linux/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  Overview:
   3 *   This is the generic MTD driver for NAND flash devices. It should be
   4 *   capable of working with almost all NAND chips currently available.
   5 *
   6 *      Additional technical information is available on
   7 *      http://www.linux-mtd.infradead.org/doc/nand.html
   8 *
   9 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  10 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  11 *
  12 *  Credits:
  13 *      David Woodhouse for adding multichip support
  14 *
  15 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  16 *      rework for 2K page size chips
  17 *
  18 *  TODO:
  19 *      Enable cached programming for 2k page size chips
  20 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  21 *      if we have HW ECC support.
  22 *      BBT table is not serialized, has to be fixed
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31
  32#include <linux/module.h>
  33#include <linux/delay.h>
  34#include <linux/errno.h>
  35#include <linux/err.h>
  36#include <linux/sched.h>
  37#include <linux/slab.h>
  38#include <linux/mm.h>
  39#include <linux/types.h>
  40#include <linux/mtd/mtd.h>
  41#include <linux/mtd/nand.h>
  42#include <linux/mtd/nand_ecc.h>
  43#include <linux/mtd/nand_bch.h>
  44#include <linux/interrupt.h>
  45#include <linux/bitops.h>
  46#include <linux/leds.h>
  47#include <linux/io.h>
  48#include <linux/mtd/partitions.h>
  49#include <linux/of_mtd.h>
  50
  51/* Define default oob placement schemes for large and small page devices */
  52static struct nand_ecclayout nand_oob_8 = {
  53        .eccbytes = 3,
  54        .eccpos = {0, 1, 2},
  55        .oobfree = {
  56                {.offset = 3,
  57                 .length = 2},
  58                {.offset = 6,
  59                 .length = 2} }
  60};
  61
  62static struct nand_ecclayout nand_oob_16 = {
  63        .eccbytes = 6,
  64        .eccpos = {0, 1, 2, 3, 6, 7},
  65        .oobfree = {
  66                {.offset = 8,
  67                 . length = 8} }
  68};
  69
  70static struct nand_ecclayout nand_oob_64 = {
  71        .eccbytes = 24,
  72        .eccpos = {
  73                   40, 41, 42, 43, 44, 45, 46, 47,
  74                   48, 49, 50, 51, 52, 53, 54, 55,
  75                   56, 57, 58, 59, 60, 61, 62, 63},
  76        .oobfree = {
  77                {.offset = 2,
  78                 .length = 38} }
  79};
  80
  81static struct nand_ecclayout nand_oob_128 = {
  82        .eccbytes = 48,
  83        .eccpos = {
  84                   80, 81, 82, 83, 84, 85, 86, 87,
  85                   88, 89, 90, 91, 92, 93, 94, 95,
  86                   96, 97, 98, 99, 100, 101, 102, 103,
  87                   104, 105, 106, 107, 108, 109, 110, 111,
  88                   112, 113, 114, 115, 116, 117, 118, 119,
  89                   120, 121, 122, 123, 124, 125, 126, 127},
  90        .oobfree = {
  91                {.offset = 2,
  92                 .length = 78} }
  93};
  94
  95static int nand_get_device(struct mtd_info *mtd, int new_state);
  96
  97static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
  98                             struct mtd_oob_ops *ops);
  99
 100/*
 101 * For devices which display every fart in the system on a separate LED. Is
 102 * compiled away when LED support is disabled.
 103 */
 104DEFINE_LED_TRIGGER(nand_led_trigger);
 105
 106static int check_offs_len(struct mtd_info *mtd,
 107                                        loff_t ofs, uint64_t len)
 108{
 109        struct nand_chip *chip = mtd->priv;
 110        int ret = 0;
 111
 112        /* Start address must align on block boundary */
 113        if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
 114                pr_debug("%s: unaligned address\n", __func__);
 115                ret = -EINVAL;
 116        }
 117
 118        /* Length must align on block boundary */
 119        if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
 120                pr_debug("%s: length not block aligned\n", __func__);
 121                ret = -EINVAL;
 122        }
 123
 124        return ret;
 125}
 126
 127/**
 128 * nand_release_device - [GENERIC] release chip
 129 * @mtd: MTD device structure
 130 *
 131 * Release chip lock and wake up anyone waiting on the device.
 132 */
 133static void nand_release_device(struct mtd_info *mtd)
 134{
 135        struct nand_chip *chip = mtd->priv;
 136
 137        /* Release the controller and the chip */
 138        spin_lock(&chip->controller->lock);
 139        chip->controller->active = NULL;
 140        chip->state = FL_READY;
 141        wake_up(&chip->controller->wq);
 142        spin_unlock(&chip->controller->lock);
 143}
 144
 145/**
 146 * nand_read_byte - [DEFAULT] read one byte from the chip
 147 * @mtd: MTD device structure
 148 *
 149 * Default read function for 8bit buswidth
 150 */
 151static uint8_t nand_read_byte(struct mtd_info *mtd)
 152{
 153        struct nand_chip *chip = mtd->priv;
 154        return readb(chip->IO_ADDR_R);
 155}
 156
 157/**
 158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 159 * @mtd: MTD device structure
 160 *
 161 * Default read function for 16bit buswidth with endianness conversion.
 162 *
 163 */
 164static uint8_t nand_read_byte16(struct mtd_info *mtd)
 165{
 166        struct nand_chip *chip = mtd->priv;
 167        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 168}
 169
 170/**
 171 * nand_read_word - [DEFAULT] read one word from the chip
 172 * @mtd: MTD device structure
 173 *
 174 * Default read function for 16bit buswidth without endianness conversion.
 175 */
 176static u16 nand_read_word(struct mtd_info *mtd)
 177{
 178        struct nand_chip *chip = mtd->priv;
 179        return readw(chip->IO_ADDR_R);
 180}
 181
 182/**
 183 * nand_select_chip - [DEFAULT] control CE line
 184 * @mtd: MTD device structure
 185 * @chipnr: chipnumber to select, -1 for deselect
 186 *
 187 * Default select function for 1 chip devices.
 188 */
 189static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 190{
 191        struct nand_chip *chip = mtd->priv;
 192
 193        switch (chipnr) {
 194        case -1:
 195                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 196                break;
 197        case 0:
 198                break;
 199
 200        default:
 201                BUG();
 202        }
 203}
 204
 205/**
 206 * nand_write_byte - [DEFAULT] write single byte to chip
 207 * @mtd: MTD device structure
 208 * @byte: value to write
 209 *
 210 * Default function to write a byte to I/O[7:0]
 211 */
 212static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
 213{
 214        struct nand_chip *chip = mtd->priv;
 215
 216        chip->write_buf(mtd, &byte, 1);
 217}
 218
 219/**
 220 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 221 * @mtd: MTD device structure
 222 * @byte: value to write
 223 *
 224 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 225 */
 226static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
 227{
 228        struct nand_chip *chip = mtd->priv;
 229        uint16_t word = byte;
 230
 231        /*
 232         * It's not entirely clear what should happen to I/O[15:8] when writing
 233         * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
 234         *
 235         *    When the host supports a 16-bit bus width, only data is
 236         *    transferred at the 16-bit width. All address and command line
 237         *    transfers shall use only the lower 8-bits of the data bus. During
 238         *    command transfers, the host may place any value on the upper
 239         *    8-bits of the data bus. During address transfers, the host shall
 240         *    set the upper 8-bits of the data bus to 00h.
 241         *
 242         * One user of the write_byte callback is nand_onfi_set_features. The
 243         * four parameters are specified to be written to I/O[7:0], but this is
 244         * neither an address nor a command transfer. Let's assume a 0 on the
 245         * upper I/O lines is OK.
 246         */
 247        chip->write_buf(mtd, (uint8_t *)&word, 2);
 248}
 249
 250/**
 251 * nand_write_buf - [DEFAULT] write buffer to chip
 252 * @mtd: MTD device structure
 253 * @buf: data buffer
 254 * @len: number of bytes to write
 255 *
 256 * Default write function for 8bit buswidth.
 257 */
 258static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 259{
 260        struct nand_chip *chip = mtd->priv;
 261
 262        iowrite8_rep(chip->IO_ADDR_W, buf, len);
 263}
 264
 265/**
 266 * nand_read_buf - [DEFAULT] read chip data into buffer
 267 * @mtd: MTD device structure
 268 * @buf: buffer to store date
 269 * @len: number of bytes to read
 270 *
 271 * Default read function for 8bit buswidth.
 272 */
 273static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 274{
 275        struct nand_chip *chip = mtd->priv;
 276
 277        ioread8_rep(chip->IO_ADDR_R, buf, len);
 278}
 279
 280/**
 281 * nand_write_buf16 - [DEFAULT] write buffer to chip
 282 * @mtd: MTD device structure
 283 * @buf: data buffer
 284 * @len: number of bytes to write
 285 *
 286 * Default write function for 16bit buswidth.
 287 */
 288static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 289{
 290        struct nand_chip *chip = mtd->priv;
 291        u16 *p = (u16 *) buf;
 292
 293        iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
 294}
 295
 296/**
 297 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 298 * @mtd: MTD device structure
 299 * @buf: buffer to store date
 300 * @len: number of bytes to read
 301 *
 302 * Default read function for 16bit buswidth.
 303 */
 304static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 305{
 306        struct nand_chip *chip = mtd->priv;
 307        u16 *p = (u16 *) buf;
 308
 309        ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
 310}
 311
 312/**
 313 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 314 * @mtd: MTD device structure
 315 * @ofs: offset from device start
 316 * @getchip: 0, if the chip is already selected
 317 *
 318 * Check, if the block is bad.
 319 */
 320static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 321{
 322        int page, chipnr, res = 0, i = 0;
 323        struct nand_chip *chip = mtd->priv;
 324        u16 bad;
 325
 326        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 327                ofs += mtd->erasesize - mtd->writesize;
 328
 329        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 330
 331        if (getchip) {
 332                chipnr = (int)(ofs >> chip->chip_shift);
 333
 334                nand_get_device(mtd, FL_READING);
 335
 336                /* Select the NAND device */
 337                chip->select_chip(mtd, chipnr);
 338        }
 339
 340        do {
 341                if (chip->options & NAND_BUSWIDTH_16) {
 342                        chip->cmdfunc(mtd, NAND_CMD_READOOB,
 343                                        chip->badblockpos & 0xFE, page);
 344                        bad = cpu_to_le16(chip->read_word(mtd));
 345                        if (chip->badblockpos & 0x1)
 346                                bad >>= 8;
 347                        else
 348                                bad &= 0xFF;
 349                } else {
 350                        chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
 351                                        page);
 352                        bad = chip->read_byte(mtd);
 353                }
 354
 355                if (likely(chip->badblockbits == 8))
 356                        res = bad != 0xFF;
 357                else
 358                        res = hweight8(bad) < chip->badblockbits;
 359                ofs += mtd->writesize;
 360                page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 361                i++;
 362        } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
 363
 364        if (getchip) {
 365                chip->select_chip(mtd, -1);
 366                nand_release_device(mtd);
 367        }
 368
 369        return res;
 370}
 371
 372/**
 373 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 374 * @mtd: MTD device structure
 375 * @ofs: offset from device start
 376 *
 377 * This is the default implementation, which can be overridden by a hardware
 378 * specific driver. It provides the details for writing a bad block marker to a
 379 * block.
 380 */
 381static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 382{
 383        struct nand_chip *chip = mtd->priv;
 384        struct mtd_oob_ops ops;
 385        uint8_t buf[2] = { 0, 0 };
 386        int ret = 0, res, i = 0;
 387
 388        memset(&ops, 0, sizeof(ops));
 389        ops.oobbuf = buf;
 390        ops.ooboffs = chip->badblockpos;
 391        if (chip->options & NAND_BUSWIDTH_16) {
 392                ops.ooboffs &= ~0x01;
 393                ops.len = ops.ooblen = 2;
 394        } else {
 395                ops.len = ops.ooblen = 1;
 396        }
 397        ops.mode = MTD_OPS_PLACE_OOB;
 398
 399        /* Write to first/last page(s) if necessary */
 400        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 401                ofs += mtd->erasesize - mtd->writesize;
 402        do {
 403                res = nand_do_write_oob(mtd, ofs, &ops);
 404                if (!ret)
 405                        ret = res;
 406
 407                i++;
 408                ofs += mtd->writesize;
 409        } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
 410
 411        return ret;
 412}
 413
 414/**
 415 * nand_block_markbad_lowlevel - mark a block bad
 416 * @mtd: MTD device structure
 417 * @ofs: offset from device start
 418 *
 419 * This function performs the generic NAND bad block marking steps (i.e., bad
 420 * block table(s) and/or marker(s)). We only allow the hardware driver to
 421 * specify how to write bad block markers to OOB (chip->block_markbad).
 422 *
 423 * We try operations in the following order:
 424 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 425 *  (2) write bad block marker to OOB area of affected block (unless flag
 426 *      NAND_BBT_NO_OOB_BBM is present)
 427 *  (3) update the BBT
 428 * Note that we retain the first error encountered in (2) or (3), finish the
 429 * procedures, and dump the error in the end.
 430*/
 431static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
 432{
 433        struct nand_chip *chip = mtd->priv;
 434        int res, ret = 0;
 435
 436        if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
 437                struct erase_info einfo;
 438
 439                /* Attempt erase before marking OOB */
 440                memset(&einfo, 0, sizeof(einfo));
 441                einfo.mtd = mtd;
 442                einfo.addr = ofs;
 443                einfo.len = 1ULL << chip->phys_erase_shift;
 444                nand_erase_nand(mtd, &einfo, 0);
 445
 446                /* Write bad block marker to OOB */
 447                nand_get_device(mtd, FL_WRITING);
 448                ret = chip->block_markbad(mtd, ofs);
 449                nand_release_device(mtd);
 450        }
 451
 452        /* Mark block bad in BBT */
 453        if (chip->bbt) {
 454                res = nand_markbad_bbt(mtd, ofs);
 455                if (!ret)
 456                        ret = res;
 457        }
 458
 459        if (!ret)
 460                mtd->ecc_stats.badblocks++;
 461
 462        return ret;
 463}
 464
 465/**
 466 * nand_check_wp - [GENERIC] check if the chip is write protected
 467 * @mtd: MTD device structure
 468 *
 469 * Check, if the device is write protected. The function expects, that the
 470 * device is already selected.
 471 */
 472static int nand_check_wp(struct mtd_info *mtd)
 473{
 474        struct nand_chip *chip = mtd->priv;
 475
 476        /* Broken xD cards report WP despite being writable */
 477        if (chip->options & NAND_BROKEN_XD)
 478                return 0;
 479
 480        /* Check the WP bit */
 481        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 482        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 483}
 484
 485/**
 486 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 487 * @mtd: MTD device structure
 488 * @ofs: offset from device start
 489 *
 490 * Check if the block is marked as reserved.
 491 */
 492static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 493{
 494        struct nand_chip *chip = mtd->priv;
 495
 496        if (!chip->bbt)
 497                return 0;
 498        /* Return info from the table */
 499        return nand_isreserved_bbt(mtd, ofs);
 500}
 501
 502/**
 503 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 504 * @mtd: MTD device structure
 505 * @ofs: offset from device start
 506 * @getchip: 0, if the chip is already selected
 507 * @allowbbt: 1, if its allowed to access the bbt area
 508 *
 509 * Check, if the block is bad. Either by reading the bad block table or
 510 * calling of the scan function.
 511 */
 512static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
 513                               int allowbbt)
 514{
 515        struct nand_chip *chip = mtd->priv;
 516
 517        if (!chip->bbt)
 518                return chip->block_bad(mtd, ofs, getchip);
 519
 520        /* Return info from the table */
 521        return nand_isbad_bbt(mtd, ofs, allowbbt);
 522}
 523
 524/**
 525 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 526 * @mtd: MTD device structure
 527 * @timeo: Timeout
 528 *
 529 * Helper function for nand_wait_ready used when needing to wait in interrupt
 530 * context.
 531 */
 532static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 533{
 534        struct nand_chip *chip = mtd->priv;
 535        int i;
 536
 537        /* Wait for the device to get ready */
 538        for (i = 0; i < timeo; i++) {
 539                if (chip->dev_ready(mtd))
 540                        break;
 541                touch_softlockup_watchdog();
 542                mdelay(1);
 543        }
 544}
 545
 546/**
 547 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 548 * @mtd: MTD device structure
 549 *
 550 * Wait for the ready pin after a command, and warn if a timeout occurs.
 551 */
 552void nand_wait_ready(struct mtd_info *mtd)
 553{
 554        struct nand_chip *chip = mtd->priv;
 555        unsigned long timeo = 400;
 556
 557        if (in_interrupt() || oops_in_progress)
 558                return panic_nand_wait_ready(mtd, timeo);
 559
 560        led_trigger_event(nand_led_trigger, LED_FULL);
 561        /* Wait until command is processed or timeout occurs */
 562        timeo = jiffies + msecs_to_jiffies(timeo);
 563        do {
 564                if (chip->dev_ready(mtd))
 565                        goto out;
 566                cond_resched();
 567        } while (time_before(jiffies, timeo));
 568
 569        pr_warn_ratelimited(
 570                "timeout while waiting for chip to become ready\n");
 571out:
 572        led_trigger_event(nand_led_trigger, LED_OFF);
 573}
 574EXPORT_SYMBOL_GPL(nand_wait_ready);
 575
 576/**
 577 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 578 * @mtd: MTD device structure
 579 * @timeo: Timeout in ms
 580 *
 581 * Wait for status ready (i.e. command done) or timeout.
 582 */
 583static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
 584{
 585        register struct nand_chip *chip = mtd->priv;
 586
 587        timeo = jiffies + msecs_to_jiffies(timeo);
 588        do {
 589                if ((chip->read_byte(mtd) & NAND_STATUS_READY))
 590                        break;
 591                touch_softlockup_watchdog();
 592        } while (time_before(jiffies, timeo));
 593};
 594
 595/**
 596 * nand_command - [DEFAULT] Send command to NAND device
 597 * @mtd: MTD device structure
 598 * @command: the command to be sent
 599 * @column: the column address for this command, -1 if none
 600 * @page_addr: the page address for this command, -1 if none
 601 *
 602 * Send command to NAND device. This function is used for small page devices
 603 * (512 Bytes per page).
 604 */
 605static void nand_command(struct mtd_info *mtd, unsigned int command,
 606                         int column, int page_addr)
 607{
 608        register struct nand_chip *chip = mtd->priv;
 609        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 610
 611        /* Write out the command to the device */
 612        if (command == NAND_CMD_SEQIN) {
 613                int readcmd;
 614
 615                if (column >= mtd->writesize) {
 616                        /* OOB area */
 617                        column -= mtd->writesize;
 618                        readcmd = NAND_CMD_READOOB;
 619                } else if (column < 256) {
 620                        /* First 256 bytes --> READ0 */
 621                        readcmd = NAND_CMD_READ0;
 622                } else {
 623                        column -= 256;
 624                        readcmd = NAND_CMD_READ1;
 625                }
 626                chip->cmd_ctrl(mtd, readcmd, ctrl);
 627                ctrl &= ~NAND_CTRL_CHANGE;
 628        }
 629        chip->cmd_ctrl(mtd, command, ctrl);
 630
 631        /* Address cycle, when necessary */
 632        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 633        /* Serially input address */
 634        if (column != -1) {
 635                /* Adjust columns for 16 bit buswidth */
 636                if (chip->options & NAND_BUSWIDTH_16 &&
 637                                !nand_opcode_8bits(command))
 638                        column >>= 1;
 639                chip->cmd_ctrl(mtd, column, ctrl);
 640                ctrl &= ~NAND_CTRL_CHANGE;
 641        }
 642        if (page_addr != -1) {
 643                chip->cmd_ctrl(mtd, page_addr, ctrl);
 644                ctrl &= ~NAND_CTRL_CHANGE;
 645                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 646                /* One more address cycle for devices > 32MiB */
 647                if (chip->chipsize > (32 << 20))
 648                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 649        }
 650        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 651
 652        /*
 653         * Program and erase have their own busy handlers status and sequential
 654         * in needs no delay
 655         */
 656        switch (command) {
 657
 658        case NAND_CMD_PAGEPROG:
 659        case NAND_CMD_ERASE1:
 660        case NAND_CMD_ERASE2:
 661        case NAND_CMD_SEQIN:
 662        case NAND_CMD_STATUS:
 663                return;
 664
 665        case NAND_CMD_RESET:
 666                if (chip->dev_ready)
 667                        break;
 668                udelay(chip->chip_delay);
 669                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 670                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 671                chip->cmd_ctrl(mtd,
 672                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 673                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 674                nand_wait_status_ready(mtd, 250);
 675                return;
 676
 677                /* This applies to read commands */
 678        default:
 679                /*
 680                 * If we don't have access to the busy pin, we apply the given
 681                 * command delay
 682                 */
 683                if (!chip->dev_ready) {
 684                        udelay(chip->chip_delay);
 685                        return;
 686                }
 687        }
 688        /*
 689         * Apply this short delay always to ensure that we do wait tWB in
 690         * any case on any machine.
 691         */
 692        ndelay(100);
 693
 694        nand_wait_ready(mtd);
 695}
 696
 697/**
 698 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 699 * @mtd: MTD device structure
 700 * @command: the command to be sent
 701 * @column: the column address for this command, -1 if none
 702 * @page_addr: the page address for this command, -1 if none
 703 *
 704 * Send command to NAND device. This is the version for the new large page
 705 * devices. We don't have the separate regions as we have in the small page
 706 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 707 */
 708static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 709                            int column, int page_addr)
 710{
 711        register struct nand_chip *chip = mtd->priv;
 712
 713        /* Emulate NAND_CMD_READOOB */
 714        if (command == NAND_CMD_READOOB) {
 715                column += mtd->writesize;
 716                command = NAND_CMD_READ0;
 717        }
 718
 719        /* Command latch cycle */
 720        chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 721
 722        if (column != -1 || page_addr != -1) {
 723                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 724
 725                /* Serially input address */
 726                if (column != -1) {
 727                        /* Adjust columns for 16 bit buswidth */
 728                        if (chip->options & NAND_BUSWIDTH_16 &&
 729                                        !nand_opcode_8bits(command))
 730                                column >>= 1;
 731                        chip->cmd_ctrl(mtd, column, ctrl);
 732                        ctrl &= ~NAND_CTRL_CHANGE;
 733                        chip->cmd_ctrl(mtd, column >> 8, ctrl);
 734                }
 735                if (page_addr != -1) {
 736                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 737                        chip->cmd_ctrl(mtd, page_addr >> 8,
 738                                       NAND_NCE | NAND_ALE);
 739                        /* One more address cycle for devices > 128MiB */
 740                        if (chip->chipsize > (128 << 20))
 741                                chip->cmd_ctrl(mtd, page_addr >> 16,
 742                                               NAND_NCE | NAND_ALE);
 743                }
 744        }
 745        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 746
 747        /*
 748         * Program and erase have their own busy handlers status, sequential
 749         * in and status need no delay.
 750         */
 751        switch (command) {
 752
 753        case NAND_CMD_CACHEDPROG:
 754        case NAND_CMD_PAGEPROG:
 755        case NAND_CMD_ERASE1:
 756        case NAND_CMD_ERASE2:
 757        case NAND_CMD_SEQIN:
 758        case NAND_CMD_RNDIN:
 759        case NAND_CMD_STATUS:
 760                return;
 761
 762        case NAND_CMD_RESET:
 763                if (chip->dev_ready)
 764                        break;
 765                udelay(chip->chip_delay);
 766                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 767                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 768                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 769                               NAND_NCE | NAND_CTRL_CHANGE);
 770                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 771                nand_wait_status_ready(mtd, 250);
 772                return;
 773
 774        case NAND_CMD_RNDOUT:
 775                /* No ready / busy check necessary */
 776                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 777                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 778                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 779                               NAND_NCE | NAND_CTRL_CHANGE);
 780                return;
 781
 782        case NAND_CMD_READ0:
 783                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 784                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 785                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 786                               NAND_NCE | NAND_CTRL_CHANGE);
 787
 788                /* This applies to read commands */
 789        default:
 790                /*
 791                 * If we don't have access to the busy pin, we apply the given
 792                 * command delay.
 793                 */
 794                if (!chip->dev_ready) {
 795                        udelay(chip->chip_delay);
 796                        return;
 797                }
 798        }
 799
 800        /*
 801         * Apply this short delay always to ensure that we do wait tWB in
 802         * any case on any machine.
 803         */
 804        ndelay(100);
 805
 806        nand_wait_ready(mtd);
 807}
 808
 809/**
 810 * panic_nand_get_device - [GENERIC] Get chip for selected access
 811 * @chip: the nand chip descriptor
 812 * @mtd: MTD device structure
 813 * @new_state: the state which is requested
 814 *
 815 * Used when in panic, no locks are taken.
 816 */
 817static void panic_nand_get_device(struct nand_chip *chip,
 818                      struct mtd_info *mtd, int new_state)
 819{
 820        /* Hardware controller shared among independent devices */
 821        chip->controller->active = chip;
 822        chip->state = new_state;
 823}
 824
 825/**
 826 * nand_get_device - [GENERIC] Get chip for selected access
 827 * @mtd: MTD device structure
 828 * @new_state: the state which is requested
 829 *
 830 * Get the device and lock it for exclusive access
 831 */
 832static int
 833nand_get_device(struct mtd_info *mtd, int new_state)
 834{
 835        struct nand_chip *chip = mtd->priv;
 836        spinlock_t *lock = &chip->controller->lock;
 837        wait_queue_head_t *wq = &chip->controller->wq;
 838        DECLARE_WAITQUEUE(wait, current);
 839retry:
 840        spin_lock(lock);
 841
 842        /* Hardware controller shared among independent devices */
 843        if (!chip->controller->active)
 844                chip->controller->active = chip;
 845
 846        if (chip->controller->active == chip && chip->state == FL_READY) {
 847                chip->state = new_state;
 848                spin_unlock(lock);
 849                return 0;
 850        }
 851        if (new_state == FL_PM_SUSPENDED) {
 852                if (chip->controller->active->state == FL_PM_SUSPENDED) {
 853                        chip->state = FL_PM_SUSPENDED;
 854                        spin_unlock(lock);
 855                        return 0;
 856                }
 857        }
 858        set_current_state(TASK_UNINTERRUPTIBLE);
 859        add_wait_queue(wq, &wait);
 860        spin_unlock(lock);
 861        schedule();
 862        remove_wait_queue(wq, &wait);
 863        goto retry;
 864}
 865
 866/**
 867 * panic_nand_wait - [GENERIC] wait until the command is done
 868 * @mtd: MTD device structure
 869 * @chip: NAND chip structure
 870 * @timeo: timeout
 871 *
 872 * Wait for command done. This is a helper function for nand_wait used when
 873 * we are in interrupt context. May happen when in panic and trying to write
 874 * an oops through mtdoops.
 875 */
 876static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 877                            unsigned long timeo)
 878{
 879        int i;
 880        for (i = 0; i < timeo; i++) {
 881                if (chip->dev_ready) {
 882                        if (chip->dev_ready(mtd))
 883                                break;
 884                } else {
 885                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 886                                break;
 887                }
 888                mdelay(1);
 889        }
 890}
 891
 892/**
 893 * nand_wait - [DEFAULT] wait until the command is done
 894 * @mtd: MTD device structure
 895 * @chip: NAND chip structure
 896 *
 897 * Wait for command done. This applies to erase and program only.
 898 */
 899static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 900{
 901
 902        int status;
 903        unsigned long timeo = 400;
 904
 905        led_trigger_event(nand_led_trigger, LED_FULL);
 906
 907        /*
 908         * Apply this short delay always to ensure that we do wait tWB in any
 909         * case on any machine.
 910         */
 911        ndelay(100);
 912
 913        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 914
 915        if (in_interrupt() || oops_in_progress)
 916                panic_nand_wait(mtd, chip, timeo);
 917        else {
 918                timeo = jiffies + msecs_to_jiffies(timeo);
 919                do {
 920                        if (chip->dev_ready) {
 921                                if (chip->dev_ready(mtd))
 922                                        break;
 923                        } else {
 924                                if (chip->read_byte(mtd) & NAND_STATUS_READY)
 925                                        break;
 926                        }
 927                        cond_resched();
 928                } while (time_before(jiffies, timeo));
 929        }
 930        led_trigger_event(nand_led_trigger, LED_OFF);
 931
 932        status = (int)chip->read_byte(mtd);
 933        /* This can happen if in case of timeout or buggy dev_ready */
 934        WARN_ON(!(status & NAND_STATUS_READY));
 935        return status;
 936}
 937
 938/**
 939 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 940 * @mtd: mtd info
 941 * @ofs: offset to start unlock from
 942 * @len: length to unlock
 943 * @invert: when = 0, unlock the range of blocks within the lower and
 944 *                    upper boundary address
 945 *          when = 1, unlock the range of blocks outside the boundaries
 946 *                    of the lower and upper boundary address
 947 *
 948 * Returs unlock status.
 949 */
 950static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
 951                                        uint64_t len, int invert)
 952{
 953        int ret = 0;
 954        int status, page;
 955        struct nand_chip *chip = mtd->priv;
 956
 957        /* Submit address of first page to unlock */
 958        page = ofs >> chip->page_shift;
 959        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 960
 961        /* Submit address of last page to unlock */
 962        page = (ofs + len) >> chip->page_shift;
 963        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
 964                                (page | invert) & chip->pagemask);
 965
 966        /* Call wait ready function */
 967        status = chip->waitfunc(mtd, chip);
 968        /* See if device thinks it succeeded */
 969        if (status & NAND_STATUS_FAIL) {
 970                pr_debug("%s: error status = 0x%08x\n",
 971                                        __func__, status);
 972                ret = -EIO;
 973        }
 974
 975        return ret;
 976}
 977
 978/**
 979 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 980 * @mtd: mtd info
 981 * @ofs: offset to start unlock from
 982 * @len: length to unlock
 983 *
 984 * Returns unlock status.
 985 */
 986int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 987{
 988        int ret = 0;
 989        int chipnr;
 990        struct nand_chip *chip = mtd->priv;
 991
 992        pr_debug("%s: start = 0x%012llx, len = %llu\n",
 993                        __func__, (unsigned long long)ofs, len);
 994
 995        if (check_offs_len(mtd, ofs, len))
 996                return -EINVAL;
 997
 998        /* Align to last block address if size addresses end of the device */
 999        if (ofs + len == mtd->size)
1000                len -= mtd->erasesize;
1001
1002        nand_get_device(mtd, FL_UNLOCKING);
1003
1004        /* Shift to get chip number */
1005        chipnr = ofs >> chip->chip_shift;
1006
1007        chip->select_chip(mtd, chipnr);
1008
1009        /*
1010         * Reset the chip.
1011         * If we want to check the WP through READ STATUS and check the bit 7
1012         * we must reset the chip
1013         * some operation can also clear the bit 7 of status register
1014         * eg. erase/program a locked block
1015         */
1016        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1017
1018        /* Check, if it is write protected */
1019        if (nand_check_wp(mtd)) {
1020                pr_debug("%s: device is write protected!\n",
1021                                        __func__);
1022                ret = -EIO;
1023                goto out;
1024        }
1025
1026        ret = __nand_unlock(mtd, ofs, len, 0);
1027
1028out:
1029        chip->select_chip(mtd, -1);
1030        nand_release_device(mtd);
1031
1032        return ret;
1033}
1034EXPORT_SYMBOL(nand_unlock);
1035
1036/**
1037 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1038 * @mtd: mtd info
1039 * @ofs: offset to start unlock from
1040 * @len: length to unlock
1041 *
1042 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1043 * have this feature, but it allows only to lock all blocks, not for specified
1044 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1045 * now.
1046 *
1047 * Returns lock status.
1048 */
1049int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1050{
1051        int ret = 0;
1052        int chipnr, status, page;
1053        struct nand_chip *chip = mtd->priv;
1054
1055        pr_debug("%s: start = 0x%012llx, len = %llu\n",
1056                        __func__, (unsigned long long)ofs, len);
1057
1058        if (check_offs_len(mtd, ofs, len))
1059                return -EINVAL;
1060
1061        nand_get_device(mtd, FL_LOCKING);
1062
1063        /* Shift to get chip number */
1064        chipnr = ofs >> chip->chip_shift;
1065
1066        chip->select_chip(mtd, chipnr);
1067
1068        /*
1069         * Reset the chip.
1070         * If we want to check the WP through READ STATUS and check the bit 7
1071         * we must reset the chip
1072         * some operation can also clear the bit 7 of status register
1073         * eg. erase/program a locked block
1074         */
1075        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1076
1077        /* Check, if it is write protected */
1078        if (nand_check_wp(mtd)) {
1079                pr_debug("%s: device is write protected!\n",
1080                                        __func__);
1081                status = MTD_ERASE_FAILED;
1082                ret = -EIO;
1083                goto out;
1084        }
1085
1086        /* Submit address of first page to lock */
1087        page = ofs >> chip->page_shift;
1088        chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1089
1090        /* Call wait ready function */
1091        status = chip->waitfunc(mtd, chip);
1092        /* See if device thinks it succeeded */
1093        if (status & NAND_STATUS_FAIL) {
1094                pr_debug("%s: error status = 0x%08x\n",
1095                                        __func__, status);
1096                ret = -EIO;
1097                goto out;
1098        }
1099
1100        ret = __nand_unlock(mtd, ofs, len, 0x1);
1101
1102out:
1103        chip->select_chip(mtd, -1);
1104        nand_release_device(mtd);
1105
1106        return ret;
1107}
1108EXPORT_SYMBOL(nand_lock);
1109
1110/**
1111 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1112 * @buf: buffer to test
1113 * @len: buffer length
1114 * @bitflips_threshold: maximum number of bitflips
1115 *
1116 * Check if a buffer contains only 0xff, which means the underlying region
1117 * has been erased and is ready to be programmed.
1118 * The bitflips_threshold specify the maximum number of bitflips before
1119 * considering the region is not erased.
1120 * Note: The logic of this function has been extracted from the memweight
1121 * implementation, except that nand_check_erased_buf function exit before
1122 * testing the whole buffer if the number of bitflips exceed the
1123 * bitflips_threshold value.
1124 *
1125 * Returns a positive number of bitflips less than or equal to
1126 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1127 * threshold.
1128 */
1129static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1130{
1131        const unsigned char *bitmap = buf;
1132        int bitflips = 0;
1133        int weight;
1134
1135        for (; len && ((uintptr_t)bitmap) % sizeof(long);
1136             len--, bitmap++) {
1137                weight = hweight8(*bitmap);
1138                bitflips += BITS_PER_BYTE - weight;
1139                if (unlikely(bitflips > bitflips_threshold))
1140                        return -EBADMSG;
1141        }
1142
1143        for (; len >= sizeof(long);
1144             len -= sizeof(long), bitmap += sizeof(long)) {
1145                weight = hweight_long(*((unsigned long *)bitmap));
1146                bitflips += BITS_PER_LONG - weight;
1147                if (unlikely(bitflips > bitflips_threshold))
1148                        return -EBADMSG;
1149        }
1150
1151        for (; len > 0; len--, bitmap++) {
1152                weight = hweight8(*bitmap);
1153                bitflips += BITS_PER_BYTE - weight;
1154                if (unlikely(bitflips > bitflips_threshold))
1155                        return -EBADMSG;
1156        }
1157
1158        return bitflips;
1159}
1160
1161/**
1162 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1163 *                               0xff data
1164 * @data: data buffer to test
1165 * @datalen: data length
1166 * @ecc: ECC buffer
1167 * @ecclen: ECC length
1168 * @extraoob: extra OOB buffer
1169 * @extraooblen: extra OOB length
1170 * @bitflips_threshold: maximum number of bitflips
1171 *
1172 * Check if a data buffer and its associated ECC and OOB data contains only
1173 * 0xff pattern, which means the underlying region has been erased and is
1174 * ready to be programmed.
1175 * The bitflips_threshold specify the maximum number of bitflips before
1176 * considering the region as not erased.
1177 *
1178 * Note:
1179 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1180 *    different from the NAND page size. When fixing bitflips, ECC engines will
1181 *    report the number of errors per chunk, and the NAND core infrastructure
1182 *    expect you to return the maximum number of bitflips for the whole page.
1183 *    This is why you should always use this function on a single chunk and
1184 *    not on the whole page. After checking each chunk you should update your
1185 *    max_bitflips value accordingly.
1186 * 2/ When checking for bitflips in erased pages you should not only check
1187 *    the payload data but also their associated ECC data, because a user might
1188 *    have programmed almost all bits to 1 but a few. In this case, we
1189 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1190 *    this case.
1191 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1192 *    data are protected by the ECC engine.
1193 *    It could also be used if you support subpages and want to attach some
1194 *    extra OOB data to an ECC chunk.
1195 *
1196 * Returns a positive number of bitflips less than or equal to
1197 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1198 * threshold. In case of success, the passed buffers are filled with 0xff.
1199 */
1200int nand_check_erased_ecc_chunk(void *data, int datalen,
1201                                void *ecc, int ecclen,
1202                                void *extraoob, int extraooblen,
1203                                int bitflips_threshold)
1204{
1205        int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1206
1207        data_bitflips = nand_check_erased_buf(data, datalen,
1208                                              bitflips_threshold);
1209        if (data_bitflips < 0)
1210                return data_bitflips;
1211
1212        bitflips_threshold -= data_bitflips;
1213
1214        ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1215        if (ecc_bitflips < 0)
1216                return ecc_bitflips;
1217
1218        bitflips_threshold -= ecc_bitflips;
1219
1220        extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1221                                                  bitflips_threshold);
1222        if (extraoob_bitflips < 0)
1223                return extraoob_bitflips;
1224
1225        if (data_bitflips)
1226                memset(data, 0xff, datalen);
1227
1228        if (ecc_bitflips)
1229                memset(ecc, 0xff, ecclen);
1230
1231        if (extraoob_bitflips)
1232                memset(extraoob, 0xff, extraooblen);
1233
1234        return data_bitflips + ecc_bitflips + extraoob_bitflips;
1235}
1236EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1237
1238/**
1239 * nand_read_page_raw - [INTERN] read raw page data without ecc
1240 * @mtd: mtd info structure
1241 * @chip: nand chip info structure
1242 * @buf: buffer to store read data
1243 * @oob_required: caller requires OOB data read to chip->oob_poi
1244 * @page: page number to read
1245 *
1246 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1247 */
1248static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1249                              uint8_t *buf, int oob_required, int page)
1250{
1251        chip->read_buf(mtd, buf, mtd->writesize);
1252        if (oob_required)
1253                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1254        return 0;
1255}
1256
1257/**
1258 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1259 * @mtd: mtd info structure
1260 * @chip: nand chip info structure
1261 * @buf: buffer to store read data
1262 * @oob_required: caller requires OOB data read to chip->oob_poi
1263 * @page: page number to read
1264 *
1265 * We need a special oob layout and handling even when OOB isn't used.
1266 */
1267static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1268                                       struct nand_chip *chip, uint8_t *buf,
1269                                       int oob_required, int page)
1270{
1271        int eccsize = chip->ecc.size;
1272        int eccbytes = chip->ecc.bytes;
1273        uint8_t *oob = chip->oob_poi;
1274        int steps, size;
1275
1276        for (steps = chip->ecc.steps; steps > 0; steps--) {
1277                chip->read_buf(mtd, buf, eccsize);
1278                buf += eccsize;
1279
1280                if (chip->ecc.prepad) {
1281                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1282                        oob += chip->ecc.prepad;
1283                }
1284
1285                chip->read_buf(mtd, oob, eccbytes);
1286                oob += eccbytes;
1287
1288                if (chip->ecc.postpad) {
1289                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1290                        oob += chip->ecc.postpad;
1291                }
1292        }
1293
1294        size = mtd->oobsize - (oob - chip->oob_poi);
1295        if (size)
1296                chip->read_buf(mtd, oob, size);
1297
1298        return 0;
1299}
1300
1301/**
1302 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1303 * @mtd: mtd info structure
1304 * @chip: nand chip info structure
1305 * @buf: buffer to store read data
1306 * @oob_required: caller requires OOB data read to chip->oob_poi
1307 * @page: page number to read
1308 */
1309static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1310                                uint8_t *buf, int oob_required, int page)
1311{
1312        int i, eccsize = chip->ecc.size;
1313        int eccbytes = chip->ecc.bytes;
1314        int eccsteps = chip->ecc.steps;
1315        uint8_t *p = buf;
1316        uint8_t *ecc_calc = chip->buffers->ecccalc;
1317        uint8_t *ecc_code = chip->buffers->ecccode;
1318        uint32_t *eccpos = chip->ecc.layout->eccpos;
1319        unsigned int max_bitflips = 0;
1320
1321        chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1322
1323        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1324                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1325
1326        for (i = 0; i < chip->ecc.total; i++)
1327                ecc_code[i] = chip->oob_poi[eccpos[i]];
1328
1329        eccsteps = chip->ecc.steps;
1330        p = buf;
1331
1332        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1333                int stat;
1334
1335                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1336                if (stat < 0) {
1337                        mtd->ecc_stats.failed++;
1338                } else {
1339                        mtd->ecc_stats.corrected += stat;
1340                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1341                }
1342        }
1343        return max_bitflips;
1344}
1345
1346/**
1347 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1348 * @mtd: mtd info structure
1349 * @chip: nand chip info structure
1350 * @data_offs: offset of requested data within the page
1351 * @readlen: data length
1352 * @bufpoi: buffer to store read data
1353 * @page: page number to read
1354 */
1355static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1356                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1357                        int page)
1358{
1359        int start_step, end_step, num_steps;
1360        uint32_t *eccpos = chip->ecc.layout->eccpos;
1361        uint8_t *p;
1362        int data_col_addr, i, gaps = 0;
1363        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1364        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1365        int index;
1366        unsigned int max_bitflips = 0;
1367
1368        /* Column address within the page aligned to ECC size (256bytes) */
1369        start_step = data_offs / chip->ecc.size;
1370        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1371        num_steps = end_step - start_step + 1;
1372        index = start_step * chip->ecc.bytes;
1373
1374        /* Data size aligned to ECC ecc.size */
1375        datafrag_len = num_steps * chip->ecc.size;
1376        eccfrag_len = num_steps * chip->ecc.bytes;
1377
1378        data_col_addr = start_step * chip->ecc.size;
1379        /* If we read not a page aligned data */
1380        if (data_col_addr != 0)
1381                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1382
1383        p = bufpoi + data_col_addr;
1384        chip->read_buf(mtd, p, datafrag_len);
1385
1386        /* Calculate ECC */
1387        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1388                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1389
1390        /*
1391         * The performance is faster if we position offsets according to
1392         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1393         */
1394        for (i = 0; i < eccfrag_len - 1; i++) {
1395                if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1396                        gaps = 1;
1397                        break;
1398                }
1399        }
1400        if (gaps) {
1401                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1402                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1403        } else {
1404                /*
1405                 * Send the command to read the particular ECC bytes take care
1406                 * about buswidth alignment in read_buf.
1407                 */
1408                aligned_pos = eccpos[index] & ~(busw - 1);
1409                aligned_len = eccfrag_len;
1410                if (eccpos[index] & (busw - 1))
1411                        aligned_len++;
1412                if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1413                        aligned_len++;
1414
1415                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1416                                        mtd->writesize + aligned_pos, -1);
1417                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1418        }
1419
1420        for (i = 0; i < eccfrag_len; i++)
1421                chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1422
1423        p = bufpoi + data_col_addr;
1424        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1425                int stat;
1426
1427                stat = chip->ecc.correct(mtd, p,
1428                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1429                if (stat < 0) {
1430                        mtd->ecc_stats.failed++;
1431                } else {
1432                        mtd->ecc_stats.corrected += stat;
1433                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1434                }
1435        }
1436        return max_bitflips;
1437}
1438
1439/**
1440 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1441 * @mtd: mtd info structure
1442 * @chip: nand chip info structure
1443 * @buf: buffer to store read data
1444 * @oob_required: caller requires OOB data read to chip->oob_poi
1445 * @page: page number to read
1446 *
1447 * Not for syndrome calculating ECC controllers which need a special oob layout.
1448 */
1449static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1450                                uint8_t *buf, int oob_required, int page)
1451{
1452        int i, eccsize = chip->ecc.size;
1453        int eccbytes = chip->ecc.bytes;
1454        int eccsteps = chip->ecc.steps;
1455        uint8_t *p = buf;
1456        uint8_t *ecc_calc = chip->buffers->ecccalc;
1457        uint8_t *ecc_code = chip->buffers->ecccode;
1458        uint32_t *eccpos = chip->ecc.layout->eccpos;
1459        unsigned int max_bitflips = 0;
1460
1461        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1462                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1463                chip->read_buf(mtd, p, eccsize);
1464                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1465        }
1466        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1467
1468        for (i = 0; i < chip->ecc.total; i++)
1469                ecc_code[i] = chip->oob_poi[eccpos[i]];
1470
1471        eccsteps = chip->ecc.steps;
1472        p = buf;
1473
1474        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1475                int stat;
1476
1477                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1478                if (stat < 0) {
1479                        mtd->ecc_stats.failed++;
1480                } else {
1481                        mtd->ecc_stats.corrected += stat;
1482                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1483                }
1484        }
1485        return max_bitflips;
1486}
1487
1488/**
1489 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1490 * @mtd: mtd info structure
1491 * @chip: nand chip info structure
1492 * @buf: buffer to store read data
1493 * @oob_required: caller requires OOB data read to chip->oob_poi
1494 * @page: page number to read
1495 *
1496 * Hardware ECC for large page chips, require OOB to be read first. For this
1497 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1498 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1499 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1500 * the data area, by overwriting the NAND manufacturer bad block markings.
1501 */
1502static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1503        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1504{
1505        int i, eccsize = chip->ecc.size;
1506        int eccbytes = chip->ecc.bytes;
1507        int eccsteps = chip->ecc.steps;
1508        uint8_t *p = buf;
1509        uint8_t *ecc_code = chip->buffers->ecccode;
1510        uint32_t *eccpos = chip->ecc.layout->eccpos;
1511        uint8_t *ecc_calc = chip->buffers->ecccalc;
1512        unsigned int max_bitflips = 0;
1513
1514        /* Read the OOB area first */
1515        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1516        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1517        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1518
1519        for (i = 0; i < chip->ecc.total; i++)
1520                ecc_code[i] = chip->oob_poi[eccpos[i]];
1521
1522        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1523                int stat;
1524
1525                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1526                chip->read_buf(mtd, p, eccsize);
1527                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1528
1529                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1530                if (stat < 0) {
1531                        mtd->ecc_stats.failed++;
1532                } else {
1533                        mtd->ecc_stats.corrected += stat;
1534                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1535                }
1536        }
1537        return max_bitflips;
1538}
1539
1540/**
1541 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1542 * @mtd: mtd info structure
1543 * @chip: nand chip info structure
1544 * @buf: buffer to store read data
1545 * @oob_required: caller requires OOB data read to chip->oob_poi
1546 * @page: page number to read
1547 *
1548 * The hw generator calculates the error syndrome automatically. Therefore we
1549 * need a special oob layout and handling.
1550 */
1551static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1552                                   uint8_t *buf, int oob_required, int page)
1553{
1554        int i, eccsize = chip->ecc.size;
1555        int eccbytes = chip->ecc.bytes;
1556        int eccsteps = chip->ecc.steps;
1557        uint8_t *p = buf;
1558        uint8_t *oob = chip->oob_poi;
1559        unsigned int max_bitflips = 0;
1560
1561        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1562                int stat;
1563
1564                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1565                chip->read_buf(mtd, p, eccsize);
1566
1567                if (chip->ecc.prepad) {
1568                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1569                        oob += chip->ecc.prepad;
1570                }
1571
1572                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1573                chip->read_buf(mtd, oob, eccbytes);
1574                stat = chip->ecc.correct(mtd, p, oob, NULL);
1575
1576                if (stat < 0) {
1577                        mtd->ecc_stats.failed++;
1578                } else {
1579                        mtd->ecc_stats.corrected += stat;
1580                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1581                }
1582
1583                oob += eccbytes;
1584
1585                if (chip->ecc.postpad) {
1586                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1587                        oob += chip->ecc.postpad;
1588                }
1589        }
1590
1591        /* Calculate remaining oob bytes */
1592        i = mtd->oobsize - (oob - chip->oob_poi);
1593        if (i)
1594                chip->read_buf(mtd, oob, i);
1595
1596        return max_bitflips;
1597}
1598
1599/**
1600 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1601 * @chip: nand chip structure
1602 * @oob: oob destination address
1603 * @ops: oob ops structure
1604 * @len: size of oob to transfer
1605 */
1606static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1607                                  struct mtd_oob_ops *ops, size_t len)
1608{
1609        switch (ops->mode) {
1610
1611        case MTD_OPS_PLACE_OOB:
1612        case MTD_OPS_RAW:
1613                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1614                return oob + len;
1615
1616        case MTD_OPS_AUTO_OOB: {
1617                struct nand_oobfree *free = chip->ecc.layout->oobfree;
1618                uint32_t boffs = 0, roffs = ops->ooboffs;
1619                size_t bytes = 0;
1620
1621                for (; free->length && len; free++, len -= bytes) {
1622                        /* Read request not from offset 0? */
1623                        if (unlikely(roffs)) {
1624                                if (roffs >= free->length) {
1625                                        roffs -= free->length;
1626                                        continue;
1627                                }
1628                                boffs = free->offset + roffs;
1629                                bytes = min_t(size_t, len,
1630                                              (free->length - roffs));
1631                                roffs = 0;
1632                        } else {
1633                                bytes = min_t(size_t, len, free->length);
1634                                boffs = free->offset;
1635                        }
1636                        memcpy(oob, chip->oob_poi + boffs, bytes);
1637                        oob += bytes;
1638                }
1639                return oob;
1640        }
1641        default:
1642                BUG();
1643        }
1644        return NULL;
1645}
1646
1647/**
1648 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1649 * @mtd: MTD device structure
1650 * @retry_mode: the retry mode to use
1651 *
1652 * Some vendors supply a special command to shift the Vt threshold, to be used
1653 * when there are too many bitflips in a page (i.e., ECC error). After setting
1654 * a new threshold, the host should retry reading the page.
1655 */
1656static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1657{
1658        struct nand_chip *chip = mtd->priv;
1659
1660        pr_debug("setting READ RETRY mode %d\n", retry_mode);
1661
1662        if (retry_mode >= chip->read_retries)
1663                return -EINVAL;
1664
1665        if (!chip->setup_read_retry)
1666                return -EOPNOTSUPP;
1667
1668        return chip->setup_read_retry(mtd, retry_mode);
1669}
1670
1671/**
1672 * nand_do_read_ops - [INTERN] Read data with ECC
1673 * @mtd: MTD device structure
1674 * @from: offset to read from
1675 * @ops: oob ops structure
1676 *
1677 * Internal function. Called with chip held.
1678 */
1679static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1680                            struct mtd_oob_ops *ops)
1681{
1682        int chipnr, page, realpage, col, bytes, aligned, oob_required;
1683        struct nand_chip *chip = mtd->priv;
1684        int ret = 0;
1685        uint32_t readlen = ops->len;
1686        uint32_t oobreadlen = ops->ooblen;
1687        uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1688                mtd->oobavail : mtd->oobsize;
1689
1690        uint8_t *bufpoi, *oob, *buf;
1691        int use_bufpoi;
1692        unsigned int max_bitflips = 0;
1693        int retry_mode = 0;
1694        bool ecc_fail = false;
1695
1696        chipnr = (int)(from >> chip->chip_shift);
1697        chip->select_chip(mtd, chipnr);
1698
1699        realpage = (int)(from >> chip->page_shift);
1700        page = realpage & chip->pagemask;
1701
1702        col = (int)(from & (mtd->writesize - 1));
1703
1704        buf = ops->datbuf;
1705        oob = ops->oobbuf;
1706        oob_required = oob ? 1 : 0;
1707
1708        while (1) {
1709                unsigned int ecc_failures = mtd->ecc_stats.failed;
1710
1711                bytes = min(mtd->writesize - col, readlen);
1712                aligned = (bytes == mtd->writesize);
1713
1714                if (!aligned)
1715                        use_bufpoi = 1;
1716                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1717                        use_bufpoi = !virt_addr_valid(buf);
1718                else
1719                        use_bufpoi = 0;
1720
1721                /* Is the current page in the buffer? */
1722                if (realpage != chip->pagebuf || oob) {
1723                        bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1724
1725                        if (use_bufpoi && aligned)
1726                                pr_debug("%s: using read bounce buffer for buf@%p\n",
1727                                                 __func__, buf);
1728
1729read_retry:
1730                        chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1731
1732                        /*
1733                         * Now read the page into the buffer.  Absent an error,
1734                         * the read methods return max bitflips per ecc step.
1735                         */
1736                        if (unlikely(ops->mode == MTD_OPS_RAW))
1737                                ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1738                                                              oob_required,
1739                                                              page);
1740                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1741                                 !oob)
1742                                ret = chip->ecc.read_subpage(mtd, chip,
1743                                                        col, bytes, bufpoi,
1744                                                        page);
1745                        else
1746                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
1747                                                          oob_required, page);
1748                        if (ret < 0) {
1749                                if (use_bufpoi)
1750                                        /* Invalidate page cache */
1751                                        chip->pagebuf = -1;
1752                                break;
1753                        }
1754
1755                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
1756
1757                        /* Transfer not aligned data */
1758                        if (use_bufpoi) {
1759                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1760                                    !(mtd->ecc_stats.failed - ecc_failures) &&
1761                                    (ops->mode != MTD_OPS_RAW)) {
1762                                        chip->pagebuf = realpage;
1763                                        chip->pagebuf_bitflips = ret;
1764                                } else {
1765                                        /* Invalidate page cache */
1766                                        chip->pagebuf = -1;
1767                                }
1768                                memcpy(buf, chip->buffers->databuf + col, bytes);
1769                        }
1770
1771                        if (unlikely(oob)) {
1772                                int toread = min(oobreadlen, max_oobsize);
1773
1774                                if (toread) {
1775                                        oob = nand_transfer_oob(chip,
1776                                                oob, ops, toread);
1777                                        oobreadlen -= toread;
1778                                }
1779                        }
1780
1781                        if (chip->options & NAND_NEED_READRDY) {
1782                                /* Apply delay or wait for ready/busy pin */
1783                                if (!chip->dev_ready)
1784                                        udelay(chip->chip_delay);
1785                                else
1786                                        nand_wait_ready(mtd);
1787                        }
1788
1789                        if (mtd->ecc_stats.failed - ecc_failures) {
1790                                if (retry_mode + 1 < chip->read_retries) {
1791                                        retry_mode++;
1792                                        ret = nand_setup_read_retry(mtd,
1793                                                        retry_mode);
1794                                        if (ret < 0)
1795                                                break;
1796
1797                                        /* Reset failures; retry */
1798                                        mtd->ecc_stats.failed = ecc_failures;
1799                                        goto read_retry;
1800                                } else {
1801                                        /* No more retry modes; real failure */
1802                                        ecc_fail = true;
1803                                }
1804                        }
1805
1806                        buf += bytes;
1807                } else {
1808                        memcpy(buf, chip->buffers->databuf + col, bytes);
1809                        buf += bytes;
1810                        max_bitflips = max_t(unsigned int, max_bitflips,
1811                                             chip->pagebuf_bitflips);
1812                }
1813
1814                readlen -= bytes;
1815
1816                /* Reset to retry mode 0 */
1817                if (retry_mode) {
1818                        ret = nand_setup_read_retry(mtd, 0);
1819                        if (ret < 0)
1820                                break;
1821                        retry_mode = 0;
1822                }
1823
1824                if (!readlen)
1825                        break;
1826
1827                /* For subsequent reads align to page boundary */
1828                col = 0;
1829                /* Increment page address */
1830                realpage++;
1831
1832                page = realpage & chip->pagemask;
1833                /* Check, if we cross a chip boundary */
1834                if (!page) {
1835                        chipnr++;
1836                        chip->select_chip(mtd, -1);
1837                        chip->select_chip(mtd, chipnr);
1838                }
1839        }
1840        chip->select_chip(mtd, -1);
1841
1842        ops->retlen = ops->len - (size_t) readlen;
1843        if (oob)
1844                ops->oobretlen = ops->ooblen - oobreadlen;
1845
1846        if (ret < 0)
1847                return ret;
1848
1849        if (ecc_fail)
1850                return -EBADMSG;
1851
1852        return max_bitflips;
1853}
1854
1855/**
1856 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1857 * @mtd: MTD device structure
1858 * @from: offset to read from
1859 * @len: number of bytes to read
1860 * @retlen: pointer to variable to store the number of read bytes
1861 * @buf: the databuffer to put data
1862 *
1863 * Get hold of the chip and call nand_do_read.
1864 */
1865static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1866                     size_t *retlen, uint8_t *buf)
1867{
1868        struct mtd_oob_ops ops;
1869        int ret;
1870
1871        nand_get_device(mtd, FL_READING);
1872        memset(&ops, 0, sizeof(ops));
1873        ops.len = len;
1874        ops.datbuf = buf;
1875        ops.mode = MTD_OPS_PLACE_OOB;
1876        ret = nand_do_read_ops(mtd, from, &ops);
1877        *retlen = ops.retlen;
1878        nand_release_device(mtd);
1879        return ret;
1880}
1881
1882/**
1883 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1884 * @mtd: mtd info structure
1885 * @chip: nand chip info structure
1886 * @page: page number to read
1887 */
1888static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1889                             int page)
1890{
1891        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1892        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1893        return 0;
1894}
1895
1896/**
1897 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1898 *                          with syndromes
1899 * @mtd: mtd info structure
1900 * @chip: nand chip info structure
1901 * @page: page number to read
1902 */
1903static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1904                                  int page)
1905{
1906        int length = mtd->oobsize;
1907        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1908        int eccsize = chip->ecc.size;
1909        uint8_t *bufpoi = chip->oob_poi;
1910        int i, toread, sndrnd = 0, pos;
1911
1912        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1913        for (i = 0; i < chip->ecc.steps; i++) {
1914                if (sndrnd) {
1915                        pos = eccsize + i * (eccsize + chunk);
1916                        if (mtd->writesize > 512)
1917                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1918                        else
1919                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1920                } else
1921                        sndrnd = 1;
1922                toread = min_t(int, length, chunk);
1923                chip->read_buf(mtd, bufpoi, toread);
1924                bufpoi += toread;
1925                length -= toread;
1926        }
1927        if (length > 0)
1928                chip->read_buf(mtd, bufpoi, length);
1929
1930        return 0;
1931}
1932
1933/**
1934 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1935 * @mtd: mtd info structure
1936 * @chip: nand chip info structure
1937 * @page: page number to write
1938 */
1939static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1940                              int page)
1941{
1942        int status = 0;
1943        const uint8_t *buf = chip->oob_poi;
1944        int length = mtd->oobsize;
1945
1946        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1947        chip->write_buf(mtd, buf, length);
1948        /* Send command to program the OOB data */
1949        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1950
1951        status = chip->waitfunc(mtd, chip);
1952
1953        return status & NAND_STATUS_FAIL ? -EIO : 0;
1954}
1955
1956/**
1957 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1958 *                           with syndrome - only for large page flash
1959 * @mtd: mtd info structure
1960 * @chip: nand chip info structure
1961 * @page: page number to write
1962 */
1963static int nand_write_oob_syndrome(struct mtd_info *mtd,
1964                                   struct nand_chip *chip, int page)
1965{
1966        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1967        int eccsize = chip->ecc.size, length = mtd->oobsize;
1968        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1969        const uint8_t *bufpoi = chip->oob_poi;
1970
1971        /*
1972         * data-ecc-data-ecc ... ecc-oob
1973         * or
1974         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1975         */
1976        if (!chip->ecc.prepad && !chip->ecc.postpad) {
1977                pos = steps * (eccsize + chunk);
1978                steps = 0;
1979        } else
1980                pos = eccsize;
1981
1982        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1983        for (i = 0; i < steps; i++) {
1984                if (sndcmd) {
1985                        if (mtd->writesize <= 512) {
1986                                uint32_t fill = 0xFFFFFFFF;
1987
1988                                len = eccsize;
1989                                while (len > 0) {
1990                                        int num = min_t(int, len, 4);
1991                                        chip->write_buf(mtd, (uint8_t *)&fill,
1992                                                        num);
1993                                        len -= num;
1994                                }
1995                        } else {
1996                                pos = eccsize + i * (eccsize + chunk);
1997                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1998                        }
1999                } else
2000                        sndcmd = 1;
2001                len = min_t(int, length, chunk);
2002                chip->write_buf(mtd, bufpoi, len);
2003                bufpoi += len;
2004                length -= len;
2005        }
2006        if (length > 0)
2007                chip->write_buf(mtd, bufpoi, length);
2008
2009        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2010        status = chip->waitfunc(mtd, chip);
2011
2012        return status & NAND_STATUS_FAIL ? -EIO : 0;
2013}
2014
2015/**
2016 * nand_do_read_oob - [INTERN] NAND read out-of-band
2017 * @mtd: MTD device structure
2018 * @from: offset to read from
2019 * @ops: oob operations description structure
2020 *
2021 * NAND read out-of-band data from the spare area.
2022 */
2023static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2024                            struct mtd_oob_ops *ops)
2025{
2026        int page, realpage, chipnr;
2027        struct nand_chip *chip = mtd->priv;
2028        struct mtd_ecc_stats stats;
2029        int readlen = ops->ooblen;
2030        int len;
2031        uint8_t *buf = ops->oobbuf;
2032        int ret = 0;
2033
2034        pr_debug("%s: from = 0x%08Lx, len = %i\n",
2035                        __func__, (unsigned long long)from, readlen);
2036
2037        stats = mtd->ecc_stats;
2038
2039        if (ops->mode == MTD_OPS_AUTO_OOB)
2040                len = chip->ecc.layout->oobavail;
2041        else
2042                len = mtd->oobsize;
2043
2044        if (unlikely(ops->ooboffs >= len)) {
2045                pr_debug("%s: attempt to start read outside oob\n",
2046                                __func__);
2047                return -EINVAL;
2048        }
2049
2050        /* Do not allow reads past end of device */
2051        if (unlikely(from >= mtd->size ||
2052                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2053                                        (from >> chip->page_shift)) * len)) {
2054                pr_debug("%s: attempt to read beyond end of device\n",
2055                                __func__);
2056                return -EINVAL;
2057        }
2058
2059        chipnr = (int)(from >> chip->chip_shift);
2060        chip->select_chip(mtd, chipnr);
2061
2062        /* Shift to get page */
2063        realpage = (int)(from >> chip->page_shift);
2064        page = realpage & chip->pagemask;
2065
2066        while (1) {
2067                if (ops->mode == MTD_OPS_RAW)
2068                        ret = chip->ecc.read_oob_raw(mtd, chip, page);
2069                else
2070                        ret = chip->ecc.read_oob(mtd, chip, page);
2071
2072                if (ret < 0)
2073                        break;
2074
2075                len = min(len, readlen);
2076                buf = nand_transfer_oob(chip, buf, ops, len);
2077
2078                if (chip->options & NAND_NEED_READRDY) {
2079                        /* Apply delay or wait for ready/busy pin */
2080                        if (!chip->dev_ready)
2081                                udelay(chip->chip_delay);
2082                        else
2083                                nand_wait_ready(mtd);
2084                }
2085
2086                readlen -= len;
2087                if (!readlen)
2088                        break;
2089
2090                /* Increment page address */
2091                realpage++;
2092
2093                page = realpage & chip->pagemask;
2094                /* Check, if we cross a chip boundary */
2095                if (!page) {
2096                        chipnr++;
2097                        chip->select_chip(mtd, -1);
2098                        chip->select_chip(mtd, chipnr);
2099                }
2100        }
2101        chip->select_chip(mtd, -1);
2102
2103        ops->oobretlen = ops->ooblen - readlen;
2104
2105        if (ret < 0)
2106                return ret;
2107
2108        if (mtd->ecc_stats.failed - stats.failed)
2109                return -EBADMSG;
2110
2111        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2112}
2113
2114/**
2115 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2116 * @mtd: MTD device structure
2117 * @from: offset to read from
2118 * @ops: oob operation description structure
2119 *
2120 * NAND read data and/or out-of-band data.
2121 */
2122static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2123                         struct mtd_oob_ops *ops)
2124{
2125        int ret = -ENOTSUPP;
2126
2127        ops->retlen = 0;
2128
2129        /* Do not allow reads past end of device */
2130        if (ops->datbuf && (from + ops->len) > mtd->size) {
2131                pr_debug("%s: attempt to read beyond end of device\n",
2132                                __func__);
2133                return -EINVAL;
2134        }
2135
2136        nand_get_device(mtd, FL_READING);
2137
2138        switch (ops->mode) {
2139        case MTD_OPS_PLACE_OOB:
2140        case MTD_OPS_AUTO_OOB:
2141        case MTD_OPS_RAW:
2142                break;
2143
2144        default:
2145                goto out;
2146        }
2147
2148        if (!ops->datbuf)
2149                ret = nand_do_read_oob(mtd, from, ops);
2150        else
2151                ret = nand_do_read_ops(mtd, from, ops);
2152
2153out:
2154        nand_release_device(mtd);
2155        return ret;
2156}
2157
2158
2159/**
2160 * nand_write_page_raw - [INTERN] raw page write function
2161 * @mtd: mtd info structure
2162 * @chip: nand chip info structure
2163 * @buf: data buffer
2164 * @oob_required: must write chip->oob_poi to OOB
2165 * @page: page number to write
2166 *
2167 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2168 */
2169static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2170                               const uint8_t *buf, int oob_required, int page)
2171{
2172        chip->write_buf(mtd, buf, mtd->writesize);
2173        if (oob_required)
2174                chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2175
2176        return 0;
2177}
2178
2179/**
2180 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2181 * @mtd: mtd info structure
2182 * @chip: nand chip info structure
2183 * @buf: data buffer
2184 * @oob_required: must write chip->oob_poi to OOB
2185 * @page: page number to write
2186 *
2187 * We need a special oob layout and handling even when ECC isn't checked.
2188 */
2189static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2190                                        struct nand_chip *chip,
2191                                        const uint8_t *buf, int oob_required,
2192                                        int page)
2193{
2194        int eccsize = chip->ecc.size;
2195        int eccbytes = chip->ecc.bytes;
2196        uint8_t *oob = chip->oob_poi;
2197        int steps, size;
2198
2199        for (steps = chip->ecc.steps; steps > 0; steps--) {
2200                chip->write_buf(mtd, buf, eccsize);
2201                buf += eccsize;
2202
2203                if (chip->ecc.prepad) {
2204                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2205                        oob += chip->ecc.prepad;
2206                }
2207
2208                chip->write_buf(mtd, oob, eccbytes);
2209                oob += eccbytes;
2210
2211                if (chip->ecc.postpad) {
2212                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2213                        oob += chip->ecc.postpad;
2214                }
2215        }
2216
2217        size = mtd->oobsize - (oob - chip->oob_poi);
2218        if (size)
2219                chip->write_buf(mtd, oob, size);
2220
2221        return 0;
2222}
2223/**
2224 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2225 * @mtd: mtd info structure
2226 * @chip: nand chip info structure
2227 * @buf: data buffer
2228 * @oob_required: must write chip->oob_poi to OOB
2229 * @page: page number to write
2230 */
2231static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2232                                 const uint8_t *buf, int oob_required,
2233                                 int page)
2234{
2235        int i, eccsize = chip->ecc.size;
2236        int eccbytes = chip->ecc.bytes;
2237        int eccsteps = chip->ecc.steps;
2238        uint8_t *ecc_calc = chip->buffers->ecccalc;
2239        const uint8_t *p = buf;
2240        uint32_t *eccpos = chip->ecc.layout->eccpos;
2241
2242        /* Software ECC calculation */
2243        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2244                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2245
2246        for (i = 0; i < chip->ecc.total; i++)
2247                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2248
2249        return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2250}
2251
2252/**
2253 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2254 * @mtd: mtd info structure
2255 * @chip: nand chip info structure
2256 * @buf: data buffer
2257 * @oob_required: must write chip->oob_poi to OOB
2258 * @page: page number to write
2259 */
2260static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2261                                  const uint8_t *buf, int oob_required,
2262                                  int page)
2263{
2264        int i, eccsize = chip->ecc.size;
2265        int eccbytes = chip->ecc.bytes;
2266        int eccsteps = chip->ecc.steps;
2267        uint8_t *ecc_calc = chip->buffers->ecccalc;
2268        const uint8_t *p = buf;
2269        uint32_t *eccpos = chip->ecc.layout->eccpos;
2270
2271        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2272                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2273                chip->write_buf(mtd, p, eccsize);
2274                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2275        }
2276
2277        for (i = 0; i < chip->ecc.total; i++)
2278                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2279
2280        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2281
2282        return 0;
2283}
2284
2285
2286/**
2287 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2288 * @mtd:        mtd info structure
2289 * @chip:       nand chip info structure
2290 * @offset:     column address of subpage within the page
2291 * @data_len:   data length
2292 * @buf:        data buffer
2293 * @oob_required: must write chip->oob_poi to OOB
2294 * @page: page number to write
2295 */
2296static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2297                                struct nand_chip *chip, uint32_t offset,
2298                                uint32_t data_len, const uint8_t *buf,
2299                                int oob_required, int page)
2300{
2301        uint8_t *oob_buf  = chip->oob_poi;
2302        uint8_t *ecc_calc = chip->buffers->ecccalc;
2303        int ecc_size      = chip->ecc.size;
2304        int ecc_bytes     = chip->ecc.bytes;
2305        int ecc_steps     = chip->ecc.steps;
2306        uint32_t *eccpos  = chip->ecc.layout->eccpos;
2307        uint32_t start_step = offset / ecc_size;
2308        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2309        int oob_bytes       = mtd->oobsize / ecc_steps;
2310        int step, i;
2311
2312        for (step = 0; step < ecc_steps; step++) {
2313                /* configure controller for WRITE access */
2314                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2315
2316                /* write data (untouched subpages already masked by 0xFF) */
2317                chip->write_buf(mtd, buf, ecc_size);
2318
2319                /* mask ECC of un-touched subpages by padding 0xFF */
2320                if ((step < start_step) || (step > end_step))
2321                        memset(ecc_calc, 0xff, ecc_bytes);
2322                else
2323                        chip->ecc.calculate(mtd, buf, ecc_calc);
2324
2325                /* mask OOB of un-touched subpages by padding 0xFF */
2326                /* if oob_required, preserve OOB metadata of written subpage */
2327                if (!oob_required || (step < start_step) || (step > end_step))
2328                        memset(oob_buf, 0xff, oob_bytes);
2329
2330                buf += ecc_size;
2331                ecc_calc += ecc_bytes;
2332                oob_buf  += oob_bytes;
2333        }
2334
2335        /* copy calculated ECC for whole page to chip->buffer->oob */
2336        /* this include masked-value(0xFF) for unwritten subpages */
2337        ecc_calc = chip->buffers->ecccalc;
2338        for (i = 0; i < chip->ecc.total; i++)
2339                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2340
2341        /* write OOB buffer to NAND device */
2342        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2343
2344        return 0;
2345}
2346
2347
2348/**
2349 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2350 * @mtd: mtd info structure
2351 * @chip: nand chip info structure
2352 * @buf: data buffer
2353 * @oob_required: must write chip->oob_poi to OOB
2354 * @page: page number to write
2355 *
2356 * The hw generator calculates the error syndrome automatically. Therefore we
2357 * need a special oob layout and handling.
2358 */
2359static int nand_write_page_syndrome(struct mtd_info *mtd,
2360                                    struct nand_chip *chip,
2361                                    const uint8_t *buf, int oob_required,
2362                                    int page)
2363{
2364        int i, eccsize = chip->ecc.size;
2365        int eccbytes = chip->ecc.bytes;
2366        int eccsteps = chip->ecc.steps;
2367        const uint8_t *p = buf;
2368        uint8_t *oob = chip->oob_poi;
2369
2370        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2371
2372                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2373                chip->write_buf(mtd, p, eccsize);
2374
2375                if (chip->ecc.prepad) {
2376                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2377                        oob += chip->ecc.prepad;
2378                }
2379
2380                chip->ecc.calculate(mtd, p, oob);
2381                chip->write_buf(mtd, oob, eccbytes);
2382                oob += eccbytes;
2383
2384                if (chip->ecc.postpad) {
2385                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2386                        oob += chip->ecc.postpad;
2387                }
2388        }
2389
2390        /* Calculate remaining oob bytes */
2391        i = mtd->oobsize - (oob - chip->oob_poi);
2392        if (i)
2393                chip->write_buf(mtd, oob, i);
2394
2395        return 0;
2396}
2397
2398/**
2399 * nand_write_page - [REPLACEABLE] write one page
2400 * @mtd: MTD device structure
2401 * @chip: NAND chip descriptor
2402 * @offset: address offset within the page
2403 * @data_len: length of actual data to be written
2404 * @buf: the data to write
2405 * @oob_required: must write chip->oob_poi to OOB
2406 * @page: page number to write
2407 * @cached: cached programming
2408 * @raw: use _raw version of write_page
2409 */
2410static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2411                uint32_t offset, int data_len, const uint8_t *buf,
2412                int oob_required, int page, int cached, int raw)
2413{
2414        int status, subpage;
2415
2416        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2417                chip->ecc.write_subpage)
2418                subpage = offset || (data_len < mtd->writesize);
2419        else
2420                subpage = 0;
2421
2422        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2423
2424        if (unlikely(raw))
2425                status = chip->ecc.write_page_raw(mtd, chip, buf,
2426                                                  oob_required, page);
2427        else if (subpage)
2428                status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2429                                                 buf, oob_required, page);
2430        else
2431                status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2432                                              page);
2433
2434        if (status < 0)
2435                return status;
2436
2437        /*
2438         * Cached progamming disabled for now. Not sure if it's worth the
2439         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2440         */
2441        cached = 0;
2442
2443        if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2444
2445                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2446                status = chip->waitfunc(mtd, chip);
2447                /*
2448                 * See if operation failed and additional status checks are
2449                 * available.
2450                 */
2451                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2452                        status = chip->errstat(mtd, chip, FL_WRITING, status,
2453                                               page);
2454
2455                if (status & NAND_STATUS_FAIL)
2456                        return -EIO;
2457        } else {
2458                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2459                status = chip->waitfunc(mtd, chip);
2460        }
2461
2462        return 0;
2463}
2464
2465/**
2466 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2467 * @mtd: MTD device structure
2468 * @oob: oob data buffer
2469 * @len: oob data write length
2470 * @ops: oob ops structure
2471 */
2472static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2473                              struct mtd_oob_ops *ops)
2474{
2475        struct nand_chip *chip = mtd->priv;
2476
2477        /*
2478         * Initialise to all 0xFF, to avoid the possibility of left over OOB
2479         * data from a previous OOB read.
2480         */
2481        memset(chip->oob_poi, 0xff, mtd->oobsize);
2482
2483        switch (ops->mode) {
2484
2485        case MTD_OPS_PLACE_OOB:
2486        case MTD_OPS_RAW:
2487                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2488                return oob + len;
2489
2490        case MTD_OPS_AUTO_OOB: {
2491                struct nand_oobfree *free = chip->ecc.layout->oobfree;
2492                uint32_t boffs = 0, woffs = ops->ooboffs;
2493                size_t bytes = 0;
2494
2495                for (; free->length && len; free++, len -= bytes) {
2496                        /* Write request not from offset 0? */
2497                        if (unlikely(woffs)) {
2498                                if (woffs >= free->length) {
2499                                        woffs -= free->length;
2500                                        continue;
2501                                }
2502                                boffs = free->offset + woffs;
2503                                bytes = min_t(size_t, len,
2504                                              (free->length - woffs));
2505                                woffs = 0;
2506                        } else {
2507                                bytes = min_t(size_t, len, free->length);
2508                                boffs = free->offset;
2509                        }
2510                        memcpy(chip->oob_poi + boffs, oob, bytes);
2511                        oob += bytes;
2512                }
2513                return oob;
2514        }
2515        default:
2516                BUG();
2517        }
2518        return NULL;
2519}
2520
2521#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2522
2523/**
2524 * nand_do_write_ops - [INTERN] NAND write with ECC
2525 * @mtd: MTD device structure
2526 * @to: offset to write to
2527 * @ops: oob operations description structure
2528 *
2529 * NAND write with ECC.
2530 */
2531static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2532                             struct mtd_oob_ops *ops)
2533{
2534        int chipnr, realpage, page, blockmask, column;
2535        struct nand_chip *chip = mtd->priv;
2536        uint32_t writelen = ops->len;
2537
2538        uint32_t oobwritelen = ops->ooblen;
2539        uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2540                                mtd->oobavail : mtd->oobsize;
2541
2542        uint8_t *oob = ops->oobbuf;
2543        uint8_t *buf = ops->datbuf;
2544        int ret;
2545        int oob_required = oob ? 1 : 0;
2546
2547        ops->retlen = 0;
2548        if (!writelen)
2549                return 0;
2550
2551        /* Reject writes, which are not page aligned */
2552        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2553                pr_notice("%s: attempt to write non page aligned data\n",
2554                           __func__);
2555                return -EINVAL;
2556        }
2557
2558        column = to & (mtd->writesize - 1);
2559
2560        chipnr = (int)(to >> chip->chip_shift);
2561        chip->select_chip(mtd, chipnr);
2562
2563        /* Check, if it is write protected */
2564        if (nand_check_wp(mtd)) {
2565                ret = -EIO;
2566                goto err_out;
2567        }
2568
2569        realpage = (int)(to >> chip->page_shift);
2570        page = realpage & chip->pagemask;
2571        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2572
2573        /* Invalidate the page cache, when we write to the cached page */
2574        if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2575            ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2576                chip->pagebuf = -1;
2577
2578        /* Don't allow multipage oob writes with offset */
2579        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2580                ret = -EINVAL;
2581                goto err_out;
2582        }
2583
2584        while (1) {
2585                int bytes = mtd->writesize;
2586                int cached = writelen > bytes && page != blockmask;
2587                uint8_t *wbuf = buf;
2588                int use_bufpoi;
2589                int part_pagewr = (column || writelen < (mtd->writesize - 1));
2590
2591                if (part_pagewr)
2592                        use_bufpoi = 1;
2593                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2594                        use_bufpoi = !virt_addr_valid(buf);
2595                else
2596                        use_bufpoi = 0;
2597
2598                /* Partial page write?, or need to use bounce buffer */
2599                if (use_bufpoi) {
2600                        pr_debug("%s: using write bounce buffer for buf@%p\n",
2601                                         __func__, buf);
2602                        cached = 0;
2603                        if (part_pagewr)
2604                                bytes = min_t(int, bytes - column, writelen);
2605                        chip->pagebuf = -1;
2606                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2607                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2608                        wbuf = chip->buffers->databuf;
2609                }
2610
2611                if (unlikely(oob)) {
2612                        size_t len = min(oobwritelen, oobmaxlen);
2613                        oob = nand_fill_oob(mtd, oob, len, ops);
2614                        oobwritelen -= len;
2615                } else {
2616                        /* We still need to erase leftover OOB data */
2617                        memset(chip->oob_poi, 0xff, mtd->oobsize);
2618                }
2619                ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2620                                        oob_required, page, cached,
2621                                        (ops->mode == MTD_OPS_RAW));
2622                if (ret)
2623                        break;
2624
2625                writelen -= bytes;
2626                if (!writelen)
2627                        break;
2628
2629                column = 0;
2630                buf += bytes;
2631                realpage++;
2632
2633                page = realpage & chip->pagemask;
2634                /* Check, if we cross a chip boundary */
2635                if (!page) {
2636                        chipnr++;
2637                        chip->select_chip(mtd, -1);
2638                        chip->select_chip(mtd, chipnr);
2639                }
2640        }
2641
2642        ops->retlen = ops->len - writelen;
2643        if (unlikely(oob))
2644                ops->oobretlen = ops->ooblen;
2645
2646err_out:
2647        chip->select_chip(mtd, -1);
2648        return ret;
2649}
2650
2651/**
2652 * panic_nand_write - [MTD Interface] NAND write with ECC
2653 * @mtd: MTD device structure
2654 * @to: offset to write to
2655 * @len: number of bytes to write
2656 * @retlen: pointer to variable to store the number of written bytes
2657 * @buf: the data to write
2658 *
2659 * NAND write with ECC. Used when performing writes in interrupt context, this
2660 * may for example be called by mtdoops when writing an oops while in panic.
2661 */
2662static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2663                            size_t *retlen, const uint8_t *buf)
2664{
2665        struct nand_chip *chip = mtd->priv;
2666        struct mtd_oob_ops ops;
2667        int ret;
2668
2669        /* Wait for the device to get ready */
2670        panic_nand_wait(mtd, chip, 400);
2671
2672        /* Grab the device */
2673        panic_nand_get_device(chip, mtd, FL_WRITING);
2674
2675        memset(&ops, 0, sizeof(ops));
2676        ops.len = len;
2677        ops.datbuf = (uint8_t *)buf;
2678        ops.mode = MTD_OPS_PLACE_OOB;
2679
2680        ret = nand_do_write_ops(mtd, to, &ops);
2681
2682        *retlen = ops.retlen;
2683        return ret;
2684}
2685
2686/**
2687 * nand_write - [MTD Interface] NAND write with ECC
2688 * @mtd: MTD device structure
2689 * @to: offset to write to
2690 * @len: number of bytes to write
2691 * @retlen: pointer to variable to store the number of written bytes
2692 * @buf: the data to write
2693 *
2694 * NAND write with ECC.
2695 */
2696static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2697                          size_t *retlen, const uint8_t *buf)
2698{
2699        struct mtd_oob_ops ops;
2700        int ret;
2701
2702        nand_get_device(mtd, FL_WRITING);
2703        memset(&ops, 0, sizeof(ops));
2704        ops.len = len;
2705        ops.datbuf = (uint8_t *)buf;
2706        ops.mode = MTD_OPS_PLACE_OOB;
2707        ret = nand_do_write_ops(mtd, to, &ops);
2708        *retlen = ops.retlen;
2709        nand_release_device(mtd);
2710        return ret;
2711}
2712
2713/**
2714 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2715 * @mtd: MTD device structure
2716 * @to: offset to write to
2717 * @ops: oob operation description structure
2718 *
2719 * NAND write out-of-band.
2720 */
2721static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2722                             struct mtd_oob_ops *ops)
2723{
2724        int chipnr, page, status, len;
2725        struct nand_chip *chip = mtd->priv;
2726
2727        pr_debug("%s: to = 0x%08x, len = %i\n",
2728                         __func__, (unsigned int)to, (int)ops->ooblen);
2729
2730        if (ops->mode == MTD_OPS_AUTO_OOB)
2731                len = chip->ecc.layout->oobavail;
2732        else
2733                len = mtd->oobsize;
2734
2735        /* Do not allow write past end of page */
2736        if ((ops->ooboffs + ops->ooblen) > len) {
2737                pr_debug("%s: attempt to write past end of page\n",
2738                                __func__);
2739                return -EINVAL;
2740        }
2741
2742        if (unlikely(ops->ooboffs >= len)) {
2743                pr_debug("%s: attempt to start write outside oob\n",
2744                                __func__);
2745                return -EINVAL;
2746        }
2747
2748        /* Do not allow write past end of device */
2749        if (unlikely(to >= mtd->size ||
2750                     ops->ooboffs + ops->ooblen >
2751                        ((mtd->size >> chip->page_shift) -
2752                         (to >> chip->page_shift)) * len)) {
2753                pr_debug("%s: attempt to write beyond end of device\n",
2754                                __func__);
2755                return -EINVAL;
2756        }
2757
2758        chipnr = (int)(to >> chip->chip_shift);
2759        chip->select_chip(mtd, chipnr);
2760
2761        /* Shift to get page */
2762        page = (int)(to >> chip->page_shift);
2763
2764        /*
2765         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2766         * of my DiskOnChip 2000 test units) will clear the whole data page too
2767         * if we don't do this. I have no clue why, but I seem to have 'fixed'
2768         * it in the doc2000 driver in August 1999.  dwmw2.
2769         */
2770        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2771
2772        /* Check, if it is write protected */
2773        if (nand_check_wp(mtd)) {
2774                chip->select_chip(mtd, -1);
2775                return -EROFS;
2776        }
2777
2778        /* Invalidate the page cache, if we write to the cached page */
2779        if (page == chip->pagebuf)
2780                chip->pagebuf = -1;
2781
2782        nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2783
2784        if (ops->mode == MTD_OPS_RAW)
2785                status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2786        else
2787                status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2788
2789        chip->select_chip(mtd, -1);
2790
2791        if (status)
2792                return status;
2793
2794        ops->oobretlen = ops->ooblen;
2795
2796        return 0;
2797}
2798
2799/**
2800 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2801 * @mtd: MTD device structure
2802 * @to: offset to write to
2803 * @ops: oob operation description structure
2804 */
2805static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2806                          struct mtd_oob_ops *ops)
2807{
2808        int ret = -ENOTSUPP;
2809
2810        ops->retlen = 0;
2811
2812        /* Do not allow writes past end of device */
2813        if (ops->datbuf && (to + ops->len) > mtd->size) {
2814                pr_debug("%s: attempt to write beyond end of device\n",
2815                                __func__);
2816                return -EINVAL;
2817        }
2818
2819        nand_get_device(mtd, FL_WRITING);
2820
2821        switch (ops->mode) {
2822        case MTD_OPS_PLACE_OOB:
2823        case MTD_OPS_AUTO_OOB:
2824        case MTD_OPS_RAW:
2825                break;
2826
2827        default:
2828                goto out;
2829        }
2830
2831        if (!ops->datbuf)
2832                ret = nand_do_write_oob(mtd, to, ops);
2833        else
2834                ret = nand_do_write_ops(mtd, to, ops);
2835
2836out:
2837        nand_release_device(mtd);
2838        return ret;
2839}
2840
2841/**
2842 * single_erase - [GENERIC] NAND standard block erase command function
2843 * @mtd: MTD device structure
2844 * @page: the page address of the block which will be erased
2845 *
2846 * Standard erase command for NAND chips. Returns NAND status.
2847 */
2848static int single_erase(struct mtd_info *mtd, int page)
2849{
2850        struct nand_chip *chip = mtd->priv;
2851        /* Send commands to erase a block */
2852        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2853        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2854
2855        return chip->waitfunc(mtd, chip);
2856}
2857
2858/**
2859 * nand_erase - [MTD Interface] erase block(s)
2860 * @mtd: MTD device structure
2861 * @instr: erase instruction
2862 *
2863 * Erase one ore more blocks.
2864 */
2865static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2866{
2867        return nand_erase_nand(mtd, instr, 0);
2868}
2869
2870/**
2871 * nand_erase_nand - [INTERN] erase block(s)
2872 * @mtd: MTD device structure
2873 * @instr: erase instruction
2874 * @allowbbt: allow erasing the bbt area
2875 *
2876 * Erase one ore more blocks.
2877 */
2878int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2879                    int allowbbt)
2880{
2881        int page, status, pages_per_block, ret, chipnr;
2882        struct nand_chip *chip = mtd->priv;
2883        loff_t len;
2884
2885        pr_debug("%s: start = 0x%012llx, len = %llu\n",
2886                        __func__, (unsigned long long)instr->addr,
2887                        (unsigned long long)instr->len);
2888
2889        if (check_offs_len(mtd, instr->addr, instr->len))
2890                return -EINVAL;
2891
2892        /* Grab the lock and see if the device is available */
2893        nand_get_device(mtd, FL_ERASING);
2894
2895        /* Shift to get first page */
2896        page = (int)(instr->addr >> chip->page_shift);
2897        chipnr = (int)(instr->addr >> chip->chip_shift);
2898
2899        /* Calculate pages in each block */
2900        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2901
2902        /* Select the NAND device */
2903        chip->select_chip(mtd, chipnr);
2904
2905        /* Check, if it is write protected */
2906        if (nand_check_wp(mtd)) {
2907                pr_debug("%s: device is write protected!\n",
2908                                __func__);
2909                instr->state = MTD_ERASE_FAILED;
2910                goto erase_exit;
2911        }
2912
2913        /* Loop through the pages */
2914        len = instr->len;
2915
2916        instr->state = MTD_ERASING;
2917
2918        while (len) {
2919                /* Check if we have a bad block, we do not erase bad blocks! */
2920                if (nand_block_checkbad(mtd, ((loff_t) page) <<
2921                                        chip->page_shift, 0, allowbbt)) {
2922                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2923                                    __func__, page);
2924                        instr->state = MTD_ERASE_FAILED;
2925                        goto erase_exit;
2926                }
2927
2928                /*
2929                 * Invalidate the page cache, if we erase the block which
2930                 * contains the current cached page.
2931                 */
2932                if (page <= chip->pagebuf && chip->pagebuf <
2933                    (page + pages_per_block))
2934                        chip->pagebuf = -1;
2935
2936                status = chip->erase(mtd, page & chip->pagemask);
2937
2938                /*
2939                 * See if operation failed and additional status checks are
2940                 * available
2941                 */
2942                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2943                        status = chip->errstat(mtd, chip, FL_ERASING,
2944                                               status, page);
2945
2946                /* See if block erase succeeded */
2947                if (status & NAND_STATUS_FAIL) {
2948                        pr_debug("%s: failed erase, page 0x%08x\n",
2949                                        __func__, page);
2950                        instr->state = MTD_ERASE_FAILED;
2951                        instr->fail_addr =
2952                                ((loff_t)page << chip->page_shift);
2953                        goto erase_exit;
2954                }
2955
2956                /* Increment page address and decrement length */
2957                len -= (1ULL << chip->phys_erase_shift);
2958                page += pages_per_block;
2959
2960                /* Check, if we cross a chip boundary */
2961                if (len && !(page & chip->pagemask)) {
2962                        chipnr++;
2963                        chip->select_chip(mtd, -1);
2964                        chip->select_chip(mtd, chipnr);
2965                }
2966        }
2967        instr->state = MTD_ERASE_DONE;
2968
2969erase_exit:
2970
2971        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2972
2973        /* Deselect and wake up anyone waiting on the device */
2974        chip->select_chip(mtd, -1);
2975        nand_release_device(mtd);
2976
2977        /* Do call back function */
2978        if (!ret)
2979                mtd_erase_callback(instr);
2980
2981        /* Return more or less happy */
2982        return ret;
2983}
2984
2985/**
2986 * nand_sync - [MTD Interface] sync
2987 * @mtd: MTD device structure
2988 *
2989 * Sync is actually a wait for chip ready function.
2990 */
2991static void nand_sync(struct mtd_info *mtd)
2992{
2993        pr_debug("%s: called\n", __func__);
2994
2995        /* Grab the lock and see if the device is available */
2996        nand_get_device(mtd, FL_SYNCING);
2997        /* Release it and go back */
2998        nand_release_device(mtd);
2999}
3000
3001/**
3002 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3003 * @mtd: MTD device structure
3004 * @offs: offset relative to mtd start
3005 */
3006static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3007{
3008        return nand_block_checkbad(mtd, offs, 1, 0);
3009}
3010
3011/**
3012 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3013 * @mtd: MTD device structure
3014 * @ofs: offset relative to mtd start
3015 */
3016static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3017{
3018        int ret;
3019
3020        ret = nand_block_isbad(mtd, ofs);
3021        if (ret) {
3022                /* If it was bad already, return success and do nothing */
3023                if (ret > 0)
3024                        return 0;
3025                return ret;
3026        }
3027
3028        return nand_block_markbad_lowlevel(mtd, ofs);
3029}
3030
3031/**
3032 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3033 * @mtd: MTD device structure
3034 * @chip: nand chip info structure
3035 * @addr: feature address.
3036 * @subfeature_param: the subfeature parameters, a four bytes array.
3037 */
3038static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3039                        int addr, uint8_t *subfeature_param)
3040{
3041        int status;
3042        int i;
3043
3044        if (!chip->onfi_version ||
3045            !(le16_to_cpu(chip->onfi_params.opt_cmd)
3046              & ONFI_OPT_CMD_SET_GET_FEATURES))
3047                return -EINVAL;
3048
3049        chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3050        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3051                chip->write_byte(mtd, subfeature_param[i]);
3052
3053        status = chip->waitfunc(mtd, chip);
3054        if (status & NAND_STATUS_FAIL)
3055                return -EIO;
3056        return 0;
3057}
3058
3059/**
3060 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3061 * @mtd: MTD device structure
3062 * @chip: nand chip info structure
3063 * @addr: feature address.
3064 * @subfeature_param: the subfeature parameters, a four bytes array.
3065 */
3066static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3067                        int addr, uint8_t *subfeature_param)
3068{
3069        int i;
3070
3071        if (!chip->onfi_version ||
3072            !(le16_to_cpu(chip->onfi_params.opt_cmd)
3073              & ONFI_OPT_CMD_SET_GET_FEATURES))
3074                return -EINVAL;
3075
3076        chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3077        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3078                *subfeature_param++ = chip->read_byte(mtd);
3079        return 0;
3080}
3081
3082/**
3083 * nand_suspend - [MTD Interface] Suspend the NAND flash
3084 * @mtd: MTD device structure
3085 */
3086static int nand_suspend(struct mtd_info *mtd)
3087{
3088        return nand_get_device(mtd, FL_PM_SUSPENDED);
3089}
3090
3091/**
3092 * nand_resume - [MTD Interface] Resume the NAND flash
3093 * @mtd: MTD device structure
3094 */
3095static void nand_resume(struct mtd_info *mtd)
3096{
3097        struct nand_chip *chip = mtd->priv;
3098
3099        if (chip->state == FL_PM_SUSPENDED)
3100                nand_release_device(mtd);
3101        else
3102                pr_err("%s called for a chip which is not in suspended state\n",
3103                        __func__);
3104}
3105
3106/**
3107 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3108 *                 prevent further operations
3109 * @mtd: MTD device structure
3110 */
3111static void nand_shutdown(struct mtd_info *mtd)
3112{
3113        nand_get_device(mtd, FL_PM_SUSPENDED);
3114}
3115
3116/* Set default functions */
3117static void nand_set_defaults(struct nand_chip *chip, int busw)
3118{
3119        /* check for proper chip_delay setup, set 20us if not */
3120        if (!chip->chip_delay)
3121                chip->chip_delay = 20;
3122
3123        /* check, if a user supplied command function given */
3124        if (chip->cmdfunc == NULL)
3125                chip->cmdfunc = nand_command;
3126
3127        /* check, if a user supplied wait function given */
3128        if (chip->waitfunc == NULL)
3129                chip->waitfunc = nand_wait;
3130
3131        if (!chip->select_chip)
3132                chip->select_chip = nand_select_chip;
3133
3134        /* set for ONFI nand */
3135        if (!chip->onfi_set_features)
3136                chip->onfi_set_features = nand_onfi_set_features;
3137        if (!chip->onfi_get_features)
3138                chip->onfi_get_features = nand_onfi_get_features;
3139
3140        /* If called twice, pointers that depend on busw may need to be reset */
3141        if (!chip->read_byte || chip->read_byte == nand_read_byte)
3142                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3143        if (!chip->read_word)
3144                chip->read_word = nand_read_word;
3145        if (!chip->block_bad)
3146                chip->block_bad = nand_block_bad;
3147        if (!chip->block_markbad)
3148                chip->block_markbad = nand_default_block_markbad;
3149        if (!chip->write_buf || chip->write_buf == nand_write_buf)
3150                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3151        if (!chip->write_byte || chip->write_byte == nand_write_byte)
3152                chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3153        if (!chip->read_buf || chip->read_buf == nand_read_buf)
3154                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3155        if (!chip->scan_bbt)
3156                chip->scan_bbt = nand_default_bbt;
3157
3158        if (!chip->controller) {
3159                chip->controller = &chip->hwcontrol;
3160                spin_lock_init(&chip->controller->lock);
3161                init_waitqueue_head(&chip->controller->wq);
3162        }
3163
3164}
3165
3166/* Sanitize ONFI strings so we can safely print them */
3167static void sanitize_string(uint8_t *s, size_t len)
3168{
3169        ssize_t i;
3170
3171        /* Null terminate */
3172        s[len - 1] = 0;
3173
3174        /* Remove non printable chars */
3175        for (i = 0; i < len - 1; i++) {
3176                if (s[i] < ' ' || s[i] > 127)
3177                        s[i] = '?';
3178        }
3179
3180        /* Remove trailing spaces */
3181        strim(s);
3182}
3183
3184static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3185{
3186        int i;
3187        while (len--) {
3188                crc ^= *p++ << 8;
3189                for (i = 0; i < 8; i++)
3190                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3191        }
3192
3193        return crc;
3194}
3195
3196/* Parse the Extended Parameter Page. */
3197static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3198                struct nand_chip *chip, struct nand_onfi_params *p)
3199{
3200        struct onfi_ext_param_page *ep;
3201        struct onfi_ext_section *s;
3202        struct onfi_ext_ecc_info *ecc;
3203        uint8_t *cursor;
3204        int ret = -EINVAL;
3205        int len;
3206        int i;
3207
3208        len = le16_to_cpu(p->ext_param_page_length) * 16;
3209        ep = kmalloc(len, GFP_KERNEL);
3210        if (!ep)
3211                return -ENOMEM;
3212
3213        /* Send our own NAND_CMD_PARAM. */
3214        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3215
3216        /* Use the Change Read Column command to skip the ONFI param pages. */
3217        chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3218                        sizeof(*p) * p->num_of_param_pages , -1);
3219
3220        /* Read out the Extended Parameter Page. */
3221        chip->read_buf(mtd, (uint8_t *)ep, len);
3222        if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3223                != le16_to_cpu(ep->crc))) {
3224                pr_debug("fail in the CRC.\n");
3225                goto ext_out;
3226        }
3227
3228        /*
3229         * Check the signature.
3230         * Do not strictly follow the ONFI spec, maybe changed in future.
3231         */
3232        if (strncmp(ep->sig, "EPPS", 4)) {
3233                pr_debug("The signature is invalid.\n");
3234                goto ext_out;
3235        }
3236
3237        /* find the ECC section. */
3238        cursor = (uint8_t *)(ep + 1);
3239        for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3240                s = ep->sections + i;
3241                if (s->type == ONFI_SECTION_TYPE_2)
3242                        break;
3243                cursor += s->length * 16;
3244        }
3245        if (i == ONFI_EXT_SECTION_MAX) {
3246                pr_debug("We can not find the ECC section.\n");
3247                goto ext_out;
3248        }
3249
3250        /* get the info we want. */
3251        ecc = (struct onfi_ext_ecc_info *)cursor;
3252
3253        if (!ecc->codeword_size) {
3254                pr_debug("Invalid codeword size\n");
3255                goto ext_out;
3256        }
3257
3258        chip->ecc_strength_ds = ecc->ecc_bits;
3259        chip->ecc_step_ds = 1 << ecc->codeword_size;
3260        ret = 0;
3261
3262ext_out:
3263        kfree(ep);
3264        return ret;
3265}
3266
3267static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3268{
3269        struct nand_chip *chip = mtd->priv;
3270        uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3271
3272        return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3273                        feature);
3274}
3275
3276/*
3277 * Configure chip properties from Micron vendor-specific ONFI table
3278 */
3279static void nand_onfi_detect_micron(struct nand_chip *chip,
3280                struct nand_onfi_params *p)
3281{
3282        struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3283
3284        if (le16_to_cpu(p->vendor_revision) < 1)
3285                return;
3286
3287        chip->read_retries = micron->read_retry_options;
3288        chip->setup_read_retry = nand_setup_read_retry_micron;
3289}
3290
3291/*
3292 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3293 */
3294static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3295                                        int *busw)
3296{
3297        struct nand_onfi_params *p = &chip->onfi_params;
3298        int i, j;
3299        int val;
3300
3301        /* Try ONFI for unknown chip or LP */
3302        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3303        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3304                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3305                return 0;
3306
3307        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3308        for (i = 0; i < 3; i++) {
3309                for (j = 0; j < sizeof(*p); j++)
3310                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3311                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3312                                le16_to_cpu(p->crc)) {
3313                        break;
3314                }
3315        }
3316
3317        if (i == 3) {
3318                pr_err("Could not find valid ONFI parameter page; aborting\n");
3319                return 0;
3320        }
3321
3322        /* Check version */
3323        val = le16_to_cpu(p->revision);
3324        if (val & (1 << 5))
3325                chip->onfi_version = 23;
3326        else if (val & (1 << 4))
3327                chip->onfi_version = 22;
3328        else if (val & (1 << 3))
3329                chip->onfi_version = 21;
3330        else if (val & (1 << 2))
3331                chip->onfi_version = 20;
3332        else if (val & (1 << 1))
3333                chip->onfi_version = 10;
3334
3335        if (!chip->onfi_version) {
3336                pr_info("unsupported ONFI version: %d\n", val);
3337                return 0;
3338        }
3339
3340        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3341        sanitize_string(p->model, sizeof(p->model));
3342        if (!mtd->name)
3343                mtd->name = p->model;
3344
3345        mtd->writesize = le32_to_cpu(p->byte_per_page);
3346
3347        /*
3348         * pages_per_block and blocks_per_lun may not be a power-of-2 size
3349         * (don't ask me who thought of this...). MTD assumes that these
3350         * dimensions will be power-of-2, so just truncate the remaining area.
3351         */
3352        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3353        mtd->erasesize *= mtd->writesize;
3354
3355        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3356
3357        /* See erasesize comment */
3358        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3359        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3360        chip->bits_per_cell = p->bits_per_cell;
3361
3362        if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3363                *busw = NAND_BUSWIDTH_16;
3364        else
3365                *busw = 0;
3366
3367        if (p->ecc_bits != 0xff) {
3368                chip->ecc_strength_ds = p->ecc_bits;
3369                chip->ecc_step_ds = 512;
3370        } else if (chip->onfi_version >= 21 &&
3371                (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3372
3373                /*
3374                 * The nand_flash_detect_ext_param_page() uses the
3375                 * Change Read Column command which maybe not supported
3376                 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3377                 * now. We do not replace user supplied command function.
3378                 */
3379                if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3380                        chip->cmdfunc = nand_command_lp;
3381
3382                /* The Extended Parameter Page is supported since ONFI 2.1. */
3383                if (nand_flash_detect_ext_param_page(mtd, chip, p))
3384                        pr_warn("Failed to detect ONFI extended param page\n");
3385        } else {
3386                pr_warn("Could not retrieve ONFI ECC requirements\n");
3387        }
3388
3389        if (p->jedec_id == NAND_MFR_MICRON)
3390                nand_onfi_detect_micron(chip, p);
3391
3392        return 1;
3393}
3394
3395/*
3396 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3397 */
3398static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3399                                        int *busw)
3400{
3401        struct nand_jedec_params *p = &chip->jedec_params;
3402        struct jedec_ecc_info *ecc;
3403        int val;
3404        int i, j;
3405
3406        /* Try JEDEC for unknown chip or LP */
3407        chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3408        if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3409                chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3410                chip->read_byte(mtd) != 'C')
3411                return 0;
3412
3413        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3414        for (i = 0; i < 3; i++) {
3415                for (j = 0; j < sizeof(*p); j++)
3416                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3417
3418                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3419                                le16_to_cpu(p->crc))
3420                        break;
3421        }
3422
3423        if (i == 3) {
3424                pr_err("Could not find valid JEDEC parameter page; aborting\n");
3425                return 0;
3426        }
3427
3428        /* Check version */
3429        val = le16_to_cpu(p->revision);
3430        if (val & (1 << 2))
3431                chip->jedec_version = 10;
3432        else if (val & (1 << 1))
3433                chip->jedec_version = 1; /* vendor specific version */
3434
3435        if (!chip->jedec_version) {
3436                pr_info("unsupported JEDEC version: %d\n", val);
3437                return 0;
3438        }
3439
3440        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3441        sanitize_string(p->model, sizeof(p->model));
3442        if (!mtd->name)
3443                mtd->name = p->model;
3444
3445        mtd->writesize = le32_to_cpu(p->byte_per_page);
3446
3447        /* Please reference to the comment for nand_flash_detect_onfi. */
3448        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3449        mtd->erasesize *= mtd->writesize;
3450
3451        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3452
3453        /* Please reference to the comment for nand_flash_detect_onfi. */
3454        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3455        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3456        chip->bits_per_cell = p->bits_per_cell;
3457
3458        if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3459                *busw = NAND_BUSWIDTH_16;
3460        else
3461                *busw = 0;
3462
3463        /* ECC info */
3464        ecc = &p->ecc_info[0];
3465
3466        if (ecc->codeword_size >= 9) {
3467                chip->ecc_strength_ds = ecc->ecc_bits;
3468                chip->ecc_step_ds = 1 << ecc->codeword_size;
3469        } else {
3470                pr_warn("Invalid codeword size\n");
3471        }
3472
3473        return 1;
3474}
3475
3476/*
3477 * nand_id_has_period - Check if an ID string has a given wraparound period
3478 * @id_data: the ID string
3479 * @arrlen: the length of the @id_data array
3480 * @period: the period of repitition
3481 *
3482 * Check if an ID string is repeated within a given sequence of bytes at
3483 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3484 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3485 * if the repetition has a period of @period; otherwise, returns zero.
3486 */
3487static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3488{
3489        int i, j;
3490        for (i = 0; i < period; i++)
3491                for (j = i + period; j < arrlen; j += period)
3492                        if (id_data[i] != id_data[j])
3493                                return 0;
3494        return 1;
3495}
3496
3497/*
3498 * nand_id_len - Get the length of an ID string returned by CMD_READID
3499 * @id_data: the ID string
3500 * @arrlen: the length of the @id_data array
3501
3502 * Returns the length of the ID string, according to known wraparound/trailing
3503 * zero patterns. If no pattern exists, returns the length of the array.
3504 */
3505static int nand_id_len(u8 *id_data, int arrlen)
3506{
3507        int last_nonzero, period;
3508
3509        /* Find last non-zero byte */
3510        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3511                if (id_data[last_nonzero])
3512                        break;
3513
3514        /* All zeros */
3515        if (last_nonzero < 0)
3516                return 0;
3517
3518        /* Calculate wraparound period */
3519        for (period = 1; period < arrlen; period++)
3520                if (nand_id_has_period(id_data, arrlen, period))
3521                        break;
3522
3523        /* There's a repeated pattern */
3524        if (period < arrlen)
3525                return period;
3526
3527        /* There are trailing zeros */
3528        if (last_nonzero < arrlen - 1)
3529                return last_nonzero + 1;
3530
3531        /* No pattern detected */
3532        return arrlen;
3533}
3534
3535/* Extract the bits of per cell from the 3rd byte of the extended ID */
3536static int nand_get_bits_per_cell(u8 cellinfo)
3537{
3538        int bits;
3539
3540        bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3541        bits >>= NAND_CI_CELLTYPE_SHIFT;
3542        return bits + 1;
3543}
3544
3545/*
3546 * Many new NAND share similar device ID codes, which represent the size of the
3547 * chip. The rest of the parameters must be decoded according to generic or
3548 * manufacturer-specific "extended ID" decoding patterns.
3549 */
3550static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3551                                u8 id_data[8], int *busw)
3552{
3553        int extid, id_len;
3554        /* The 3rd id byte holds MLC / multichip data */
3555        chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3556        /* The 4th id byte is the important one */
3557        extid = id_data[3];
3558
3559        id_len = nand_id_len(id_data, 8);
3560
3561        /*
3562         * Field definitions are in the following datasheets:
3563         * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3564         * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3565         * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3566         *
3567         * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3568         * ID to decide what to do.
3569         */
3570        if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3571                        !nand_is_slc(chip) && id_data[5] != 0x00) {
3572                /* Calc pagesize */
3573                mtd->writesize = 2048 << (extid & 0x03);
3574                extid >>= 2;
3575                /* Calc oobsize */
3576                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3577                case 1:
3578                        mtd->oobsize = 128;
3579                        break;
3580                case 2:
3581                        mtd->oobsize = 218;
3582                        break;
3583                case 3:
3584                        mtd->oobsize = 400;
3585                        break;
3586                case 4:
3587                        mtd->oobsize = 436;
3588                        break;
3589                case 5:
3590                        mtd->oobsize = 512;
3591                        break;
3592                case 6:
3593                        mtd->oobsize = 640;
3594                        break;
3595                case 7:
3596                default: /* Other cases are "reserved" (unknown) */
3597                        mtd->oobsize = 1024;
3598                        break;
3599                }
3600                extid >>= 2;
3601                /* Calc blocksize */
3602                mtd->erasesize = (128 * 1024) <<
3603                        (((extid >> 1) & 0x04) | (extid & 0x03));
3604                *busw = 0;
3605        } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3606                        !nand_is_slc(chip)) {
3607                unsigned int tmp;
3608
3609                /* Calc pagesize */
3610                mtd->writesize = 2048 << (extid & 0x03);
3611                extid >>= 2;
3612                /* Calc oobsize */
3613                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3614                case 0:
3615                        mtd->oobsize = 128;
3616                        break;
3617                case 1:
3618                        mtd->oobsize = 224;
3619                        break;
3620                case 2:
3621                        mtd->oobsize = 448;
3622                        break;
3623                case 3:
3624                        mtd->oobsize = 64;
3625                        break;
3626                case 4:
3627                        mtd->oobsize = 32;
3628                        break;
3629                case 5:
3630                        mtd->oobsize = 16;
3631                        break;
3632                default:
3633                        mtd->oobsize = 640;
3634                        break;
3635                }
3636                extid >>= 2;
3637                /* Calc blocksize */
3638                tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3639                if (tmp < 0x03)
3640                        mtd->erasesize = (128 * 1024) << tmp;
3641                else if (tmp == 0x03)
3642                        mtd->erasesize = 768 * 1024;
3643                else
3644                        mtd->erasesize = (64 * 1024) << tmp;
3645                *busw = 0;
3646        } else {
3647                /* Calc pagesize */
3648                mtd->writesize = 1024 << (extid & 0x03);
3649                extid >>= 2;
3650                /* Calc oobsize */
3651                mtd->oobsize = (8 << (extid & 0x01)) *
3652                        (mtd->writesize >> 9);
3653                extid >>= 2;
3654                /* Calc blocksize. Blocksize is multiples of 64KiB */
3655                mtd->erasesize = (64 * 1024) << (extid & 0x03);
3656                extid >>= 2;
3657                /* Get buswidth information */
3658                *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3659
3660                /*
3661                 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3662                 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3663                 * follows:
3664                 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3665                 *                         110b -> 24nm
3666                 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3667                 */
3668                if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3669                                nand_is_slc(chip) &&
3670                                (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3671                                !(id_data[4] & 0x80) /* !BENAND */) {
3672                        mtd->oobsize = 32 * mtd->writesize >> 9;
3673                }
3674
3675        }
3676}
3677
3678/*
3679 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3680 * decodes a matching ID table entry and assigns the MTD size parameters for
3681 * the chip.
3682 */
3683static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3684                                struct nand_flash_dev *type, u8 id_data[8],
3685                                int *busw)
3686{
3687        int maf_id = id_data[0];
3688
3689        mtd->erasesize = type->erasesize;
3690        mtd->writesize = type->pagesize;
3691        mtd->oobsize = mtd->writesize / 32;
3692        *busw = type->options & NAND_BUSWIDTH_16;
3693
3694        /* All legacy ID NAND are small-page, SLC */
3695        chip->bits_per_cell = 1;
3696
3697        /*
3698         * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3699         * some Spansion chips have erasesize that conflicts with size
3700         * listed in nand_ids table.
3701         * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3702         */
3703        if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3704                        && id_data[6] == 0x00 && id_data[7] == 0x00
3705                        && mtd->writesize == 512) {
3706                mtd->erasesize = 128 * 1024;
3707                mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3708        }
3709}
3710
3711/*
3712 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3713 * heuristic patterns using various detected parameters (e.g., manufacturer,
3714 * page size, cell-type information).
3715 */
3716static void nand_decode_bbm_options(struct mtd_info *mtd,
3717                                    struct nand_chip *chip, u8 id_data[8])
3718{
3719        int maf_id = id_data[0];
3720
3721        /* Set the bad block position */
3722        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3723                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3724        else
3725                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3726
3727        /*
3728         * Bad block marker is stored in the last page of each block on Samsung
3729         * and Hynix MLC devices; stored in first two pages of each block on
3730         * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3731         * AMD/Spansion, and Macronix.  All others scan only the first page.
3732         */
3733        if (!nand_is_slc(chip) &&
3734                        (maf_id == NAND_MFR_SAMSUNG ||
3735                         maf_id == NAND_MFR_HYNIX))
3736                chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3737        else if ((nand_is_slc(chip) &&
3738                                (maf_id == NAND_MFR_SAMSUNG ||
3739                                 maf_id == NAND_MFR_HYNIX ||
3740                                 maf_id == NAND_MFR_TOSHIBA ||
3741                                 maf_id == NAND_MFR_AMD ||
3742                                 maf_id == NAND_MFR_MACRONIX)) ||
3743                        (mtd->writesize == 2048 &&
3744                         maf_id == NAND_MFR_MICRON))
3745                chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3746}
3747
3748static inline bool is_full_id_nand(struct nand_flash_dev *type)
3749{
3750        return type->id_len;
3751}
3752
3753static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3754                   struct nand_flash_dev *type, u8 *id_data, int *busw)
3755{
3756        if (!strncmp(type->id, id_data, type->id_len)) {
3757                mtd->writesize = type->pagesize;
3758                mtd->erasesize = type->erasesize;
3759                mtd->oobsize = type->oobsize;
3760
3761                chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3762                chip->chipsize = (uint64_t)type->chipsize << 20;
3763                chip->options |= type->options;
3764                chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3765                chip->ecc_step_ds = NAND_ECC_STEP(type);
3766                chip->onfi_timing_mode_default =
3767                                        type->onfi_timing_mode_default;
3768
3769                *busw = type->options & NAND_BUSWIDTH_16;
3770
3771                if (!mtd->name)
3772                        mtd->name = type->name;
3773
3774                return true;
3775        }
3776        return false;
3777}
3778
3779/*
3780 * Get the flash and manufacturer id and lookup if the type is supported.
3781 */
3782static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3783                                                  struct nand_chip *chip,
3784                                                  int *maf_id, int *dev_id,
3785                                                  struct nand_flash_dev *type)
3786{
3787        int busw;
3788        int i, maf_idx;
3789        u8 id_data[8];
3790
3791        /* Select the device */
3792        chip->select_chip(mtd, 0);
3793
3794        /*
3795         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3796         * after power-up.
3797         */
3798        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3799
3800        /* Send the command for reading device ID */
3801        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3802
3803        /* Read manufacturer and device IDs */
3804        *maf_id = chip->read_byte(mtd);
3805        *dev_id = chip->read_byte(mtd);
3806
3807        /*
3808         * Try again to make sure, as some systems the bus-hold or other
3809         * interface concerns can cause random data which looks like a
3810         * possibly credible NAND flash to appear. If the two results do
3811         * not match, ignore the device completely.
3812         */
3813
3814        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3815
3816        /* Read entire ID string */
3817        for (i = 0; i < 8; i++)
3818                id_data[i] = chip->read_byte(mtd);
3819
3820        if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3821                pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3822                        *maf_id, *dev_id, id_data[0], id_data[1]);
3823                return ERR_PTR(-ENODEV);
3824        }
3825
3826        if (!type)
3827                type = nand_flash_ids;
3828
3829        for (; type->name != NULL; type++) {
3830                if (is_full_id_nand(type)) {
3831                        if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3832                                goto ident_done;
3833                } else if (*dev_id == type->dev_id) {
3834                        break;
3835                }
3836        }
3837
3838        chip->onfi_version = 0;
3839        if (!type->name || !type->pagesize) {
3840                /* Check if the chip is ONFI compliant */
3841                if (nand_flash_detect_onfi(mtd, chip, &busw))
3842                        goto ident_done;
3843
3844                /* Check if the chip is JEDEC compliant */
3845                if (nand_flash_detect_jedec(mtd, chip, &busw))
3846                        goto ident_done;
3847        }
3848
3849        if (!type->name)
3850                return ERR_PTR(-ENODEV);
3851
3852        if (!mtd->name)
3853                mtd->name = type->name;
3854
3855        chip->chipsize = (uint64_t)type->chipsize << 20;
3856
3857        if (!type->pagesize) {
3858                /* Decode parameters from extended ID */
3859                nand_decode_ext_id(mtd, chip, id_data, &busw);
3860        } else {
3861                nand_decode_id(mtd, chip, type, id_data, &busw);
3862        }
3863        /* Get chip options */
3864        chip->options |= type->options;
3865
3866        /*
3867         * Check if chip is not a Samsung device. Do not clear the
3868         * options for chips which do not have an extended id.
3869         */
3870        if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3871                chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3872ident_done:
3873
3874        /* Try to identify manufacturer */
3875        for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3876                if (nand_manuf_ids[maf_idx].id == *maf_id)
3877                        break;
3878        }
3879
3880        if (chip->options & NAND_BUSWIDTH_AUTO) {
3881                WARN_ON(chip->options & NAND_BUSWIDTH_16);
3882                chip->options |= busw;
3883                nand_set_defaults(chip, busw);
3884        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3885                /*
3886                 * Check, if buswidth is correct. Hardware drivers should set
3887                 * chip correct!
3888                 */
3889                pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3890                        *maf_id, *dev_id);
3891                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3892                pr_warn("bus width %d instead %d bit\n",
3893                           (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3894                           busw ? 16 : 8);
3895                return ERR_PTR(-EINVAL);
3896        }
3897
3898        nand_decode_bbm_options(mtd, chip, id_data);
3899
3900        /* Calculate the address shift from the page size */
3901        chip->page_shift = ffs(mtd->writesize) - 1;
3902        /* Convert chipsize to number of pages per chip -1 */
3903        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3904
3905        chip->bbt_erase_shift = chip->phys_erase_shift =
3906                ffs(mtd->erasesize) - 1;
3907        if (chip->chipsize & 0xffffffff)
3908                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3909        else {
3910                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3911                chip->chip_shift += 32 - 1;
3912        }
3913
3914        chip->badblockbits = 8;
3915        chip->erase = single_erase;
3916
3917        /* Do not replace user supplied command function! */
3918        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3919                chip->cmdfunc = nand_command_lp;
3920
3921        pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3922                *maf_id, *dev_id);
3923
3924        if (chip->onfi_version)
3925                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3926                                chip->onfi_params.model);
3927        else if (chip->jedec_version)
3928                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3929                                chip->jedec_params.model);
3930        else
3931                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3932                                type->name);
3933
3934        pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3935                (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3936                mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3937        return type;
3938}
3939
3940static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip,
3941                        struct device_node *dn)
3942{
3943        int ecc_mode, ecc_strength, ecc_step;
3944
3945        if (of_get_nand_bus_width(dn) == 16)
3946                chip->options |= NAND_BUSWIDTH_16;
3947
3948        if (of_get_nand_on_flash_bbt(dn))
3949                chip->bbt_options |= NAND_BBT_USE_FLASH;
3950
3951        ecc_mode = of_get_nand_ecc_mode(dn);
3952        ecc_strength = of_get_nand_ecc_strength(dn);
3953        ecc_step = of_get_nand_ecc_step_size(dn);
3954
3955        if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3956            (!(ecc_step >= 0) && ecc_strength >= 0)) {
3957                pr_err("must set both strength and step size in DT\n");
3958                return -EINVAL;
3959        }
3960
3961        if (ecc_mode >= 0)
3962                chip->ecc.mode = ecc_mode;
3963
3964        if (ecc_strength >= 0)
3965                chip->ecc.strength = ecc_strength;
3966
3967        if (ecc_step > 0)
3968                chip->ecc.size = ecc_step;
3969
3970        return 0;
3971}
3972
3973/**
3974 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3975 * @mtd: MTD device structure
3976 * @maxchips: number of chips to scan for
3977 * @table: alternative NAND ID table
3978 *
3979 * This is the first phase of the normal nand_scan() function. It reads the
3980 * flash ID and sets up MTD fields accordingly.
3981 *
3982 * The mtd->owner field must be set to the module of the caller.
3983 */
3984int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3985                    struct nand_flash_dev *table)
3986{
3987        int i, nand_maf_id, nand_dev_id;
3988        struct nand_chip *chip = mtd->priv;
3989        struct nand_flash_dev *type;
3990        int ret;
3991
3992        if (chip->flash_node) {
3993                ret = nand_dt_init(mtd, chip, chip->flash_node);
3994                if (ret)
3995                        return ret;
3996        }
3997
3998        /* Set the default functions */
3999        nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4000
4001        /* Read the flash type */
4002        type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4003                                   &nand_dev_id, table);
4004
4005        if (IS_ERR(type)) {
4006                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4007                        pr_warn("No NAND device found\n");
4008                chip->select_chip(mtd, -1);
4009                return PTR_ERR(type);
4010        }
4011
4012        chip->select_chip(mtd, -1);
4013
4014        /* Check for a chip array */
4015        for (i = 1; i < maxchips; i++) {
4016                chip->select_chip(mtd, i);
4017                /* See comment in nand_get_flash_type for reset */
4018                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
4019                /* Send the command for reading device ID */
4020                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4021                /* Read manufacturer and device IDs */
4022                if (nand_maf_id != chip->read_byte(mtd) ||
4023                    nand_dev_id != chip->read_byte(mtd)) {
4024                        chip->select_chip(mtd, -1);
4025                        break;
4026                }
4027                chip->select_chip(mtd, -1);
4028        }
4029        if (i > 1)
4030                pr_info("%d chips detected\n", i);
4031
4032        /* Store the number of chips and calc total size for mtd */
4033        chip->numchips = i;
4034        mtd->size = i * chip->chipsize;
4035
4036        return 0;
4037}
4038EXPORT_SYMBOL(nand_scan_ident);
4039
4040/*
4041 * Check if the chip configuration meet the datasheet requirements.
4042
4043 * If our configuration corrects A bits per B bytes and the minimum
4044 * required correction level is X bits per Y bytes, then we must ensure
4045 * both of the following are true:
4046 *
4047 * (1) A / B >= X / Y
4048 * (2) A >= X
4049 *
4050 * Requirement (1) ensures we can correct for the required bitflip density.
4051 * Requirement (2) ensures we can correct even when all bitflips are clumped
4052 * in the same sector.
4053 */
4054static bool nand_ecc_strength_good(struct mtd_info *mtd)
4055{
4056        struct nand_chip *chip = mtd->priv;
4057        struct nand_ecc_ctrl *ecc = &chip->ecc;
4058        int corr, ds_corr;
4059
4060        if (ecc->size == 0 || chip->ecc_step_ds == 0)
4061                /* Not enough information */
4062                return true;
4063
4064        /*
4065         * We get the number of corrected bits per page to compare
4066         * the correction density.
4067         */
4068        corr = (mtd->writesize * ecc->strength) / ecc->size;
4069        ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4070
4071        return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4072}
4073
4074/**
4075 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4076 * @mtd: MTD device structure
4077 *
4078 * This is the second phase of the normal nand_scan() function. It fills out
4079 * all the uninitialized function pointers with the defaults and scans for a
4080 * bad block table if appropriate.
4081 */
4082int nand_scan_tail(struct mtd_info *mtd)
4083{
4084        int i;
4085        struct nand_chip *chip = mtd->priv;
4086        struct nand_ecc_ctrl *ecc = &chip->ecc;
4087        struct nand_buffers *nbuf;
4088
4089        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4090        BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4091                        !(chip->bbt_options & NAND_BBT_USE_FLASH));
4092
4093        if (!(chip->options & NAND_OWN_BUFFERS)) {
4094                nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4095                                + mtd->oobsize * 3, GFP_KERNEL);
4096                if (!nbuf)
4097                        return -ENOMEM;
4098                nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4099                nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4100                nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4101
4102                chip->buffers = nbuf;
4103        } else {
4104                if (!chip->buffers)
4105                        return -ENOMEM;
4106        }
4107
4108        /* Set the internal oob buffer location, just after the page data */
4109        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4110
4111        /*
4112         * If no default placement scheme is given, select an appropriate one.
4113         */
4114        if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4115                switch (mtd->oobsize) {
4116                case 8:
4117                        ecc->layout = &nand_oob_8;
4118                        break;
4119                case 16:
4120                        ecc->layout = &nand_oob_16;
4121                        break;
4122                case 64:
4123                        ecc->layout = &nand_oob_64;
4124                        break;
4125                case 128:
4126                        ecc->layout = &nand_oob_128;
4127                        break;
4128                default:
4129                        pr_warn("No oob scheme defined for oobsize %d\n",
4130                                   mtd->oobsize);
4131                        BUG();
4132                }
4133        }
4134
4135        if (!chip->write_page)
4136                chip->write_page = nand_write_page;
4137
4138        /*
4139         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4140         * selected and we have 256 byte pagesize fallback to software ECC
4141         */
4142
4143        switch (ecc->mode) {
4144        case NAND_ECC_HW_OOB_FIRST:
4145                /* Similar to NAND_ECC_HW, but a separate read_page handle */
4146                if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4147                        pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4148                        BUG();
4149                }
4150                if (!ecc->read_page)
4151                        ecc->read_page = nand_read_page_hwecc_oob_first;
4152
4153        case NAND_ECC_HW:
4154                /* Use standard hwecc read page function? */
4155                if (!ecc->read_page)
4156                        ecc->read_page = nand_read_page_hwecc;
4157                if (!ecc->write_page)
4158                        ecc->write_page = nand_write_page_hwecc;
4159                if (!ecc->read_page_raw)
4160                        ecc->read_page_raw = nand_read_page_raw;
4161                if (!ecc->write_page_raw)
4162                        ecc->write_page_raw = nand_write_page_raw;
4163                if (!ecc->read_oob)
4164                        ecc->read_oob = nand_read_oob_std;
4165                if (!ecc->write_oob)
4166                        ecc->write_oob = nand_write_oob_std;
4167                if (!ecc->read_subpage)
4168                        ecc->read_subpage = nand_read_subpage;
4169                if (!ecc->write_subpage)
4170                        ecc->write_subpage = nand_write_subpage_hwecc;
4171
4172        case NAND_ECC_HW_SYNDROME:
4173                if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4174                    (!ecc->read_page ||
4175                     ecc->read_page == nand_read_page_hwecc ||
4176                     !ecc->write_page ||
4177                     ecc->write_page == nand_write_page_hwecc)) {
4178                        pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4179                        BUG();
4180                }
4181                /* Use standard syndrome read/write page function? */
4182                if (!ecc->read_page)
4183                        ecc->read_page = nand_read_page_syndrome;
4184                if (!ecc->write_page)
4185                        ecc->write_page = nand_write_page_syndrome;
4186                if (!ecc->read_page_raw)
4187                        ecc->read_page_raw = nand_read_page_raw_syndrome;
4188                if (!ecc->write_page_raw)
4189                        ecc->write_page_raw = nand_write_page_raw_syndrome;
4190                if (!ecc->read_oob)
4191                        ecc->read_oob = nand_read_oob_syndrome;
4192                if (!ecc->write_oob)
4193                        ecc->write_oob = nand_write_oob_syndrome;
4194
4195                if (mtd->writesize >= ecc->size) {
4196                        if (!ecc->strength) {
4197                                pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4198                                BUG();
4199                        }
4200                        break;
4201                }
4202                pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4203                        ecc->size, mtd->writesize);
4204                ecc->mode = NAND_ECC_SOFT;
4205
4206        case NAND_ECC_SOFT:
4207                ecc->calculate = nand_calculate_ecc;
4208                ecc->correct = nand_correct_data;
4209                ecc->read_page = nand_read_page_swecc;
4210                ecc->read_subpage = nand_read_subpage;
4211                ecc->write_page = nand_write_page_swecc;
4212                ecc->read_page_raw = nand_read_page_raw;
4213                ecc->write_page_raw = nand_write_page_raw;
4214                ecc->read_oob = nand_read_oob_std;
4215                ecc->write_oob = nand_write_oob_std;
4216                if (!ecc->size)
4217                        ecc->size = 256;
4218                ecc->bytes = 3;
4219                ecc->strength = 1;
4220                break;
4221
4222        case NAND_ECC_SOFT_BCH:
4223                if (!mtd_nand_has_bch()) {
4224                        pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4225                        BUG();
4226                }
4227                ecc->calculate = nand_bch_calculate_ecc;
4228                ecc->correct = nand_bch_correct_data;
4229                ecc->read_page = nand_read_page_swecc;
4230                ecc->read_subpage = nand_read_subpage;
4231                ecc->write_page = nand_write_page_swecc;
4232                ecc->read_page_raw = nand_read_page_raw;
4233                ecc->write_page_raw = nand_write_page_raw;
4234                ecc->read_oob = nand_read_oob_std;
4235                ecc->write_oob = nand_write_oob_std;
4236                /*
4237                 * Board driver should supply ecc.size and ecc.strength values
4238                 * to select how many bits are correctable. Otherwise, default
4239                 * to 4 bits for large page devices.
4240                 */
4241                if (!ecc->size && (mtd->oobsize >= 64)) {
4242                        ecc->size = 512;
4243                        ecc->strength = 4;
4244                }
4245
4246                /* See nand_bch_init() for details. */
4247                ecc->bytes = DIV_ROUND_UP(
4248                                ecc->strength * fls(8 * ecc->size), 8);
4249                ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4250                                               &ecc->layout);
4251                if (!ecc->priv) {
4252                        pr_warn("BCH ECC initialization failed!\n");
4253                        BUG();
4254                }
4255                break;
4256
4257        case NAND_ECC_NONE:
4258                pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4259                ecc->read_page = nand_read_page_raw;
4260                ecc->write_page = nand_write_page_raw;
4261                ecc->read_oob = nand_read_oob_std;
4262                ecc->read_page_raw = nand_read_page_raw;
4263                ecc->write_page_raw = nand_write_page_raw;
4264                ecc->write_oob = nand_write_oob_std;
4265                ecc->size = mtd->writesize;
4266                ecc->bytes = 0;
4267                ecc->strength = 0;
4268                break;
4269
4270        default:
4271                pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4272                BUG();
4273        }
4274
4275        /* For many systems, the standard OOB write also works for raw */
4276        if (!ecc->read_oob_raw)
4277                ecc->read_oob_raw = ecc->read_oob;
4278        if (!ecc->write_oob_raw)
4279                ecc->write_oob_raw = ecc->write_oob;
4280
4281        /*
4282         * The number of bytes available for a client to place data into
4283         * the out of band area.
4284         */
4285        ecc->layout->oobavail = 0;
4286        for (i = 0; ecc->layout->oobfree[i].length
4287                        && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4288                ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4289        mtd->oobavail = ecc->layout->oobavail;
4290
4291        /* ECC sanity check: warn if it's too weak */
4292        if (!nand_ecc_strength_good(mtd))
4293                pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4294                        mtd->name);
4295
4296        /*
4297         * Set the number of read / write steps for one page depending on ECC
4298         * mode.
4299         */
4300        ecc->steps = mtd->writesize / ecc->size;
4301        if (ecc->steps * ecc->size != mtd->writesize) {
4302                pr_warn("Invalid ECC parameters\n");
4303                BUG();
4304        }
4305        ecc->total = ecc->steps * ecc->bytes;
4306
4307        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4308        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4309                switch (ecc->steps) {
4310                case 2:
4311                        mtd->subpage_sft = 1;
4312                        break;
4313                case 4:
4314                case 8:
4315                case 16:
4316                        mtd->subpage_sft = 2;
4317                        break;
4318                }
4319        }
4320        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4321
4322        /* Initialize state */
4323        chip->state = FL_READY;
4324
4325        /* Invalidate the pagebuffer reference */
4326        chip->pagebuf = -1;
4327
4328        /* Large page NAND with SOFT_ECC should support subpage reads */
4329        switch (ecc->mode) {
4330        case NAND_ECC_SOFT:
4331        case NAND_ECC_SOFT_BCH:
4332                if (chip->page_shift > 9)
4333                        chip->options |= NAND_SUBPAGE_READ;
4334                break;
4335
4336        default:
4337                break;
4338        }
4339
4340        /* Fill in remaining MTD driver data */
4341        mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4342        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4343                                                MTD_CAP_NANDFLASH;
4344        mtd->_erase = nand_erase;
4345        mtd->_point = NULL;
4346        mtd->_unpoint = NULL;
4347        mtd->_read = nand_read;
4348        mtd->_write = nand_write;
4349        mtd->_panic_write = panic_nand_write;
4350        mtd->_read_oob = nand_read_oob;
4351        mtd->_write_oob = nand_write_oob;
4352        mtd->_sync = nand_sync;
4353        mtd->_lock = NULL;
4354        mtd->_unlock = NULL;
4355        mtd->_suspend = nand_suspend;
4356        mtd->_resume = nand_resume;
4357        mtd->_reboot = nand_shutdown;
4358        mtd->_block_isreserved = nand_block_isreserved;
4359        mtd->_block_isbad = nand_block_isbad;
4360        mtd->_block_markbad = nand_block_markbad;
4361        mtd->writebufsize = mtd->writesize;
4362
4363        /* propagate ecc info to mtd_info */
4364        mtd->ecclayout = ecc->layout;
4365        mtd->ecc_strength = ecc->strength;
4366        mtd->ecc_step_size = ecc->size;
4367        /*
4368         * Initialize bitflip_threshold to its default prior scan_bbt() call.
4369         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4370         * properly set.
4371         */
4372        if (!mtd->bitflip_threshold)
4373                mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4374
4375        /* Check, if we should skip the bad block table scan */
4376        if (chip->options & NAND_SKIP_BBTSCAN)
4377                return 0;
4378
4379        /* Build bad block table */
4380        return chip->scan_bbt(mtd);
4381}
4382EXPORT_SYMBOL(nand_scan_tail);
4383
4384/*
4385 * is_module_text_address() isn't exported, and it's mostly a pointless
4386 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4387 * to call us from in-kernel code if the core NAND support is modular.
4388 */
4389#ifdef MODULE
4390#define caller_is_module() (1)
4391#else
4392#define caller_is_module() \
4393        is_module_text_address((unsigned long)__builtin_return_address(0))
4394#endif
4395
4396/**
4397 * nand_scan - [NAND Interface] Scan for the NAND device
4398 * @mtd: MTD device structure
4399 * @maxchips: number of chips to scan for
4400 *
4401 * This fills out all the uninitialized function pointers with the defaults.
4402 * The flash ID is read and the mtd/chip structures are filled with the
4403 * appropriate values. The mtd->owner field must be set to the module of the
4404 * caller.
4405 */
4406int nand_scan(struct mtd_info *mtd, int maxchips)
4407{
4408        int ret;
4409
4410        /* Many callers got this wrong, so check for it for a while... */
4411        if (!mtd->owner && caller_is_module()) {
4412                pr_crit("%s called with NULL mtd->owner!\n", __func__);
4413                BUG();
4414        }
4415
4416        ret = nand_scan_ident(mtd, maxchips, NULL);
4417        if (!ret)
4418                ret = nand_scan_tail(mtd);
4419        return ret;
4420}
4421EXPORT_SYMBOL(nand_scan);
4422
4423/**
4424 * nand_release - [NAND Interface] Free resources held by the NAND device
4425 * @mtd: MTD device structure
4426 */
4427void nand_release(struct mtd_info *mtd)
4428{
4429        struct nand_chip *chip = mtd->priv;
4430
4431        if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4432                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4433
4434        mtd_device_unregister(mtd);
4435
4436        /* Free bad block table memory */
4437        kfree(chip->bbt);
4438        if (!(chip->options & NAND_OWN_BUFFERS))
4439                kfree(chip->buffers);
4440
4441        /* Free bad block descriptor memory */
4442        if (chip->badblock_pattern && chip->badblock_pattern->options
4443                        & NAND_BBT_DYNAMICSTRUCT)
4444                kfree(chip->badblock_pattern);
4445}
4446EXPORT_SYMBOL_GPL(nand_release);
4447
4448static int __init nand_base_init(void)
4449{
4450        led_trigger_register_simple("nand-disk", &nand_led_trigger);
4451        return 0;
4452}
4453
4454static void __exit nand_base_exit(void)
4455{
4456        led_trigger_unregister_simple(nand_led_trigger);
4457}
4458
4459module_init(nand_base_init);
4460module_exit(nand_base_exit);
4461
4462MODULE_LICENSE("GPL");
4463MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4464MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4465MODULE_DESCRIPTION("Generic NAND flash driver code");
4466