1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/delay.h>
17#include <linux/mtd/nand.h>
18#include <linux/mtd/nand_ecc.h>
19#include <linux/mtd/partitions.h>
20#include <linux/mtd/mtd.h>
21#include <linux/of_address.h>
22#include <linux/of_platform.h>
23#include <linux/of_gpio.h>
24#include <linux/io.h>
25#include <linux/slab.h>
26#include <asm/fsl_lbc.h>
27
28#define FSL_UPM_WAIT_RUN_PATTERN 0x1
29#define FSL_UPM_WAIT_WRITE_BYTE 0x2
30#define FSL_UPM_WAIT_WRITE_BUFFER 0x4
31
32struct fsl_upm_nand {
33 struct device *dev;
34 struct mtd_info mtd;
35 struct nand_chip chip;
36 int last_ctrl;
37 struct mtd_partition *parts;
38 struct fsl_upm upm;
39 uint8_t upm_addr_offset;
40 uint8_t upm_cmd_offset;
41 void __iomem *io_base;
42 int rnb_gpio[NAND_MAX_CHIPS];
43 uint32_t mchip_offsets[NAND_MAX_CHIPS];
44 uint32_t mchip_count;
45 uint32_t mchip_number;
46 int chip_delay;
47 uint32_t wait_flags;
48};
49
50static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
51{
52 return container_of(mtdinfo, struct fsl_upm_nand, mtd);
53}
54
55static int fun_chip_ready(struct mtd_info *mtd)
56{
57 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
58
59 if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
60 return 1;
61
62 dev_vdbg(fun->dev, "busy\n");
63 return 0;
64}
65
66static void fun_wait_rnb(struct fsl_upm_nand *fun)
67{
68 if (fun->rnb_gpio[fun->mchip_number] >= 0) {
69 int cnt = 1000000;
70
71 while (--cnt && !fun_chip_ready(&fun->mtd))
72 cpu_relax();
73 if (!cnt)
74 dev_err(fun->dev, "tired waiting for RNB\n");
75 } else {
76 ndelay(100);
77 }
78}
79
80static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
81{
82 struct nand_chip *chip = mtd->priv;
83 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
84 u32 mar;
85
86 if (!(ctrl & fun->last_ctrl)) {
87 fsl_upm_end_pattern(&fun->upm);
88
89 if (cmd == NAND_CMD_NONE)
90 return;
91
92 fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
93 }
94
95 if (ctrl & NAND_CTRL_CHANGE) {
96 if (ctrl & NAND_ALE)
97 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
98 else if (ctrl & NAND_CLE)
99 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
100 }
101
102 mar = (cmd << (32 - fun->upm.width)) |
103 fun->mchip_offsets[fun->mchip_number];
104 fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
105
106 if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
107 fun_wait_rnb(fun);
108}
109
110static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
111{
112 struct nand_chip *chip = mtd->priv;
113 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
114
115 if (mchip_nr == -1) {
116 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
117 } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
118 fun->mchip_number = mchip_nr;
119 chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
120 chip->IO_ADDR_W = chip->IO_ADDR_R;
121 } else {
122 BUG();
123 }
124}
125
126static uint8_t fun_read_byte(struct mtd_info *mtd)
127{
128 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
129
130 return in_8(fun->chip.IO_ADDR_R);
131}
132
133static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134{
135 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
136 int i;
137
138 for (i = 0; i < len; i++)
139 buf[i] = in_8(fun->chip.IO_ADDR_R);
140}
141
142static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
143{
144 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
145 int i;
146
147 for (i = 0; i < len; i++) {
148 out_8(fun->chip.IO_ADDR_W, buf[i]);
149 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
150 fun_wait_rnb(fun);
151 }
152 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
153 fun_wait_rnb(fun);
154}
155
156static int fun_chip_init(struct fsl_upm_nand *fun,
157 const struct device_node *upm_np,
158 const struct resource *io_res)
159{
160 int ret;
161 struct device_node *flash_np;
162 struct mtd_part_parser_data ppdata;
163
164 fun->chip.IO_ADDR_R = fun->io_base;
165 fun->chip.IO_ADDR_W = fun->io_base;
166 fun->chip.cmd_ctrl = fun_cmd_ctrl;
167 fun->chip.chip_delay = fun->chip_delay;
168 fun->chip.read_byte = fun_read_byte;
169 fun->chip.read_buf = fun_read_buf;
170 fun->chip.write_buf = fun_write_buf;
171 fun->chip.ecc.mode = NAND_ECC_SOFT;
172 if (fun->mchip_count > 1)
173 fun->chip.select_chip = fun_select_chip;
174
175 if (fun->rnb_gpio[0] >= 0)
176 fun->chip.dev_ready = fun_chip_ready;
177
178 fun->mtd.priv = &fun->chip;
179 fun->mtd.dev.parent = fun->dev;
180
181 flash_np = of_get_next_child(upm_np, NULL);
182 if (!flash_np)
183 return -ENODEV;
184
185 fun->mtd.name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start,
186 flash_np->name);
187 if (!fun->mtd.name) {
188 ret = -ENOMEM;
189 goto err;
190 }
191
192 ret = nand_scan(&fun->mtd, fun->mchip_count);
193 if (ret)
194 goto err;
195
196 ppdata.of_node = flash_np;
197 ret = mtd_device_parse_register(&fun->mtd, NULL, &ppdata, NULL, 0);
198err:
199 of_node_put(flash_np);
200 if (ret)
201 kfree(fun->mtd.name);
202 return ret;
203}
204
205static int fun_probe(struct platform_device *ofdev)
206{
207 struct fsl_upm_nand *fun;
208 struct resource io_res;
209 const __be32 *prop;
210 int rnb_gpio;
211 int ret;
212 int size;
213 int i;
214
215 fun = kzalloc(sizeof(*fun), GFP_KERNEL);
216 if (!fun)
217 return -ENOMEM;
218
219 ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res);
220 if (ret) {
221 dev_err(&ofdev->dev, "can't get IO base\n");
222 goto err1;
223 }
224
225 ret = fsl_upm_find(io_res.start, &fun->upm);
226 if (ret) {
227 dev_err(&ofdev->dev, "can't find UPM\n");
228 goto err1;
229 }
230
231 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
232 &size);
233 if (!prop || size != sizeof(uint32_t)) {
234 dev_err(&ofdev->dev, "can't get UPM address offset\n");
235 ret = -EINVAL;
236 goto err1;
237 }
238 fun->upm_addr_offset = *prop;
239
240 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
241 if (!prop || size != sizeof(uint32_t)) {
242 dev_err(&ofdev->dev, "can't get UPM command offset\n");
243 ret = -EINVAL;
244 goto err1;
245 }
246 fun->upm_cmd_offset = *prop;
247
248 prop = of_get_property(ofdev->dev.of_node,
249 "fsl,upm-addr-line-cs-offsets", &size);
250 if (prop && (size / sizeof(uint32_t)) > 0) {
251 fun->mchip_count = size / sizeof(uint32_t);
252 if (fun->mchip_count >= NAND_MAX_CHIPS) {
253 dev_err(&ofdev->dev, "too much multiple chips\n");
254 goto err1;
255 }
256 for (i = 0; i < fun->mchip_count; i++)
257 fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
258 } else {
259 fun->mchip_count = 1;
260 }
261
262 for (i = 0; i < fun->mchip_count; i++) {
263 fun->rnb_gpio[i] = -1;
264 rnb_gpio = of_get_gpio(ofdev->dev.of_node, i);
265 if (rnb_gpio >= 0) {
266 ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
267 if (ret) {
268 dev_err(&ofdev->dev,
269 "can't request RNB gpio #%d\n", i);
270 goto err2;
271 }
272 gpio_direction_input(rnb_gpio);
273 fun->rnb_gpio[i] = rnb_gpio;
274 } else if (rnb_gpio == -EINVAL) {
275 dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
276 goto err2;
277 }
278 }
279
280 prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL);
281 if (prop)
282 fun->chip_delay = be32_to_cpup(prop);
283 else
284 fun->chip_delay = 50;
285
286 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size);
287 if (prop && size == sizeof(uint32_t))
288 fun->wait_flags = be32_to_cpup(prop);
289 else
290 fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
291 FSL_UPM_WAIT_WRITE_BYTE;
292
293 fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
294 resource_size(&io_res));
295 if (!fun->io_base) {
296 ret = -ENOMEM;
297 goto err2;
298 }
299
300 fun->dev = &ofdev->dev;
301 fun->last_ctrl = NAND_CLE;
302
303 ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res);
304 if (ret)
305 goto err2;
306
307 dev_set_drvdata(&ofdev->dev, fun);
308
309 return 0;
310err2:
311 for (i = 0; i < fun->mchip_count; i++) {
312 if (fun->rnb_gpio[i] < 0)
313 break;
314 gpio_free(fun->rnb_gpio[i]);
315 }
316err1:
317 kfree(fun);
318
319 return ret;
320}
321
322static int fun_remove(struct platform_device *ofdev)
323{
324 struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
325 int i;
326
327 nand_release(&fun->mtd);
328 kfree(fun->mtd.name);
329
330 for (i = 0; i < fun->mchip_count; i++) {
331 if (fun->rnb_gpio[i] < 0)
332 break;
333 gpio_free(fun->rnb_gpio[i]);
334 }
335
336 kfree(fun);
337
338 return 0;
339}
340
341static const struct of_device_id of_fun_match[] = {
342 { .compatible = "fsl,upm-nand" },
343 {},
344};
345MODULE_DEVICE_TABLE(of, of_fun_match);
346
347static struct platform_driver of_fun_driver = {
348 .driver = {
349 .name = "fsl,upm-nand",
350 .of_match_table = of_fun_match,
351 },
352 .probe = fun_probe,
353 .remove = fun_remove,
354};
355
356module_platform_driver(of_fun_driver);
357
358MODULE_LICENSE("GPL");
359MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
360MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
361 "LocalBus User-Programmable Machine");
362