linux/drivers/mtd/nand/davinci_nand.c
<<
>>
Prefs
   1/*
   2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
   3 *
   4 * Copyright © 2006 Texas Instruments.
   5 *
   6 * Port to 2.6.23 Copyright © 2008 by:
   7 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
   8 *   Troy Kisky <troy.kisky@boundarydevices.com>
   9 *   Dirk Behme <Dirk.Behme@gmail.com>
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/platform_device.h>
  29#include <linux/err.h>
  30#include <linux/clk.h>
  31#include <linux/io.h>
  32#include <linux/mtd/nand.h>
  33#include <linux/mtd/partitions.h>
  34#include <linux/slab.h>
  35#include <linux/of_device.h>
  36#include <linux/of.h>
  37#include <linux/of_mtd.h>
  38
  39#include <linux/platform_data/mtd-davinci.h>
  40#include <linux/platform_data/mtd-davinci-aemif.h>
  41
  42/*
  43 * This is a device driver for the NAND flash controller found on the
  44 * various DaVinci family chips.  It handles up to four SoC chipselects,
  45 * and some flavors of secondary chipselect (e.g. based on A12) as used
  46 * with multichip packages.
  47 *
  48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
  49 * available on chips like the DM355 and OMAP-L137 and needed with the
  50 * more error-prone MLC NAND chips.
  51 *
  52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
  53 * outputs in a "wire-AND" configuration, with no per-chip signals.
  54 */
  55struct davinci_nand_info {
  56        struct mtd_info         mtd;
  57        struct nand_chip        chip;
  58        struct nand_ecclayout   ecclayout;
  59
  60        struct device           *dev;
  61        struct clk              *clk;
  62
  63        bool                    is_readmode;
  64
  65        void __iomem            *base;
  66        void __iomem            *vaddr;
  67
  68        uint32_t                ioaddr;
  69        uint32_t                current_cs;
  70
  71        uint32_t                mask_chipsel;
  72        uint32_t                mask_ale;
  73        uint32_t                mask_cle;
  74
  75        uint32_t                core_chipsel;
  76
  77        struct davinci_aemif_timing     *timing;
  78};
  79
  80static DEFINE_SPINLOCK(davinci_nand_lock);
  81static bool ecc4_busy;
  82
  83#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
  84
  85
  86static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
  87                int offset)
  88{
  89        return __raw_readl(info->base + offset);
  90}
  91
  92static inline void davinci_nand_writel(struct davinci_nand_info *info,
  93                int offset, unsigned long value)
  94{
  95        __raw_writel(value, info->base + offset);
  96}
  97
  98/*----------------------------------------------------------------------*/
  99
 100/*
 101 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 102 */
 103
 104static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 105                                   unsigned int ctrl)
 106{
 107        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 108        uint32_t                        addr = info->current_cs;
 109        struct nand_chip                *nand = mtd->priv;
 110
 111        /* Did the control lines change? */
 112        if (ctrl & NAND_CTRL_CHANGE) {
 113                if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
 114                        addr |= info->mask_cle;
 115                else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
 116                        addr |= info->mask_ale;
 117
 118                nand->IO_ADDR_W = (void __iomem __force *)addr;
 119        }
 120
 121        if (cmd != NAND_CMD_NONE)
 122                iowrite8(cmd, nand->IO_ADDR_W);
 123}
 124
 125static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
 126{
 127        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 128        uint32_t                        addr = info->ioaddr;
 129
 130        /* maybe kick in a second chipselect */
 131        if (chip > 0)
 132                addr |= info->mask_chipsel;
 133        info->current_cs = addr;
 134
 135        info->chip.IO_ADDR_W = (void __iomem __force *)addr;
 136        info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
 137}
 138
 139/*----------------------------------------------------------------------*/
 140
 141/*
 142 * 1-bit hardware ECC ... context maintained for each core chipselect
 143 */
 144
 145static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
 146{
 147        struct davinci_nand_info *info = to_davinci_nand(mtd);
 148
 149        return davinci_nand_readl(info, NANDF1ECC_OFFSET
 150                        + 4 * info->core_chipsel);
 151}
 152
 153static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
 154{
 155        struct davinci_nand_info *info;
 156        uint32_t nandcfr;
 157        unsigned long flags;
 158
 159        info = to_davinci_nand(mtd);
 160
 161        /* Reset ECC hardware */
 162        nand_davinci_readecc_1bit(mtd);
 163
 164        spin_lock_irqsave(&davinci_nand_lock, flags);
 165
 166        /* Restart ECC hardware */
 167        nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
 168        nandcfr |= BIT(8 + info->core_chipsel);
 169        davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
 170
 171        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 172}
 173
 174/*
 175 * Read hardware ECC value and pack into three bytes
 176 */
 177static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
 178                                      const u_char *dat, u_char *ecc_code)
 179{
 180        unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
 181        unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
 182
 183        /* invert so that erased block ecc is correct */
 184        ecc24 = ~ecc24;
 185        ecc_code[0] = (u_char)(ecc24);
 186        ecc_code[1] = (u_char)(ecc24 >> 8);
 187        ecc_code[2] = (u_char)(ecc24 >> 16);
 188
 189        return 0;
 190}
 191
 192static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
 193                                     u_char *read_ecc, u_char *calc_ecc)
 194{
 195        struct nand_chip *chip = mtd->priv;
 196        uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
 197                                          (read_ecc[2] << 16);
 198        uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
 199                                          (calc_ecc[2] << 16);
 200        uint32_t diff = eccCalc ^ eccNand;
 201
 202        if (diff) {
 203                if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 204                        /* Correctable error */
 205                        if ((diff >> (12 + 3)) < chip->ecc.size) {
 206                                dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
 207                                return 1;
 208                        } else {
 209                                return -1;
 210                        }
 211                } else if (!(diff & (diff - 1))) {
 212                        /* Single bit ECC error in the ECC itself,
 213                         * nothing to fix */
 214                        return 1;
 215                } else {
 216                        /* Uncorrectable error */
 217                        return -1;
 218                }
 219
 220        }
 221        return 0;
 222}
 223
 224/*----------------------------------------------------------------------*/
 225
 226/*
 227 * 4-bit hardware ECC ... context maintained over entire AEMIF
 228 *
 229 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 230 * since that forces use of a problematic "infix OOB" layout.
 231 * Among other things, it trashes manufacturer bad block markers.
 232 * Also, and specific to this hardware, it ECC-protects the "prepad"
 233 * in the OOB ... while having ECC protection for parts of OOB would
 234 * seem useful, the current MTD stack sometimes wants to update the
 235 * OOB without recomputing ECC.
 236 */
 237
 238static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
 239{
 240        struct davinci_nand_info *info = to_davinci_nand(mtd);
 241        unsigned long flags;
 242        u32 val;
 243
 244        spin_lock_irqsave(&davinci_nand_lock, flags);
 245
 246        /* Start 4-bit ECC calculation for read/write */
 247        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 248        val &= ~(0x03 << 4);
 249        val |= (info->core_chipsel << 4) | BIT(12);
 250        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 251
 252        info->is_readmode = (mode == NAND_ECC_READ);
 253
 254        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 255}
 256
 257/* Read raw ECC code after writing to NAND. */
 258static void
 259nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
 260{
 261        const u32 mask = 0x03ff03ff;
 262
 263        code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
 264        code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
 265        code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
 266        code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
 267}
 268
 269/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
 270static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
 271                const u_char *dat, u_char *ecc_code)
 272{
 273        struct davinci_nand_info *info = to_davinci_nand(mtd);
 274        u32 raw_ecc[4], *p;
 275        unsigned i;
 276
 277        /* After a read, terminate ECC calculation by a dummy read
 278         * of some 4-bit ECC register.  ECC covers everything that
 279         * was read; correct() just uses the hardware state, so
 280         * ecc_code is not needed.
 281         */
 282        if (info->is_readmode) {
 283                davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
 284                return 0;
 285        }
 286
 287        /* Pack eight raw 10-bit ecc values into ten bytes, making
 288         * two passes which each convert four values (in upper and
 289         * lower halves of two 32-bit words) into five bytes.  The
 290         * ROM boot loader uses this same packing scheme.
 291         */
 292        nand_davinci_readecc_4bit(info, raw_ecc);
 293        for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
 294                *ecc_code++ =   p[0]        & 0xff;
 295                *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
 296                *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
 297                *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
 298                *ecc_code++ =  (p[1] >> 18) & 0xff;
 299        }
 300
 301        return 0;
 302}
 303
 304/* Correct up to 4 bits in data we just read, using state left in the
 305 * hardware plus the ecc_code computed when it was first written.
 306 */
 307static int nand_davinci_correct_4bit(struct mtd_info *mtd,
 308                u_char *data, u_char *ecc_code, u_char *null)
 309{
 310        int i;
 311        struct davinci_nand_info *info = to_davinci_nand(mtd);
 312        unsigned short ecc10[8];
 313        unsigned short *ecc16;
 314        u32 syndrome[4];
 315        u32 ecc_state;
 316        unsigned num_errors, corrected;
 317        unsigned long timeo;
 318
 319        /* All bytes 0xff?  It's an erased page; ignore its ECC. */
 320        for (i = 0; i < 10; i++) {
 321                if (ecc_code[i] != 0xff)
 322                        goto compare;
 323        }
 324        return 0;
 325
 326compare:
 327        /* Unpack ten bytes into eight 10 bit values.  We know we're
 328         * little-endian, and use type punning for less shifting/masking.
 329         */
 330        if (WARN_ON(0x01 & (unsigned) ecc_code))
 331                return -EINVAL;
 332        ecc16 = (unsigned short *)ecc_code;
 333
 334        ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
 335        ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
 336        ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
 337        ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
 338        ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
 339        ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
 340        ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
 341        ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
 342
 343        /* Tell ECC controller about the expected ECC codes. */
 344        for (i = 7; i >= 0; i--)
 345                davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
 346
 347        /* Allow time for syndrome calculation ... then read it.
 348         * A syndrome of all zeroes 0 means no detected errors.
 349         */
 350        davinci_nand_readl(info, NANDFSR_OFFSET);
 351        nand_davinci_readecc_4bit(info, syndrome);
 352        if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
 353                return 0;
 354
 355        /*
 356         * Clear any previous address calculation by doing a dummy read of an
 357         * error address register.
 358         */
 359        davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
 360
 361        /* Start address calculation, and wait for it to complete.
 362         * We _could_ start reading more data while this is working,
 363         * to speed up the overall page read.
 364         */
 365        davinci_nand_writel(info, NANDFCR_OFFSET,
 366                        davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
 367
 368        /*
 369         * ECC_STATE field reads 0x3 (Error correction complete) immediately
 370         * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
 371         * begin trying to poll for the state, you may fall right out of your
 372         * loop without any of the correction calculations having taken place.
 373         * The recommendation from the hardware team is to initially delay as
 374         * long as ECC_STATE reads less than 4. After that, ECC HW has entered
 375         * correction state.
 376         */
 377        timeo = jiffies + usecs_to_jiffies(100);
 378        do {
 379                ecc_state = (davinci_nand_readl(info,
 380                                NANDFSR_OFFSET) >> 8) & 0x0f;
 381                cpu_relax();
 382        } while ((ecc_state < 4) && time_before(jiffies, timeo));
 383
 384        for (;;) {
 385                u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
 386
 387                switch ((fsr >> 8) & 0x0f) {
 388                case 0:         /* no error, should not happen */
 389                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 390                        return 0;
 391                case 1:         /* five or more errors detected */
 392                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 393                        return -EIO;
 394                case 2:         /* error addresses computed */
 395                case 3:
 396                        num_errors = 1 + ((fsr >> 16) & 0x03);
 397                        goto correct;
 398                default:        /* still working on it */
 399                        cpu_relax();
 400                        continue;
 401                }
 402        }
 403
 404correct:
 405        /* correct each error */
 406        for (i = 0, corrected = 0; i < num_errors; i++) {
 407                int error_address, error_value;
 408
 409                if (i > 1) {
 410                        error_address = davinci_nand_readl(info,
 411                                                NAND_ERR_ADD2_OFFSET);
 412                        error_value = davinci_nand_readl(info,
 413                                                NAND_ERR_ERRVAL2_OFFSET);
 414                } else {
 415                        error_address = davinci_nand_readl(info,
 416                                                NAND_ERR_ADD1_OFFSET);
 417                        error_value = davinci_nand_readl(info,
 418                                                NAND_ERR_ERRVAL1_OFFSET);
 419                }
 420
 421                if (i & 1) {
 422                        error_address >>= 16;
 423                        error_value >>= 16;
 424                }
 425                error_address &= 0x3ff;
 426                error_address = (512 + 7) - error_address;
 427
 428                if (error_address < 512) {
 429                        data[error_address] ^= error_value;
 430                        corrected++;
 431                }
 432        }
 433
 434        return corrected;
 435}
 436
 437/*----------------------------------------------------------------------*/
 438
 439/*
 440 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 441 * how these chips are normally wired.  This translates to both 8 and 16
 442 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 443 *
 444 * For now we assume that configuration, or any other one which ignores
 445 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 446 * and have that transparently morphed into multiple NAND operations.
 447 */
 448static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 449{
 450        struct nand_chip *chip = mtd->priv;
 451
 452        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 453                ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
 454        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 455                ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
 456        else
 457                ioread8_rep(chip->IO_ADDR_R, buf, len);
 458}
 459
 460static void nand_davinci_write_buf(struct mtd_info *mtd,
 461                const uint8_t *buf, int len)
 462{
 463        struct nand_chip *chip = mtd->priv;
 464
 465        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 466                iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
 467        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 468                iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
 469        else
 470                iowrite8_rep(chip->IO_ADDR_R, buf, len);
 471}
 472
 473/*
 474 * Check hardware register for wait status. Returns 1 if device is ready,
 475 * 0 if it is still busy.
 476 */
 477static int nand_davinci_dev_ready(struct mtd_info *mtd)
 478{
 479        struct davinci_nand_info *info = to_davinci_nand(mtd);
 480
 481        return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
 482}
 483
 484/*----------------------------------------------------------------------*/
 485
 486/* An ECC layout for using 4-bit ECC with small-page flash, storing
 487 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 488 * and not overlapping the default BBT markers.
 489 */
 490static struct nand_ecclayout hwecc4_small = {
 491        .eccbytes = 10,
 492        .eccpos = { 0, 1, 2, 3, 4,
 493                /* offset 5 holds the badblock marker */
 494                6, 7,
 495                13, 14, 15, },
 496        .oobfree = {
 497                {.offset = 8, .length = 5, },
 498                {.offset = 16, },
 499        },
 500};
 501
 502/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
 503 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
 504 * and not overlapping the default BBT markers.
 505 */
 506static struct nand_ecclayout hwecc4_2048 = {
 507        .eccbytes = 40,
 508        .eccpos = {
 509                /* at the end of spare sector */
 510                24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
 511                34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
 512                44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
 513                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 514                },
 515        .oobfree = {
 516                /* 2 bytes at offset 0 hold manufacturer badblock markers */
 517                {.offset = 2, .length = 22, },
 518                /* 5 bytes at offset 8 hold BBT markers */
 519                /* 8 bytes at offset 16 hold JFFS2 clean markers */
 520        },
 521};
 522
 523/*
 524 * An ECC layout for using 4-bit ECC with large-page (4096bytes) flash,
 525 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
 526 * and not overlapping the default BBT markers.
 527 */
 528static struct nand_ecclayout hwecc4_4096 = {
 529        .eccbytes = 80,
 530        .eccpos = {
 531                /* at the end of spare sector */
 532                48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
 533                58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
 534                68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
 535                78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
 536                88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
 537                98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
 538                108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
 539                118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
 540        },
 541        .oobfree = {
 542                /* 2 bytes at offset 0 hold manufacturer badblock markers */
 543                {.offset = 2, .length = 46, },
 544                /* 5 bytes at offset 8 hold BBT markers */
 545                /* 8 bytes at offset 16 hold JFFS2 clean markers */
 546        },
 547};
 548
 549#if defined(CONFIG_OF)
 550static const struct of_device_id davinci_nand_of_match[] = {
 551        {.compatible = "ti,davinci-nand", },
 552        {.compatible = "ti,keystone-nand", },
 553        {},
 554};
 555MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
 556
 557static struct davinci_nand_pdata
 558        *nand_davinci_get_pdata(struct platform_device *pdev)
 559{
 560        if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
 561                struct davinci_nand_pdata *pdata;
 562                const char *mode;
 563                u32 prop;
 564
 565                pdata =  devm_kzalloc(&pdev->dev,
 566                                sizeof(struct davinci_nand_pdata),
 567                                GFP_KERNEL);
 568                pdev->dev.platform_data = pdata;
 569                if (!pdata)
 570                        return ERR_PTR(-ENOMEM);
 571                if (!of_property_read_u32(pdev->dev.of_node,
 572                        "ti,davinci-chipselect", &prop))
 573                        pdev->id = prop;
 574                else
 575                        return ERR_PTR(-EINVAL);
 576
 577                if (!of_property_read_u32(pdev->dev.of_node,
 578                        "ti,davinci-mask-ale", &prop))
 579                        pdata->mask_ale = prop;
 580                if (!of_property_read_u32(pdev->dev.of_node,
 581                        "ti,davinci-mask-cle", &prop))
 582                        pdata->mask_cle = prop;
 583                if (!of_property_read_u32(pdev->dev.of_node,
 584                        "ti,davinci-mask-chipsel", &prop))
 585                        pdata->mask_chipsel = prop;
 586                if (!of_property_read_string(pdev->dev.of_node,
 587                        "nand-ecc-mode", &mode) ||
 588                    !of_property_read_string(pdev->dev.of_node,
 589                        "ti,davinci-ecc-mode", &mode)) {
 590                        if (!strncmp("none", mode, 4))
 591                                pdata->ecc_mode = NAND_ECC_NONE;
 592                        if (!strncmp("soft", mode, 4))
 593                                pdata->ecc_mode = NAND_ECC_SOFT;
 594                        if (!strncmp("hw", mode, 2))
 595                                pdata->ecc_mode = NAND_ECC_HW;
 596                }
 597                if (!of_property_read_u32(pdev->dev.of_node,
 598                        "ti,davinci-ecc-bits", &prop))
 599                        pdata->ecc_bits = prop;
 600
 601                prop = of_get_nand_bus_width(pdev->dev.of_node);
 602                if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
 603                        "ti,davinci-nand-buswidth", &prop))
 604                        if (prop == 16)
 605                                pdata->options |= NAND_BUSWIDTH_16;
 606                if (of_property_read_bool(pdev->dev.of_node,
 607                        "nand-on-flash-bbt") ||
 608                    of_property_read_bool(pdev->dev.of_node,
 609                        "ti,davinci-nand-use-bbt"))
 610                        pdata->bbt_options = NAND_BBT_USE_FLASH;
 611
 612                if (of_device_is_compatible(pdev->dev.of_node,
 613                                            "ti,keystone-nand")) {
 614                        pdata->options |= NAND_NO_SUBPAGE_WRITE;
 615                }
 616        }
 617
 618        return dev_get_platdata(&pdev->dev);
 619}
 620#else
 621static struct davinci_nand_pdata
 622        *nand_davinci_get_pdata(struct platform_device *pdev)
 623{
 624        return dev_get_platdata(&pdev->dev);
 625}
 626#endif
 627
 628static int nand_davinci_probe(struct platform_device *pdev)
 629{
 630        struct davinci_nand_pdata       *pdata;
 631        struct davinci_nand_info        *info;
 632        struct resource                 *res1;
 633        struct resource                 *res2;
 634        void __iomem                    *vaddr;
 635        void __iomem                    *base;
 636        int                             ret;
 637        uint32_t                        val;
 638        nand_ecc_modes_t                ecc_mode;
 639
 640        pdata = nand_davinci_get_pdata(pdev);
 641        if (IS_ERR(pdata))
 642                return PTR_ERR(pdata);
 643
 644        /* insist on board-specific configuration */
 645        if (!pdata)
 646                return -ENODEV;
 647
 648        /* which external chipselect will we be managing? */
 649        if (pdev->id < 0 || pdev->id > 3)
 650                return -ENODEV;
 651
 652        info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
 653        if (!info)
 654                return -ENOMEM;
 655
 656        platform_set_drvdata(pdev, info);
 657
 658        res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 659        res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 660        if (!res1 || !res2) {
 661                dev_err(&pdev->dev, "resource missing\n");
 662                return -EINVAL;
 663        }
 664
 665        vaddr = devm_ioremap_resource(&pdev->dev, res1);
 666        if (IS_ERR(vaddr))
 667                return PTR_ERR(vaddr);
 668
 669        /*
 670         * This registers range is used to setup NAND settings. In case with
 671         * TI AEMIF driver, the same memory address range is requested already
 672         * by AEMIF, so we cannot request it twice, just ioremap.
 673         * The AEMIF and NAND drivers not use the same registers in this range.
 674         */
 675        base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
 676        if (!base) {
 677                dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
 678                return -EADDRNOTAVAIL;
 679        }
 680
 681        info->dev               = &pdev->dev;
 682        info->base              = base;
 683        info->vaddr             = vaddr;
 684
 685        info->mtd.priv          = &info->chip;
 686        info->mtd.dev.parent    = &pdev->dev;
 687
 688        info->chip.IO_ADDR_R    = vaddr;
 689        info->chip.IO_ADDR_W    = vaddr;
 690        info->chip.chip_delay   = 0;
 691        info->chip.select_chip  = nand_davinci_select_chip;
 692
 693        /* options such as NAND_BBT_USE_FLASH */
 694        info->chip.bbt_options  = pdata->bbt_options;
 695        /* options such as 16-bit widths */
 696        info->chip.options      = pdata->options;
 697        info->chip.bbt_td       = pdata->bbt_td;
 698        info->chip.bbt_md       = pdata->bbt_md;
 699        info->timing            = pdata->timing;
 700
 701        info->ioaddr            = (uint32_t __force) vaddr;
 702
 703        info->current_cs        = info->ioaddr;
 704        info->core_chipsel      = pdev->id;
 705        info->mask_chipsel      = pdata->mask_chipsel;
 706
 707        /* use nandboot-capable ALE/CLE masks by default */
 708        info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
 709        info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
 710
 711        /* Set address of hardware control function */
 712        info->chip.cmd_ctrl     = nand_davinci_hwcontrol;
 713        info->chip.dev_ready    = nand_davinci_dev_ready;
 714
 715        /* Speed up buffer I/O */
 716        info->chip.read_buf     = nand_davinci_read_buf;
 717        info->chip.write_buf    = nand_davinci_write_buf;
 718
 719        /* Use board-specific ECC config */
 720        ecc_mode                = pdata->ecc_mode;
 721
 722        ret = -EINVAL;
 723        switch (ecc_mode) {
 724        case NAND_ECC_NONE:
 725        case NAND_ECC_SOFT:
 726                pdata->ecc_bits = 0;
 727                break;
 728        case NAND_ECC_HW:
 729                if (pdata->ecc_bits == 4) {
 730                        /* No sanity checks:  CPUs must support this,
 731                         * and the chips may not use NAND_BUSWIDTH_16.
 732                         */
 733
 734                        /* No sharing 4-bit hardware between chipselects yet */
 735                        spin_lock_irq(&davinci_nand_lock);
 736                        if (ecc4_busy)
 737                                ret = -EBUSY;
 738                        else
 739                                ecc4_busy = true;
 740                        spin_unlock_irq(&davinci_nand_lock);
 741
 742                        if (ret == -EBUSY)
 743                                return ret;
 744
 745                        info->chip.ecc.calculate = nand_davinci_calculate_4bit;
 746                        info->chip.ecc.correct = nand_davinci_correct_4bit;
 747                        info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
 748                        info->chip.ecc.bytes = 10;
 749                } else {
 750                        info->chip.ecc.calculate = nand_davinci_calculate_1bit;
 751                        info->chip.ecc.correct = nand_davinci_correct_1bit;
 752                        info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
 753                        info->chip.ecc.bytes = 3;
 754                }
 755                info->chip.ecc.size = 512;
 756                info->chip.ecc.strength = pdata->ecc_bits;
 757                break;
 758        default:
 759                return -EINVAL;
 760        }
 761        info->chip.ecc.mode = ecc_mode;
 762
 763        info->clk = devm_clk_get(&pdev->dev, "aemif");
 764        if (IS_ERR(info->clk)) {
 765                ret = PTR_ERR(info->clk);
 766                dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
 767                return ret;
 768        }
 769
 770        ret = clk_prepare_enable(info->clk);
 771        if (ret < 0) {
 772                dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
 773                        ret);
 774                goto err_clk_enable;
 775        }
 776
 777        spin_lock_irq(&davinci_nand_lock);
 778
 779        /* put CSxNAND into NAND mode */
 780        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 781        val |= BIT(info->core_chipsel);
 782        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 783
 784        spin_unlock_irq(&davinci_nand_lock);
 785
 786        /* Scan to find existence of the device(s) */
 787        ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
 788        if (ret < 0) {
 789                dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
 790                goto err;
 791        }
 792
 793        /* Update ECC layout if needed ... for 1-bit HW ECC, the default
 794         * is OK, but it allocates 6 bytes when only 3 are needed (for
 795         * each 512 bytes).  For the 4-bit HW ECC, that default is not
 796         * usable:  10 bytes are needed, not 6.
 797         */
 798        if (pdata->ecc_bits == 4) {
 799                int     chunks = info->mtd.writesize / 512;
 800
 801                if (!chunks || info->mtd.oobsize < 16) {
 802                        dev_dbg(&pdev->dev, "too small\n");
 803                        ret = -EINVAL;
 804                        goto err;
 805                }
 806
 807                /* For small page chips, preserve the manufacturer's
 808                 * badblock marking data ... and make sure a flash BBT
 809                 * table marker fits in the free bytes.
 810                 */
 811                if (chunks == 1) {
 812                        info->ecclayout = hwecc4_small;
 813                        info->ecclayout.oobfree[1].length =
 814                                info->mtd.oobsize - 16;
 815                        goto syndrome_done;
 816                }
 817                if (chunks == 4) {
 818                        info->ecclayout = hwecc4_2048;
 819                        info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
 820                        goto syndrome_done;
 821                }
 822                if (chunks == 8) {
 823                        info->ecclayout = hwecc4_4096;
 824                        info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
 825                        goto syndrome_done;
 826                }
 827
 828                ret = -EIO;
 829                goto err;
 830
 831syndrome_done:
 832                info->chip.ecc.layout = &info->ecclayout;
 833        }
 834
 835        ret = nand_scan_tail(&info->mtd);
 836        if (ret < 0)
 837                goto err;
 838
 839        if (pdata->parts)
 840                ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
 841                                        pdata->parts, pdata->nr_parts);
 842        else {
 843                struct mtd_part_parser_data     ppdata;
 844
 845                ppdata.of_node = pdev->dev.of_node;
 846                ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
 847                                                NULL, 0);
 848        }
 849        if (ret < 0)
 850                goto err;
 851
 852        val = davinci_nand_readl(info, NRCSR_OFFSET);
 853        dev_info(&pdev->dev, "controller rev. %d.%d\n",
 854               (val >> 8) & 0xff, val & 0xff);
 855
 856        return 0;
 857
 858err:
 859        clk_disable_unprepare(info->clk);
 860
 861err_clk_enable:
 862        spin_lock_irq(&davinci_nand_lock);
 863        if (ecc_mode == NAND_ECC_HW_SYNDROME)
 864                ecc4_busy = false;
 865        spin_unlock_irq(&davinci_nand_lock);
 866        return ret;
 867}
 868
 869static int nand_davinci_remove(struct platform_device *pdev)
 870{
 871        struct davinci_nand_info *info = platform_get_drvdata(pdev);
 872
 873        spin_lock_irq(&davinci_nand_lock);
 874        if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
 875                ecc4_busy = false;
 876        spin_unlock_irq(&davinci_nand_lock);
 877
 878        nand_release(&info->mtd);
 879
 880        clk_disable_unprepare(info->clk);
 881
 882        return 0;
 883}
 884
 885static struct platform_driver nand_davinci_driver = {
 886        .probe          = nand_davinci_probe,
 887        .remove         = nand_davinci_remove,
 888        .driver         = {
 889                .name   = "davinci_nand",
 890                .of_match_table = of_match_ptr(davinci_nand_of_match),
 891        },
 892};
 893MODULE_ALIAS("platform:davinci_nand");
 894
 895module_platform_driver(nand_davinci_driver);
 896
 897MODULE_LICENSE("GPL");
 898MODULE_AUTHOR("Texas Instruments");
 899MODULE_DESCRIPTION("Davinci NAND flash driver");
 900
 901