linux/drivers/mtd/nand/fsl_elbc_nand.c
<<
>>
Prefs
   1/* Freescale Enhanced Local Bus Controller NAND driver
   2 *
   3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
   4 *
   5 * Authors: Nick Spence <nick.spence@freescale.com>,
   6 *          Scott Wood <scottwood@freescale.com>
   7 *          Jack Lan <jack.lan@freescale.com>
   8 *          Roy Zang <tie-fei.zang@freescale.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/kernel.h>
  28#include <linux/string.h>
  29#include <linux/ioport.h>
  30#include <linux/of_address.h>
  31#include <linux/of_platform.h>
  32#include <linux/platform_device.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35
  36#include <linux/mtd/mtd.h>
  37#include <linux/mtd/nand.h>
  38#include <linux/mtd/nand_ecc.h>
  39#include <linux/mtd/partitions.h>
  40
  41#include <asm/io.h>
  42#include <asm/fsl_lbc.h>
  43
  44#define MAX_BANKS 8
  45#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  46#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  47
  48/* mtd information per set */
  49
  50struct fsl_elbc_mtd {
  51        struct mtd_info mtd;
  52        struct nand_chip chip;
  53        struct fsl_lbc_ctrl *ctrl;
  54
  55        struct device *dev;
  56        int bank;               /* Chip select bank number           */
  57        u8 __iomem *vbase;      /* Chip select base virtual address  */
  58        int page_size;          /* NAND page size (0=512, 1=2048)    */
  59        unsigned int fmr;       /* FCM Flash Mode Register value     */
  60};
  61
  62/* Freescale eLBC FCM controller information */
  63
  64struct fsl_elbc_fcm_ctrl {
  65        struct nand_hw_control controller;
  66        struct fsl_elbc_mtd *chips[MAX_BANKS];
  67
  68        u8 __iomem *addr;        /* Address of assigned FCM buffer        */
  69        unsigned int page;       /* Last page written to / read from      */
  70        unsigned int read_bytes; /* Number of bytes read during command   */
  71        unsigned int column;     /* Saved column from SEQIN               */
  72        unsigned int index;      /* Pointer to next byte to 'read'        */
  73        unsigned int status;     /* status read from LTESR after last op  */
  74        unsigned int mdr;        /* UPM/FCM Data Register value           */
  75        unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
  76        unsigned int oob;        /* Non zero if operating on OOB data     */
  77        unsigned int counter;    /* counter for the initializations       */
  78        unsigned int max_bitflips;  /* Saved during READ0 cmd             */
  79};
  80
  81/* These map to the positions used by the FCM hardware ECC generator */
  82
  83/* Small Page FLASH with FMR[ECCM] = 0 */
  84static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  85        .eccbytes = 3,
  86        .eccpos = {6, 7, 8},
  87        .oobfree = { {0, 5}, {9, 7} },
  88};
  89
  90/* Small Page FLASH with FMR[ECCM] = 1 */
  91static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  92        .eccbytes = 3,
  93        .eccpos = {8, 9, 10},
  94        .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  95};
  96
  97/* Large Page FLASH with FMR[ECCM] = 0 */
  98static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  99        .eccbytes = 12,
 100        .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
 101        .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
 102};
 103
 104/* Large Page FLASH with FMR[ECCM] = 1 */
 105static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
 106        .eccbytes = 12,
 107        .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
 108        .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
 109};
 110
 111/*
 112 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 113 * interfere with ECC positions, that's why we implement our own descriptors.
 114 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 115 */
 116static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 117static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 118
 119static struct nand_bbt_descr bbt_main_descr = {
 120        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 121                   NAND_BBT_2BIT | NAND_BBT_VERSION,
 122        .offs = 11,
 123        .len = 4,
 124        .veroffs = 15,
 125        .maxblocks = 4,
 126        .pattern = bbt_pattern,
 127};
 128
 129static struct nand_bbt_descr bbt_mirror_descr = {
 130        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 131                   NAND_BBT_2BIT | NAND_BBT_VERSION,
 132        .offs = 11,
 133        .len = 4,
 134        .veroffs = 15,
 135        .maxblocks = 4,
 136        .pattern = mirror_pattern,
 137};
 138
 139/*=================================*/
 140
 141/*
 142 * Set up the FCM hardware block and page address fields, and the fcm
 143 * structure addr field to point to the correct FCM buffer in memory
 144 */
 145static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 146{
 147        struct nand_chip *chip = mtd->priv;
 148        struct fsl_elbc_mtd *priv = chip->priv;
 149        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 150        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 151        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 152        int buf_num;
 153
 154        elbc_fcm_ctrl->page = page_addr;
 155
 156        if (priv->page_size) {
 157                /*
 158                 * large page size chip : FPAR[PI] save the lowest 6 bits,
 159                 *                        FBAR[BLK] save the other bits.
 160                 */
 161                out_be32(&lbc->fbar, page_addr >> 6);
 162                out_be32(&lbc->fpar,
 163                         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 164                         (oob ? FPAR_LP_MS : 0) | column);
 165                buf_num = (page_addr & 1) << 2;
 166        } else {
 167                /*
 168                 * small page size chip : FPAR[PI] save the lowest 5 bits,
 169                 *                        FBAR[BLK] save the other bits.
 170                 */
 171                out_be32(&lbc->fbar, page_addr >> 5);
 172                out_be32(&lbc->fpar,
 173                         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 174                         (oob ? FPAR_SP_MS : 0) | column);
 175                buf_num = page_addr & 7;
 176        }
 177
 178        elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
 179        elbc_fcm_ctrl->index = column;
 180
 181        /* for OOB data point to the second half of the buffer */
 182        if (oob)
 183                elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
 184
 185        dev_vdbg(priv->dev, "set_addr: bank=%d, "
 186                            "elbc_fcm_ctrl->addr=0x%p (0x%p), "
 187                            "index %x, pes %d ps %d\n",
 188                 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
 189                 elbc_fcm_ctrl->index,
 190                 chip->phys_erase_shift, chip->page_shift);
 191}
 192
 193/*
 194 * execute FCM command and wait for it to complete
 195 */
 196static int fsl_elbc_run_command(struct mtd_info *mtd)
 197{
 198        struct nand_chip *chip = mtd->priv;
 199        struct fsl_elbc_mtd *priv = chip->priv;
 200        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 201        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 202        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 203
 204        /* Setup the FMR[OP] to execute without write protection */
 205        out_be32(&lbc->fmr, priv->fmr | 3);
 206        if (elbc_fcm_ctrl->use_mdr)
 207                out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
 208
 209        dev_vdbg(priv->dev,
 210                 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 211                 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 212        dev_vdbg(priv->dev,
 213                 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 214                 "fbcr=%08x bank=%d\n",
 215                 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 216                 in_be32(&lbc->fbcr), priv->bank);
 217
 218        ctrl->irq_status = 0;
 219        /* execute special operation */
 220        out_be32(&lbc->lsor, priv->bank);
 221
 222        /* wait for FCM complete flag or timeout */
 223        wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 224                           FCM_TIMEOUT_MSECS * HZ/1000);
 225        elbc_fcm_ctrl->status = ctrl->irq_status;
 226        /* store mdr value in case it was needed */
 227        if (elbc_fcm_ctrl->use_mdr)
 228                elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
 229
 230        elbc_fcm_ctrl->use_mdr = 0;
 231
 232        if (elbc_fcm_ctrl->status != LTESR_CC) {
 233                dev_info(priv->dev,
 234                         "command failed: fir %x fcr %x status %x mdr %x\n",
 235                         in_be32(&lbc->fir), in_be32(&lbc->fcr),
 236                         elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
 237                return -EIO;
 238        }
 239
 240        if (chip->ecc.mode != NAND_ECC_HW)
 241                return 0;
 242
 243        elbc_fcm_ctrl->max_bitflips = 0;
 244
 245        if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
 246                uint32_t lteccr = in_be32(&lbc->lteccr);
 247                /*
 248                 * if command was a full page read and the ELBC
 249                 * has the LTECCR register, then bits 12-15 (ppc order) of
 250                 * LTECCR indicates which 512 byte sub-pages had fixed errors.
 251                 * bits 28-31 are uncorrectable errors, marked elsewhere.
 252                 * for small page nand only 1 bit is used.
 253                 * if the ELBC doesn't have the lteccr register it reads 0
 254                 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
 255                 * count the number of sub-pages with bitflips and update
 256                 * ecc_stats.corrected accordingly.
 257                 */
 258                if (lteccr & 0x000F000F)
 259                        out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
 260                if (lteccr & 0x000F0000) {
 261                        mtd->ecc_stats.corrected++;
 262                        elbc_fcm_ctrl->max_bitflips = 1;
 263                }
 264        }
 265
 266        return 0;
 267}
 268
 269static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 270{
 271        struct fsl_elbc_mtd *priv = chip->priv;
 272        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 273        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 274
 275        if (priv->page_size) {
 276                out_be32(&lbc->fir,
 277                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 278                         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 279                         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 280                         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
 281                         (FIR_OP_RBW << FIR_OP4_SHIFT));
 282
 283                out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 284                                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 285        } else {
 286                out_be32(&lbc->fir,
 287                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 288                         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 289                         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 290                         (FIR_OP_RBW << FIR_OP3_SHIFT));
 291
 292                if (oob)
 293                        out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 294                else
 295                        out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 296        }
 297}
 298
 299/* cmdfunc send commands to the FCM */
 300static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 301                             int column, int page_addr)
 302{
 303        struct nand_chip *chip = mtd->priv;
 304        struct fsl_elbc_mtd *priv = chip->priv;
 305        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 306        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 307        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 308
 309        elbc_fcm_ctrl->use_mdr = 0;
 310
 311        /* clear the read buffer */
 312        elbc_fcm_ctrl->read_bytes = 0;
 313        if (command != NAND_CMD_PAGEPROG)
 314                elbc_fcm_ctrl->index = 0;
 315
 316        switch (command) {
 317        /* READ0 and READ1 read the entire buffer to use hardware ECC. */
 318        case NAND_CMD_READ1:
 319                column += 256;
 320
 321        /* fall-through */
 322        case NAND_CMD_READ0:
 323                dev_dbg(priv->dev,
 324                        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 325                        " 0x%x, column: 0x%x.\n", page_addr, column);
 326
 327
 328                out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 329                set_addr(mtd, 0, page_addr, 0);
 330
 331                elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 332                elbc_fcm_ctrl->index += column;
 333
 334                fsl_elbc_do_read(chip, 0);
 335                fsl_elbc_run_command(mtd);
 336                return;
 337
 338        /* READOOB reads only the OOB because no ECC is performed. */
 339        case NAND_CMD_READOOB:
 340                dev_vdbg(priv->dev,
 341                         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 342                         " 0x%x, column: 0x%x.\n", page_addr, column);
 343
 344                out_be32(&lbc->fbcr, mtd->oobsize - column);
 345                set_addr(mtd, column, page_addr, 1);
 346
 347                elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 348
 349                fsl_elbc_do_read(chip, 1);
 350                fsl_elbc_run_command(mtd);
 351                return;
 352
 353        case NAND_CMD_READID:
 354        case NAND_CMD_PARAM:
 355                dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
 356
 357                out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 358                                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 359                                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 360                out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
 361                /*
 362                 * although currently it's 8 bytes for READID, we always read
 363                 * the maximum 256 bytes(for PARAM)
 364                 */
 365                out_be32(&lbc->fbcr, 256);
 366                elbc_fcm_ctrl->read_bytes = 256;
 367                elbc_fcm_ctrl->use_mdr = 1;
 368                elbc_fcm_ctrl->mdr = column;
 369                set_addr(mtd, 0, 0, 0);
 370                fsl_elbc_run_command(mtd);
 371                return;
 372
 373        /* ERASE1 stores the block and page address */
 374        case NAND_CMD_ERASE1:
 375                dev_vdbg(priv->dev,
 376                         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 377                         "page_addr: 0x%x.\n", page_addr);
 378                set_addr(mtd, 0, page_addr, 0);
 379                return;
 380
 381        /* ERASE2 uses the block and page address from ERASE1 */
 382        case NAND_CMD_ERASE2:
 383                dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 384
 385                out_be32(&lbc->fir,
 386                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 387                         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 388                         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
 389                         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 390                         (FIR_OP_RS  << FIR_OP4_SHIFT));
 391
 392                out_be32(&lbc->fcr,
 393                         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 394                         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
 395                         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
 396
 397                out_be32(&lbc->fbcr, 0);
 398                elbc_fcm_ctrl->read_bytes = 0;
 399                elbc_fcm_ctrl->use_mdr = 1;
 400
 401                fsl_elbc_run_command(mtd);
 402                return;
 403
 404        /* SEQIN sets up the addr buffer and all registers except the length */
 405        case NAND_CMD_SEQIN: {
 406                __be32 fcr;
 407                dev_vdbg(priv->dev,
 408                         "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 409                         "page_addr: 0x%x, column: 0x%x.\n",
 410                         page_addr, column);
 411
 412                elbc_fcm_ctrl->column = column;
 413                elbc_fcm_ctrl->use_mdr = 1;
 414
 415                if (column >= mtd->writesize) {
 416                        /* OOB area */
 417                        column -= mtd->writesize;
 418                        elbc_fcm_ctrl->oob = 1;
 419                } else {
 420                        WARN_ON(column != 0);
 421                        elbc_fcm_ctrl->oob = 0;
 422                }
 423
 424                fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
 425                      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
 426                      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
 427
 428                if (priv->page_size) {
 429                        out_be32(&lbc->fir,
 430                                 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
 431                                 (FIR_OP_CA  << FIR_OP1_SHIFT) |
 432                                 (FIR_OP_PA  << FIR_OP2_SHIFT) |
 433                                 (FIR_OP_WB  << FIR_OP3_SHIFT) |
 434                                 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
 435                                 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
 436                                 (FIR_OP_RS  << FIR_OP6_SHIFT));
 437                } else {
 438                        out_be32(&lbc->fir,
 439                                 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 440                                 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 441                                 (FIR_OP_CA  << FIR_OP2_SHIFT) |
 442                                 (FIR_OP_PA  << FIR_OP3_SHIFT) |
 443                                 (FIR_OP_WB  << FIR_OP4_SHIFT) |
 444                                 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
 445                                 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
 446                                 (FIR_OP_RS  << FIR_OP7_SHIFT));
 447
 448                        if (elbc_fcm_ctrl->oob)
 449                                /* OOB area --> READOOB */
 450                                fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 451                        else
 452                                /* First 256 bytes --> READ0 */
 453                                fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 454                }
 455
 456                out_be32(&lbc->fcr, fcr);
 457                set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
 458                return;
 459        }
 460
 461        /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 462        case NAND_CMD_PAGEPROG: {
 463                dev_vdbg(priv->dev,
 464                         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 465                         "writing %d bytes.\n", elbc_fcm_ctrl->index);
 466
 467                /* if the write did not start at 0 or is not a full page
 468                 * then set the exact length, otherwise use a full page
 469                 * write so the HW generates the ECC.
 470                 */
 471                if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
 472                    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
 473                        out_be32(&lbc->fbcr,
 474                                elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
 475                else
 476                        out_be32(&lbc->fbcr, 0);
 477
 478                fsl_elbc_run_command(mtd);
 479                return;
 480        }
 481
 482        /* CMD_STATUS must read the status byte while CEB is active */
 483        /* Note - it does not wait for the ready line */
 484        case NAND_CMD_STATUS:
 485                out_be32(&lbc->fir,
 486                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 487                         (FIR_OP_RBW << FIR_OP1_SHIFT));
 488                out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 489                out_be32(&lbc->fbcr, 1);
 490                set_addr(mtd, 0, 0, 0);
 491                elbc_fcm_ctrl->read_bytes = 1;
 492
 493                fsl_elbc_run_command(mtd);
 494
 495                /* The chip always seems to report that it is
 496                 * write-protected, even when it is not.
 497                 */
 498                setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
 499                return;
 500
 501        /* RESET without waiting for the ready line */
 502        case NAND_CMD_RESET:
 503                dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 504                out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 505                out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 506                fsl_elbc_run_command(mtd);
 507                return;
 508
 509        default:
 510                dev_err(priv->dev,
 511                        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 512                        command);
 513        }
 514}
 515
 516static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
 517{
 518        /* The hardware does not seem to support multiple
 519         * chips per bank.
 520         */
 521}
 522
 523/*
 524 * Write buf to the FCM Controller Data Buffer
 525 */
 526static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 527{
 528        struct nand_chip *chip = mtd->priv;
 529        struct fsl_elbc_mtd *priv = chip->priv;
 530        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 531        unsigned int bufsize = mtd->writesize + mtd->oobsize;
 532
 533        if (len <= 0) {
 534                dev_err(priv->dev, "write_buf of %d bytes", len);
 535                elbc_fcm_ctrl->status = 0;
 536                return;
 537        }
 538
 539        if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
 540                dev_err(priv->dev,
 541                        "write_buf beyond end of buffer "
 542                        "(%d requested, %u available)\n",
 543                        len, bufsize - elbc_fcm_ctrl->index);
 544                len = bufsize - elbc_fcm_ctrl->index;
 545        }
 546
 547        memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
 548        /*
 549         * This is workaround for the weird elbc hangs during nand write,
 550         * Scott Wood says: "...perhaps difference in how long it takes a
 551         * write to make it through the localbus compared to a write to IMMR
 552         * is causing problems, and sync isn't helping for some reason."
 553         * Reading back the last byte helps though.
 554         */
 555        in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
 556
 557        elbc_fcm_ctrl->index += len;
 558}
 559
 560/*
 561 * read a byte from either the FCM hardware buffer if it has any data left
 562 * otherwise issue a command to read a single byte.
 563 */
 564static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
 565{
 566        struct nand_chip *chip = mtd->priv;
 567        struct fsl_elbc_mtd *priv = chip->priv;
 568        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 569
 570        /* If there are still bytes in the FCM, then use the next byte. */
 571        if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
 572                return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
 573
 574        dev_err(priv->dev, "read_byte beyond end of buffer\n");
 575        return ERR_BYTE;
 576}
 577
 578/*
 579 * Read from the FCM Controller Data Buffer
 580 */
 581static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 582{
 583        struct nand_chip *chip = mtd->priv;
 584        struct fsl_elbc_mtd *priv = chip->priv;
 585        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 586        int avail;
 587
 588        if (len < 0)
 589                return;
 590
 591        avail = min((unsigned int)len,
 592                        elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 593        memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
 594        elbc_fcm_ctrl->index += avail;
 595
 596        if (len > avail)
 597                dev_err(priv->dev,
 598                        "read_buf beyond end of buffer "
 599                        "(%d requested, %d available)\n",
 600                        len, avail);
 601}
 602
 603/* This function is called after Program and Erase Operations to
 604 * check for success or failure.
 605 */
 606static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 607{
 608        struct fsl_elbc_mtd *priv = chip->priv;
 609        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 610
 611        if (elbc_fcm_ctrl->status != LTESR_CC)
 612                return NAND_STATUS_FAIL;
 613
 614        /* The chip always seems to report that it is
 615         * write-protected, even when it is not.
 616         */
 617        return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 618}
 619
 620static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
 621{
 622        struct nand_chip *chip = mtd->priv;
 623        struct fsl_elbc_mtd *priv = chip->priv;
 624        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 625        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 626        unsigned int al;
 627
 628        /* calculate FMR Address Length field */
 629        al = 0;
 630        if (chip->pagemask & 0xffff0000)
 631                al++;
 632        if (chip->pagemask & 0xff000000)
 633                al++;
 634
 635        priv->fmr |= al << FMR_AL_SHIFT;
 636
 637        dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
 638                chip->numchips);
 639        dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 640                chip->chipsize);
 641        dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 642                chip->pagemask);
 643        dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
 644                chip->chip_delay);
 645        dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 646                chip->badblockpos);
 647        dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 648                chip->chip_shift);
 649        dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 650                chip->page_shift);
 651        dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 652                chip->phys_erase_shift);
 653        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
 654                chip->ecc.mode);
 655        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 656                chip->ecc.steps);
 657        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 658                chip->ecc.bytes);
 659        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 660                chip->ecc.total);
 661        dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
 662                chip->ecc.layout);
 663        dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 664        dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 665        dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 666                mtd->erasesize);
 667        dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 668                mtd->writesize);
 669        dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 670                mtd->oobsize);
 671
 672        /* adjust Option Register and ECC to match Flash page size */
 673        if (mtd->writesize == 512) {
 674                priv->page_size = 0;
 675                clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 676        } else if (mtd->writesize == 2048) {
 677                priv->page_size = 1;
 678                setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 679                /* adjust ecc setup if needed */
 680                if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 681                    BR_DECC_CHK_GEN) {
 682                        chip->ecc.size = 512;
 683                        chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 684                                           &fsl_elbc_oob_lp_eccm1 :
 685                                           &fsl_elbc_oob_lp_eccm0;
 686                }
 687        } else {
 688                dev_err(priv->dev,
 689                        "fsl_elbc_init: page size %d is not supported\n",
 690                        mtd->writesize);
 691                return -1;
 692        }
 693
 694        return 0;
 695}
 696
 697static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 698                              uint8_t *buf, int oob_required, int page)
 699{
 700        struct fsl_elbc_mtd *priv = chip->priv;
 701        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 702        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 703
 704        fsl_elbc_read_buf(mtd, buf, mtd->writesize);
 705        if (oob_required)
 706                fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 707
 708        if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
 709                mtd->ecc_stats.failed++;
 710
 711        return elbc_fcm_ctrl->max_bitflips;
 712}
 713
 714/* ECC will be calculated automatically, and errors will be detected in
 715 * waitfunc.
 716 */
 717static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 718                                const uint8_t *buf, int oob_required, int page)
 719{
 720        fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 721        fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 722
 723        return 0;
 724}
 725
 726/* ECC will be calculated automatically, and errors will be detected in
 727 * waitfunc.
 728 */
 729static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
 730                                uint32_t offset, uint32_t data_len,
 731                                const uint8_t *buf, int oob_required, int page)
 732{
 733        fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 734        fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 735
 736        return 0;
 737}
 738
 739static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 740{
 741        struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 742        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 743        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 744        struct nand_chip *chip = &priv->chip;
 745
 746        dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 747
 748        /* Fill in fsl_elbc_mtd structure */
 749        priv->mtd.priv = chip;
 750        priv->mtd.dev.parent = priv->dev;
 751
 752        /* set timeout to maximum */
 753        priv->fmr = 15 << FMR_CWTO_SHIFT;
 754        if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
 755                priv->fmr |= FMR_ECCM;
 756
 757        /* fill in nand_chip structure */
 758        /* set up function call table */
 759        chip->read_byte = fsl_elbc_read_byte;
 760        chip->write_buf = fsl_elbc_write_buf;
 761        chip->read_buf = fsl_elbc_read_buf;
 762        chip->select_chip = fsl_elbc_select_chip;
 763        chip->cmdfunc = fsl_elbc_cmdfunc;
 764        chip->waitfunc = fsl_elbc_wait;
 765
 766        chip->bbt_td = &bbt_main_descr;
 767        chip->bbt_md = &bbt_mirror_descr;
 768
 769        /* set up nand options */
 770        chip->bbt_options = NAND_BBT_USE_FLASH;
 771
 772        chip->controller = &elbc_fcm_ctrl->controller;
 773        chip->priv = priv;
 774
 775        chip->ecc.read_page = fsl_elbc_read_page;
 776        chip->ecc.write_page = fsl_elbc_write_page;
 777        chip->ecc.write_subpage = fsl_elbc_write_subpage;
 778
 779        /* If CS Base Register selects full hardware ECC then use it */
 780        if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 781            BR_DECC_CHK_GEN) {
 782                chip->ecc.mode = NAND_ECC_HW;
 783                /* put in small page settings and adjust later if needed */
 784                chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 785                                &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
 786                chip->ecc.size = 512;
 787                chip->ecc.bytes = 3;
 788                chip->ecc.strength = 1;
 789        } else {
 790                /* otherwise fall back to default software ECC */
 791                chip->ecc.mode = NAND_ECC_SOFT;
 792        }
 793
 794        return 0;
 795}
 796
 797static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 798{
 799        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 800        nand_release(&priv->mtd);
 801
 802        kfree(priv->mtd.name);
 803
 804        if (priv->vbase)
 805                iounmap(priv->vbase);
 806
 807        elbc_fcm_ctrl->chips[priv->bank] = NULL;
 808        kfree(priv);
 809        return 0;
 810}
 811
 812static DEFINE_MUTEX(fsl_elbc_nand_mutex);
 813
 814static int fsl_elbc_nand_probe(struct platform_device *pdev)
 815{
 816        struct fsl_lbc_regs __iomem *lbc;
 817        struct fsl_elbc_mtd *priv;
 818        struct resource res;
 819        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
 820        static const char *part_probe_types[]
 821                = { "cmdlinepart", "RedBoot", "ofpart", NULL };
 822        int ret;
 823        int bank;
 824        struct device *dev;
 825        struct device_node *node = pdev->dev.of_node;
 826        struct mtd_part_parser_data ppdata;
 827
 828        ppdata.of_node = pdev->dev.of_node;
 829        if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
 830                return -ENODEV;
 831        lbc = fsl_lbc_ctrl_dev->regs;
 832        dev = fsl_lbc_ctrl_dev->dev;
 833
 834        /* get, allocate and map the memory resource */
 835        ret = of_address_to_resource(node, 0, &res);
 836        if (ret) {
 837                dev_err(dev, "failed to get resource\n");
 838                return ret;
 839        }
 840
 841        /* find which chip select it is connected to */
 842        for (bank = 0; bank < MAX_BANKS; bank++)
 843                if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 844                    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 845                    (in_be32(&lbc->bank[bank].br) &
 846                     in_be32(&lbc->bank[bank].or) & BR_BA)
 847                     == fsl_lbc_addr(res.start))
 848                        break;
 849
 850        if (bank >= MAX_BANKS) {
 851                dev_err(dev, "address did not match any chip selects\n");
 852                return -ENODEV;
 853        }
 854
 855        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 856        if (!priv)
 857                return -ENOMEM;
 858
 859        mutex_lock(&fsl_elbc_nand_mutex);
 860        if (!fsl_lbc_ctrl_dev->nand) {
 861                elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
 862                if (!elbc_fcm_ctrl) {
 863                        mutex_unlock(&fsl_elbc_nand_mutex);
 864                        ret = -ENOMEM;
 865                        goto err;
 866                }
 867                elbc_fcm_ctrl->counter++;
 868
 869                spin_lock_init(&elbc_fcm_ctrl->controller.lock);
 870                init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
 871                fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
 872        } else {
 873                elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 874        }
 875        mutex_unlock(&fsl_elbc_nand_mutex);
 876
 877        elbc_fcm_ctrl->chips[bank] = priv;
 878        priv->bank = bank;
 879        priv->ctrl = fsl_lbc_ctrl_dev;
 880        priv->dev = &pdev->dev;
 881        dev_set_drvdata(priv->dev, priv);
 882
 883        priv->vbase = ioremap(res.start, resource_size(&res));
 884        if (!priv->vbase) {
 885                dev_err(dev, "failed to map chip region\n");
 886                ret = -ENOMEM;
 887                goto err;
 888        }
 889
 890        priv->mtd.name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
 891        if (!priv->mtd.name) {
 892                ret = -ENOMEM;
 893                goto err;
 894        }
 895
 896        ret = fsl_elbc_chip_init(priv);
 897        if (ret)
 898                goto err;
 899
 900        ret = nand_scan_ident(&priv->mtd, 1, NULL);
 901        if (ret)
 902                goto err;
 903
 904        ret = fsl_elbc_chip_init_tail(&priv->mtd);
 905        if (ret)
 906                goto err;
 907
 908        ret = nand_scan_tail(&priv->mtd);
 909        if (ret)
 910                goto err;
 911
 912        /* First look for RedBoot table or partitions on the command
 913         * line, these take precedence over device tree information */
 914        mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
 915                                  NULL, 0);
 916
 917        printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
 918               (unsigned long long)res.start, priv->bank);
 919        return 0;
 920
 921err:
 922        fsl_elbc_chip_remove(priv);
 923        return ret;
 924}
 925
 926static int fsl_elbc_nand_remove(struct platform_device *pdev)
 927{
 928        struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 929        struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
 930
 931        fsl_elbc_chip_remove(priv);
 932
 933        mutex_lock(&fsl_elbc_nand_mutex);
 934        elbc_fcm_ctrl->counter--;
 935        if (!elbc_fcm_ctrl->counter) {
 936                fsl_lbc_ctrl_dev->nand = NULL;
 937                kfree(elbc_fcm_ctrl);
 938        }
 939        mutex_unlock(&fsl_elbc_nand_mutex);
 940
 941        return 0;
 942
 943}
 944
 945static const struct of_device_id fsl_elbc_nand_match[] = {
 946        { .compatible = "fsl,elbc-fcm-nand", },
 947        {}
 948};
 949MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
 950
 951static struct platform_driver fsl_elbc_nand_driver = {
 952        .driver = {
 953                .name = "fsl,elbc-fcm-nand",
 954                .of_match_table = fsl_elbc_nand_match,
 955        },
 956        .probe = fsl_elbc_nand_probe,
 957        .remove = fsl_elbc_nand_remove,
 958};
 959
 960module_platform_driver(fsl_elbc_nand_driver);
 961
 962MODULE_LICENSE("GPL");
 963MODULE_AUTHOR("Freescale");
 964MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
 965