format is changed.
 805 */
 806static int set_srcdst_params(struct vpe_ctx *ctx)
 807{
 808        struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
 809        struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
 810        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 811        unsigned int src_w = s_q_data->c_rect.width;
 812        unsigned int src_h = s_q_data->c_rect.height;
 813        unsigned int dst_w = d_q_data->c_rect.width;
 814        unsigned int dst_h = d_q_data->c_rect.height;
 815        size_t mv_buf_size;
 816        int ret;
 817
 818        ctx->sequence = 0;
 819        ctx->field = V4L2_FIELD_TOP;
 820
 821        if ((s_q_data->flags & Q_DATA_INTERLACED) &&
 822                        !(d_q_data->flags & Q_DATA_INTERLACED)) {
 823                int bytes_per_line;
 824                const struct vpdma_data_format *mv =
 825                        &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
 826
 827                /*
 828                 * we make sure that the source image has a 16 byte aligned
 829                 * stride, we need to do the same for the motion vector buffer
 830                 * by aligning it's stride to the next 16 byte boundry. this
 831                 * extra space will not be used by the de-interlacer, but will
 832                 * ensure that vpdma operates correctly
 833                 */
 834                bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
 835                                        VPDMA_STRIDE_ALIGN);
 836                mv_buf_size = bytes_per_line * s_q_data->height;
 837
 838                ctx->deinterlacing = true;
 839                src_h <<= 1;
 840        } else {
 841                ctx->deinterlacing = false;
 842                mv_buf_size = 0;
 843        }
 844
 845        free_vbs(ctx);
 846
 847        ret = realloc_mv_buffers(ctx, mv_buf_size);
 848        if (ret)
 849                return ret;
 850
 851        set_cfg_and_line_modes(ctx);
 852        set_dei_regs(ctx);
 853
 854        csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
 855                s_q_data->colorspace, d_q_data->colorspace);
 856
 857        sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
 858        sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
 859
 860        sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
 861                &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
 862                src_w, src_h, dst_w, dst_h);
 863
 864        return 0;
 865}
 866
 867/*
 868 * Return the vpe_ctx structure for a given struct file
 869 */
 870static struct vpe_ctx *file2ctx(struct file *file)
 871{
 872        return container_of(file->private_data, struct vpe_ctx, fh);
 873}
 874
 875/*
 876 * mem2mem callbacks
 877 */
 878
 879/**
 880 * job_ready() - check whether an instance is ready to be scheduled to run
 881 */
 882static int job_ready(void *priv)
 883{
 884        struct vpe_ctx *ctx = priv;
 885        int needed = ctx->bufs_per_job;
 886
 887        if (ctx->deinterlacing && ctx->src_vbs[2] == NULL)
 888                needed += 2;    /* need additional two most recent fields */
 889
 890        if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < needed)
 891                return 0;
 892
 893        if (v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < needed)
 894                return 0;
 895
 896        return 1;
 897}
 898
 899static void job_abort(void *priv)
 900{
 901        struct vpe_ctx *ctx = priv;
 902
 903        /* Will cancel the transaction in the next interrupt handler */
 904        ctx->aborting = 1;
 905}
 906
 907/*
 908 * Lock access to the device
 909 */
 910static void vpe_lock(void *priv)
 911{
 912        struct vpe_ctx *ctx = priv;
 913        struct vpe_dev *dev = ctx->dev;
 914        mutex_lock(&dev->dev_mutex);
 915}
 916
 917static void vpe_unlock(void *priv)
 918{
 919        struct vpe_ctx *ctx = priv;
 920        struct vpe_dev *dev = ctx->dev;
 921        mutex_unlock(&dev->dev_mutex);
 922}
 923
 924static void vpe_dump_regs(struct vpe_dev *dev)
 925{
 926#define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
 927
 928        vpe_dbg(dev, "VPE Registers:\n");
 929
 930        DUMPREG(PID);
 931        DUMPREG(SYSCONFIG);
 932        DUMPREG(INT0_STATUS0_RAW);
 933        DUMPREG(INT0_STATUS0);
 934        DUMPREG(INT0_ENABLE0);
 935        DUMPREG(INT0_STATUS1_RAW);
 936        DUMPREG(INT0_STATUS1);
 937        DUMPREG(INT0_ENABLE1);
 938        DUMPREG(CLK_ENABLE);
 939        DUMPREG(CLK_RESET);
 940        DUMPREG(CLK_FORMAT_SELECT);
 941        DUMPREG(CLK_RANGE_MAP);
 942        DUMPREG(US1_R0);
 943        DUMPREG(US1_R1);
 944        DUMPREG(US1_R2);
 945        DUMPREG(US1_R3);
 946        DUMPREG(US1_R4);
 947        DUMPREG(US1_R5);
 948        DUMPREG(US1_R6);
 949        DUMPREG(US1_R7);
 950        DUMPREG(US2_R0);
 951        DUMPREG(US2_R1);
 952        DUMPREG(US2_R2);
 953        DUMPREG(US2_R3);
 954        DUMPREG(US2_R4);
 955        DUMPREG(US2_R5);
 956        DUMPREG(US2_R6);
 957        DUMPREG(US2_R7);
 958        DUMPREG(US3_R0);
 959        DUMPREG(US3_R1);
 960        DUMPREG(US3_R2);
 961        DUMPREG(US3_R3);
 962        DUMPREG(US3_R4);
 963        DUMPREG(US3_R5);
 964        DUMPREG(US3_R6);
 965        DUMPREG(US3_R7);
 966        DUMPREG(DEI_FRAME_SIZE);
 967        DUMPREG(MDT_BYPASS);
 968        DUMPREG(MDT_SF_THRESHOLD);
 969        DUMPREG(EDI_CONFIG);
 970        DUMPREG(DEI_EDI_LUT_R0);
 971        DUMPREG(DEI_EDI_LUT_R1);
 972        DUMPREG(DEI_EDI_LUT_R2);
 973        DUMPREG(DEI_EDI_LUT_R3);
 974        DUMPREG(DEI_FMD_WINDOW_R0);
 975        DUMPREG(DEI_FMD_WINDOW_R1);
 976        DUMPREG(DEI_FMD_CONTROL_R0);
 977        DUMPREG(DEI_FMD_CONTROL_R1);
 978        DUMPREG(DEI_FMD_STATUS_R0);
 979        DUMPREG(DEI_FMD_STATUS_R1);
 980        DUMPREG(DEI_FMD_STATUS_R2);
 981#undef DUMPREG
 982
 983        sc_dump_regs(dev->sc);
 984        csc_dump_regs(dev->csc);
 985}
 986
 987static void add_out_dtd(struct vpe_ctx *ctx, int port)
 988{
 989        struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
 990        const struct vpe_port_data *p_data = &port_data[port];
 991        struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
 992        struct vpe_fmt *fmt = q_data->fmt;
 993        const struct vpdma_data_format *vpdma_fmt;
 994        int mv_buf_selector = !ctx->src_mv_buf_selector;
 995        dma_addr_t dma_addr;
 996        u32 flags = 0;
 997
 998        if (port == VPE_PORT_MV_OUT) {
 999                vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1000                dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1001        } else {
1002                /* to incorporate interleaved formats */
1003                int plane = fmt->coplanar ? p_data->vb_part : 0;
1004
1005                vpdma_fmt = fmt->vpdma_fmt[plane];
1006                dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1007                if (!dma_addr) {
1008                        vpe_err(ctx->dev,
1009                                "acquiring output buffer(%d) dma_addr failed\n",
1010                                port);
1011                        return;
1012                }
1013        }
1014
1015        if (q_data->flags & Q_DATA_FRAME_1D)
1016                flags |= VPDMA_DATA_FRAME_1D;
1017        if (q_data->flags & Q_DATA_MODE_TILED)
1018                flags |= VPDMA_DATA_MODE_TILED;
1019
1020        vpdma_add_out_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1021                vpdma_fmt, dma_addr, p_data->channel, flags);
1022}
1023
1024static void add_in_dtd(struct vpe_ctx *ctx, int port)
1025{
1026        struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1027        const struct vpe_port_data *p_data = &port_data[port];
1028        struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
1029        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1030        struct vpe_fmt *fmt = q_data->fmt;
1031        const struct vpdma_data_format *vpdma_fmt;
1032        int mv_buf_selector = ctx->src_mv_buf_selector;
1033        int field = vbuf->field == V4L2_FIELD_BOTTOM;
1034        int frame_width, frame_height;
1035        dma_addr_t dma_addr;
1036        u32 flags = 0;
1037
1038        if (port == VPE_PORT_MV_IN) {
1039                vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1040                dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1041        } else {
1042                /* to incorporate interleaved formats */
1043                int plane = fmt->coplanar ? p_data->vb_part : 0;
1044
1045                vpdma_fmt = fmt->vpdma_fmt[plane];
1046
1047                dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1048                if (!dma_addr) {
1049                        vpe_err(ctx->dev,
1050                                "acquiring input buffer(%d) dma_addr failed\n",
1051                                port);
1052                        return;
1053                }
1054        }
1055
1056        if (q_data->flags & Q_DATA_FRAME_1D)
1057                flags |= VPDMA_DATA_FRAME_1D;
1058        if (q_data->flags & Q_DATA_MODE_TILED)
1059                flags |= VPDMA_DATA_MODE_TILED;
1060
1061        frame_width = q_data->c_rect.width;
1062        frame_height = q_data->c_rect.height;
1063
1064        if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
1065                frame_height /= 2;
1066
1067        vpdma_add_in_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1068                vpdma_fmt, dma_addr, p_data->channel, field, flags, frame_width,
1069                frame_height, 0, 0);
1070}
1071
1072/*
1073 * Enable the expected IRQ sources
1074 */
1075static void enable_irqs(struct vpe_ctx *ctx)
1076{
1077        write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1078        write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1079                                VPE_DS1_UV_ERROR_INT);
1080
1081        vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, true);
1082}
1083
1084static void disable_irqs(struct vpe_ctx *ctx)
1085{
1086        write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1087        write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1088
1089        vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, false);
1090}
1091
1092/* device_run() - prepares and starts the device
1093 *
1094 * This function is only called when both the source and destination
1095 * buffers are in place.
1096 */
1097static void device_run(void *priv)
1098{
1099        struct vpe_ctx *ctx = priv;
1100        struct sc_data *sc = ctx->dev->sc;
1101        struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1102
1103        if (ctx->deinterlacing && ctx->src_vbs[2] == NULL) {
1104                ctx->src_vbs[2] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1105                WARN_ON(ctx->src_vbs[2] == NULL);
1106                ctx->src_vbs[1] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1107                WARN_ON(ctx->src_vbs[1] == NULL);
1108        }
1109
1110        ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1111        WARN_ON(ctx->src_vbs[0] == NULL);
1112        ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1113        WARN_ON(ctx->dst_vb == NULL);
1114
1115        /* config descriptors */
1116        if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1117                vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1118                vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1119                ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1120                ctx->load_mmrs = false;
1121        }
1122
1123        if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1124                        sc->load_coeff_h) {
1125                vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1126                vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1127                        &ctx->sc_coeff_h, 0);
1128
1129                sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1130                sc->load_coeff_h = false;
1131        }
1132
1133        if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1134                        sc->load_coeff_v) {
1135                vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1136                vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1137                        &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1138
1139                sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1140                sc->load_coeff_v = false;
1141        }
1142
1143        /* output data descriptors */
1144        if (ctx->deinterlacing)
1145                add_out_dtd(ctx, VPE_PORT_MV_OUT);
1146
1147        if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1148                add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1149        } else {
1150                add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1151                if (d_q_data->fmt->coplanar)
1152                        add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1153        }
1154
1155        /* input data descriptors */
1156        if (ctx->deinterlacing) {
1157                add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1158                add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1159
1160                add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1161                add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1162        }
1163
1164        add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1165        add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1166
1167        if (ctx->deinterlacing)
1168                add_in_dtd(ctx, VPE_PORT_MV_IN);
1169
1170        /* sync on channel control descriptors for input ports */
1171        vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1172        vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1173
1174        if (ctx->deinterlacing) {
1175                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1176                        VPE_CHAN_LUMA2_IN);
1177                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1178                        VPE_CHAN_CHROMA2_IN);
1179
1180                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1181                        VPE_CHAN_LUMA3_IN);
1182                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1183                        VPE_CHAN_CHROMA3_IN);
1184
1185                vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1186        }
1187
1188        /* sync on channel control descriptors for output ports */
1189        if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1190                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1191                        VPE_CHAN_RGB_OUT);
1192        } else {
1193                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1194                        VPE_CHAN_LUMA_OUT);
1195                if (d_q_data->fmt->coplanar)
1196                        vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1197                                VPE_CHAN_CHROMA_OUT);
1198        }
1199
1200        if (ctx->deinterlacing)
1201                vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1202
1203        enable_irqs(ctx);
1204
1205        vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1206        vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list);
1207}
1208
1209static void dei_error(struct vpe_ctx *ctx)
1210{
1211        dev_warn(ctx->dev->v4l2_dev.dev,
1212                "received DEI error interrupt\n");
1213}
1214
1215static void ds1_uv_error(struct vpe_ctx *ctx)
1216{
1217        dev_warn(ctx->dev->v4l2_dev.dev,
1218                "received downsampler error interrupt\n");
1219}
1220
1221static irqreturn_t vpe_irq(int irq_vpe, void *data)
1222{
1223        struct vpe_dev *dev = (struct vpe_dev *)data;
1224        struct vpe_ctx *ctx;
1225        struct vpe_q_data *d_q_data;
1226        struct vb2_v4l2_buffer *s_vb, *d_vb;
1227        unsigned long flags;
1228        u32 irqst0, irqst1;
1229
1230        irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1231        if (irqst0) {
1232                write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1233                vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1234        }
1235
1236        irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1237        if (irqst1) {
1238                write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1239                vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1240        }
1241
1242        ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1243        if (!ctx) {
1244                vpe_err(dev, "instance released before end of transaction\n");
1245                goto handled;
1246        }
1247
1248        if (irqst1) {
1249                if (irqst1 & VPE_DEI_ERROR_INT) {
1250                        irqst1 &= ~VPE_DEI_ERROR_INT;
1251                        dei_error(ctx);
1252                }
1253                if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1254                        irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1255                        ds1_uv_error(ctx);
1256                }
1257        }
1258
1259        if (irqst0) {
1260                if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1261                        vpdma_clear_list_stat(ctx->dev->vpdma);
1262
1263                irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1264        }
1265
1266        if (irqst0 | irqst1) {
1267                dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: "
1268                        "INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1269                        irqst0, irqst1);
1270        }
1271
1272        disable_irqs(ctx);
1273
1274        vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1275        vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1276        vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1277        vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1278
1279        vpdma_reset_desc_list(&ctx->desc_list);
1280
1281         /* the previous dst mv buffer becomes the next src mv buffer */
1282        ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1283
1284        if (ctx->aborting)
1285                goto finished;
1286
1287        s_vb = ctx->src_vbs[0];
1288        d_vb = ctx->dst_vb;
1289
1290        d_vb->flags = s_vb->flags;
1291        d_vb->timestamp = s_vb->timestamp;
1292
1293        if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1294                d_vb->timecode = s_vb->timecode;
1295
1296        d_vb->sequence = ctx->sequence;
1297
1298        d_q_data = &ctx->q_data[Q_DATA_DST];
1299        if (d_q_data->flags & Q_DATA_INTERLACED) {
1300                d_vb->field = ctx->field;
1301                if (ctx->field == V4L2_FIELD_BOTTOM) {
1302                        ctx->sequence++;
1303                        ctx->field = V4L2_FIELD_TOP;
1304                } else {
1305                        WARN_ON(ctx->field != V4L2_FIELD_TOP);
1306                        ctx->field = V4L2_FIELD_BOTTOM;
1307                }
1308        } else {
1309                d_vb->field = V4L2_FIELD_NONE;
1310                ctx->sequence++;
1311        }
1312
1313        if (ctx->deinterlacing)
1314                s_vb = ctx->src_vbs[2];
1315
1316        spin_lock_irqsave(&dev->lock, flags);
1317        v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1318        v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1319        spin_unlock_irqrestore(&dev->lock, flags);
1320
1321        if (ctx->deinterlacing) {
1322                ctx->src_vbs[2] = ctx->src_vbs[1];
1323                ctx->src_vbs[1] = ctx->src_vbs[0];
1324        }
1325
1326        ctx->bufs_completed++;
1327        if (ctx->bufs_completed < ctx->bufs_per_job) {
1328                device_run(ctx);
1329                goto handled;
1330        }
1331
1332finished:
1333        vpe_dbg(ctx->dev, "finishing transaction\n");
1334        ctx->bufs_completed = 0;
1335        v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1336handled:
1337        return IRQ_HANDLED;
1338}
1339
1340/*
1341 * video ioctls
1342 */
1343static int vpe_querycap(struct file *file, void *priv,
1344                        struct v4l2_capability *cap)
1345{
1346        strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1);
1347        strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1);
1348        snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1349                VPE_MODULE_NAME);
1350        cap->device_caps  = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1351        cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
1352        return 0;
1353}
1354
1355static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1356{
1357        int i, index;
1358        struct vpe_fmt *fmt = NULL;
1359
1360        index = 0;
1361        for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1362                if (vpe_formats[i].types & type) {
1363                        if (index == f->index) {
1364                                fmt = &vpe_formats[i];
1365                                break;
1366                        }
1367                        index++;
1368                }
1369        }
1370
1371        if (!fmt)
1372                return -EINVAL;
1373
1374        strncpy(f->description, fmt->name, sizeof(f->description) - 1);
1375        f->pixelformat = fmt->fourcc;
1376        return 0;
1377}
1378
1379static int vpe_enum_fmt(struct file *file, void *priv,
1380                                struct v4l2_fmtdesc *f)
1381{
1382        if (V4L2_TYPE_IS_OUTPUT(f->type))
1383                return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1384
1385        return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1386}
1387
1388static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1389{
1390        struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1391        struct vpe_ctx *ctx = file2ctx(file);
1392        struct vb2_queue *vq;
1393        struct vpe_q_data *q_data;
1394        int i;
1395
1396        vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1397        if (!vq)
1398                return -EINVAL;
1399
1400        q_data = get_q_data(ctx, f->type);
1401
1402        pix->width = q_data->width;
1403        pix->height = q_data->height;
1404        pix->pixelformat = q_data->fmt->fourcc;
1405        pix->field = q_data->field;
1406
1407        if (V4L2_TYPE_IS_OUTPUT(f->type)) {
1408                pix->colorspace = q_data->colorspace;
1409        } else {
1410                struct vpe_q_data *s_q_data;
1411
1412                /* get colorspace from the source queue */
1413                s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1414
1415                pix->colorspace = s_q_data->colorspace;
1416        }
1417
1418        pix->num_planes = q_data->fmt->coplanar ? 2 : 1;
1419
1420        for (i = 0; i < pix->num_planes; i++) {
1421                pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
1422                pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
1423        }
1424
1425        return 0;
1426}
1427
1428static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1429                       struct vpe_fmt *fmt, int type)
1430{
1431        struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1432        struct v4l2_plane_pix_format *plane_fmt;
1433        unsigned int w_align;
1434        int i, depth, depth_bytes;
1435
1436        if (!fmt || !(fmt->types & type)) {
1437                vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1438                        pix->pixelformat);
1439                return -EINVAL;
1440        }
1441
1442        if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE)
1443                pix->field = V4L2_FIELD_NONE;
1444
1445        depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1446
1447        /*
1448         * the line stride should 16 byte aligned for VPDMA to work, based on
1449         * the bytes per pixel, figure out how much the width should be aligned
1450         * to make sure line stride is 16 byte aligned
1451         */
1452        depth_bytes = depth >> 3;
1453
1454        if (depth_bytes == 3)
1455                /*
1456                 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1457                 * really help in ensuring line stride is 16 byte aligned
1458                 */
1459                w_align = 4;
1460        else
1461                /*
1462                 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1463                 * can ensure a line stride alignment of 16 bytes. For example,
1464                 * if bpp is 2, then the line stride can be 16 byte aligned if
1465                 * the width is 8 byte aligned
1466                 */
1467                w_align = order_base_2(VPDMA_DESC_ALIGN / depth_bytes);
1468
1469        v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1470                              &pix->height, MIN_H, MAX_H, H_ALIGN,
1471                              S_ALIGN);
1472
1473        pix->num_planes = fmt->coplanar ? 2 : 1;
1474        pix->pixelformat = fmt->fourcc;
1475
1476        if (!pix->colorspace) {
1477                if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
1478                                fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
1479                                fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
1480                                fmt->fourcc == V4L2_PIX_FMT_BGR32) {
1481                        pix->colorspace = V4L2_COLORSPACE_SRGB;
1482                } else {
1483                        if (pix->height > 1280) /* HD */
1484                                pix->colorspace = V4L2_COLORSPACE_REC709;
1485                        else                    /* SD */
1486                                pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1487                }
1488        }
1489
1490        memset(pix->reserved, 0, sizeof(pix->reserved));
1491        for (i = 0; i < pix->num_planes; i++) {
1492                plane_fmt = &pix->plane_fmt[i];
1493                depth = fmt->vpdma_fmt[i]->depth;
1494
1495                if (i == VPE_LUMA)
1496                        plane_fmt->bytesperline = (pix->width * depth) >> 3;
1497                else
1498                        plane_fmt->bytesperline = pix->width;
1499
1500                plane_fmt->sizeimage =
1501                                (pix->height * pix->width * depth) >> 3;
1502
1503                memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1504        }
1505
1506        return 0;
1507}
1508
1509static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1510{
1511        struct vpe_ctx *ctx = file2ctx(file);
1512        struct vpe_fmt *fmt = find_format(f);
1513
1514        if (V4L2_TYPE_IS_OUTPUT(f->type))
1515                return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1516        else
1517                return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1518}
1519
1520static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1521{
1522        struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1523        struct v4l2_plane_pix_format *plane_fmt;
1524        struct vpe_q_data *q_data;
1525        struct vb2_queue *vq;
1526        int i;
1527
1528        vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1529        if (!vq)
1530                return -EINVAL;
1531
1532        if (vb2_is_busy(vq)) {
1533                vpe_err(ctx->dev, "queue busy\n");
1534                return -EBUSY;
1535        }
1536
1537        q_data = get_q_data(ctx, f->type);
1538        if (!q_data)
1539                return -EINVAL;
1540
1541        q_data->fmt             = find_format(f);
1542        q_data->width           = pix->width;
1543        q_data->height          = pix->height;
1544        q_data->colorspace      = pix->colorspace;
1545        q_data->field           = pix->field;
1546
1547        for (i = 0; i < pix->num_planes; i++) {
1548                plane_fmt = &pix->plane_fmt[i];
1549
1550                q_data->bytesperline[i] = plane_fmt->bytesperline;
1551                q_data->sizeimage[i]    = plane_fmt->sizeimage;
1552        }
1553
1554        q_data->c_rect.left     = 0;
1555        q_data->c_rect.top      = 0;
1556        q_data->c_rect.width    = q_data->width;
1557        q_data->c_rect.height   = q_data->height;
1558
1559        if (q_data->field == V4L2_FIELD_ALTERNATE)
1560                q_data->flags |= Q_DATA_INTERLACED;
1561        else
1562                q_data->flags &= ~Q_DATA_INTERLACED;
1563
1564        vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1565                f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
1566                q_data->bytesperline[VPE_LUMA]);
1567        if (q_data->fmt->coplanar)
1568                vpe_dbg(ctx->dev, " bpl_uv %d\n",
1569                        q_data->bytesperline[VPE_CHROMA]);
1570
1571        return 0;
1572}
1573
1574static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1575{
1576        int ret;
1577        struct vpe_ctx *ctx = file2ctx(file);
1578
1579        ret = vpe_try_fmt(file, priv, f);
1580        if (ret)
1581                return ret;
1582
1583        ret = __vpe_s_fmt(ctx, f);
1584        if (ret)
1585                return ret;
1586
1587        if (V4L2_TYPE_IS_OUTPUT(f->type))
1588                set_src_registers(ctx);
1589        else
1590                set_dst_registers(ctx);
1591
1592        return set_srcdst_params(ctx);
1593}
1594
1595static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1596{
1597        struct vpe_q_data *q_data;
1598
1599        if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1600            (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1601                return -EINVAL;
1602
1603        q_data = get_q_data(ctx, s->type);
1604        if (!q_data)
1605                return -EINVAL;
1606
1607        switch (s->target) {
1608        case V4L2_SEL_TGT_COMPOSE:
1609                /*
1610                 * COMPOSE target is only valid for capture buffer type, return
1611                 * error for output buffer type
1612                 */
1613                if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1614                        return -EINVAL;
1615                break;
1616        case V4L2_SEL_TGT_CROP:
1617                /*
1618                 * CROP target is only valid for output buffer type, return
1619                 * error for capture buffer type
1620                 */
1621                if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1622                        return -EINVAL;
1623                break;
1624        /*
1625         * bound and default crop/compose targets are invalid targets to
1626         * try/set
1627         */
1628        default:
1629                return -EINVAL;
1630        }
1631
1632        if (s->r.top < 0 || s->r.left < 0) {
1633                vpe_err(ctx->dev, "negative values for top and left\n");
1634                s->r.top = s->r.left = 0;
1635        }
1636
1637        v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
1638                &s->r.height, MIN_H, q_data->height, H_ALIGN, S_ALIGN);
1639
1640        /* adjust left/top if cropping rectangle is out of bounds */
1641        if (s->r.left + s->r.width > q_data->width)
1642                s->r.left = q_data->width - s->r.width;
1643        if (s->r.top + s->r.height > q_data->height)
1644                s->r.top = q_data->height - s->r.height;
1645
1646        return 0;
1647}
1648
1649static int vpe_g_selection(struct file *file, void *fh,
1650                struct v4l2_selection *s)
1651{
1652        struct vpe_ctx *ctx = file2ctx(file);
1653        struct vpe_q_data *q_data;
1654        bool use_c_rect = false;
1655
1656        if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1657            (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1658                return -EINVAL;
1659
1660        q_data = get_q_data(ctx, s->type);
1661        if (!q_data)
1662                return -EINVAL;
1663
1664        switch (s->target) {
1665        case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1666        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1667                if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1668                        return -EINVAL;
1669                break;
1670        case V4L2_SEL_TGT_CROP_BOUNDS:
1671        case V4L2_SEL_TGT_CROP_DEFAULT:
1672                if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1673                        return -EINVAL;
1674                break;
1675        case V4L2_SEL_TGT_COMPOSE:
1676                if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1677                        return -EINVAL;
1678                use_c_rect = true;
1679                break;
1680        case V4L2_SEL_TGT_CROP:
1681                if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1682                        return -EINVAL;
1683                use_c_rect = true;
1684                break;
1685        default:
1686                return -EINVAL;
1687        }
1688
1689        if (use_c_rect) {
1690                /*
1691                 * for CROP/COMPOSE target type, return c_rect params from the
1692                 * respective buffer type
1693                 */
1694                s->r = q_data->c_rect;
1695        } else {
1696                /*
1697                 * for DEFAULT/BOUNDS target type, return width and height from
1698                 * S_FMT of the respective buffer type
1699                 */
1700                s->r.left = 0;
1701                s->r.top = 0;
1702                s->r.width = q_data->width;
1703                s->r.height = q_data->height;
1704        }
1705
1706        return 0;
1707}
1708
1709
1710static int vpe_s_selection(struct file *file, void *fh,
1711                struct v4l2_selection *s)
1712{
1713        struct vpe_ctx *ctx = file2ctx(file);
1714        struct vpe_q_data *q_data;
1715        struct v4l2_selection sel = *s;
1716        int ret;
1717
1718        ret = __vpe_try_selection(ctx, &sel);
1719        if (ret)
1720                return ret;
1721
1722        q_data = get_q_data(ctx, sel.type);
1723        if (!q_data)
1724                return -EINVAL;
1725
1726        if ((q_data->c_rect.left == sel.r.left) &&
1727                        (q_data->c_rect.top == sel.r.top) &&
1728                        (q_data->c_rect.width == sel.r.width) &&
1729                        (q_data->c_rect.height == sel.r.height)) {
1730                vpe_dbg(ctx->dev,
1731                        "requested crop/compose values are already set\n");
1732                return 0;
1733        }
1734
1735        q_data->c_rect = sel.r;
1736
1737        return set_srcdst_params(ctx);
1738}
1739
1740/*
1741 * defines number of buffers/frames a context can process with VPE before
1742 * switching to a different context. default value is 1 buffer per context
1743 */
1744#define V4L2_CID_VPE_BUFS_PER_JOB               (V4L2_CID_USER_TI_VPE_BASE + 0)
1745
1746static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1747{
1748        struct vpe_ctx *ctx =
1749                container_of(ctrl->handler, struct vpe_ctx, hdl);
1750
1751        switch (ctrl->id) {
1752        case V4L2_CID_VPE_BUFS_PER_JOB:
1753                ctx->bufs_per_job = ctrl->val;
1754                break;
1755
1756        default:
1757                vpe_err(ctx->dev, "Invalid control\n");
1758                return -EINVAL;
1759        }
1760
1761        return 0;
1762}
1763
1764static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1765        .s_ctrl = vpe_s_ctrl,
1766};
1767
1768static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1769        .vidioc_querycap                = vpe_querycap,
1770
1771        .vidioc_enum_fmt_vid_cap_mplane = vpe_enum_fmt,
1772        .vidioc_g_fmt_vid_cap_mplane    = vpe_g_fmt,
1773        .vidioc_try_fmt_vid_cap_mplane  = vpe_try_fmt,
1774        .vidioc_s_fmt_vid_cap_mplane    = vpe_s_fmt,
1775
1776        .vidioc_enum_fmt_vid_out_mplane = vpe_enum_fmt,
1777        .vidioc_g_fmt_vid_out_mplane    = vpe_g_fmt,
1778        .vidioc_try_fmt_vid_out_mplane  = vpe_try_fmt,
1779        .vidioc_s_fmt_vid_out_mplane    = vpe_s_fmt,
1780
1781        .vidioc_g_selection             = vpe_g_selection,
1782        .vidioc_s_selection             = vpe_s_selection,
1783
1784        .vidioc_reqbufs                 = v4l2_m2m_ioctl_reqbufs,
1785        .vidioc_querybuf                = v4l2_m2m_ioctl_querybuf,
1786        .vidioc_qbuf                    = v4l2_m2m_ioctl_qbuf,
1787        .vidioc_dqbuf                   = v4l2_m2m_ioctl_dqbuf,
1788        .vidioc_streamon                = v4l2_m2m_ioctl_streamon,
1789        .vidioc_streamoff               = v4l2_m2m_ioctl_streamoff,
1790
1791        .vidioc_subscribe_event         = v4l2_ctrl_subscribe_event,
1792        .vidioc_unsubscribe_event       = v4l2_event_unsubscribe,
1793};
1794
1795/*
1796 * Queue operations
1797 */
1798static int vpe_queue_setup(struct vb2_queue *vq,
1799                           const void *parg,
1800                           unsigned int *nbuffers, unsigned int *nplanes,
1801                           unsigned int sizes[], void *alloc_ctxs[])
1802{
1803        int i;
1804        struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
1805        struct vpe_q_data *q_data;
1806
1807        q_data = get_q_data(ctx, vq->type);
1808
1809        *nplanes = q_data->fmt->coplanar ? 2 : 1;
1810
1811        for (i = 0; i < *nplanes; i++) {
1812                sizes[i] = q_data->sizeimage[i];
1813                alloc_ctxs[i] = ctx->dev->alloc_ctx;
1814        }
1815
1816        vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
1817                sizes[VPE_LUMA]);
1818        if (q_data->fmt->coplanar)
1819                vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
1820
1821        return 0;
1822}
1823
1824static int vpe_buf_prepare(struct vb2_buffer *vb)
1825{
1826        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1827        struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1828        struct vpe_q_data *q_data;
1829        int i, num_planes;
1830
1831        vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
1832
1833        q_data = get_q_data(ctx, vb->vb2_queue->type);
1834        num_planes = q_data->fmt->coplanar ? 2 : 1;
1835
1836        if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1837                if (!(q_data->flags & Q_DATA_INTERLACED)) {
1838                        vbuf->field = V4L2_FIELD_NONE;
1839                } else {
1840                        if (vbuf->field != V4L2_FIELD_TOP &&
1841                                        vbuf->field != V4L2_FIELD_BOTTOM)
1842                                return -EINVAL;
1843                }
1844        }
1845
1846        for (i = 0; i < num_planes; i++) {
1847                if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
1848                        vpe_err(ctx->dev,
1849                                "data will not fit into plane (%lu < %lu)\n",
1850                                vb2_plane_size(vb, i),
1851                                (long) q_data->sizeimage[i]);
1852                        return -EINVAL;
1853                }
1854        }
1855
1856        for (i = 0; i < num_planes; i++)
1857                vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
1858
1859        return 0;
1860}
1861
1862static void vpe_buf_queue(struct vb2_buffer *vb)
1863{
1864        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1865        struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1866
1867        v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1868}
1869
1870static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
1871{
1872        /* currently we do nothing here */
1873
1874        return 0;
1875}
1876
1877static void vpe_stop_streaming(struct vb2_queue *q)
1878{
1879        struct vpe_ctx *ctx = vb2_get_drv_priv(q);
1880
1881        vpe_dump_regs(ctx->dev);
1882        vpdma_dump_regs(ctx->dev->vpdma);
1883}
1884
1885static struct vb2_ops vpe_qops = {
1886        .queue_setup     = vpe_queue_setup,
1887        .buf_prepare     = vpe_buf_prepare,
1888        .buf_queue       = vpe_buf_queue,
1889        .wait_prepare    = vb2_ops_wait_prepare,
1890        .wait_finish     = vb2_ops_wait_finish,
1891        .start_streaming = vpe_start_streaming,
1892        .stop_streaming  = vpe_stop_streaming,
1893};
1894
1895static int queue_init(void *priv, struct vb2_queue *src_vq,
1896                      struct vb2_queue *dst_vq)
1897{
1898        struct vpe_ctx *ctx = priv;
1899        struct vpe_dev *dev = ctx->dev;
1900        int ret;
1901
1902        memset(src_vq, 0, sizeof(*src_vq));
1903        src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1904        src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
1905        src_vq->drv_priv = ctx;
1906        src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
1907        src_vq->ops = &vpe_qops;
1908        src_vq->mem_ops = &vb2_dma_contig_memops;
1909        src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1910        src_vq->lock = &dev->dev_mutex;
1911
1912        ret = vb2_queue_init(src_vq);
1913        if (ret)
1914                return ret;
1915
1916        memset(dst_vq, 0, sizeof(*dst_vq));
1917        dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1918        dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
1919        dst_vq->drv_priv = ctx;
1920        dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
1921        dst_vq->ops = &vpe_qops;
1922        dst_vq->mem_ops = &vb2_dma_contig_memops;
1923        dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1924        dst_vq->lock = &dev->dev_mutex;
1925
1926        return vb2_queue_init(dst_vq);
1927}
1928
1929static const struct v4l2_ctrl_config vpe_bufs_per_job = {
1930        .ops = &vpe_ctrl_ops,
1931        .id = V4L2_CID_VPE_BUFS_PER_JOB,
1932        .name = "Buffers Per Transaction",
1933        .type = V4L2_CTRL_TYPE_INTEGER,
1934        .def = VPE_DEF_BUFS_PER_JOB,
1935        .min = 1,
1936        .max = VIDEO_MAX_FRAME,
1937        .step = 1,
1938};
1939
1940/*
1941 * File operations
1942 */
1943static int vpe_open(struct file *file)
1944{
1945        struct vpe_dev *dev = video_drvdata(file);
1946        struct vpe_q_data *s_q_data;
1947        struct v4l2_ctrl_handler *hdl;
1948        struct vpe_ctx *ctx;
1949        int ret;
1950
1951        vpe_dbg(dev, "vpe_open\n");
1952
1953        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1954        if (!ctx)
1955                return -ENOMEM;
1956
1957        ctx->dev = dev;
1958
1959        if (mutex_lock_interruptible(&dev->dev_mutex)) {
1960                ret = -ERESTARTSYS;
1961                goto free_ctx;
1962        }
1963
1964        ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
1965                        VPDMA_LIST_TYPE_NORMAL);
1966        if (ret != 0)
1967                goto unlock;
1968
1969        ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
1970        if (ret != 0)
1971                goto free_desc_list;
1972
1973        ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
1974        if (ret != 0)
1975                goto free_mmr_adb;
1976
1977        ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
1978        if (ret != 0)
1979                goto free_sc_h;
1980
1981        init_adb_hdrs(ctx);
1982
1983        v4l2_fh_init(&ctx->fh, video_devdata(file));
1984        file->private_data = &ctx->fh;
1985
1986        hdl = &ctx->hdl;
1987        v4l2_ctrl_handler_init(hdl, 1);
1988        v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
1989        if (hdl->error) {
1990                ret = hdl->error;
1991                goto exit_fh;
1992        }
1993        ctx->fh.ctrl_handler = hdl;
1994        v4l2_ctrl_handler_setup(hdl);
1995
1996        s_q_data = &ctx->q_data[Q_DATA_SRC];
1997        s_q_data->fmt = &vpe_formats[2];
1998        s_q_data->width = 1920;
1999        s_q_data->height = 1080;
2000        s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
2001                        s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2002        s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
2003                        s_q_data->height);
2004        s_q_data->colorspace = V4L2_COLORSPACE_REC709;
2005        s_q_data->field = V4L2_FIELD_NONE;
2006        s_q_data->c_rect.left = 0;
2007        s_q_data->c_rect.top = 0;
2008        s_q_data->c_rect.width = s_q_data->width;
2009        s_q_data->c_rect.height = s_q_data->height;
2010        s_q_data->flags = 0;
2011
2012        ctx->q_data[Q_DATA_DST] = *s_q_data;
2013
2014        set_dei_shadow_registers(ctx);
2015        set_src_registers(ctx);
2016        set_dst_registers(ctx);
2017        ret = set_srcdst_params(ctx);
2018        if (ret)
2019                goto exit_fh;
2020
2021        ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2022
2023        if (IS_ERR(ctx->fh.m2m_ctx)) {
2024                ret = PTR_ERR(ctx->fh.m2m_ctx);
2025                goto exit_fh;
2026        }
2027
2028        v4l2_fh_add(&ctx->fh);
2029
2030        /*
2031         * for now, just report the creation of the first instance, we can later
2032         * optimize the driver to enable or disable clocks when the first
2033         * instance is created or the last instance released
2034         */
2035        if (atomic_inc_return(&dev->num_instances) == 1)
2036                vpe_dbg(dev, "first instance created\n");
2037
2038        ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2039
2040        ctx->load_mmrs = true;
2041
2042        vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2043                ctx, ctx->fh.m2m_ctx);
2044
2045        mutex_unlock(&dev->dev_mutex);
2046
2047        return 0;
2048exit_fh:
2049        v4l2_ctrl_handler_free(hdl);
2050        v4l2_fh_exit(&ctx->fh);
2051        vpdma_free_desc_buf(&ctx->sc_coeff_v);
2052free_sc_h:
2053        vpdma_free_desc_buf(&ctx->sc_coeff_h);
2054free_mmr_adb:
2055        vpdma_free_desc_buf(&ctx->mmr_adb);
2056free_desc_list:
2057        vpdma_free_desc_list(&ctx->desc_list);
2058unlock:
2059        mutex_unlock(&dev->dev_mutex);
2060free_ctx:
2061        kfree(ctx);
2062        return ret;
2063}
2064
2065static int vpe_release(struct file *file)
2066{
2067        struct vpe_dev *dev = video_drvdata(file);
2068        struct vpe_ctx *ctx = file2ctx(file);
2069
2070        vpe_dbg(dev, "releasing instance %p\n", ctx);
2071
2072        mutex_lock(&dev->dev_mutex);
2073        free_vbs(ctx);
2074        free_mv_buffers(ctx);
2075        vpdma_free_desc_list(&ctx->desc_list);
2076        vpdma_free_desc_buf(&ctx->mmr_adb);
2077
2078        v4l2_fh_del(&ctx->fh);
2079        v4l2_fh_exit(&ctx->fh);
2080        v4l2_ctrl_handler_free(&ctx->hdl);
2081        v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2082
2083        kfree(ctx);
2084
2085        /*
2086         * for now, just report the release of the last instance, we can later
2087         * optimize the driver to enable or disable clocks when the first
2088         * instance is created or the last instance released
2089         */
2090        if (atomic_dec_return(&dev->num_instances) == 0)
2091                vpe_dbg(dev, "last instance released\n");
2092
2093        mutex_unlock(&dev->dev_mutex);
2094
2095        return 0;
2096}
2097
2098static const struct v4l2_file_operations vpe_fops = {
2099        .owner          = THIS_MODULE,
2100        .open           = vpe_open,
2101        .release        = vpe_release,
2102        .poll           = v4l2_m2m_fop_poll,
2103        .unlocked_ioctl = video_ioctl2,
2104        .mmap           = v4l2_m2m_fop_mmap,
2105};
2106
2107static struct video_device vpe_videodev = {
2108        .name           = VPE_MODULE_NAME,
2109        .fops           = &vpe_fops,
2110        .ioctl_ops      = &vpe_ioctl_ops,
2111        .minor          = -1,
2112        .release        = video_device_release_empty,
2113        .vfl_dir        = VFL_DIR_M2M,
2114};
2115
2116static struct v4l2_m2m_ops m2m_ops = {
2117        .device_run     = device_run,
2118        .job_ready      = job_ready,
2119        .job_abort      = job_abort,
2120        .lock           = vpe_lock,
2121        .unlock         = vpe_unlock,
2122};
2123
2124static int vpe_runtime_get(struct platform_device *pdev)
2125{
2126        int r;
2127
2128        dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2129
2130        r = pm_runtime_get_sync(&pdev->dev);
2131        WARN_ON(r < 0);
2132        return r < 0 ? r : 0;
2133}
2134
2135static void vpe_runtime_put(struct platform_device *pdev)
2136{
2137
2138        int r;
2139
2140        dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2141
2142        r = pm_runtime_put_sync(&pdev->dev);
2143        WARN_ON(r < 0 && r != -ENOSYS);
2144}
2145
2146static void vpe_fw_cb(struct platform_device *pdev)
2147{
2148        struct vpe_dev *dev = platform_get_drvdata(pdev);
2149        struct video_device *vfd;
2150        int ret;
2151
2152        vfd = &dev->vfd;
2153        *vfd = vpe_videodev;
2154        vfd->lock = &dev->dev_mutex;
2155        vfd->v4l2_dev = &dev->v4l2_dev;
2156
2157        ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2158        if (ret) {
2159                vpe_err(dev, "Failed to register video device\n");
2160
2161                vpe_set_clock_enable(dev, 0);
2162                vpe_runtime_put(pdev);
2163                pm_runtime_disable(&pdev->dev);
2164                v4l2_m2m_release(dev->m2m_dev);
2165                vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2166                v4l2_device_unregister(&dev->v4l2_dev);
2167
2168                return;
2169        }
2170
2171        video_set_drvdata(vfd, dev);
2172        snprintf(vfd->name, sizeof(vfd->name), "%s", vpe_videodev.name);
2173        dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2174                vfd->num);
2175}
2176
2177static int vpe_probe(struct platform_device *pdev)
2178{
2179        struct vpe_dev *dev;
2180        int ret, irq, func;
2181
2182        dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2183        if (!dev)
2184                return -ENOMEM;
2185
2186        spin_lock_init(&dev->lock);
2187
2188        ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2189        if (ret)
2190                return ret;
2191
2192        atomic_set(&dev->num_instances, 0);
2193        mutex_init(&dev->dev_mutex);
2194
2195        dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2196                        "vpe_top");
2197        /*
2198         * HACK: we get resource info from device tree in the form of a list of
2199         * VPE sub blocks, the driver currently uses only the base of vpe_top
2200         * for register access, the driver should be changed later to access
2201         * registers based on the sub block base addresses
2202         */
2203        dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2204        if (!dev->base) {
2205                ret = -ENOMEM;
2206                goto v4l2_dev_unreg;
2207        }
2208
2209        irq = platform_get_irq(pdev, 0);
2210        ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2211                        dev);
2212        if (ret)
2213                goto v4l2_dev_unreg;
2214
2215        platform_set_drvdata(pdev, dev);
2216
2217        dev->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev);
2218        if (IS_ERR(dev->alloc_ctx)) {
2219                vpe_err(dev, "Failed to alloc vb2 context\n");
2220                ret = PTR_ERR(dev->alloc_ctx);
2221                goto v4l2_dev_unreg;
2222        }
2223
2224        dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2225        if (IS_ERR(dev->m2m_dev)) {
2226                vpe_err(dev, "Failed to init mem2mem device\n");
2227                ret = PTR_ERR(dev->m2m_dev);
2228                goto rel_ctx;
2229        }
2230
2231        pm_runtime_enable(&pdev->dev);
2232
2233        ret = vpe_runtime_get(pdev);
2234        if (ret)
2235                goto rel_m2m;
2236
2237        /* Perform clk enable followed by reset */
2238        vpe_set_clock_enable(dev, 1);
2239
2240        vpe_top_reset(dev);
2241
2242        func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2243                VPE_PID_FUNC_SHIFT);
2244        vpe_dbg(dev, "VPE PID function %x\n", func);
2245
2246        vpe_top_vpdma_reset(dev);
2247
2248        dev->sc = sc_create(pdev);
2249        if (IS_ERR(dev->sc)) {
2250                ret = PTR_ERR(dev->sc);
2251                goto runtime_put;
2252        }
2253
2254        dev->csc = csc_create(pdev);
2255        if (IS_ERR(dev->csc)) {
2256                ret = PTR_ERR(dev->csc);
2257                goto runtime_put;
2258        }
2259
2260        dev->vpdma = vpdma_create(pdev, vpe_fw_cb);
2261        if (IS_ERR(dev->vpdma)) {
2262                ret = PTR_ERR(dev->vpdma);
2263                goto runtime_put;
2264        }
2265
2266        return 0;
2267
2268runtime_put:
2269        vpe_runtime_put(pdev);
2270rel_m2m:
2271        pm_runtime_disable(&pdev->dev);
2272        v4l2_m2m_release(dev->m2m_dev);
2273rel_ctx:
2274        vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2275v4l2_dev_unreg:
2276        v4l2_device_unregister(&dev->v4l2_dev);
2277
2278        return ret;
2279}
2280
2281static int vpe_remove(struct platform_device *pdev)
2282{
2283        struct vpe_dev *dev = platform_get_drvdata(pdev);
2284
2285        v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2286
2287        v4l2_m2m_release(dev->m2m_dev);
2288        video_unregister_device(&dev->vfd);
2289        v4l2_device_unregister(&dev->v4l2_dev);
2290        vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2291
2292        vpe_set_clock_enable(dev, 0);
2293        vpe_runtime_put(pdev);
2294        pm_runtime_disable(&pdev->dev);
2295
2296        return 0;
2297}
2298
2299#if defined(CONFIG_OF)
2300static const struct of_device_id vpe_of_match[] = {
2301        {
2302                .compatible = "ti,vpe",
2303        },
2304        {},
2305};
2306#endif
2307
2308static struct platform_driver vpe_pdrv = {
2309        .probe          = vpe_probe,
2310        .remove         = vpe_remove,
2311        .driver         = {
2312                .name   = VPE_MODULE_NAME,
2313                .of_match_table = of_match_ptr(vpe_of_match),
2314        },
2315};
2316
2317module_platform_driver(vpe_pdrv);
2318
2319MODULE_DESCRIPTION("TI VPE driver");
2320MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2321MODULE_LICENSE("GPL");
2322