linux/drivers/mtd/spi-nor/spi-nor.c
<<
>>
Prefs
   1/*
   2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
   3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
   4 *
   5 * Copyright (C) 2005, Intec Automation Inc.
   6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   7 *
   8 * This code is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/mutex.h>
  18#include <linux/math64.h>
  19#include <linux/sizes.h>
  20
  21#include <linux/mtd/mtd.h>
  22#include <linux/of_platform.h>
  23#include <linux/spi/flash.h>
  24#include <linux/mtd/spi-nor.h>
  25
  26/* Define max times to check status register before we give up. */
  27
  28/*
  29 * For everything but full-chip erase; probably could be much smaller, but kept
  30 * around for safety for now
  31 */
  32#define DEFAULT_READY_WAIT_JIFFIES              (40UL * HZ)
  33
  34/*
  35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
  36 * for larger flash
  37 */
  38#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES       (40UL * HZ)
  39
  40#define SPI_NOR_MAX_ID_LEN      6
  41
  42struct flash_info {
  43        char            *name;
  44
  45        /*
  46         * This array stores the ID bytes.
  47         * The first three bytes are the JEDIC ID.
  48         * JEDEC ID zero means "no ID" (mostly older chips).
  49         */
  50        u8              id[SPI_NOR_MAX_ID_LEN];
  51        u8              id_len;
  52
  53        /* The size listed here is what works with SPINOR_OP_SE, which isn't
  54         * necessarily called a "sector" by the vendor.
  55         */
  56        unsigned        sector_size;
  57        u16             n_sectors;
  58
  59        u16             page_size;
  60        u16             addr_width;
  61
  62        u16             flags;
  63#define SECT_4K                 0x01    /* SPINOR_OP_BE_4K works uniformly */
  64#define SPI_NOR_NO_ERASE        0x02    /* No erase command needed */
  65#define SST_WRITE               0x04    /* use SST byte programming */
  66#define SPI_NOR_NO_FR           0x08    /* Can't do fastread */
  67#define SECT_4K_PMC             0x10    /* SPINOR_OP_BE_4K_PMC works uniformly */
  68#define SPI_NOR_DUAL_READ       0x20    /* Flash supports Dual Read */
  69#define SPI_NOR_QUAD_READ       0x40    /* Flash supports Quad Read */
  70#define USE_FSR                 0x80    /* use flag status register */
  71};
  72
  73#define JEDEC_MFR(info) ((info)->id[0])
  74
  75static const struct flash_info *spi_nor_match_id(const char *name);
  76
  77/*
  78 * Read the status register, returning its value in the location
  79 * Return the status register value.
  80 * Returns negative if error occurred.
  81 */
  82static int read_sr(struct spi_nor *nor)
  83{
  84        int ret;
  85        u8 val;
  86
  87        ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
  88        if (ret < 0) {
  89                pr_err("error %d reading SR\n", (int) ret);
  90                return ret;
  91        }
  92
  93        return val;
  94}
  95
  96/*
  97 * Read the flag status register, returning its value in the location
  98 * Return the status register value.
  99 * Returns negative if error occurred.
 100 */
 101static int read_fsr(struct spi_nor *nor)
 102{
 103        int ret;
 104        u8 val;
 105
 106        ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
 107        if (ret < 0) {
 108                pr_err("error %d reading FSR\n", ret);
 109                return ret;
 110        }
 111
 112        return val;
 113}
 114
 115/*
 116 * Read configuration register, returning its value in the
 117 * location. Return the configuration register value.
 118 * Returns negative if error occured.
 119 */
 120static int read_cr(struct spi_nor *nor)
 121{
 122        int ret;
 123        u8 val;
 124
 125        ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
 126        if (ret < 0) {
 127                dev_err(nor->dev, "error %d reading CR\n", ret);
 128                return ret;
 129        }
 130
 131        return val;
 132}
 133
 134/*
 135 * Dummy Cycle calculation for different type of read.
 136 * It can be used to support more commands with
 137 * different dummy cycle requirements.
 138 */
 139static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
 140{
 141        switch (nor->flash_read) {
 142        case SPI_NOR_FAST:
 143        case SPI_NOR_DUAL:
 144        case SPI_NOR_QUAD:
 145                return 8;
 146        case SPI_NOR_NORMAL:
 147                return 0;
 148        }
 149        return 0;
 150}
 151
 152/*
 153 * Write status register 1 byte
 154 * Returns negative if error occurred.
 155 */
 156static inline int write_sr(struct spi_nor *nor, u8 val)
 157{
 158        nor->cmd_buf[0] = val;
 159        return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
 160}
 161
 162/*
 163 * Set write enable latch with Write Enable command.
 164 * Returns negative if error occurred.
 165 */
 166static inline int write_enable(struct spi_nor *nor)
 167{
 168        return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
 169}
 170
 171/*
 172 * Send write disble instruction to the chip.
 173 */
 174static inline int write_disable(struct spi_nor *nor)
 175{
 176        return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
 177}
 178
 179static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
 180{
 181        return mtd->priv;
 182}
 183
 184/* Enable/disable 4-byte addressing mode. */
 185static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
 186                            int enable)
 187{
 188        int status;
 189        bool need_wren = false;
 190        u8 cmd;
 191
 192        switch (JEDEC_MFR(info)) {
 193        case SNOR_MFR_MICRON:
 194                /* Some Micron need WREN command; all will accept it */
 195                need_wren = true;
 196        case SNOR_MFR_MACRONIX:
 197        case SNOR_MFR_WINBOND:
 198                if (need_wren)
 199                        write_enable(nor);
 200
 201                cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 202                status = nor->write_reg(nor, cmd, NULL, 0);
 203                if (need_wren)
 204                        write_disable(nor);
 205
 206                return status;
 207        default:
 208                /* Spansion style */
 209                nor->cmd_buf[0] = enable << 7;
 210                return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
 211        }
 212}
 213static inline int spi_nor_sr_ready(struct spi_nor *nor)
 214{
 215        int sr = read_sr(nor);
 216        if (sr < 0)
 217                return sr;
 218        else
 219                return !(sr & SR_WIP);
 220}
 221
 222static inline int spi_nor_fsr_ready(struct spi_nor *nor)
 223{
 224        int fsr = read_fsr(nor);
 225        if (fsr < 0)
 226                return fsr;
 227        else
 228                return fsr & FSR_READY;
 229}
 230
 231static int spi_nor_ready(struct spi_nor *nor)
 232{
 233        int sr, fsr;
 234        sr = spi_nor_sr_ready(nor);
 235        if (sr < 0)
 236                return sr;
 237        fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
 238        if (fsr < 0)
 239                return fsr;
 240        return sr && fsr;
 241}
 242
 243/*
 244 * Service routine to read status register until ready, or timeout occurs.
 245 * Returns non-zero if error.
 246 */
 247static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
 248                                                unsigned long timeout_jiffies)
 249{
 250        unsigned long deadline;
 251        int timeout = 0, ret;
 252
 253        deadline = jiffies + timeout_jiffies;
 254
 255        while (!timeout) {
 256                if (time_after_eq(jiffies, deadline))
 257                        timeout = 1;
 258
 259                ret = spi_nor_ready(nor);
 260                if (ret < 0)
 261                        return ret;
 262                if (ret)
 263                        return 0;
 264
 265                cond_resched();
 266        }
 267
 268        dev_err(nor->dev, "flash operation timed out\n");
 269
 270        return -ETIMEDOUT;
 271}
 272
 273static int spi_nor_wait_till_ready(struct spi_nor *nor)
 274{
 275        return spi_nor_wait_till_ready_with_timeout(nor,
 276                                                    DEFAULT_READY_WAIT_JIFFIES);
 277}
 278
 279/*
 280 * Erase the whole flash memory
 281 *
 282 * Returns 0 if successful, non-zero otherwise.
 283 */
 284static int erase_chip(struct spi_nor *nor)
 285{
 286        dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
 287
 288        return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
 289}
 290
 291static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
 292{
 293        int ret = 0;
 294
 295        mutex_lock(&nor->lock);
 296
 297        if (nor->prepare) {
 298                ret = nor->prepare(nor, ops);
 299                if (ret) {
 300                        dev_err(nor->dev, "failed in the preparation.\n");
 301                        mutex_unlock(&nor->lock);
 302                        return ret;
 303                }
 304        }
 305        return ret;
 306}
 307
 308static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
 309{
 310        if (nor->unprepare)
 311                nor->unprepare(nor, ops);
 312        mutex_unlock(&nor->lock);
 313}
 314
 315/*
 316 * Erase an address range on the nor chip.  The address range may extend
 317 * one or more erase sectors.  Return an error is there is a problem erasing.
 318 */
 319static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
 320{
 321        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 322        u32 addr, len;
 323        uint32_t rem;
 324        int ret;
 325
 326        dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
 327                        (long long)instr->len);
 328
 329        div_u64_rem(instr->len, mtd->erasesize, &rem);
 330        if (rem)
 331                return -EINVAL;
 332
 333        addr = instr->addr;
 334        len = instr->len;
 335
 336        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
 337        if (ret)
 338                return ret;
 339
 340        /* whole-chip erase? */
 341        if (len == mtd->size) {
 342                unsigned long timeout;
 343
 344                write_enable(nor);
 345
 346                if (erase_chip(nor)) {
 347                        ret = -EIO;
 348                        goto erase_err;
 349                }
 350
 351                /*
 352                 * Scale the timeout linearly with the size of the flash, with
 353                 * a minimum calibrated to an old 2MB flash. We could try to
 354                 * pull these from CFI/SFDP, but these values should be good
 355                 * enough for now.
 356                 */
 357                timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
 358                              CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
 359                              (unsigned long)(mtd->size / SZ_2M));
 360                ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
 361                if (ret)
 362                        goto erase_err;
 363
 364        /* REVISIT in some cases we could speed up erasing large regions
 365         * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
 366         * to use "small sector erase", but that's not always optimal.
 367         */
 368
 369        /* "sector"-at-a-time erase */
 370        } else {
 371                while (len) {
 372                        write_enable(nor);
 373
 374                        if (nor->erase(nor, addr)) {
 375                                ret = -EIO;
 376                                goto erase_err;
 377                        }
 378
 379                        addr += mtd->erasesize;
 380                        len -= mtd->erasesize;
 381
 382                        ret = spi_nor_wait_till_ready(nor);
 383                        if (ret)
 384                                goto erase_err;
 385                }
 386        }
 387
 388        write_disable(nor);
 389
 390        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
 391
 392        instr->state = MTD_ERASE_DONE;
 393        mtd_erase_callback(instr);
 394
 395        return ret;
 396
 397erase_err:
 398        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
 399        instr->state = MTD_ERASE_FAILED;
 400        return ret;
 401}
 402
 403static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
 404                                 uint64_t *len)
 405{
 406        struct mtd_info *mtd = &nor->mtd;
 407        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 408        int shift = ffs(mask) - 1;
 409        int pow;
 410
 411        if (!(sr & mask)) {
 412                /* No protection */
 413                *ofs = 0;
 414                *len = 0;
 415        } else {
 416                pow = ((sr & mask) ^ mask) >> shift;
 417                *len = mtd->size >> pow;
 418                *ofs = mtd->size - *len;
 419        }
 420}
 421
 422/*
 423 * Return 1 if the entire region is locked, 0 otherwise
 424 */
 425static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
 426                            u8 sr)
 427{
 428        loff_t lock_offs;
 429        uint64_t lock_len;
 430
 431        stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
 432
 433        return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
 434}
 435
 436/*
 437 * Lock a region of the flash. Compatible with ST Micro and similar flash.
 438 * Supports only the block protection bits BP{0,1,2} in the status register
 439 * (SR). Does not support these features found in newer SR bitfields:
 440 *   - TB: top/bottom protect - only handle TB=0 (top protect)
 441 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 442 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 443 *
 444 * Sample table portion for 8MB flash (Winbond w25q64fw):
 445 *
 446 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 447 *  --------------------------------------------------------------------------
 448 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 449 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 450 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 451 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 452 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 453 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 454 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 455 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
 456 *
 457 * Returns negative on errors, 0 on success.
 458 */
 459static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 460{
 461        struct mtd_info *mtd = &nor->mtd;
 462        u8 status_old, status_new;
 463        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 464        u8 shift = ffs(mask) - 1, pow, val;
 465
 466        status_old = read_sr(nor);
 467
 468        /* SPI NOR always locks to the end */
 469        if (ofs + len != mtd->size) {
 470                /* Does combined region extend to end? */
 471                if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len,
 472                                      status_old))
 473                        return -EINVAL;
 474                len = mtd->size - ofs;
 475        }
 476
 477        /*
 478         * Need smallest pow such that:
 479         *
 480         *   1 / (2^pow) <= (len / size)
 481         *
 482         * so (assuming power-of-2 size) we do:
 483         *
 484         *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
 485         */
 486        pow = ilog2(mtd->size) - ilog2(len);
 487        val = mask - (pow << shift);
 488        if (val & ~mask)
 489                return -EINVAL;
 490        /* Don't "lock" with no region! */
 491        if (!(val & mask))
 492                return -EINVAL;
 493
 494        status_new = (status_old & ~mask) | val;
 495
 496        /* Only modify protection if it will not unlock other areas */
 497        if ((status_new & mask) <= (status_old & mask))
 498                return -EINVAL;
 499
 500        write_enable(nor);
 501        return write_sr(nor, status_new);
 502}
 503
 504/*
 505 * Unlock a region of the flash. See stm_lock() for more info
 506 *
 507 * Returns negative on errors, 0 on success.
 508 */
 509static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 510{
 511        struct mtd_info *mtd = &nor->mtd;
 512        uint8_t status_old, status_new;
 513        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 514        u8 shift = ffs(mask) - 1, pow, val;
 515
 516        status_old = read_sr(nor);
 517
 518        /* Cannot unlock; would unlock larger region than requested */
 519        if (stm_is_locked_sr(nor, ofs - mtd->erasesize, mtd->erasesize,
 520                             status_old))
 521                return -EINVAL;
 522
 523        /*
 524         * Need largest pow such that:
 525         *
 526         *   1 / (2^pow) >= (len / size)
 527         *
 528         * so (assuming power-of-2 size) we do:
 529         *
 530         *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
 531         */
 532        pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len));
 533        if (ofs + len == mtd->size) {
 534                val = 0; /* fully unlocked */
 535        } else {
 536                val = mask - (pow << shift);
 537                /* Some power-of-two sizes are not supported */
 538                if (val & ~mask)
 539                        return -EINVAL;
 540        }
 541
 542        status_new = (status_old & ~mask) | val;
 543
 544        /* Only modify protection if it will not lock other areas */
 545        if ((status_new & mask) >= (status_old & mask))
 546                return -EINVAL;
 547
 548        write_enable(nor);
 549        return write_sr(nor, status_new);
 550}
 551
 552/*
 553 * Check if a region of the flash is (completely) locked. See stm_lock() for
 554 * more info.
 555 *
 556 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 557 * negative on errors.
 558 */
 559static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
 560{
 561        int status;
 562
 563        status = read_sr(nor);
 564        if (status < 0)
 565                return status;
 566
 567        return stm_is_locked_sr(nor, ofs, len, status);
 568}
 569
 570static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 571{
 572        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 573        int ret;
 574
 575        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
 576        if (ret)
 577                return ret;
 578
 579        ret = nor->flash_lock(nor, ofs, len);
 580
 581        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
 582        return ret;
 583}
 584
 585static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 586{
 587        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 588        int ret;
 589
 590        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
 591        if (ret)
 592                return ret;
 593
 594        ret = nor->flash_unlock(nor, ofs, len);
 595
 596        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
 597        return ret;
 598}
 599
 600static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 601{
 602        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 603        int ret;
 604
 605        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
 606        if (ret)
 607                return ret;
 608
 609        ret = nor->flash_is_locked(nor, ofs, len);
 610
 611        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
 612        return ret;
 613}
 614
 615/* Used when the "_ext_id" is two bytes at most */
 616#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)      \
 617                .id = {                                                 \
 618                        ((_jedec_id) >> 16) & 0xff,                     \
 619                        ((_jedec_id) >> 8) & 0xff,                      \
 620                        (_jedec_id) & 0xff,                             \
 621                        ((_ext_id) >> 8) & 0xff,                        \
 622                        (_ext_id) & 0xff,                               \
 623                        },                                              \
 624                .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),       \
 625                .sector_size = (_sector_size),                          \
 626                .n_sectors = (_n_sectors),                              \
 627                .page_size = 256,                                       \
 628                .flags = (_flags),
 629
 630#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)     \
 631                .id = {                                                 \
 632                        ((_jedec_id) >> 16) & 0xff,                     \
 633                        ((_jedec_id) >> 8) & 0xff,                      \
 634                        (_jedec_id) & 0xff,                             \
 635                        ((_ext_id) >> 16) & 0xff,                       \
 636                        ((_ext_id) >> 8) & 0xff,                        \
 637                        (_ext_id) & 0xff,                               \
 638                        },                                              \
 639                .id_len = 6,                                            \
 640                .sector_size = (_sector_size),                          \
 641                .n_sectors = (_n_sectors),                              \
 642                .page_size = 256,                                       \
 643                .flags = (_flags),
 644
 645#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)   \
 646                .sector_size = (_sector_size),                          \
 647                .n_sectors = (_n_sectors),                              \
 648                .page_size = (_page_size),                              \
 649                .addr_width = (_addr_width),                            \
 650                .flags = (_flags),
 651
 652/* NOTE: double check command sets and memory organization when you add
 653 * more nor chips.  This current list focusses on newer chips, which
 654 * have been converging on command sets which including JEDEC ID.
 655 *
 656 * All newly added entries should describe *hardware* and should use SECT_4K
 657 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 658 * scenarios excluding small sectors there is config option that can be
 659 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 660 * For historical (and compatibility) reasons (before we got above config) some
 661 * old entries may be missing 4K flag.
 662 */
 663static const struct flash_info spi_nor_ids[] = {
 664        /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 665        { "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
 666        { "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
 667
 668        { "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
 669        { "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
 670        { "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
 671
 672        { "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
 673        { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
 674        { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
 675        { "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
 676
 677        { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
 678
 679        /* EON -- en25xxx */
 680        { "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
 681        { "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
 682        { "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
 683        { "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
 684        { "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
 685        { "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
 686        { "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
 687        { "en25s64",    INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
 688
 689        /* ESMT */
 690        { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
 691
 692        /* Everspin */
 693        { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 694        { "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 695
 696        /* Fujitsu */
 697        { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
 698
 699        /* GigaDevice */
 700        { "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
 701        { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
 702        { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
 703
 704        /* Intel/Numonyx -- xxxs33b */
 705        { "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
 706        { "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
 707        { "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
 708
 709        /* ISSI */
 710        { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
 711
 712        /* Macronix */
 713        { "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
 714        { "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
 715        { "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
 716        { "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
 717        { "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
 718        { "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
 719        { "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
 720        { "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
 721        { "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
 722        { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
 723        { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
 724        { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
 725        { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
 726        { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
 727        { "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
 728
 729        /* Micron */
 730        { "n25q032",     INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
 731        { "n25q032a",    INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
 732        { "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
 733        { "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
 734        { "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
 735        { "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
 736        { "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
 737        { "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
 738        { "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
 739        { "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
 740
 741        /* PMC */
 742        { "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
 743        { "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
 744        { "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
 745
 746        /* Spansion -- single (large) sector size only, at least
 747         * for the chips listed here (without boot sectors).
 748         */
 749        { "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 750        { "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 751        { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
 752        { "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 753        { "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 754        { "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
 755        { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
 756        { "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
 757        { "s25fl128s",  INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
 758        { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 759        { "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 760        { "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
 761        { "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
 762        { "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
 763        { "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
 764        { "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
 765        { "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 766        { "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 767        { "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 768        { "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
 769        { "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
 770        { "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
 771        { "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
 772
 773        /* SST -- large erase sizes are "overlays", "sectors" are 4K */
 774        { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
 775        { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
 776        { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
 777        { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
 778        { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
 779        { "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
 780        { "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
 781        { "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
 782        { "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
 783        { "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
 784        { "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
 785        { "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
 786
 787        /* ST Microelectronics -- newer production may have feature updates */
 788        { "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
 789        { "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
 790        { "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
 791        { "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
 792        { "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
 793        { "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
 794        { "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
 795        { "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
 796        { "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
 797
 798        { "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
 799        { "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
 800        { "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
 801        { "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
 802        { "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
 803        { "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
 804        { "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
 805        { "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
 806        { "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
 807
 808        { "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
 809        { "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
 810        { "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
 811
 812        { "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
 813        { "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
 814        { "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
 815
 816        { "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
 817        { "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
 818        { "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
 819        { "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
 820        { "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
 821        { "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
 822
 823        /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
 824        { "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
 825        { "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
 826        { "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
 827        { "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
 828        { "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
 829        { "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
 830        { "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
 831        { "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
 832        { "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 833        { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
 834        { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
 835        { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 836        { "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 837        { "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
 838        { "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
 839        { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
 840        { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
 841
 842        /* Catalyst / On Semiconductor -- non-JEDEC */
 843        { "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 844        { "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 845        { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 846        { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 847        { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 848        { },
 849};
 850
 851static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
 852{
 853        int                     tmp;
 854        u8                      id[SPI_NOR_MAX_ID_LEN];
 855        const struct flash_info *info;
 856
 857        tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
 858        if (tmp < 0) {
 859                dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
 860                return ERR_PTR(tmp);
 861        }
 862
 863        for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
 864                info = &spi_nor_ids[tmp];
 865                if (info->id_len) {
 866                        if (!memcmp(info->id, id, info->id_len))
 867                                return &spi_nor_ids[tmp];
 868                }
 869        }
 870        dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
 871                id[0], id[1], id[2]);
 872        return ERR_PTR(-ENODEV);
 873}
 874
 875static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
 876                        size_t *retlen, u_char *buf)
 877{
 878        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 879        int ret;
 880
 881        dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
 882
 883        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
 884        if (ret)
 885                return ret;
 886
 887        ret = nor->read(nor, from, len, retlen, buf);
 888
 889        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
 890        return ret;
 891}
 892
 893static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
 894                size_t *retlen, const u_char *buf)
 895{
 896        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 897        size_t actual;
 898        int ret;
 899
 900        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 901
 902        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
 903        if (ret)
 904                return ret;
 905
 906        write_enable(nor);
 907
 908        nor->sst_write_second = false;
 909
 910        actual = to % 2;
 911        /* Start write from odd address. */
 912        if (actual) {
 913                nor->program_opcode = SPINOR_OP_BP;
 914
 915                /* write one byte. */
 916                nor->write(nor, to, 1, retlen, buf);
 917                ret = spi_nor_wait_till_ready(nor);
 918                if (ret)
 919                        goto time_out;
 920        }
 921        to += actual;
 922
 923        /* Write out most of the data here. */
 924        for (; actual < len - 1; actual += 2) {
 925                nor->program_opcode = SPINOR_OP_AAI_WP;
 926
 927                /* write two bytes. */
 928                nor->write(nor, to, 2, retlen, buf + actual);
 929                ret = spi_nor_wait_till_ready(nor);
 930                if (ret)
 931                        goto time_out;
 932                to += 2;
 933                nor->sst_write_second = true;
 934        }
 935        nor->sst_write_second = false;
 936
 937        write_disable(nor);
 938        ret = spi_nor_wait_till_ready(nor);
 939        if (ret)
 940                goto time_out;
 941
 942        /* Write out trailing byte if it exists. */
 943        if (actual != len) {
 944                write_enable(nor);
 945
 946                nor->program_opcode = SPINOR_OP_BP;
 947                nor->write(nor, to, 1, retlen, buf + actual);
 948
 949                ret = spi_nor_wait_till_ready(nor);
 950                if (ret)
 951                        goto time_out;
 952                write_disable(nor);
 953        }
 954time_out:
 955        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
 956        return ret;
 957}
 958
 959/*
 960 * Write an address range to the nor chip.  Data must be written in
 961 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 962 * it is within the physical boundaries.
 963 */
 964static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
 965        size_t *retlen, const u_char *buf)
 966{
 967        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 968        u32 page_offset, page_size, i;
 969        int ret;
 970
 971        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 972
 973        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
 974        if (ret)
 975                return ret;
 976
 977        write_enable(nor);
 978
 979        page_offset = to & (nor->page_size - 1);
 980
 981        /* do all the bytes fit onto one page? */
 982        if (page_offset + len <= nor->page_size) {
 983                nor->write(nor, to, len, retlen, buf);
 984        } else {
 985                /* the size of data remaining on the first page */
 986                page_size = nor->page_size - page_offset;
 987                nor->write(nor, to, page_size, retlen, buf);
 988
 989                /* write everything in nor->page_size chunks */
 990                for (i = page_size; i < len; i += page_size) {
 991                        page_size = len - i;
 992                        if (page_size > nor->page_size)
 993                                page_size = nor->page_size;
 994
 995                        ret = spi_nor_wait_till_ready(nor);
 996                        if (ret)
 997                                goto write_err;
 998
 999                        write_enable(nor);
1000
1001                        nor->write(nor, to + i, page_size, retlen, buf + i);
1002                }
1003        }
1004
1005        ret = spi_nor_wait_till_ready(nor);
1006write_err:
1007        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1008        return ret;
1009}
1010
1011static int macronix_quad_enable(struct spi_nor *nor)
1012{
1013        int ret, val;
1014
1015        val = read_sr(nor);
1016        write_enable(nor);
1017
1018        write_sr(nor, val | SR_QUAD_EN_MX);
1019
1020        if (spi_nor_wait_till_ready(nor))
1021                return 1;
1022
1023        ret = read_sr(nor);
1024        if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1025                dev_err(nor->dev, "Macronix Quad bit not set\n");
1026                return -EINVAL;
1027        }
1028
1029        return 0;
1030}
1031
1032/*
1033 * Write status Register and configuration register with 2 bytes
1034 * The first byte will be written to the status register, while the
1035 * second byte will be written to the configuration register.
1036 * Return negative if error occured.
1037 */
1038static int write_sr_cr(struct spi_nor *nor, u16 val)
1039{
1040        nor->cmd_buf[0] = val & 0xff;
1041        nor->cmd_buf[1] = (val >> 8);
1042
1043        return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1044}
1045
1046static int spansion_quad_enable(struct spi_nor *nor)
1047{
1048        int ret;
1049        int quad_en = CR_QUAD_EN_SPAN << 8;
1050
1051        write_enable(nor);
1052
1053        ret = write_sr_cr(nor, quad_en);
1054        if (ret < 0) {
1055                dev_err(nor->dev,
1056                        "error while writing configuration register\n");
1057                return -EINVAL;
1058        }
1059
1060        /* read back and check it */
1061        ret = read_cr(nor);
1062        if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1063                dev_err(nor->dev, "Spansion Quad bit not set\n");
1064                return -EINVAL;
1065        }
1066
1067        return 0;
1068}
1069
1070static int micron_quad_enable(struct spi_nor *nor)
1071{
1072        int ret;
1073        u8 val;
1074
1075        ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
1076        if (ret < 0) {
1077                dev_err(nor->dev, "error %d reading EVCR\n", ret);
1078                return ret;
1079        }
1080
1081        write_enable(nor);
1082
1083        /* set EVCR, enable quad I/O */
1084        nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
1085        ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1);
1086        if (ret < 0) {
1087                dev_err(nor->dev, "error while writing EVCR register\n");
1088                return ret;
1089        }
1090
1091        ret = spi_nor_wait_till_ready(nor);
1092        if (ret)
1093                return ret;
1094
1095        /* read EVCR and check it */
1096        ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
1097        if (ret < 0) {
1098                dev_err(nor->dev, "error %d reading EVCR\n", ret);
1099                return ret;
1100        }
1101        if (val & EVCR_QUAD_EN_MICRON) {
1102                dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
1103                return -EINVAL;
1104        }
1105
1106        return 0;
1107}
1108
1109static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
1110{
1111        int status;
1112
1113        switch (JEDEC_MFR(info)) {
1114        case SNOR_MFR_MACRONIX:
1115                status = macronix_quad_enable(nor);
1116                if (status) {
1117                        dev_err(nor->dev, "Macronix quad-read not enabled\n");
1118                        return -EINVAL;
1119                }
1120                return status;
1121        case SNOR_MFR_MICRON:
1122                status = micron_quad_enable(nor);
1123                if (status) {
1124                        dev_err(nor->dev, "Micron quad-read not enabled\n");
1125                        return -EINVAL;
1126                }
1127                return status;
1128        default:
1129                status = spansion_quad_enable(nor);
1130                if (status) {
1131                        dev_err(nor->dev, "Spansion quad-read not enabled\n");
1132                        return -EINVAL;
1133                }
1134                return status;
1135        }
1136}
1137
1138static int spi_nor_check(struct spi_nor *nor)
1139{
1140        if (!nor->dev || !nor->read || !nor->write ||
1141                !nor->read_reg || !nor->write_reg || !nor->erase) {
1142                pr_err("spi-nor: please fill all the necessary fields!\n");
1143                return -EINVAL;
1144        }
1145
1146        return 0;
1147}
1148
1149int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1150{
1151        const struct flash_info *info = NULL;
1152        struct device *dev = nor->dev;
1153        struct mtd_info *mtd = &nor->mtd;
1154        struct device_node *np = nor->flash_node;
1155        int ret;
1156        int i;
1157
1158        ret = spi_nor_check(nor);
1159        if (ret)
1160                return ret;
1161
1162        if (name)
1163                info = spi_nor_match_id(name);
1164        /* Try to auto-detect if chip name wasn't specified or not found */
1165        if (!info)
1166                info = spi_nor_read_id(nor);
1167        if (IS_ERR_OR_NULL(info))
1168                return -ENOENT;
1169
1170        /*
1171         * If caller has specified name of flash model that can normally be
1172         * detected using JEDEC, let's verify it.
1173         */
1174        if (name && info->id_len) {
1175                const struct flash_info *jinfo;
1176
1177                jinfo = spi_nor_read_id(nor);
1178                if (IS_ERR(jinfo)) {
1179                        return PTR_ERR(jinfo);
1180                } else if (jinfo != info) {
1181                        /*
1182                         * JEDEC knows better, so overwrite platform ID. We
1183                         * can't trust partitions any longer, but we'll let
1184                         * mtd apply them anyway, since some partitions may be
1185                         * marked read-only, and we don't want to lose that
1186                         * information, even if it's not 100% accurate.
1187                         */
1188                        dev_warn(dev, "found %s, expected %s\n",
1189                                 jinfo->name, info->name);
1190                        info = jinfo;
1191                }
1192        }
1193
1194        mutex_init(&nor->lock);
1195
1196        /*
1197         * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1198         * with the software protection bits set
1199         */
1200
1201        if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
1202            JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1203            JEDEC_MFR(info) == SNOR_MFR_SST) {
1204                write_enable(nor);
1205                write_sr(nor, 0);
1206        }
1207
1208        if (!mtd->name)
1209                mtd->name = dev_name(dev);
1210        mtd->priv = nor;
1211        mtd->type = MTD_NORFLASH;
1212        mtd->writesize = 1;
1213        mtd->flags = MTD_CAP_NORFLASH;
1214        mtd->size = info->sector_size * info->n_sectors;
1215        mtd->_erase = spi_nor_erase;
1216        mtd->_read = spi_nor_read;
1217
1218        /* NOR protection support for STmicro/Micron chips and similar */
1219        if (JEDEC_MFR(info) == SNOR_MFR_MICRON) {
1220                nor->flash_lock = stm_lock;
1221                nor->flash_unlock = stm_unlock;
1222                nor->flash_is_locked = stm_is_locked;
1223        }
1224
1225        if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1226                mtd->_lock = spi_nor_lock;
1227                mtd->_unlock = spi_nor_unlock;
1228                mtd->_is_locked = spi_nor_is_locked;
1229        }
1230
1231        /* sst nor chips use AAI word program */
1232        if (info->flags & SST_WRITE)
1233                mtd->_write = sst_write;
1234        else
1235                mtd->_write = spi_nor_write;
1236
1237        if (info->flags & USE_FSR)
1238                nor->flags |= SNOR_F_USE_FSR;
1239
1240#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1241        /* prefer "small sector" erase if possible */
1242        if (info->flags & SECT_4K) {
1243                nor->erase_opcode = SPINOR_OP_BE_4K;
1244                mtd->erasesize = 4096;
1245        } else if (info->flags & SECT_4K_PMC) {
1246                nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1247                mtd->erasesize = 4096;
1248        } else
1249#endif
1250        {
1251                nor->erase_opcode = SPINOR_OP_SE;
1252                mtd->erasesize = info->sector_size;
1253        }
1254
1255        if (info->flags & SPI_NOR_NO_ERASE)
1256                mtd->flags |= MTD_NO_ERASE;
1257
1258        mtd->dev.parent = dev;
1259        nor->page_size = info->page_size;
1260        mtd->writebufsize = nor->page_size;
1261
1262        if (np) {
1263                /* If we were instantiated by DT, use it */
1264                if (of_property_read_bool(np, "m25p,fast-read"))
1265                        nor->flash_read = SPI_NOR_FAST;
1266                else
1267                        nor->flash_read = SPI_NOR_NORMAL;
1268        } else {
1269                /* If we weren't instantiated by DT, default to fast-read */
1270                nor->flash_read = SPI_NOR_FAST;
1271        }
1272
1273        /* Some devices cannot do fast-read, no matter what DT tells us */
1274        if (info->flags & SPI_NOR_NO_FR)
1275                nor->flash_read = SPI_NOR_NORMAL;
1276
1277        /* Quad/Dual-read mode takes precedence over fast/normal */
1278        if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1279                ret = set_quad_mode(nor, info);
1280                if (ret) {
1281                        dev_err(dev, "quad mode not supported\n");
1282                        return ret;
1283                }
1284                nor->flash_read = SPI_NOR_QUAD;
1285        } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1286                nor->flash_read = SPI_NOR_DUAL;
1287        }
1288
1289        /* Default commands */
1290        switch (nor->flash_read) {
1291        case SPI_NOR_QUAD:
1292                nor->read_opcode = SPINOR_OP_READ_1_1_4;
1293                break;
1294        case SPI_NOR_DUAL:
1295                nor->read_opcode = SPINOR_OP_READ_1_1_2;
1296                break;
1297        case SPI_NOR_FAST:
1298                nor->read_opcode = SPINOR_OP_READ_FAST;
1299                break;
1300        case SPI_NOR_NORMAL:
1301                nor->read_opcode = SPINOR_OP_READ;
1302                break;
1303        default:
1304                dev_err(dev, "No Read opcode defined\n");
1305                return -EINVAL;
1306        }
1307
1308        nor->program_opcode = SPINOR_OP_PP;
1309
1310        if (info->addr_width)
1311                nor->addr_width = info->addr_width;
1312        else if (mtd->size > 0x1000000) {
1313                /* enable 4-byte addressing if the device exceeds 16MiB */
1314                nor->addr_width = 4;
1315                if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
1316                        /* Dedicated 4-byte command set */
1317                        switch (nor->flash_read) {
1318                        case SPI_NOR_QUAD:
1319                                nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1320                                break;
1321                        case SPI_NOR_DUAL:
1322                                nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1323                                break;
1324                        case SPI_NOR_FAST:
1325                                nor->read_opcode = SPINOR_OP_READ4_FAST;
1326                                break;
1327                        case SPI_NOR_NORMAL:
1328                                nor->read_opcode = SPINOR_OP_READ4;
1329                                break;
1330                        }
1331                        nor->program_opcode = SPINOR_OP_PP_4B;
1332                        /* No small sector erase for 4-byte command set */
1333                        nor->erase_opcode = SPINOR_OP_SE_4B;
1334                        mtd->erasesize = info->sector_size;
1335                } else
1336                        set_4byte(nor, info, 1);
1337        } else {
1338                nor->addr_width = 3;
1339        }
1340
1341        nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1342
1343        dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1344                        (long long)mtd->size >> 10);
1345
1346        dev_dbg(dev,
1347                "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1348                ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1349                mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1350                mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1351
1352        if (mtd->numeraseregions)
1353                for (i = 0; i < mtd->numeraseregions; i++)
1354                        dev_dbg(dev,
1355                                "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1356                                ".erasesize = 0x%.8x (%uKiB), "
1357                                ".numblocks = %d }\n",
1358                                i, (long long)mtd->eraseregions[i].offset,
1359                                mtd->eraseregions[i].erasesize,
1360                                mtd->eraseregions[i].erasesize / 1024,
1361                                mtd->eraseregions[i].numblocks);
1362        return 0;
1363}
1364EXPORT_SYMBOL_GPL(spi_nor_scan);
1365
1366static const struct flash_info *spi_nor_match_id(const char *name)
1367{
1368        const struct flash_info *id = spi_nor_ids;
1369
1370        while (id->name) {
1371                if (!strcmp(name, id->name))
1372                        return id;
1373                id++;
1374        }
1375        return NULL;
1376}
1377
1378MODULE_LICENSE("GPL");
1379MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1380MODULE_AUTHOR("Mike Lavender");
1381MODULE_DESCRIPTION("framework for SPI NOR");
1382