linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c
<<
>>
Prefs
   1/*
   2 * Broadcom GENET (Gigabit Ethernet) controller driver
   3 *
   4 * Copyright (c) 2014 Broadcom Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#define pr_fmt(fmt)                             "bcmgenet: " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/sched.h>
  16#include <linux/types.h>
  17#include <linux/fcntl.h>
  18#include <linux/interrupt.h>
  19#include <linux/string.h>
  20#include <linux/if_ether.h>
  21#include <linux/init.h>
  22#include <linux/errno.h>
  23#include <linux/delay.h>
  24#include <linux/platform_device.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/pm.h>
  27#include <linux/clk.h>
  28#include <linux/of.h>
  29#include <linux/of_address.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_net.h>
  32#include <linux/of_platform.h>
  33#include <net/arp.h>
  34
  35#include <linux/mii.h>
  36#include <linux/ethtool.h>
  37#include <linux/netdevice.h>
  38#include <linux/inetdevice.h>
  39#include <linux/etherdevice.h>
  40#include <linux/skbuff.h>
  41#include <linux/in.h>
  42#include <linux/ip.h>
  43#include <linux/ipv6.h>
  44#include <linux/phy.h>
  45#include <linux/platform_data/bcmgenet.h>
  46
  47#include <asm/unaligned.h>
  48
  49#include "bcmgenet.h"
  50
  51/* Maximum number of hardware queues, downsized if needed */
  52#define GENET_MAX_MQ_CNT        4
  53
  54/* Default highest priority queue for multi queue support */
  55#define GENET_Q0_PRIORITY       0
  56
  57#define GENET_Q16_RX_BD_CNT     \
  58        (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  59#define GENET_Q16_TX_BD_CNT     \
  60        (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  61
  62#define RX_BUF_LENGTH           2048
  63#define SKB_ALIGNMENT           32
  64
  65/* Tx/Rx DMA register offset, skip 256 descriptors */
  66#define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
  67#define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
  68
  69#define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
  70                                TOTAL_DESC * DMA_DESC_SIZE)
  71
  72#define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
  73                                TOTAL_DESC * DMA_DESC_SIZE)
  74
  75static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  76                                             void __iomem *d, u32 value)
  77{
  78        __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
  79}
  80
  81static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
  82                                            void __iomem *d)
  83{
  84        return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
  85}
  86
  87static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
  88                                    void __iomem *d,
  89                                    dma_addr_t addr)
  90{
  91        __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
  92
  93        /* Register writes to GISB bus can take couple hundred nanoseconds
  94         * and are done for each packet, save these expensive writes unless
  95         * the platform is explicitly configured for 64-bits/LPAE.
  96         */
  97#ifdef CONFIG_PHYS_ADDR_T_64BIT
  98        if (priv->hw_params->flags & GENET_HAS_40BITS)
  99                __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 100#endif
 101}
 102
 103/* Combined address + length/status setter */
 104static inline void dmadesc_set(struct bcmgenet_priv *priv,
 105                               void __iomem *d, dma_addr_t addr, u32 val)
 106{
 107        dmadesc_set_length_status(priv, d, val);
 108        dmadesc_set_addr(priv, d, addr);
 109}
 110
 111static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
 112                                          void __iomem *d)
 113{
 114        dma_addr_t addr;
 115
 116        addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
 117
 118        /* Register writes to GISB bus can take couple hundred nanoseconds
 119         * and are done for each packet, save these expensive writes unless
 120         * the platform is explicitly configured for 64-bits/LPAE.
 121         */
 122#ifdef CONFIG_PHYS_ADDR_T_64BIT
 123        if (priv->hw_params->flags & GENET_HAS_40BITS)
 124                addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
 125#endif
 126        return addr;
 127}
 128
 129#define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
 130
 131#define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
 132                                NETIF_MSG_LINK)
 133
 134static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
 135{
 136        if (GENET_IS_V1(priv))
 137                return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
 138        else
 139                return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
 140}
 141
 142static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 143{
 144        if (GENET_IS_V1(priv))
 145                bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
 146        else
 147                bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
 148}
 149
 150/* These macros are defined to deal with register map change
 151 * between GENET1.1 and GENET2. Only those currently being used
 152 * by driver are defined.
 153 */
 154static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
 155{
 156        if (GENET_IS_V1(priv))
 157                return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
 158        else
 159                return __raw_readl(priv->base +
 160                                priv->hw_params->tbuf_offset + TBUF_CTRL);
 161}
 162
 163static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 164{
 165        if (GENET_IS_V1(priv))
 166                bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
 167        else
 168                __raw_writel(val, priv->base +
 169                                priv->hw_params->tbuf_offset + TBUF_CTRL);
 170}
 171
 172static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
 173{
 174        if (GENET_IS_V1(priv))
 175                return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
 176        else
 177                return __raw_readl(priv->base +
 178                                priv->hw_params->tbuf_offset + TBUF_BP_MC);
 179}
 180
 181static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
 182{
 183        if (GENET_IS_V1(priv))
 184                bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
 185        else
 186                __raw_writel(val, priv->base +
 187                                priv->hw_params->tbuf_offset + TBUF_BP_MC);
 188}
 189
 190/* RX/TX DMA register accessors */
 191enum dma_reg {
 192        DMA_RING_CFG = 0,
 193        DMA_CTRL,
 194        DMA_STATUS,
 195        DMA_SCB_BURST_SIZE,
 196        DMA_ARB_CTRL,
 197        DMA_PRIORITY_0,
 198        DMA_PRIORITY_1,
 199        DMA_PRIORITY_2,
 200        DMA_INDEX2RING_0,
 201        DMA_INDEX2RING_1,
 202        DMA_INDEX2RING_2,
 203        DMA_INDEX2RING_3,
 204        DMA_INDEX2RING_4,
 205        DMA_INDEX2RING_5,
 206        DMA_INDEX2RING_6,
 207        DMA_INDEX2RING_7,
 208        DMA_RING0_TIMEOUT,
 209        DMA_RING1_TIMEOUT,
 210        DMA_RING2_TIMEOUT,
 211        DMA_RING3_TIMEOUT,
 212        DMA_RING4_TIMEOUT,
 213        DMA_RING5_TIMEOUT,
 214        DMA_RING6_TIMEOUT,
 215        DMA_RING7_TIMEOUT,
 216        DMA_RING8_TIMEOUT,
 217        DMA_RING9_TIMEOUT,
 218        DMA_RING10_TIMEOUT,
 219        DMA_RING11_TIMEOUT,
 220        DMA_RING12_TIMEOUT,
 221        DMA_RING13_TIMEOUT,
 222        DMA_RING14_TIMEOUT,
 223        DMA_RING15_TIMEOUT,
 224        DMA_RING16_TIMEOUT,
 225};
 226
 227static const u8 bcmgenet_dma_regs_v3plus[] = {
 228        [DMA_RING_CFG]          = 0x00,
 229        [DMA_CTRL]              = 0x04,
 230        [DMA_STATUS]            = 0x08,
 231        [DMA_SCB_BURST_SIZE]    = 0x0C,
 232        [DMA_ARB_CTRL]          = 0x2C,
 233        [DMA_PRIORITY_0]        = 0x30,
 234        [DMA_PRIORITY_1]        = 0x34,
 235        [DMA_PRIORITY_2]        = 0x38,
 236        [DMA_RING0_TIMEOUT]     = 0x2C,
 237        [DMA_RING1_TIMEOUT]     = 0x30,
 238        [DMA_RING2_TIMEOUT]     = 0x34,
 239        [DMA_RING3_TIMEOUT]     = 0x38,
 240        [DMA_RING4_TIMEOUT]     = 0x3c,
 241        [DMA_RING5_TIMEOUT]     = 0x40,
 242        [DMA_RING6_TIMEOUT]     = 0x44,
 243        [DMA_RING7_TIMEOUT]     = 0x48,
 244        [DMA_RING8_TIMEOUT]     = 0x4c,
 245        [DMA_RING9_TIMEOUT]     = 0x50,
 246        [DMA_RING10_TIMEOUT]    = 0x54,
 247        [DMA_RING11_TIMEOUT]    = 0x58,
 248        [DMA_RING12_TIMEOUT]    = 0x5c,
 249        [DMA_RING13_TIMEOUT]    = 0x60,
 250        [DMA_RING14_TIMEOUT]    = 0x64,
 251        [DMA_RING15_TIMEOUT]    = 0x68,
 252        [DMA_RING16_TIMEOUT]    = 0x6C,
 253        [DMA_INDEX2RING_0]      = 0x70,
 254        [DMA_INDEX2RING_1]      = 0x74,
 255        [DMA_INDEX2RING_2]      = 0x78,
 256        [DMA_INDEX2RING_3]      = 0x7C,
 257        [DMA_INDEX2RING_4]      = 0x80,
 258        [DMA_INDEX2RING_5]      = 0x84,
 259        [DMA_INDEX2RING_6]      = 0x88,
 260        [DMA_INDEX2RING_7]      = 0x8C,
 261};
 262
 263static const u8 bcmgenet_dma_regs_v2[] = {
 264        [DMA_RING_CFG]          = 0x00,
 265        [DMA_CTRL]              = 0x04,
 266        [DMA_STATUS]            = 0x08,
 267        [DMA_SCB_BURST_SIZE]    = 0x0C,
 268        [DMA_ARB_CTRL]          = 0x30,
 269        [DMA_PRIORITY_0]        = 0x34,
 270        [DMA_PRIORITY_1]        = 0x38,
 271        [DMA_PRIORITY_2]        = 0x3C,
 272        [DMA_RING0_TIMEOUT]     = 0x2C,
 273        [DMA_RING1_TIMEOUT]     = 0x30,
 274        [DMA_RING2_TIMEOUT]     = 0x34,
 275        [DMA_RING3_TIMEOUT]     = 0x38,
 276        [DMA_RING4_TIMEOUT]     = 0x3c,
 277        [DMA_RING5_TIMEOUT]     = 0x40,
 278        [DMA_RING6_TIMEOUT]     = 0x44,
 279        [DMA_RING7_TIMEOUT]     = 0x48,
 280        [DMA_RING8_TIMEOUT]     = 0x4c,
 281        [DMA_RING9_TIMEOUT]     = 0x50,
 282        [DMA_RING10_TIMEOUT]    = 0x54,
 283        [DMA_RING11_TIMEOUT]    = 0x58,
 284        [DMA_RING12_TIMEOUT]    = 0x5c,
 285        [DMA_RING13_TIMEOUT]    = 0x60,
 286        [DMA_RING14_TIMEOUT]    = 0x64,
 287        [DMA_RING15_TIMEOUT]    = 0x68,
 288        [DMA_RING16_TIMEOUT]    = 0x6C,
 289};
 290
 291static const u8 bcmgenet_dma_regs_v1[] = {
 292        [DMA_CTRL]              = 0x00,
 293        [DMA_STATUS]            = 0x04,
 294        [DMA_SCB_BURST_SIZE]    = 0x0C,
 295        [DMA_ARB_CTRL]          = 0x30,
 296        [DMA_PRIORITY_0]        = 0x34,
 297        [DMA_PRIORITY_1]        = 0x38,
 298        [DMA_PRIORITY_2]        = 0x3C,
 299        [DMA_RING0_TIMEOUT]     = 0x2C,
 300        [DMA_RING1_TIMEOUT]     = 0x30,
 301        [DMA_RING2_TIMEOUT]     = 0x34,
 302        [DMA_RING3_TIMEOUT]     = 0x38,
 303        [DMA_RING4_TIMEOUT]     = 0x3c,
 304        [DMA_RING5_TIMEOUT]     = 0x40,
 305        [DMA_RING6_TIMEOUT]     = 0x44,
 306        [DMA_RING7_TIMEOUT]     = 0x48,
 307        [DMA_RING8_TIMEOUT]     = 0x4c,
 308        [DMA_RING9_TIMEOUT]     = 0x50,
 309        [DMA_RING10_TIMEOUT]    = 0x54,
 310        [DMA_RING11_TIMEOUT]    = 0x58,
 311        [DMA_RING12_TIMEOUT]    = 0x5c,
 312        [DMA_RING13_TIMEOUT]    = 0x60,
 313        [DMA_RING14_TIMEOUT]    = 0x64,
 314        [DMA_RING15_TIMEOUT]    = 0x68,
 315        [DMA_RING16_TIMEOUT]    = 0x6C,
 316};
 317
 318/* Set at runtime once bcmgenet version is known */
 319static const u8 *bcmgenet_dma_regs;
 320
 321static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
 322{
 323        return netdev_priv(dev_get_drvdata(dev));
 324}
 325
 326static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
 327                                      enum dma_reg r)
 328{
 329        return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
 330                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 331}
 332
 333static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
 334                                        u32 val, enum dma_reg r)
 335{
 336        __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
 337                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 338}
 339
 340static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
 341                                      enum dma_reg r)
 342{
 343        return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
 344                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 345}
 346
 347static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
 348                                        u32 val, enum dma_reg r)
 349{
 350        __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
 351                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 352}
 353
 354/* RDMA/TDMA ring registers and accessors
 355 * we merge the common fields and just prefix with T/D the registers
 356 * having different meaning depending on the direction
 357 */
 358enum dma_ring_reg {
 359        TDMA_READ_PTR = 0,
 360        RDMA_WRITE_PTR = TDMA_READ_PTR,
 361        TDMA_READ_PTR_HI,
 362        RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
 363        TDMA_CONS_INDEX,
 364        RDMA_PROD_INDEX = TDMA_CONS_INDEX,
 365        TDMA_PROD_INDEX,
 366        RDMA_CONS_INDEX = TDMA_PROD_INDEX,
 367        DMA_RING_BUF_SIZE,
 368        DMA_START_ADDR,
 369        DMA_START_ADDR_HI,
 370        DMA_END_ADDR,
 371        DMA_END_ADDR_HI,
 372        DMA_MBUF_DONE_THRESH,
 373        TDMA_FLOW_PERIOD,
 374        RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
 375        TDMA_WRITE_PTR,
 376        RDMA_READ_PTR = TDMA_WRITE_PTR,
 377        TDMA_WRITE_PTR_HI,
 378        RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
 379};
 380
 381/* GENET v4 supports 40-bits pointer addressing
 382 * for obvious reasons the LO and HI word parts
 383 * are contiguous, but this offsets the other
 384 * registers.
 385 */
 386static const u8 genet_dma_ring_regs_v4[] = {
 387        [TDMA_READ_PTR]                 = 0x00,
 388        [TDMA_READ_PTR_HI]              = 0x04,
 389        [TDMA_CONS_INDEX]               = 0x08,
 390        [TDMA_PROD_INDEX]               = 0x0C,
 391        [DMA_RING_BUF_SIZE]             = 0x10,
 392        [DMA_START_ADDR]                = 0x14,
 393        [DMA_START_ADDR_HI]             = 0x18,
 394        [DMA_END_ADDR]                  = 0x1C,
 395        [DMA_END_ADDR_HI]               = 0x20,
 396        [DMA_MBUF_DONE_THRESH]          = 0x24,
 397        [TDMA_FLOW_PERIOD]              = 0x28,
 398        [TDMA_WRITE_PTR]                = 0x2C,
 399        [TDMA_WRITE_PTR_HI]             = 0x30,
 400};
 401
 402static const u8 genet_dma_ring_regs_v123[] = {
 403        [TDMA_READ_PTR]                 = 0x00,
 404        [TDMA_CONS_INDEX]               = 0x04,
 405        [TDMA_PROD_INDEX]               = 0x08,
 406        [DMA_RING_BUF_SIZE]             = 0x0C,
 407        [DMA_START_ADDR]                = 0x10,
 408        [DMA_END_ADDR]                  = 0x14,
 409        [DMA_MBUF_DONE_THRESH]          = 0x18,
 410        [TDMA_FLOW_PERIOD]              = 0x1C,
 411        [TDMA_WRITE_PTR]                = 0x20,
 412};
 413
 414/* Set at runtime once GENET version is known */
 415static const u8 *genet_dma_ring_regs;
 416
 417static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
 418                                           unsigned int ring,
 419                                           enum dma_ring_reg r)
 420{
 421        return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
 422                        (DMA_RING_SIZE * ring) +
 423                        genet_dma_ring_regs[r]);
 424}
 425
 426static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
 427                                             unsigned int ring, u32 val,
 428                                             enum dma_ring_reg r)
 429{
 430        __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
 431                        (DMA_RING_SIZE * ring) +
 432                        genet_dma_ring_regs[r]);
 433}
 434
 435static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
 436                                           unsigned int ring,
 437                                           enum dma_ring_reg r)
 438{
 439        return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
 440                        (DMA_RING_SIZE * ring) +
 441                        genet_dma_ring_regs[r]);
 442}
 443
 444static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
 445                                             unsigned int ring, u32 val,
 446                                             enum dma_ring_reg r)
 447{
 448        __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
 449                        (DMA_RING_SIZE * ring) +
 450                        genet_dma_ring_regs[r]);
 451}
 452
 453static int bcmgenet_get_settings(struct net_device *dev,
 454                                 struct ethtool_cmd *cmd)
 455{
 456        struct bcmgenet_priv *priv = netdev_priv(dev);
 457
 458        if (!netif_running(dev))
 459                return -EINVAL;
 460
 461        if (!priv->phydev)
 462                return -ENODEV;
 463
 464        return phy_ethtool_gset(priv->phydev, cmd);
 465}
 466
 467static int bcmgenet_set_settings(struct net_device *dev,
 468                                 struct ethtool_cmd *cmd)
 469{
 470        struct bcmgenet_priv *priv = netdev_priv(dev);
 471
 472        if (!netif_running(dev))
 473                return -EINVAL;
 474
 475        if (!priv->phydev)
 476                return -ENODEV;
 477
 478        return phy_ethtool_sset(priv->phydev, cmd);
 479}
 480
 481static int bcmgenet_set_rx_csum(struct net_device *dev,
 482                                netdev_features_t wanted)
 483{
 484        struct bcmgenet_priv *priv = netdev_priv(dev);
 485        u32 rbuf_chk_ctrl;
 486        bool rx_csum_en;
 487
 488        rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
 489
 490        rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
 491
 492        /* enable rx checksumming */
 493        if (rx_csum_en)
 494                rbuf_chk_ctrl |= RBUF_RXCHK_EN;
 495        else
 496                rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
 497        priv->desc_rxchk_en = rx_csum_en;
 498
 499        /* If UniMAC forwards CRC, we need to skip over it to get
 500         * a valid CHK bit to be set in the per-packet status word
 501        */
 502        if (rx_csum_en && priv->crc_fwd_en)
 503                rbuf_chk_ctrl |= RBUF_SKIP_FCS;
 504        else
 505                rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
 506
 507        bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
 508
 509        return 0;
 510}
 511
 512static int bcmgenet_set_tx_csum(struct net_device *dev,
 513                                netdev_features_t wanted)
 514{
 515        struct bcmgenet_priv *priv = netdev_priv(dev);
 516        bool desc_64b_en;
 517        u32 tbuf_ctrl, rbuf_ctrl;
 518
 519        tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
 520        rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
 521
 522        desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
 523
 524        /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
 525        if (desc_64b_en) {
 526                tbuf_ctrl |= RBUF_64B_EN;
 527                rbuf_ctrl |= RBUF_64B_EN;
 528        } else {
 529                tbuf_ctrl &= ~RBUF_64B_EN;
 530                rbuf_ctrl &= ~RBUF_64B_EN;
 531        }
 532        priv->desc_64b_en = desc_64b_en;
 533
 534        bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
 535        bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
 536
 537        return 0;
 538}
 539
 540static int bcmgenet_set_features(struct net_device *dev,
 541                                 netdev_features_t features)
 542{
 543        netdev_features_t changed = features ^ dev->features;
 544        netdev_features_t wanted = dev->wanted_features;
 545        int ret = 0;
 546
 547        if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
 548                ret = bcmgenet_set_tx_csum(dev, wanted);
 549        if (changed & (NETIF_F_RXCSUM))
 550                ret = bcmgenet_set_rx_csum(dev, wanted);
 551
 552        return ret;
 553}
 554
 555static u32 bcmgenet_get_msglevel(struct net_device *dev)
 556{
 557        struct bcmgenet_priv *priv = netdev_priv(dev);
 558
 559        return priv->msg_enable;
 560}
 561
 562static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
 563{
 564        struct bcmgenet_priv *priv = netdev_priv(dev);
 565
 566        priv->msg_enable = level;
 567}
 568
 569static int bcmgenet_get_coalesce(struct net_device *dev,
 570                                 struct ethtool_coalesce *ec)
 571{
 572        struct bcmgenet_priv *priv = netdev_priv(dev);
 573
 574        ec->tx_max_coalesced_frames =
 575                bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
 576                                         DMA_MBUF_DONE_THRESH);
 577        ec->rx_max_coalesced_frames =
 578                bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
 579                                         DMA_MBUF_DONE_THRESH);
 580        ec->rx_coalesce_usecs =
 581                bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
 582
 583        return 0;
 584}
 585
 586static int bcmgenet_set_coalesce(struct net_device *dev,
 587                                 struct ethtool_coalesce *ec)
 588{
 589        struct bcmgenet_priv *priv = netdev_priv(dev);
 590        unsigned int i;
 591        u32 reg;
 592
 593        /* Base system clock is 125Mhz, DMA timeout is this reference clock
 594         * divided by 1024, which yields roughly 8.192us, our maximum value
 595         * has to fit in the DMA_TIMEOUT_MASK (16 bits)
 596         */
 597        if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 598            ec->tx_max_coalesced_frames == 0 ||
 599            ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 600            ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
 601                return -EINVAL;
 602
 603        if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
 604                return -EINVAL;
 605
 606        /* GENET TDMA hardware does not support a configurable timeout, but will
 607         * always generate an interrupt either after MBDONE packets have been
 608         * transmitted, or when the ring is emtpy.
 609         */
 610        if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
 611            ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
 612                return -EOPNOTSUPP;
 613
 614        /* Program all TX queues with the same values, as there is no
 615         * ethtool knob to do coalescing on a per-queue basis
 616         */
 617        for (i = 0; i < priv->hw_params->tx_queues; i++)
 618                bcmgenet_tdma_ring_writel(priv, i,
 619                                          ec->tx_max_coalesced_frames,
 620                                          DMA_MBUF_DONE_THRESH);
 621        bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
 622                                  ec->tx_max_coalesced_frames,
 623                                  DMA_MBUF_DONE_THRESH);
 624
 625        for (i = 0; i < priv->hw_params->rx_queues; i++) {
 626                bcmgenet_rdma_ring_writel(priv, i,
 627                                          ec->rx_max_coalesced_frames,
 628                                          DMA_MBUF_DONE_THRESH);
 629
 630                reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
 631                reg &= ~DMA_TIMEOUT_MASK;
 632                reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
 633                bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
 634        }
 635
 636        bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
 637                                  ec->rx_max_coalesced_frames,
 638                                  DMA_MBUF_DONE_THRESH);
 639
 640        reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
 641        reg &= ~DMA_TIMEOUT_MASK;
 642        reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
 643        bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
 644
 645        return 0;
 646}
 647
 648/* standard ethtool support functions. */
 649enum bcmgenet_stat_type {
 650        BCMGENET_STAT_NETDEV = -1,
 651        BCMGENET_STAT_MIB_RX,
 652        BCMGENET_STAT_MIB_TX,
 653        BCMGENET_STAT_RUNT,
 654        BCMGENET_STAT_MISC,
 655        BCMGENET_STAT_SOFT,
 656};
 657
 658struct bcmgenet_stats {
 659        char stat_string[ETH_GSTRING_LEN];
 660        int stat_sizeof;
 661        int stat_offset;
 662        enum bcmgenet_stat_type type;
 663        /* reg offset from UMAC base for misc counters */
 664        u16 reg_offset;
 665};
 666
 667#define STAT_NETDEV(m) { \
 668        .stat_string = __stringify(m), \
 669        .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
 670        .stat_offset = offsetof(struct net_device_stats, m), \
 671        .type = BCMGENET_STAT_NETDEV, \
 672}
 673
 674#define STAT_GENET_MIB(str, m, _type) { \
 675        .stat_string = str, \
 676        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 677        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 678        .type = _type, \
 679}
 680
 681#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
 682#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
 683#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
 684#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
 685
 686#define STAT_GENET_MISC(str, m, offset) { \
 687        .stat_string = str, \
 688        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 689        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 690        .type = BCMGENET_STAT_MISC, \
 691        .reg_offset = offset, \
 692}
 693
 694
 695/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 696 * between the end of TX stats and the beginning of the RX RUNT
 697 */
 698#define BCMGENET_STAT_OFFSET    0xc
 699
 700/* Hardware counters must be kept in sync because the order/offset
 701 * is important here (order in structure declaration = order in hardware)
 702 */
 703static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
 704        /* general stats */
 705        STAT_NETDEV(rx_packets),
 706        STAT_NETDEV(tx_packets),
 707        STAT_NETDEV(rx_bytes),
 708        STAT_NETDEV(tx_bytes),
 709        STAT_NETDEV(rx_errors),
 710        STAT_NETDEV(tx_errors),
 711        STAT_NETDEV(rx_dropped),
 712        STAT_NETDEV(tx_dropped),
 713        STAT_NETDEV(multicast),
 714        /* UniMAC RSV counters */
 715        STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
 716        STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
 717        STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
 718        STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
 719        STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
 720        STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
 721        STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
 722        STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
 723        STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
 724        STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
 725        STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
 726        STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
 727        STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
 728        STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
 729        STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
 730        STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
 731        STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
 732        STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
 733        STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
 734        STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
 735        STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
 736        STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
 737        STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
 738        STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
 739        STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
 740        STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
 741        STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
 742        STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
 743        STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
 744        /* UniMAC TSV counters */
 745        STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
 746        STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
 747        STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
 748        STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
 749        STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
 750        STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
 751        STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
 752        STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
 753        STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
 754        STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
 755        STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
 756        STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
 757        STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
 758        STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
 759        STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
 760        STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
 761        STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
 762        STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
 763        STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
 764        STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
 765        STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
 766        STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
 767        STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
 768        STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
 769        STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
 770        STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
 771        STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
 772        STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
 773        STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
 774        /* UniMAC RUNT counters */
 775        STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
 776        STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
 777        STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
 778        STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
 779        /* Misc UniMAC counters */
 780        STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
 781                        UMAC_RBUF_OVFL_CNT),
 782        STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
 783        STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
 784        STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
 785        STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
 786        STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
 787};
 788
 789#define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
 790
 791static void bcmgenet_get_drvinfo(struct net_device *dev,
 792                                 struct ethtool_drvinfo *info)
 793{
 794        strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
 795        strlcpy(info->version, "v2.0", sizeof(info->version));
 796}
 797
 798static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
 799{
 800        switch (string_set) {
 801        case ETH_SS_STATS:
 802                return BCMGENET_STATS_LEN;
 803        default:
 804                return -EOPNOTSUPP;
 805        }
 806}
 807
 808static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
 809                                 u8 *data)
 810{
 811        int i;
 812
 813        switch (stringset) {
 814        case ETH_SS_STATS:
 815                for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 816                        memcpy(data + i * ETH_GSTRING_LEN,
 817                               bcmgenet_gstrings_stats[i].stat_string,
 818                               ETH_GSTRING_LEN);
 819                }
 820                break;
 821        }
 822}
 823
 824static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
 825{
 826        int i, j = 0;
 827
 828        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 829                const struct bcmgenet_stats *s;
 830                u8 offset = 0;
 831                u32 val = 0;
 832                char *p;
 833
 834                s = &bcmgenet_gstrings_stats[i];
 835                switch (s->type) {
 836                case BCMGENET_STAT_NETDEV:
 837                case BCMGENET_STAT_SOFT:
 838                        continue;
 839                case BCMGENET_STAT_MIB_RX:
 840                case BCMGENET_STAT_MIB_TX:
 841                case BCMGENET_STAT_RUNT:
 842                        if (s->type != BCMGENET_STAT_MIB_RX)
 843                                offset = BCMGENET_STAT_OFFSET;
 844                        val = bcmgenet_umac_readl(priv,
 845                                                  UMAC_MIB_START + j + offset);
 846                        break;
 847                case BCMGENET_STAT_MISC:
 848                        val = bcmgenet_umac_readl(priv, s->reg_offset);
 849                        /* clear if overflowed */
 850                        if (val == ~0)
 851                                bcmgenet_umac_writel(priv, 0, s->reg_offset);
 852                        break;
 853                }
 854
 855                j += s->stat_sizeof;
 856                p = (char *)priv + s->stat_offset;
 857                *(u32 *)p = val;
 858        }
 859}
 860
 861static void bcmgenet_get_ethtool_stats(struct net_device *dev,
 862                                       struct ethtool_stats *stats,
 863                                       u64 *data)
 864{
 865        struct bcmgenet_priv *priv = netdev_priv(dev);
 866        int i;
 867
 868        if (netif_running(dev))
 869                bcmgenet_update_mib_counters(priv);
 870
 871        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 872                const struct bcmgenet_stats *s;
 873                char *p;
 874
 875                s = &bcmgenet_gstrings_stats[i];
 876                if (s->type == BCMGENET_STAT_NETDEV)
 877                        p = (char *)&dev->stats;
 878                else
 879                        p = (char *)priv;
 880                p += s->stat_offset;
 881                data[i] = *(u32 *)p;
 882        }
 883}
 884
 885static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
 886{
 887        struct bcmgenet_priv *priv = netdev_priv(dev);
 888        u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
 889        u32 reg;
 890
 891        if (enable && !priv->clk_eee_enabled) {
 892                clk_prepare_enable(priv->clk_eee);
 893                priv->clk_eee_enabled = true;
 894        }
 895
 896        reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
 897        if (enable)
 898                reg |= EEE_EN;
 899        else
 900                reg &= ~EEE_EN;
 901        bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
 902
 903        /* Enable EEE and switch to a 27Mhz clock automatically */
 904        reg = __raw_readl(priv->base + off);
 905        if (enable)
 906                reg |= TBUF_EEE_EN | TBUF_PM_EN;
 907        else
 908                reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
 909        __raw_writel(reg, priv->base + off);
 910
 911        /* Do the same for thing for RBUF */
 912        reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
 913        if (enable)
 914                reg |= RBUF_EEE_EN | RBUF_PM_EN;
 915        else
 916                reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
 917        bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
 918
 919        if (!enable && priv->clk_eee_enabled) {
 920                clk_disable_unprepare(priv->clk_eee);
 921                priv->clk_eee_enabled = false;
 922        }
 923
 924        priv->eee.eee_enabled = enable;
 925        priv->eee.eee_active = enable;
 926}
 927
 928static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
 929{
 930        struct bcmgenet_priv *priv = netdev_priv(dev);
 931        struct ethtool_eee *p = &priv->eee;
 932
 933        if (GENET_IS_V1(priv))
 934                return -EOPNOTSUPP;
 935
 936        e->eee_enabled = p->eee_enabled;
 937        e->eee_active = p->eee_active;
 938        e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
 939
 940        return phy_ethtool_get_eee(priv->phydev, e);
 941}
 942
 943static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
 944{
 945        struct bcmgenet_priv *priv = netdev_priv(dev);
 946        struct ethtool_eee *p = &priv->eee;
 947        int ret = 0;
 948
 949        if (GENET_IS_V1(priv))
 950                return -EOPNOTSUPP;
 951
 952        p->eee_enabled = e->eee_enabled;
 953
 954        if (!p->eee_enabled) {
 955                bcmgenet_eee_enable_set(dev, false);
 956        } else {
 957                ret = phy_init_eee(priv->phydev, 0);
 958                if (ret) {
 959                        netif_err(priv, hw, dev, "EEE initialization failed\n");
 960                        return ret;
 961                }
 962
 963                bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
 964                bcmgenet_eee_enable_set(dev, true);
 965        }
 966
 967        return phy_ethtool_set_eee(priv->phydev, e);
 968}
 969
 970static int bcmgenet_nway_reset(struct net_device *dev)
 971{
 972        struct bcmgenet_priv *priv = netdev_priv(dev);
 973
 974        return genphy_restart_aneg(priv->phydev);
 975}
 976
 977/* standard ethtool support functions. */
 978static struct ethtool_ops bcmgenet_ethtool_ops = {
 979        .get_strings            = bcmgenet_get_strings,
 980        .get_sset_count         = bcmgenet_get_sset_count,
 981        .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
 982        .get_settings           = bcmgenet_get_settings,
 983        .set_settings           = bcmgenet_set_settings,
 984        .get_drvinfo            = bcmgenet_get_drvinfo,
 985        .get_link               = ethtool_op_get_link,
 986        .get_msglevel           = bcmgenet_get_msglevel,
 987        .set_msglevel           = bcmgenet_set_msglevel,
 988        .get_wol                = bcmgenet_get_wol,
 989        .set_wol                = bcmgenet_set_wol,
 990        .get_eee                = bcmgenet_get_eee,
 991        .set_eee                = bcmgenet_set_eee,
 992        .nway_reset             = bcmgenet_nway_reset,
 993        .get_coalesce           = bcmgenet_get_coalesce,
 994        .set_coalesce           = bcmgenet_set_coalesce,
 995};
 996
 997/* Power down the unimac, based on mode. */
 998static int bcmgenet_power_down(struct bcmgenet_priv *priv,
 999                                enum bcmgenet_power_mode mode)
1000{
1001        int ret = 0;
1002        u32 reg;
1003
1004        switch (mode) {
1005        case GENET_POWER_CABLE_SENSE:
1006                phy_detach(priv->phydev);
1007                break;
1008
1009        case GENET_POWER_WOL_MAGIC:
1010                ret = bcmgenet_wol_power_down_cfg(priv, mode);
1011                break;
1012
1013        case GENET_POWER_PASSIVE:
1014                /* Power down LED */
1015                if (priv->hw_params->flags & GENET_HAS_EXT) {
1016                        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1017                        reg |= (EXT_PWR_DOWN_PHY |
1018                                EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1019                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1020
1021                        bcmgenet_phy_power_set(priv->dev, false);
1022                }
1023                break;
1024        default:
1025                break;
1026        }
1027
1028        return 0;
1029}
1030
1031static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1032                              enum bcmgenet_power_mode mode)
1033{
1034        u32 reg;
1035
1036        if (!(priv->hw_params->flags & GENET_HAS_EXT))
1037                return;
1038
1039        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1040
1041        switch (mode) {
1042        case GENET_POWER_PASSIVE:
1043                reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1044                                EXT_PWR_DOWN_BIAS);
1045                /* fallthrough */
1046        case GENET_POWER_CABLE_SENSE:
1047                /* enable APD */
1048                reg |= EXT_PWR_DN_EN_LD;
1049                break;
1050        case GENET_POWER_WOL_MAGIC:
1051                bcmgenet_wol_power_up_cfg(priv, mode);
1052                return;
1053        default:
1054                break;
1055        }
1056
1057        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1058        if (mode == GENET_POWER_PASSIVE) {
1059                bcmgenet_phy_power_set(priv->dev, true);
1060                bcmgenet_mii_reset(priv->dev);
1061        }
1062}
1063
1064/* ioctl handle special commands that are not present in ethtool. */
1065static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1066{
1067        struct bcmgenet_priv *priv = netdev_priv(dev);
1068        int val = 0;
1069
1070        if (!netif_running(dev))
1071                return -EINVAL;
1072
1073        switch (cmd) {
1074        case SIOCGMIIPHY:
1075        case SIOCGMIIREG:
1076        case SIOCSMIIREG:
1077                if (!priv->phydev)
1078                        val = -ENODEV;
1079                else
1080                        val = phy_mii_ioctl(priv->phydev, rq, cmd);
1081                break;
1082
1083        default:
1084                val = -EINVAL;
1085                break;
1086        }
1087
1088        return val;
1089}
1090
1091static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1092                                         struct bcmgenet_tx_ring *ring)
1093{
1094        struct enet_cb *tx_cb_ptr;
1095
1096        tx_cb_ptr = ring->cbs;
1097        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1098
1099        /* Advancing local write pointer */
1100        if (ring->write_ptr == ring->end_ptr)
1101                ring->write_ptr = ring->cb_ptr;
1102        else
1103                ring->write_ptr++;
1104
1105        return tx_cb_ptr;
1106}
1107
1108/* Simple helper to free a control block's resources */
1109static void bcmgenet_free_cb(struct enet_cb *cb)
1110{
1111        dev_kfree_skb_any(cb->skb);
1112        cb->skb = NULL;
1113        dma_unmap_addr_set(cb, dma_addr, 0);
1114}
1115
1116static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1117{
1118        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1119                                 INTRL2_CPU_MASK_SET);
1120}
1121
1122static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1123{
1124        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1125                                 INTRL2_CPU_MASK_CLEAR);
1126}
1127
1128static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1129{
1130        bcmgenet_intrl2_1_writel(ring->priv,
1131                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1132                                 INTRL2_CPU_MASK_SET);
1133}
1134
1135static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1136{
1137        bcmgenet_intrl2_1_writel(ring->priv,
1138                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1139                                 INTRL2_CPU_MASK_CLEAR);
1140}
1141
1142static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1143{
1144        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1145                                 INTRL2_CPU_MASK_SET);
1146}
1147
1148static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1149{
1150        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1151                                 INTRL2_CPU_MASK_CLEAR);
1152}
1153
1154static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1155{
1156        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1157                                 INTRL2_CPU_MASK_CLEAR);
1158}
1159
1160static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1161{
1162        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1163                                 INTRL2_CPU_MASK_SET);
1164}
1165
1166/* Unlocked version of the reclaim routine */
1167static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1168                                          struct bcmgenet_tx_ring *ring)
1169{
1170        struct bcmgenet_priv *priv = netdev_priv(dev);
1171        struct enet_cb *tx_cb_ptr;
1172        struct netdev_queue *txq;
1173        unsigned int pkts_compl = 0;
1174        unsigned int c_index;
1175        unsigned int txbds_ready;
1176        unsigned int txbds_processed = 0;
1177
1178        /* Compute how many buffers are transmitted since last xmit call */
1179        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1180        c_index &= DMA_C_INDEX_MASK;
1181
1182        if (likely(c_index >= ring->c_index))
1183                txbds_ready = c_index - ring->c_index;
1184        else
1185                txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1186
1187        netif_dbg(priv, tx_done, dev,
1188                  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1189                  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1190
1191        /* Reclaim transmitted buffers */
1192        while (txbds_processed < txbds_ready) {
1193                tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1194                if (tx_cb_ptr->skb) {
1195                        pkts_compl++;
1196                        dev->stats.tx_packets++;
1197                        dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1198                        dma_unmap_single(&dev->dev,
1199                                         dma_unmap_addr(tx_cb_ptr, dma_addr),
1200                                         tx_cb_ptr->skb->len,
1201                                         DMA_TO_DEVICE);
1202                        bcmgenet_free_cb(tx_cb_ptr);
1203                } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1204                        dev->stats.tx_bytes +=
1205                                dma_unmap_len(tx_cb_ptr, dma_len);
1206                        dma_unmap_page(&dev->dev,
1207                                       dma_unmap_addr(tx_cb_ptr, dma_addr),
1208                                       dma_unmap_len(tx_cb_ptr, dma_len),
1209                                       DMA_TO_DEVICE);
1210                        dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1211                }
1212
1213                txbds_processed++;
1214                if (likely(ring->clean_ptr < ring->end_ptr))
1215                        ring->clean_ptr++;
1216                else
1217                        ring->clean_ptr = ring->cb_ptr;
1218        }
1219
1220        ring->free_bds += txbds_processed;
1221        ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1222
1223        if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1224                txq = netdev_get_tx_queue(dev, ring->queue);
1225                if (netif_tx_queue_stopped(txq))
1226                        netif_tx_wake_queue(txq);
1227        }
1228
1229        return pkts_compl;
1230}
1231
1232static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1233                                struct bcmgenet_tx_ring *ring)
1234{
1235        unsigned int released;
1236        unsigned long flags;
1237
1238        spin_lock_irqsave(&ring->lock, flags);
1239        released = __bcmgenet_tx_reclaim(dev, ring);
1240        spin_unlock_irqrestore(&ring->lock, flags);
1241
1242        return released;
1243}
1244
1245static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1246{
1247        struct bcmgenet_tx_ring *ring =
1248                container_of(napi, struct bcmgenet_tx_ring, napi);
1249        unsigned int work_done = 0;
1250
1251        work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1252
1253        if (work_done == 0) {
1254                napi_complete(napi);
1255                ring->int_enable(ring);
1256
1257                return 0;
1258        }
1259
1260        return budget;
1261}
1262
1263static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1264{
1265        struct bcmgenet_priv *priv = netdev_priv(dev);
1266        int i;
1267
1268        if (netif_is_multiqueue(dev)) {
1269                for (i = 0; i < priv->hw_params->tx_queues; i++)
1270                        bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1271        }
1272
1273        bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1274}
1275
1276/* Transmits a single SKB (either head of a fragment or a single SKB)
1277 * caller must hold priv->lock
1278 */
1279static int bcmgenet_xmit_single(struct net_device *dev,
1280                                struct sk_buff *skb,
1281                                u16 dma_desc_flags,
1282                                struct bcmgenet_tx_ring *ring)
1283{
1284        struct bcmgenet_priv *priv = netdev_priv(dev);
1285        struct device *kdev = &priv->pdev->dev;
1286        struct enet_cb *tx_cb_ptr;
1287        unsigned int skb_len;
1288        dma_addr_t mapping;
1289        u32 length_status;
1290        int ret;
1291
1292        tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1293
1294        if (unlikely(!tx_cb_ptr))
1295                BUG();
1296
1297        tx_cb_ptr->skb = skb;
1298
1299        skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1300
1301        mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1302        ret = dma_mapping_error(kdev, mapping);
1303        if (ret) {
1304                priv->mib.tx_dma_failed++;
1305                netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1306                dev_kfree_skb(skb);
1307                return ret;
1308        }
1309
1310        dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1311        dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1312        length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1313                        (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1314                        DMA_TX_APPEND_CRC;
1315
1316        if (skb->ip_summed == CHECKSUM_PARTIAL)
1317                length_status |= DMA_TX_DO_CSUM;
1318
1319        dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1320
1321        return 0;
1322}
1323
1324/* Transmit a SKB fragment */
1325static int bcmgenet_xmit_frag(struct net_device *dev,
1326                              skb_frag_t *frag,
1327                              u16 dma_desc_flags,
1328                              struct bcmgenet_tx_ring *ring)
1329{
1330        struct bcmgenet_priv *priv = netdev_priv(dev);
1331        struct device *kdev = &priv->pdev->dev;
1332        struct enet_cb *tx_cb_ptr;
1333        dma_addr_t mapping;
1334        int ret;
1335
1336        tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1337
1338        if (unlikely(!tx_cb_ptr))
1339                BUG();
1340        tx_cb_ptr->skb = NULL;
1341
1342        mapping = skb_frag_dma_map(kdev, frag, 0,
1343                                   skb_frag_size(frag), DMA_TO_DEVICE);
1344        ret = dma_mapping_error(kdev, mapping);
1345        if (ret) {
1346                priv->mib.tx_dma_failed++;
1347                netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1348                          __func__);
1349                return ret;
1350        }
1351
1352        dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1353        dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1354
1355        dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1356                    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1357                    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1358
1359        return 0;
1360}
1361
1362/* Reallocate the SKB to put enough headroom in front of it and insert
1363 * the transmit checksum offsets in the descriptors
1364 */
1365static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1366                                            struct sk_buff *skb)
1367{
1368        struct status_64 *status = NULL;
1369        struct sk_buff *new_skb;
1370        u16 offset;
1371        u8 ip_proto;
1372        u16 ip_ver;
1373        u32 tx_csum_info;
1374
1375        if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1376                /* If 64 byte status block enabled, must make sure skb has
1377                 * enough headroom for us to insert 64B status block.
1378                 */
1379                new_skb = skb_realloc_headroom(skb, sizeof(*status));
1380                dev_kfree_skb(skb);
1381                if (!new_skb) {
1382                        dev->stats.tx_dropped++;
1383                        return NULL;
1384                }
1385                skb = new_skb;
1386        }
1387
1388        skb_push(skb, sizeof(*status));
1389        status = (struct status_64 *)skb->data;
1390
1391        if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1392                ip_ver = htons(skb->protocol);
1393                switch (ip_ver) {
1394                case ETH_P_IP:
1395                        ip_proto = ip_hdr(skb)->protocol;
1396                        break;
1397                case ETH_P_IPV6:
1398                        ip_proto = ipv6_hdr(skb)->nexthdr;
1399                        break;
1400                default:
1401                        return skb;
1402                }
1403
1404                offset = skb_checksum_start_offset(skb) - sizeof(*status);
1405                tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1406                                (offset + skb->csum_offset);
1407
1408                /* Set the length valid bit for TCP and UDP and just set
1409                 * the special UDP flag for IPv4, else just set to 0.
1410                 */
1411                if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1412                        tx_csum_info |= STATUS_TX_CSUM_LV;
1413                        if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1414                                tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1415                } else {
1416                        tx_csum_info = 0;
1417                }
1418
1419                status->tx_csum_info = tx_csum_info;
1420        }
1421
1422        return skb;
1423}
1424
1425static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1426{
1427        struct bcmgenet_priv *priv = netdev_priv(dev);
1428        struct bcmgenet_tx_ring *ring = NULL;
1429        struct netdev_queue *txq;
1430        unsigned long flags = 0;
1431        int nr_frags, index;
1432        u16 dma_desc_flags;
1433        int ret;
1434        int i;
1435
1436        index = skb_get_queue_mapping(skb);
1437        /* Mapping strategy:
1438         * queue_mapping = 0, unclassified, packet xmited through ring16
1439         * queue_mapping = 1, goes to ring 0. (highest priority queue
1440         * queue_mapping = 2, goes to ring 1.
1441         * queue_mapping = 3, goes to ring 2.
1442         * queue_mapping = 4, goes to ring 3.
1443         */
1444        if (index == 0)
1445                index = DESC_INDEX;
1446        else
1447                index -= 1;
1448
1449        nr_frags = skb_shinfo(skb)->nr_frags;
1450        ring = &priv->tx_rings[index];
1451        txq = netdev_get_tx_queue(dev, ring->queue);
1452
1453        spin_lock_irqsave(&ring->lock, flags);
1454        if (ring->free_bds <= nr_frags + 1) {
1455                netif_tx_stop_queue(txq);
1456                netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1457                           __func__, index, ring->queue);
1458                ret = NETDEV_TX_BUSY;
1459                goto out;
1460        }
1461
1462        if (skb_padto(skb, ETH_ZLEN)) {
1463                ret = NETDEV_TX_OK;
1464                goto out;
1465        }
1466
1467        /* set the SKB transmit checksum */
1468        if (priv->desc_64b_en) {
1469                skb = bcmgenet_put_tx_csum(dev, skb);
1470                if (!skb) {
1471                        ret = NETDEV_TX_OK;
1472                        goto out;
1473                }
1474        }
1475
1476        dma_desc_flags = DMA_SOP;
1477        if (nr_frags == 0)
1478                dma_desc_flags |= DMA_EOP;
1479
1480        /* Transmit single SKB or head of fragment list */
1481        ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1482        if (ret) {
1483                ret = NETDEV_TX_OK;
1484                goto out;
1485        }
1486
1487        /* xmit fragment */
1488        for (i = 0; i < nr_frags; i++) {
1489                ret = bcmgenet_xmit_frag(dev,
1490                                         &skb_shinfo(skb)->frags[i],
1491                                         (i == nr_frags - 1) ? DMA_EOP : 0,
1492                                         ring);
1493                if (ret) {
1494                        ret = NETDEV_TX_OK;
1495                        goto out;
1496                }
1497        }
1498
1499        skb_tx_timestamp(skb);
1500
1501        /* Decrement total BD count and advance our write pointer */
1502        ring->free_bds -= nr_frags + 1;
1503        ring->prod_index += nr_frags + 1;
1504        ring->prod_index &= DMA_P_INDEX_MASK;
1505
1506        if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1507                netif_tx_stop_queue(txq);
1508
1509        if (!skb->xmit_more || netif_xmit_stopped(txq))
1510                /* Packets are ready, update producer index */
1511                bcmgenet_tdma_ring_writel(priv, ring->index,
1512                                          ring->prod_index, TDMA_PROD_INDEX);
1513out:
1514        spin_unlock_irqrestore(&ring->lock, flags);
1515
1516        return ret;
1517}
1518
1519static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1520                                          struct enet_cb *cb)
1521{
1522        struct device *kdev = &priv->pdev->dev;
1523        struct sk_buff *skb;
1524        struct sk_buff *rx_skb;
1525        dma_addr_t mapping;
1526
1527        /* Allocate a new Rx skb */
1528        skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1529        if (!skb) {
1530                priv->mib.alloc_rx_buff_failed++;
1531                netif_err(priv, rx_err, priv->dev,
1532                          "%s: Rx skb allocation failed\n", __func__);
1533                return NULL;
1534        }
1535
1536        /* DMA-map the new Rx skb */
1537        mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1538                                 DMA_FROM_DEVICE);
1539        if (dma_mapping_error(kdev, mapping)) {
1540                priv->mib.rx_dma_failed++;
1541                dev_kfree_skb_any(skb);
1542                netif_err(priv, rx_err, priv->dev,
1543                          "%s: Rx skb DMA mapping failed\n", __func__);
1544                return NULL;
1545        }
1546
1547        /* Grab the current Rx skb from the ring and DMA-unmap it */
1548        rx_skb = cb->skb;
1549        if (likely(rx_skb))
1550                dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1551                                 priv->rx_buf_len, DMA_FROM_DEVICE);
1552
1553        /* Put the new Rx skb on the ring */
1554        cb->skb = skb;
1555        dma_unmap_addr_set(cb, dma_addr, mapping);
1556        dmadesc_set_addr(priv, cb->bd_addr, mapping);
1557
1558        /* Return the current Rx skb to caller */
1559        return rx_skb;
1560}
1561
1562/* bcmgenet_desc_rx - descriptor based rx process.
1563 * this could be called from bottom half, or from NAPI polling method.
1564 */
1565static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1566                                     unsigned int budget)
1567{
1568        struct bcmgenet_priv *priv = ring->priv;
1569        struct net_device *dev = priv->dev;
1570        struct enet_cb *cb;
1571        struct sk_buff *skb;
1572        u32 dma_length_status;
1573        unsigned long dma_flag;
1574        int len;
1575        unsigned int rxpktprocessed = 0, rxpkttoprocess;
1576        unsigned int p_index;
1577        unsigned int discards;
1578        unsigned int chksum_ok = 0;
1579
1580        p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1581
1582        discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1583                   DMA_P_INDEX_DISCARD_CNT_MASK;
1584        if (discards > ring->old_discards) {
1585                discards = discards - ring->old_discards;
1586                dev->stats.rx_missed_errors += discards;
1587                dev->stats.rx_errors += discards;
1588                ring->old_discards += discards;
1589
1590                /* Clear HW register when we reach 75% of maximum 0xFFFF */
1591                if (ring->old_discards >= 0xC000) {
1592                        ring->old_discards = 0;
1593                        bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1594                                                  RDMA_PROD_INDEX);
1595                }
1596        }
1597
1598        p_index &= DMA_P_INDEX_MASK;
1599
1600        if (likely(p_index >= ring->c_index))
1601                rxpkttoprocess = p_index - ring->c_index;
1602        else
1603                rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1604                                 p_index;
1605
1606        netif_dbg(priv, rx_status, dev,
1607                  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1608
1609        while ((rxpktprocessed < rxpkttoprocess) &&
1610               (rxpktprocessed < budget)) {
1611                cb = &priv->rx_cbs[ring->read_ptr];
1612                skb = bcmgenet_rx_refill(priv, cb);
1613
1614                if (unlikely(!skb)) {
1615                        dev->stats.rx_dropped++;
1616                        goto next;
1617                }
1618
1619                if (!priv->desc_64b_en) {
1620                        dma_length_status =
1621                                dmadesc_get_length_status(priv, cb->bd_addr);
1622                } else {
1623                        struct status_64 *status;
1624
1625                        status = (struct status_64 *)skb->data;
1626                        dma_length_status = status->length_status;
1627                }
1628
1629                /* DMA flags and length are still valid no matter how
1630                 * we got the Receive Status Vector (64B RSB or register)
1631                 */
1632                dma_flag = dma_length_status & 0xffff;
1633                len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1634
1635                netif_dbg(priv, rx_status, dev,
1636                          "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1637                          __func__, p_index, ring->c_index,
1638                          ring->read_ptr, dma_length_status);
1639
1640                if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1641                        netif_err(priv, rx_status, dev,
1642                                  "dropping fragmented packet!\n");
1643                        dev->stats.rx_errors++;
1644                        dev_kfree_skb_any(skb);
1645                        goto next;
1646                }
1647
1648                /* report errors */
1649                if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1650                                                DMA_RX_OV |
1651                                                DMA_RX_NO |
1652                                                DMA_RX_LG |
1653                                                DMA_RX_RXER))) {
1654                        netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1655                                  (unsigned int)dma_flag);
1656                        if (dma_flag & DMA_RX_CRC_ERROR)
1657                                dev->stats.rx_crc_errors++;
1658                        if (dma_flag & DMA_RX_OV)
1659                                dev->stats.rx_over_errors++;
1660                        if (dma_flag & DMA_RX_NO)
1661                                dev->stats.rx_frame_errors++;
1662                        if (dma_flag & DMA_RX_LG)
1663                                dev->stats.rx_length_errors++;
1664                        dev->stats.rx_errors++;
1665                        dev_kfree_skb_any(skb);
1666                        goto next;
1667                } /* error packet */
1668
1669                chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1670                             priv->desc_rxchk_en;
1671
1672                skb_put(skb, len);
1673                if (priv->desc_64b_en) {
1674                        skb_pull(skb, 64);
1675                        len -= 64;
1676                }
1677
1678                if (likely(chksum_ok))
1679                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1680
1681                /* remove hardware 2bytes added for IP alignment */
1682                skb_pull(skb, 2);
1683                len -= 2;
1684
1685                if (priv->crc_fwd_en) {
1686                        skb_trim(skb, len - ETH_FCS_LEN);
1687                        len -= ETH_FCS_LEN;
1688                }
1689
1690                /*Finish setting up the received SKB and send it to the kernel*/
1691                skb->protocol = eth_type_trans(skb, priv->dev);
1692                dev->stats.rx_packets++;
1693                dev->stats.rx_bytes += len;
1694                if (dma_flag & DMA_RX_MULT)
1695                        dev->stats.multicast++;
1696
1697                /* Notify kernel */
1698                napi_gro_receive(&ring->napi, skb);
1699                netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1700
1701next:
1702                rxpktprocessed++;
1703                if (likely(ring->read_ptr < ring->end_ptr))
1704                        ring->read_ptr++;
1705                else
1706                        ring->read_ptr = ring->cb_ptr;
1707
1708                ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1709                bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1710        }
1711
1712        return rxpktprocessed;
1713}
1714
1715/* Rx NAPI polling method */
1716static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1717{
1718        struct bcmgenet_rx_ring *ring = container_of(napi,
1719                        struct bcmgenet_rx_ring, napi);
1720        unsigned int work_done;
1721
1722        work_done = bcmgenet_desc_rx(ring, budget);
1723
1724        if (work_done < budget) {
1725                napi_complete(napi);
1726                ring->int_enable(ring);
1727        }
1728
1729        return work_done;
1730}
1731
1732/* Assign skb to RX DMA descriptor. */
1733static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1734                                     struct bcmgenet_rx_ring *ring)
1735{
1736        struct enet_cb *cb;
1737        struct sk_buff *skb;
1738        int i;
1739
1740        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1741
1742        /* loop here for each buffer needing assign */
1743        for (i = 0; i < ring->size; i++) {
1744                cb = ring->cbs + i;
1745                skb = bcmgenet_rx_refill(priv, cb);
1746                if (skb)
1747                        dev_kfree_skb_any(skb);
1748                if (!cb->skb)
1749                        return -ENOMEM;
1750        }
1751
1752        return 0;
1753}
1754
1755static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1756{
1757        struct enet_cb *cb;
1758        int i;
1759
1760        for (i = 0; i < priv->num_rx_bds; i++) {
1761                cb = &priv->rx_cbs[i];
1762
1763                if (dma_unmap_addr(cb, dma_addr)) {
1764                        dma_unmap_single(&priv->dev->dev,
1765                                         dma_unmap_addr(cb, dma_addr),
1766                                         priv->rx_buf_len, DMA_FROM_DEVICE);
1767                        dma_unmap_addr_set(cb, dma_addr, 0);
1768                }
1769
1770                if (cb->skb)
1771                        bcmgenet_free_cb(cb);
1772        }
1773}
1774
1775static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1776{
1777        u32 reg;
1778
1779        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1780        if (enable)
1781                reg |= mask;
1782        else
1783                reg &= ~mask;
1784        bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1785
1786        /* UniMAC stops on a packet boundary, wait for a full-size packet
1787         * to be processed
1788         */
1789        if (enable == 0)
1790                usleep_range(1000, 2000);
1791}
1792
1793static int reset_umac(struct bcmgenet_priv *priv)
1794{
1795        struct device *kdev = &priv->pdev->dev;
1796        unsigned int timeout = 0;
1797        u32 reg;
1798
1799        /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1800        bcmgenet_rbuf_ctrl_set(priv, 0);
1801        udelay(10);
1802
1803        /* disable MAC while updating its registers */
1804        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1805
1806        /* issue soft reset, wait for it to complete */
1807        bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1808        while (timeout++ < 1000) {
1809                reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1810                if (!(reg & CMD_SW_RESET))
1811                        return 0;
1812
1813                udelay(1);
1814        }
1815
1816        if (timeout == 1000) {
1817                dev_err(kdev,
1818                        "timeout waiting for MAC to come out of reset\n");
1819                return -ETIMEDOUT;
1820        }
1821
1822        return 0;
1823}
1824
1825static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1826{
1827        /* Mask all interrupts.*/
1828        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1829        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1830        bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1831        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1832        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1833        bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1834}
1835
1836static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1837{
1838        u32 int0_enable = 0;
1839
1840        /* Monitor cable plug/unplugged event for internal PHY, external PHY
1841         * and MoCA PHY
1842         */
1843        if (priv->internal_phy) {
1844                int0_enable |= UMAC_IRQ_LINK_EVENT;
1845        } else if (priv->ext_phy) {
1846                int0_enable |= UMAC_IRQ_LINK_EVENT;
1847        } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1848                if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1849                        int0_enable |= UMAC_IRQ_LINK_EVENT;
1850        }
1851        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1852}
1853
1854static int init_umac(struct bcmgenet_priv *priv)
1855{
1856        struct device *kdev = &priv->pdev->dev;
1857        int ret;
1858        u32 reg;
1859        u32 int0_enable = 0;
1860        u32 int1_enable = 0;
1861        int i;
1862
1863        dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1864
1865        ret = reset_umac(priv);
1866        if (ret)
1867                return ret;
1868
1869        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1870        /* clear tx/rx counter */
1871        bcmgenet_umac_writel(priv,
1872                             MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1873                             UMAC_MIB_CTRL);
1874        bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1875
1876        bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1877
1878        /* init rx registers, enable ip header optimization */
1879        reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1880        reg |= RBUF_ALIGN_2B;
1881        bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1882
1883        if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1884                bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1885
1886        bcmgenet_intr_disable(priv);
1887
1888        /* Enable Rx default queue 16 interrupts */
1889        int0_enable |= UMAC_IRQ_RXDMA_DONE;
1890
1891        /* Enable Tx default queue 16 interrupts */
1892        int0_enable |= UMAC_IRQ_TXDMA_DONE;
1893
1894        /* Configure backpressure vectors for MoCA */
1895        if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1896                reg = bcmgenet_bp_mc_get(priv);
1897                reg |= BIT(priv->hw_params->bp_in_en_shift);
1898
1899                /* bp_mask: back pressure mask */
1900                if (netif_is_multiqueue(priv->dev))
1901                        reg |= priv->hw_params->bp_in_mask;
1902                else
1903                        reg &= ~priv->hw_params->bp_in_mask;
1904                bcmgenet_bp_mc_set(priv, reg);
1905        }
1906
1907        /* Enable MDIO interrupts on GENET v3+ */
1908        if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1909                int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1910
1911        /* Enable Rx priority queue interrupts */
1912        for (i = 0; i < priv->hw_params->rx_queues; ++i)
1913                int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1914
1915        /* Enable Tx priority queue interrupts */
1916        for (i = 0; i < priv->hw_params->tx_queues; ++i)
1917                int1_enable |= (1 << i);
1918
1919        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1920        bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1921
1922        /* Enable rx/tx engine.*/
1923        dev_dbg(kdev, "done init umac\n");
1924
1925        return 0;
1926}
1927
1928/* Initialize a Tx ring along with corresponding hardware registers */
1929static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1930                                  unsigned int index, unsigned int size,
1931                                  unsigned int start_ptr, unsigned int end_ptr)
1932{
1933        struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1934        u32 words_per_bd = WORDS_PER_BD(priv);
1935        u32 flow_period_val = 0;
1936
1937        spin_lock_init(&ring->lock);
1938        ring->priv = priv;
1939        ring->index = index;
1940        if (index == DESC_INDEX) {
1941                ring->queue = 0;
1942                ring->int_enable = bcmgenet_tx_ring16_int_enable;
1943                ring->int_disable = bcmgenet_tx_ring16_int_disable;
1944        } else {
1945                ring->queue = index + 1;
1946                ring->int_enable = bcmgenet_tx_ring_int_enable;
1947                ring->int_disable = bcmgenet_tx_ring_int_disable;
1948        }
1949        ring->cbs = priv->tx_cbs + start_ptr;
1950        ring->size = size;
1951        ring->clean_ptr = start_ptr;
1952        ring->c_index = 0;
1953        ring->free_bds = size;
1954        ring->write_ptr = start_ptr;
1955        ring->cb_ptr = start_ptr;
1956        ring->end_ptr = end_ptr - 1;
1957        ring->prod_index = 0;
1958
1959        /* Set flow period for ring != 16 */
1960        if (index != DESC_INDEX)
1961                flow_period_val = ENET_MAX_MTU_SIZE << 16;
1962
1963        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1964        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1965        bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1966        /* Disable rate control for now */
1967        bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1968                                  TDMA_FLOW_PERIOD);
1969        bcmgenet_tdma_ring_writel(priv, index,
1970                                  ((size << DMA_RING_SIZE_SHIFT) |
1971                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1972
1973        /* Set start and end address, read and write pointers */
1974        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1975                                  DMA_START_ADDR);
1976        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1977                                  TDMA_READ_PTR);
1978        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1979                                  TDMA_WRITE_PTR);
1980        bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1981                                  DMA_END_ADDR);
1982}
1983
1984/* Initialize a RDMA ring */
1985static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1986                                 unsigned int index, unsigned int size,
1987                                 unsigned int start_ptr, unsigned int end_ptr)
1988{
1989        struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1990        u32 words_per_bd = WORDS_PER_BD(priv);
1991        int ret;
1992
1993        ring->priv = priv;
1994        ring->index = index;
1995        if (index == DESC_INDEX) {
1996                ring->int_enable = bcmgenet_rx_ring16_int_enable;
1997                ring->int_disable = bcmgenet_rx_ring16_int_disable;
1998        } else {
1999                ring->int_enable = bcmgenet_rx_ring_int_enable;
2000                ring->int_disable = bcmgenet_rx_ring_int_disable;
2001        }
2002        ring->cbs = priv->rx_cbs + start_ptr;
2003        ring->size = size;
2004        ring->c_index = 0;
2005        ring->read_ptr = start_ptr;
2006        ring->cb_ptr = start_ptr;
2007        ring->end_ptr = end_ptr - 1;
2008
2009        ret = bcmgenet_alloc_rx_buffers(priv, ring);
2010        if (ret)
2011                return ret;
2012
2013        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2014        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2015        bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2016        bcmgenet_rdma_ring_writel(priv, index,
2017                                  ((size << DMA_RING_SIZE_SHIFT) |
2018                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2019        bcmgenet_rdma_ring_writel(priv, index,
2020                                  (DMA_FC_THRESH_LO <<
2021                                   DMA_XOFF_THRESHOLD_SHIFT) |
2022                                   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2023
2024        /* Set start and end address, read and write pointers */
2025        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2026                                  DMA_START_ADDR);
2027        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2028                                  RDMA_READ_PTR);
2029        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2030                                  RDMA_WRITE_PTR);
2031        bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2032                                  DMA_END_ADDR);
2033
2034        return ret;
2035}
2036
2037static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2038{
2039        unsigned int i;
2040        struct bcmgenet_tx_ring *ring;
2041
2042        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2043                ring = &priv->tx_rings[i];
2044                netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2045        }
2046
2047        ring = &priv->tx_rings[DESC_INDEX];
2048        netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2049}
2050
2051static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2052{
2053        unsigned int i;
2054        struct bcmgenet_tx_ring *ring;
2055
2056        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2057                ring = &priv->tx_rings[i];
2058                napi_enable(&ring->napi);
2059        }
2060
2061        ring = &priv->tx_rings[DESC_INDEX];
2062        napi_enable(&ring->napi);
2063}
2064
2065static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2066{
2067        unsigned int i;
2068        struct bcmgenet_tx_ring *ring;
2069
2070        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2071                ring = &priv->tx_rings[i];
2072                napi_disable(&ring->napi);
2073        }
2074
2075        ring = &priv->tx_rings[DESC_INDEX];
2076        napi_disable(&ring->napi);
2077}
2078
2079static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2080{
2081        unsigned int i;
2082        struct bcmgenet_tx_ring *ring;
2083
2084        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2085                ring = &priv->tx_rings[i];
2086                netif_napi_del(&ring->napi);
2087        }
2088
2089        ring = &priv->tx_rings[DESC_INDEX];
2090        netif_napi_del(&ring->napi);
2091}
2092
2093/* Initialize Tx queues
2094 *
2095 * Queues 0-3 are priority-based, each one has 32 descriptors,
2096 * with queue 0 being the highest priority queue.
2097 *
2098 * Queue 16 is the default Tx queue with
2099 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2100 *
2101 * The transmit control block pool is then partitioned as follows:
2102 * - Tx queue 0 uses tx_cbs[0..31]
2103 * - Tx queue 1 uses tx_cbs[32..63]
2104 * - Tx queue 2 uses tx_cbs[64..95]
2105 * - Tx queue 3 uses tx_cbs[96..127]
2106 * - Tx queue 16 uses tx_cbs[128..255]
2107 */
2108static void bcmgenet_init_tx_queues(struct net_device *dev)
2109{
2110        struct bcmgenet_priv *priv = netdev_priv(dev);
2111        u32 i, dma_enable;
2112        u32 dma_ctrl, ring_cfg;
2113        u32 dma_priority[3] = {0, 0, 0};
2114
2115        dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2116        dma_enable = dma_ctrl & DMA_EN;
2117        dma_ctrl &= ~DMA_EN;
2118        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2119
2120        dma_ctrl = 0;
2121        ring_cfg = 0;
2122
2123        /* Enable strict priority arbiter mode */
2124        bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2125
2126        /* Initialize Tx priority queues */
2127        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2128                bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2129                                      i * priv->hw_params->tx_bds_per_q,
2130                                      (i + 1) * priv->hw_params->tx_bds_per_q);
2131                ring_cfg |= (1 << i);
2132                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2133                dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2134                        ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2135        }
2136
2137        /* Initialize Tx default queue 16 */
2138        bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2139                              priv->hw_params->tx_queues *
2140                              priv->hw_params->tx_bds_per_q,
2141                              TOTAL_DESC);
2142        ring_cfg |= (1 << DESC_INDEX);
2143        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2144        dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2145                ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2146                 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2147
2148        /* Set Tx queue priorities */
2149        bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2150        bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2151        bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2152
2153        /* Initialize Tx NAPI */
2154        bcmgenet_init_tx_napi(priv);
2155
2156        /* Enable Tx queues */
2157        bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2158
2159        /* Enable Tx DMA */
2160        if (dma_enable)
2161                dma_ctrl |= DMA_EN;
2162        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2163}
2164
2165static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2166{
2167        unsigned int i;
2168        struct bcmgenet_rx_ring *ring;
2169
2170        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2171                ring = &priv->rx_rings[i];
2172                netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2173        }
2174
2175        ring = &priv->rx_rings[DESC_INDEX];
2176        netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2177}
2178
2179static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2180{
2181        unsigned int i;
2182        struct bcmgenet_rx_ring *ring;
2183
2184        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2185                ring = &priv->rx_rings[i];
2186                napi_enable(&ring->napi);
2187        }
2188
2189        ring = &priv->rx_rings[DESC_INDEX];
2190        napi_enable(&ring->napi);
2191}
2192
2193static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2194{
2195        unsigned int i;
2196        struct bcmgenet_rx_ring *ring;
2197
2198        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2199                ring = &priv->rx_rings[i];
2200                napi_disable(&ring->napi);
2201        }
2202
2203        ring = &priv->rx_rings[DESC_INDEX];
2204        napi_disable(&ring->napi);
2205}
2206
2207static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2208{
2209        unsigned int i;
2210        struct bcmgenet_rx_ring *ring;
2211
2212        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2213                ring = &priv->rx_rings[i];
2214                netif_napi_del(&ring->napi);
2215        }
2216
2217        ring = &priv->rx_rings[DESC_INDEX];
2218        netif_napi_del(&ring->napi);
2219}
2220
2221/* Initialize Rx queues
2222 *
2223 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2224 * used to direct traffic to these queues.
2225 *
2226 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2227 */
2228static int bcmgenet_init_rx_queues(struct net_device *dev)
2229{
2230        struct bcmgenet_priv *priv = netdev_priv(dev);
2231        u32 i;
2232        u32 dma_enable;
2233        u32 dma_ctrl;
2234        u32 ring_cfg;
2235        int ret;
2236
2237        dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2238        dma_enable = dma_ctrl & DMA_EN;
2239        dma_ctrl &= ~DMA_EN;
2240        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2241
2242        dma_ctrl = 0;
2243        ring_cfg = 0;
2244
2245        /* Initialize Rx priority queues */
2246        for (i = 0; i < priv->hw_params->rx_queues; i++) {
2247                ret = bcmgenet_init_rx_ring(priv, i,
2248                                            priv->hw_params->rx_bds_per_q,
2249                                            i * priv->hw_params->rx_bds_per_q,
2250                                            (i + 1) *
2251                                            priv->hw_params->rx_bds_per_q);
2252                if (ret)
2253                        return ret;
2254
2255                ring_cfg |= (1 << i);
2256                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2257        }
2258
2259        /* Initialize Rx default queue 16 */
2260        ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2261                                    priv->hw_params->rx_queues *
2262                                    priv->hw_params->rx_bds_per_q,
2263                                    TOTAL_DESC);
2264        if (ret)
2265                return ret;
2266
2267        ring_cfg |= (1 << DESC_INDEX);
2268        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2269
2270        /* Initialize Rx NAPI */
2271        bcmgenet_init_rx_napi(priv);
2272
2273        /* Enable rings */
2274        bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2275
2276        /* Configure ring as descriptor ring and re-enable DMA if enabled */
2277        if (dma_enable)
2278                dma_ctrl |= DMA_EN;
2279        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2280
2281        return 0;
2282}
2283
2284static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2285{
2286        int ret = 0;
2287        int timeout = 0;
2288        u32 reg;
2289        u32 dma_ctrl;
2290        int i;
2291
2292        /* Disable TDMA to stop add more frames in TX DMA */
2293        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2294        reg &= ~DMA_EN;
2295        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2296
2297        /* Check TDMA status register to confirm TDMA is disabled */
2298        while (timeout++ < DMA_TIMEOUT_VAL) {
2299                reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2300                if (reg & DMA_DISABLED)
2301                        break;
2302
2303                udelay(1);
2304        }
2305
2306        if (timeout == DMA_TIMEOUT_VAL) {
2307                netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2308                ret = -ETIMEDOUT;
2309        }
2310
2311        /* Wait 10ms for packet drain in both tx and rx dma */
2312        usleep_range(10000, 20000);
2313
2314        /* Disable RDMA */
2315        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2316        reg &= ~DMA_EN;
2317        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2318
2319        timeout = 0;
2320        /* Check RDMA status register to confirm RDMA is disabled */
2321        while (timeout++ < DMA_TIMEOUT_VAL) {
2322                reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2323                if (reg & DMA_DISABLED)
2324                        break;
2325
2326                udelay(1);
2327        }
2328
2329        if (timeout == DMA_TIMEOUT_VAL) {
2330                netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2331                ret = -ETIMEDOUT;
2332        }
2333
2334        dma_ctrl = 0;
2335        for (i = 0; i < priv->hw_params->rx_queues; i++)
2336                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2337        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2338        reg &= ~dma_ctrl;
2339        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2340
2341        dma_ctrl = 0;
2342        for (i = 0; i < priv->hw_params->tx_queues; i++)
2343                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2344        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2345        reg &= ~dma_ctrl;
2346        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2347
2348        return ret;
2349}
2350
2351static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2352{
2353        int i;
2354
2355        bcmgenet_fini_rx_napi(priv);
2356        bcmgenet_fini_tx_napi(priv);
2357
2358        /* disable DMA */
2359        bcmgenet_dma_teardown(priv);
2360
2361        for (i = 0; i < priv->num_tx_bds; i++) {
2362                if (priv->tx_cbs[i].skb != NULL) {
2363                        dev_kfree_skb(priv->tx_cbs[i].skb);
2364                        priv->tx_cbs[i].skb = NULL;
2365                }
2366        }
2367
2368        bcmgenet_free_rx_buffers(priv);
2369        kfree(priv->rx_cbs);
2370        kfree(priv->tx_cbs);
2371}
2372
2373/* init_edma: Initialize DMA control register */
2374static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2375{
2376        int ret;
2377        unsigned int i;
2378        struct enet_cb *cb;
2379
2380        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2381
2382        /* Initialize common Rx ring structures */
2383        priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2384        priv->num_rx_bds = TOTAL_DESC;
2385        priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2386                               GFP_KERNEL);
2387        if (!priv->rx_cbs)
2388                return -ENOMEM;
2389
2390        for (i = 0; i < priv->num_rx_bds; i++) {
2391                cb = priv->rx_cbs + i;
2392                cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2393        }
2394
2395        /* Initialize common TX ring structures */
2396        priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2397        priv->num_tx_bds = TOTAL_DESC;
2398        priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2399                               GFP_KERNEL);
2400        if (!priv->tx_cbs) {
2401                kfree(priv->rx_cbs);
2402                return -ENOMEM;
2403        }
2404
2405        for (i = 0; i < priv->num_tx_bds; i++) {
2406                cb = priv->tx_cbs + i;
2407                cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2408        }
2409
2410        /* Init rDma */
2411        bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2412
2413        /* Initialize Rx queues */
2414        ret = bcmgenet_init_rx_queues(priv->dev);
2415        if (ret) {
2416                netdev_err(priv->dev, "failed to initialize Rx queues\n");
2417                bcmgenet_free_rx_buffers(priv);
2418                kfree(priv->rx_cbs);
2419                kfree(priv->tx_cbs);
2420                return ret;
2421        }
2422
2423        /* Init tDma */
2424        bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2425
2426        /* Initialize Tx queues */
2427        bcmgenet_init_tx_queues(priv->dev);
2428
2429        return 0;
2430}
2431
2432/* Interrupt bottom half */
2433static void bcmgenet_irq_task(struct work_struct *work)
2434{
2435        struct bcmgenet_priv *priv = container_of(
2436                        work, struct bcmgenet_priv, bcmgenet_irq_work);
2437
2438        netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2439
2440        if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2441                priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2442                netif_dbg(priv, wol, priv->dev,
2443                          "magic packet detected, waking up\n");
2444                bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2445        }
2446
2447        /* Link UP/DOWN event */
2448        if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2449            (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2450                phy_mac_interrupt(priv->phydev,
2451                                  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2452                priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2453        }
2454}
2455
2456/* bcmgenet_isr1: handle Rx and Tx priority queues */
2457static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2458{
2459        struct bcmgenet_priv *priv = dev_id;
2460        struct bcmgenet_rx_ring *rx_ring;
2461        struct bcmgenet_tx_ring *tx_ring;
2462        unsigned int index;
2463
2464        /* Save irq status for bottom-half processing. */
2465        priv->irq1_stat =
2466                bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2467                ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2468
2469        /* clear interrupts */
2470        bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2471
2472        netif_dbg(priv, intr, priv->dev,
2473                  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2474
2475        /* Check Rx priority queue interrupts */
2476        for (index = 0; index < priv->hw_params->rx_queues; index++) {
2477                if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2478                        continue;
2479
2480                rx_ring = &priv->rx_rings[index];
2481
2482                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2483                        rx_ring->int_disable(rx_ring);
2484                        __napi_schedule(&rx_ring->napi);
2485                }
2486        }
2487
2488        /* Check Tx priority queue interrupts */
2489        for (index = 0; index < priv->hw_params->tx_queues; index++) {
2490                if (!(priv->irq1_stat & BIT(index)))
2491                        continue;
2492
2493                tx_ring = &priv->tx_rings[index];
2494
2495                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2496                        tx_ring->int_disable(tx_ring);
2497                        __napi_schedule(&tx_ring->napi);
2498                }
2499        }
2500
2501        return IRQ_HANDLED;
2502}
2503
2504/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2505static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2506{
2507        struct bcmgenet_priv *priv = dev_id;
2508        struct bcmgenet_rx_ring *rx_ring;
2509        struct bcmgenet_tx_ring *tx_ring;
2510
2511        /* Save irq status for bottom-half processing. */
2512        priv->irq0_stat =
2513                bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2514                ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2515
2516        /* clear interrupts */
2517        bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2518
2519        netif_dbg(priv, intr, priv->dev,
2520                  "IRQ=0x%x\n", priv->irq0_stat);
2521
2522        if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2523                rx_ring = &priv->rx_rings[DESC_INDEX];
2524
2525                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2526                        rx_ring->int_disable(rx_ring);
2527                        __napi_schedule(&rx_ring->napi);
2528                }
2529        }
2530
2531        if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2532                tx_ring = &priv->tx_rings[DESC_INDEX];
2533
2534                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2535                        tx_ring->int_disable(tx_ring);
2536                        __napi_schedule(&tx_ring->napi);
2537                }
2538        }
2539
2540        if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2541                                UMAC_IRQ_PHY_DET_F |
2542                                UMAC_IRQ_LINK_EVENT |
2543                                UMAC_IRQ_HFB_SM |
2544                                UMAC_IRQ_HFB_MM |
2545                                UMAC_IRQ_MPD_R)) {
2546                /* all other interested interrupts handled in bottom half */
2547                schedule_work(&priv->bcmgenet_irq_work);
2548        }
2549
2550        if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2551            priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2552                priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2553                wake_up(&priv->wq);
2554        }
2555
2556        return IRQ_HANDLED;
2557}
2558
2559static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2560{
2561        struct bcmgenet_priv *priv = dev_id;
2562
2563        pm_wakeup_event(&priv->pdev->dev, 0);
2564
2565        return IRQ_HANDLED;
2566}
2567
2568#ifdef CONFIG_NET_POLL_CONTROLLER
2569static void bcmgenet_poll_controller(struct net_device *dev)
2570{
2571        struct bcmgenet_priv *priv = netdev_priv(dev);
2572
2573        /* Invoke the main RX/TX interrupt handler */
2574        disable_irq(priv->irq0);
2575        bcmgenet_isr0(priv->irq0, priv);
2576        enable_irq(priv->irq0);
2577
2578        /* And the interrupt handler for RX/TX priority queues */
2579        disable_irq(priv->irq1);
2580        bcmgenet_isr1(priv->irq1, priv);
2581        enable_irq(priv->irq1);
2582}
2583#endif
2584
2585static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2586{
2587        u32 reg;
2588
2589        reg = bcmgenet_rbuf_ctrl_get(priv);
2590        reg |= BIT(1);
2591        bcmgenet_rbuf_ctrl_set(priv, reg);
2592        udelay(10);
2593
2594        reg &= ~BIT(1);
2595        bcmgenet_rbuf_ctrl_set(priv, reg);
2596        udelay(10);
2597}
2598
2599static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2600                                 unsigned char *addr)
2601{
2602        bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2603                        (addr[2] << 8) | addr[3], UMAC_MAC0);
2604        bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2605}
2606
2607/* Returns a reusable dma control register value */
2608static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2609{
2610        u32 reg;
2611        u32 dma_ctrl;
2612
2613        /* disable DMA */
2614        dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2615        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2616        reg &= ~dma_ctrl;
2617        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2618
2619        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2620        reg &= ~dma_ctrl;
2621        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2622
2623        bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2624        udelay(10);
2625        bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2626
2627        return dma_ctrl;
2628}
2629
2630static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2631{
2632        u32 reg;
2633
2634        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2635        reg |= dma_ctrl;
2636        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2637
2638        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2639        reg |= dma_ctrl;
2640        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2641}
2642
2643static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2644                                           u32 f_index)
2645{
2646        u32 offset;
2647        u32 reg;
2648
2649        offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2650        reg = bcmgenet_hfb_reg_readl(priv, offset);
2651        return !!(reg & (1 << (f_index % 32)));
2652}
2653
2654static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2655{
2656        u32 offset;
2657        u32 reg;
2658
2659        offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2660        reg = bcmgenet_hfb_reg_readl(priv, offset);
2661        reg |= (1 << (f_index % 32));
2662        bcmgenet_hfb_reg_writel(priv, reg, offset);
2663}
2664
2665static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2666                                                     u32 f_index, u32 rx_queue)
2667{
2668        u32 offset;
2669        u32 reg;
2670
2671        offset = f_index / 8;
2672        reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2673        reg &= ~(0xF << (4 * (f_index % 8)));
2674        reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2675        bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2676}
2677
2678static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2679                                           u32 f_index, u32 f_length)
2680{
2681        u32 offset;
2682        u32 reg;
2683
2684        offset = HFB_FLT_LEN_V3PLUS +
2685                 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2686                 sizeof(u32);
2687        reg = bcmgenet_hfb_reg_readl(priv, offset);
2688        reg &= ~(0xFF << (8 * (f_index % 4)));
2689        reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2690        bcmgenet_hfb_reg_writel(priv, reg, offset);
2691}
2692
2693static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2694{
2695        u32 f_index;
2696
2697        for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2698                if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2699                        return f_index;
2700
2701        return -ENOMEM;
2702}
2703
2704/* bcmgenet_hfb_add_filter
2705 *
2706 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2707 * desired Rx queue.
2708 *
2709 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2710 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2711 *
2712 * bits 31:20 - unused
2713 * bit  19    - nibble 0 match enable
2714 * bit  18    - nibble 1 match enable
2715 * bit  17    - nibble 2 match enable
2716 * bit  16    - nibble 3 match enable
2717 * bits 15:12 - nibble 0 data
2718 * bits 11:8  - nibble 1 data
2719 * bits 7:4   - nibble 2 data
2720 * bits 3:0   - nibble 3 data
2721 *
2722 * Example:
2723 * In order to match:
2724 * - Ethernet frame type = 0x0800 (IP)
2725 * - IP version field = 4
2726 * - IP protocol field = 0x11 (UDP)
2727 *
2728 * The following filter is needed:
2729 * u32 hfb_filter_ipv4_udp[] = {
2730 *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2731 *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2732 *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2733 * };
2734 *
2735 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2736 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2737 *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2738 */
2739int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2740                            u32 f_length, u32 rx_queue)
2741{
2742        int f_index;
2743        u32 i;
2744
2745        f_index = bcmgenet_hfb_find_unused_filter(priv);
2746        if (f_index < 0)
2747                return -ENOMEM;
2748
2749        if (f_length > priv->hw_params->hfb_filter_size)
2750                return -EINVAL;
2751
2752        for (i = 0; i < f_length; i++)
2753                bcmgenet_hfb_writel(priv, f_data[i],
2754                        (f_index * priv->hw_params->hfb_filter_size + i) *
2755                        sizeof(u32));
2756
2757        bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2758        bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2759        bcmgenet_hfb_enable_filter(priv, f_index);
2760        bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2761
2762        return 0;
2763}
2764
2765/* bcmgenet_hfb_clear
2766 *
2767 * Clear Hardware Filter Block and disable all filtering.
2768 */
2769static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2770{
2771        u32 i;
2772
2773        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2774        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2775        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2776
2777        for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2778                bcmgenet_rdma_writel(priv, 0x0, i);
2779
2780        for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2781                bcmgenet_hfb_reg_writel(priv, 0x0,
2782                                        HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2783
2784        for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2785                        priv->hw_params->hfb_filter_size; i++)
2786                bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2787}
2788
2789static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2790{
2791        if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2792                return;
2793
2794        bcmgenet_hfb_clear(priv);
2795}
2796
2797static void bcmgenet_netif_start(struct net_device *dev)
2798{
2799        struct bcmgenet_priv *priv = netdev_priv(dev);
2800
2801        /* Start the network engine */
2802        bcmgenet_enable_rx_napi(priv);
2803        bcmgenet_enable_tx_napi(priv);
2804
2805        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2806
2807        netif_tx_start_all_queues(dev);
2808
2809        /* Monitor link interrupts now */
2810        bcmgenet_link_intr_enable(priv);
2811
2812        phy_start(priv->phydev);
2813}
2814
2815static int bcmgenet_open(struct net_device *dev)
2816{
2817        struct bcmgenet_priv *priv = netdev_priv(dev);
2818        unsigned long dma_ctrl;
2819        u32 reg;
2820        int ret;
2821
2822        netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2823
2824        /* Turn on the clock */
2825        clk_prepare_enable(priv->clk);
2826
2827        /* If this is an internal GPHY, power it back on now, before UniMAC is
2828         * brought out of reset as absolutely no UniMAC activity is allowed
2829         */
2830        if (priv->internal_phy)
2831                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2832
2833        /* take MAC out of reset */
2834        bcmgenet_umac_reset(priv);
2835
2836        ret = init_umac(priv);
2837        if (ret)
2838                goto err_clk_disable;
2839
2840        /* disable ethernet MAC while updating its registers */
2841        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2842
2843        /* Make sure we reflect the value of CRC_CMD_FWD */
2844        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2845        priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2846
2847        bcmgenet_set_hw_addr(priv, dev->dev_addr);
2848
2849        if (priv->internal_phy) {
2850                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2851                reg |= EXT_ENERGY_DET_MASK;
2852                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2853        }
2854
2855        /* Disable RX/TX DMA and flush TX queues */
2856        dma_ctrl = bcmgenet_dma_disable(priv);
2857
2858        /* Reinitialize TDMA and RDMA and SW housekeeping */
2859        ret = bcmgenet_init_dma(priv);
2860        if (ret) {
2861                netdev_err(dev, "failed to initialize DMA\n");
2862                goto err_clk_disable;
2863        }
2864
2865        /* Always enable ring 16 - descriptor ring */
2866        bcmgenet_enable_dma(priv, dma_ctrl);
2867
2868        /* HFB init */
2869        bcmgenet_hfb_init(priv);
2870
2871        ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2872                          dev->name, priv);
2873        if (ret < 0) {
2874                netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2875                goto err_fini_dma;
2876        }
2877
2878        ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2879                          dev->name, priv);
2880        if (ret < 0) {
2881                netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2882                goto err_irq0;
2883        }
2884
2885        ret = bcmgenet_mii_probe(dev);
2886        if (ret) {
2887                netdev_err(dev, "failed to connect to PHY\n");
2888                goto err_irq1;
2889        }
2890
2891        bcmgenet_netif_start(dev);
2892
2893        return 0;
2894
2895err_irq1:
2896        free_irq(priv->irq1, priv);
2897err_irq0:
2898        free_irq(priv->irq0, priv);
2899err_fini_dma:
2900        bcmgenet_fini_dma(priv);
2901err_clk_disable:
2902        clk_disable_unprepare(priv->clk);
2903        return ret;
2904}
2905
2906static void bcmgenet_netif_stop(struct net_device *dev)
2907{
2908        struct bcmgenet_priv *priv = netdev_priv(dev);
2909
2910        netif_tx_stop_all_queues(dev);
2911        phy_stop(priv->phydev);
2912        bcmgenet_intr_disable(priv);
2913        bcmgenet_disable_rx_napi(priv);
2914        bcmgenet_disable_tx_napi(priv);
2915
2916        /* Wait for pending work items to complete. Since interrupts are
2917         * disabled no new work will be scheduled.
2918         */
2919        cancel_work_sync(&priv->bcmgenet_irq_work);
2920
2921        priv->old_link = -1;
2922        priv->old_speed = -1;
2923        priv->old_duplex = -1;
2924        priv->old_pause = -1;
2925}
2926
2927static int bcmgenet_close(struct net_device *dev)
2928{
2929        struct bcmgenet_priv *priv = netdev_priv(dev);
2930        int ret;
2931
2932        netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2933
2934        bcmgenet_netif_stop(dev);
2935
2936        /* Really kill the PHY state machine and disconnect from it */
2937        phy_disconnect(priv->phydev);
2938
2939        /* Disable MAC receive */
2940        umac_enable_set(priv, CMD_RX_EN, false);
2941
2942        ret = bcmgenet_dma_teardown(priv);
2943        if (ret)
2944                return ret;
2945
2946        /* Disable MAC transmit. TX DMA disabled have to done before this */
2947        umac_enable_set(priv, CMD_TX_EN, false);
2948
2949        /* tx reclaim */
2950        bcmgenet_tx_reclaim_all(dev);
2951        bcmgenet_fini_dma(priv);
2952
2953        free_irq(priv->irq0, priv);
2954        free_irq(priv->irq1, priv);
2955
2956        if (priv->internal_phy)
2957                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2958
2959        clk_disable_unprepare(priv->clk);
2960
2961        return ret;
2962}
2963
2964static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2965{
2966        struct bcmgenet_priv *priv = ring->priv;
2967        u32 p_index, c_index, intsts, intmsk;
2968        struct netdev_queue *txq;
2969        unsigned int free_bds;
2970        unsigned long flags;
2971        bool txq_stopped;
2972
2973        if (!netif_msg_tx_err(priv))
2974                return;
2975
2976        txq = netdev_get_tx_queue(priv->dev, ring->queue);
2977
2978        spin_lock_irqsave(&ring->lock, flags);
2979        if (ring->index == DESC_INDEX) {
2980                intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2981                intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2982        } else {
2983                intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2984                intmsk = 1 << ring->index;
2985        }
2986        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2987        p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2988        txq_stopped = netif_tx_queue_stopped(txq);
2989        free_bds = ring->free_bds;
2990        spin_unlock_irqrestore(&ring->lock, flags);
2991
2992        netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2993                  "TX queue status: %s, interrupts: %s\n"
2994                  "(sw)free_bds: %d (sw)size: %d\n"
2995                  "(sw)p_index: %d (hw)p_index: %d\n"
2996                  "(sw)c_index: %d (hw)c_index: %d\n"
2997                  "(sw)clean_p: %d (sw)write_p: %d\n"
2998                  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2999                  ring->index, ring->queue,
3000                  txq_stopped ? "stopped" : "active",
3001                  intsts & intmsk ? "enabled" : "disabled",
3002                  free_bds, ring->size,
3003                  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3004                  ring->c_index, c_index & DMA_C_INDEX_MASK,
3005                  ring->clean_ptr, ring->write_ptr,
3006                  ring->cb_ptr, ring->end_ptr);
3007}
3008
3009static void bcmgenet_timeout(struct net_device *dev)
3010{
3011        struct bcmgenet_priv *priv = netdev_priv(dev);
3012        u32 int0_enable = 0;
3013        u32 int1_enable = 0;
3014        unsigned int q;
3015
3016        netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3017
3018        for (q = 0; q < priv->hw_params->tx_queues; q++)
3019                bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3020        bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3021
3022        bcmgenet_tx_reclaim_all(dev);
3023
3024        for (q = 0; q < priv->hw_params->tx_queues; q++)
3025                int1_enable |= (1 << q);
3026
3027        int0_enable = UMAC_IRQ_TXDMA_DONE;
3028
3029        /* Re-enable TX interrupts if disabled */
3030        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3031        bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3032
3033        dev->trans_start = jiffies;
3034
3035        dev->stats.tx_errors++;
3036
3037        netif_tx_wake_all_queues(dev);
3038}
3039
3040#define MAX_MC_COUNT    16
3041
3042static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3043                                         unsigned char *addr,
3044                                         int *i,
3045                                         int *mc)
3046{
3047        u32 reg;
3048
3049        bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3050                             UMAC_MDF_ADDR + (*i * 4));
3051        bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3052                             addr[4] << 8 | addr[5],
3053                             UMAC_MDF_ADDR + ((*i + 1) * 4));
3054        reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3055        reg |= (1 << (MAX_MC_COUNT - *mc));
3056        bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3057        *i += 2;
3058        (*mc)++;
3059}
3060
3061static void bcmgenet_set_rx_mode(struct net_device *dev)
3062{
3063        struct bcmgenet_priv *priv = netdev_priv(dev);
3064        struct netdev_hw_addr *ha;
3065        int i, mc;
3066        u32 reg;
3067
3068        netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3069
3070        /* Promiscuous mode */
3071        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3072        if (dev->flags & IFF_PROMISC) {
3073                reg |= CMD_PROMISC;
3074                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3075                bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3076                return;
3077        } else {
3078                reg &= ~CMD_PROMISC;
3079                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3080        }
3081
3082        /* UniMac doesn't support ALLMULTI */
3083        if (dev->flags & IFF_ALLMULTI) {
3084                netdev_warn(dev, "ALLMULTI is not supported\n");
3085                return;
3086        }
3087
3088        /* update MDF filter */
3089        i = 0;
3090        mc = 0;
3091        /* Broadcast */
3092        bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3093        /* my own address.*/
3094        bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3095        /* Unicast list*/
3096        if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3097                return;
3098
3099        if (!netdev_uc_empty(dev))
3100                netdev_for_each_uc_addr(ha, dev)
3101                        bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3102        /* Multicast */
3103        if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3104                return;
3105
3106        netdev_for_each_mc_addr(ha, dev)
3107                bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3108}
3109
3110/* Set the hardware MAC address. */
3111static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3112{
3113        struct sockaddr *addr = p;
3114
3115        /* Setting the MAC address at the hardware level is not possible
3116         * without disabling the UniMAC RX/TX enable bits.
3117         */
3118        if (netif_running(dev))
3119                return -EBUSY;
3120
3121        ether_addr_copy(dev->dev_addr, addr->sa_data);
3122
3123        return 0;
3124}
3125
3126static const struct net_device_ops bcmgenet_netdev_ops = {
3127        .ndo_open               = bcmgenet_open,
3128        .ndo_stop               = bcmgenet_close,
3129        .ndo_start_xmit         = bcmgenet_xmit,
3130        .ndo_tx_timeout         = bcmgenet_timeout,
3131        .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3132        .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3133        .ndo_do_ioctl           = bcmgenet_ioctl,
3134        .ndo_set_features       = bcmgenet_set_features,
3135#ifdef CONFIG_NET_POLL_CONTROLLER
3136        .ndo_poll_controller    = bcmgenet_poll_controller,
3137#endif
3138};
3139
3140/* Array of GENET hardware parameters/characteristics */
3141static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3142        [GENET_V1] = {
3143                .tx_queues = 0,
3144                .tx_bds_per_q = 0,
3145                .rx_queues = 0,
3146                .rx_bds_per_q = 0,
3147                .bp_in_en_shift = 16,
3148                .bp_in_mask = 0xffff,
3149                .hfb_filter_cnt = 16,
3150                .qtag_mask = 0x1F,
3151                .hfb_offset = 0x1000,
3152                .rdma_offset = 0x2000,
3153                .tdma_offset = 0x3000,
3154                .words_per_bd = 2,
3155        },
3156        [GENET_V2] = {
3157                .tx_queues = 4,
3158                .tx_bds_per_q = 32,
3159                .rx_queues = 0,
3160                .rx_bds_per_q = 0,
3161                .bp_in_en_shift = 16,
3162                .bp_in_mask = 0xffff,
3163                .hfb_filter_cnt = 16,
3164                .qtag_mask = 0x1F,
3165                .tbuf_offset = 0x0600,
3166                .hfb_offset = 0x1000,
3167                .hfb_reg_offset = 0x2000,
3168                .rdma_offset = 0x3000,
3169                .tdma_offset = 0x4000,
3170                .words_per_bd = 2,
3171                .flags = GENET_HAS_EXT,
3172        },
3173        [GENET_V3] = {
3174                .tx_queues = 4,
3175                .tx_bds_per_q = 32,
3176                .rx_queues = 0,
3177                .rx_bds_per_q = 0,
3178                .bp_in_en_shift = 17,
3179                .bp_in_mask = 0x1ffff,
3180                .hfb_filter_cnt = 48,
3181                .hfb_filter_size = 128,
3182                .qtag_mask = 0x3F,
3183                .tbuf_offset = 0x0600,
3184                .hfb_offset = 0x8000,
3185                .hfb_reg_offset = 0xfc00,
3186                .rdma_offset = 0x10000,
3187                .tdma_offset = 0x11000,
3188                .words_per_bd = 2,
3189                .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3190                         GENET_HAS_MOCA_LINK_DET,
3191        },
3192        [GENET_V4] = {
3193                .tx_queues = 4,
3194                .tx_bds_per_q = 32,
3195                .rx_queues = 0,
3196                .rx_bds_per_q = 0,
3197                .bp_in_en_shift = 17,
3198                .bp_in_mask = 0x1ffff,
3199                .hfb_filter_cnt = 48,
3200                .hfb_filter_size = 128,
3201                .qtag_mask = 0x3F,
3202                .tbuf_offset = 0x0600,
3203                .hfb_offset = 0x8000,
3204                .hfb_reg_offset = 0xfc00,
3205                .rdma_offset = 0x2000,
3206                .tdma_offset = 0x4000,
3207                .words_per_bd = 3,
3208                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3209                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3210        },
3211};
3212
3213/* Infer hardware parameters from the detected GENET version */
3214static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3215{
3216        struct bcmgenet_hw_params *params;
3217        u32 reg;
3218        u8 major;
3219        u16 gphy_rev;
3220
3221        if (GENET_IS_V4(priv)) {
3222                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3223                genet_dma_ring_regs = genet_dma_ring_regs_v4;
3224                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3225                priv->version = GENET_V4;
3226        } else if (GENET_IS_V3(priv)) {
3227                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3228                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3229                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3230                priv->version = GENET_V3;
3231        } else if (GENET_IS_V2(priv)) {
3232                bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3233                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3234                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3235                priv->version = GENET_V2;
3236        } else if (GENET_IS_V1(priv)) {
3237                bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3238                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3239                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3240                priv->version = GENET_V1;
3241        }
3242
3243        /* enum genet_version starts at 1 */
3244        priv->hw_params = &bcmgenet_hw_params[priv->version];
3245        params = priv->hw_params;
3246
3247        /* Read GENET HW version */
3248        reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3249        major = (reg >> 24 & 0x0f);
3250        if (major == 5)
3251                major = 4;
3252        else if (major == 0)
3253                major = 1;
3254        if (major != priv->version) {
3255                dev_err(&priv->pdev->dev,
3256                        "GENET version mismatch, got: %d, configured for: %d\n",
3257                        major, priv->version);
3258        }
3259
3260        /* Print the GENET core version */
3261        dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3262                 major, (reg >> 16) & 0x0f, reg & 0xffff);
3263
3264        /* Store the integrated PHY revision for the MDIO probing function
3265         * to pass this information to the PHY driver. The PHY driver expects
3266         * to find the PHY major revision in bits 15:8 while the GENET register
3267         * stores that information in bits 7:0, account for that.
3268         *
3269         * On newer chips, starting with PHY revision G0, a new scheme is
3270         * deployed similar to the Starfighter 2 switch with GPHY major
3271         * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3272         * is reserved as well as special value 0x01ff, we have a small
3273         * heuristic to check for the new GPHY revision and re-arrange things
3274         * so the GPHY driver is happy.
3275         */
3276        gphy_rev = reg & 0xffff;
3277
3278        /* This is the good old scheme, just GPHY major, no minor nor patch */
3279        if ((gphy_rev & 0xf0) != 0)
3280                priv->gphy_rev = gphy_rev << 8;
3281
3282        /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3283        else if ((gphy_rev & 0xff00) != 0)
3284                priv->gphy_rev = gphy_rev;
3285
3286        /* This is reserved so should require special treatment */
3287        else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3288                pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3289                return;
3290        }
3291
3292#ifdef CONFIG_PHYS_ADDR_T_64BIT
3293        if (!(params->flags & GENET_HAS_40BITS))
3294                pr_warn("GENET does not support 40-bits PA\n");
3295#endif
3296
3297        pr_debug("Configuration for version: %d\n"
3298                "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3299                "BP << en: %2d, BP msk: 0x%05x\n"
3300                "HFB count: %2d, QTAQ msk: 0x%05x\n"
3301                "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3302                "RDMA: 0x%05x, TDMA: 0x%05x\n"
3303                "Words/BD: %d\n",
3304                priv->version,
3305                params->tx_queues, params->tx_bds_per_q,
3306                params->rx_queues, params->rx_bds_per_q,
3307                params->bp_in_en_shift, params->bp_in_mask,
3308                params->hfb_filter_cnt, params->qtag_mask,
3309                params->tbuf_offset, params->hfb_offset,
3310                params->hfb_reg_offset,
3311                params->rdma_offset, params->tdma_offset,
3312                params->words_per_bd);
3313}
3314
3315static const struct of_device_id bcmgenet_match[] = {
3316        { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3317        { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3318        { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3319        { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3320        { },
3321};
3322MODULE_DEVICE_TABLE(of, bcmgenet_match);
3323
3324static int bcmgenet_probe(struct platform_device *pdev)
3325{
3326        struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3327        struct device_node *dn = pdev->dev.of_node;
3328        const struct of_device_id *of_id = NULL;
3329        struct bcmgenet_priv *priv;
3330        struct net_device *dev;
3331        const void *macaddr;
3332        struct resource *r;
3333        int err = -EIO;
3334
3335        /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3336        dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3337                                 GENET_MAX_MQ_CNT + 1);
3338        if (!dev) {
3339                dev_err(&pdev->dev, "can't allocate net device\n");
3340                return -ENOMEM;
3341        }
3342
3343        if (dn) {
3344                of_id = of_match_node(bcmgenet_match, dn);
3345                if (!of_id)
3346                        return -EINVAL;
3347        }
3348
3349        priv = netdev_priv(dev);
3350        priv->irq0 = platform_get_irq(pdev, 0);
3351        priv->irq1 = platform_get_irq(pdev, 1);
3352        priv->wol_irq = platform_get_irq(pdev, 2);
3353        if (!priv->irq0 || !priv->irq1) {
3354                dev_err(&pdev->dev, "can't find IRQs\n");
3355                err = -EINVAL;
3356                goto err;
3357        }
3358
3359        if (dn) {
3360                macaddr = of_get_mac_address(dn);
3361                if (!macaddr) {
3362                        dev_err(&pdev->dev, "can't find MAC address\n");
3363                        err = -EINVAL;
3364                        goto err;
3365                }
3366        } else {
3367                macaddr = pd->mac_address;
3368        }
3369
3370        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3371        priv->base = devm_ioremap_resource(&pdev->dev, r);
3372        if (IS_ERR(priv->base)) {
3373                err = PTR_ERR(priv->base);
3374                goto err;
3375        }
3376
3377        SET_NETDEV_DEV(dev, &pdev->dev);
3378        dev_set_drvdata(&pdev->dev, dev);
3379        ether_addr_copy(dev->dev_addr, macaddr);
3380        dev->watchdog_timeo = 2 * HZ;
3381        dev->ethtool_ops = &bcmgenet_ethtool_ops;
3382        dev->netdev_ops = &bcmgenet_netdev_ops;
3383
3384        priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3385
3386        /* Set hardware features */
3387        dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3388                NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3389
3390        /* Request the WOL interrupt and advertise suspend if available */
3391        priv->wol_irq_disabled = true;
3392        err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3393                               dev->name, priv);
3394        if (!err)
3395                device_set_wakeup_capable(&pdev->dev, 1);
3396
3397        /* Set the needed headroom to account for any possible
3398         * features enabling/disabling at runtime
3399         */
3400        dev->needed_headroom += 64;
3401
3402        netdev_boot_setup_check(dev);
3403
3404        priv->dev = dev;
3405        priv->pdev = pdev;
3406        if (of_id)
3407                priv->version = (enum bcmgenet_version)of_id->data;
3408        else
3409                priv->version = pd->genet_version;
3410
3411        priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3412        if (IS_ERR(priv->clk)) {
3413                dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3414                priv->clk = NULL;
3415        }
3416
3417        clk_prepare_enable(priv->clk);
3418
3419        bcmgenet_set_hw_params(priv);
3420
3421        /* Mii wait queue */
3422        init_waitqueue_head(&priv->wq);
3423        /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3424        priv->rx_buf_len = RX_BUF_LENGTH;
3425        INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3426
3427        priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3428        if (IS_ERR(priv->clk_wol)) {
3429                dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3430                priv->clk_wol = NULL;
3431        }
3432
3433        priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3434        if (IS_ERR(priv->clk_eee)) {
3435                dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3436                priv->clk_eee = NULL;
3437        }
3438
3439        err = reset_umac(priv);
3440        if (err)
3441                goto err_clk_disable;
3442
3443        err = bcmgenet_mii_init(dev);
3444        if (err)
3445                goto err_clk_disable;
3446
3447        /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3448         * just the ring 16 descriptor based TX
3449         */
3450        netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3451        netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3452
3453        /* libphy will determine the link state */
3454        netif_carrier_off(dev);
3455
3456        /* Turn off the main clock, WOL clock is handled separately */
3457        clk_disable_unprepare(priv->clk);
3458
3459        err = register_netdev(dev);
3460        if (err)
3461                goto err;
3462
3463        return err;
3464
3465err_clk_disable:
3466        clk_disable_unprepare(priv->clk);
3467err:
3468        free_netdev(dev);
3469        return err;
3470}
3471
3472static int bcmgenet_remove(struct platform_device *pdev)
3473{
3474        struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3475
3476        dev_set_drvdata(&pdev->dev, NULL);
3477        unregister_netdev(priv->dev);
3478        bcmgenet_mii_exit(priv->dev);
3479        free_netdev(priv->dev);
3480
3481        return 0;
3482}
3483
3484#ifdef CONFIG_PM_SLEEP
3485static int bcmgenet_suspend(struct device *d)
3486{
3487        struct net_device *dev = dev_get_drvdata(d);
3488        struct bcmgenet_priv *priv = netdev_priv(dev);
3489        int ret;
3490
3491        if (!netif_running(dev))
3492                return 0;
3493
3494        bcmgenet_netif_stop(dev);
3495
3496        phy_suspend(priv->phydev);
3497
3498        netif_device_detach(dev);
3499
3500        /* Disable MAC receive */
3501        umac_enable_set(priv, CMD_RX_EN, false);
3502
3503        ret = bcmgenet_dma_teardown(priv);
3504        if (ret)
3505                return ret;
3506
3507        /* Disable MAC transmit. TX DMA disabled have to done before this */
3508        umac_enable_set(priv, CMD_TX_EN, false);
3509
3510        /* tx reclaim */
3511        bcmgenet_tx_reclaim_all(dev);
3512        bcmgenet_fini_dma(priv);
3513
3514        /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3515        if (device_may_wakeup(d) && priv->wolopts) {
3516                ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3517                clk_prepare_enable(priv->clk_wol);
3518        } else if (priv->internal_phy) {
3519                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3520        }
3521
3522        /* Turn off the clocks */
3523        clk_disable_unprepare(priv->clk);
3524
3525        return ret;
3526}
3527
3528static int bcmgenet_resume(struct device *d)
3529{
3530        struct net_device *dev = dev_get_drvdata(d);
3531        struct bcmgenet_priv *priv = netdev_priv(dev);
3532        unsigned long dma_ctrl;
3533        int ret;
3534        u32 reg;
3535
3536        if (!netif_running(dev))
3537                return 0;
3538
3539        /* Turn on the clock */
3540        ret = clk_prepare_enable(priv->clk);
3541        if (ret)
3542                return ret;
3543
3544        /* If this is an internal GPHY, power it back on now, before UniMAC is
3545         * brought out of reset as absolutely no UniMAC activity is allowed
3546         */
3547        if (priv->internal_phy)
3548                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3549
3550        bcmgenet_umac_reset(priv);
3551
3552        ret = init_umac(priv);
3553        if (ret)
3554                goto out_clk_disable;
3555
3556        /* From WOL-enabled suspend, switch to regular clock */
3557        if (priv->wolopts)
3558                clk_disable_unprepare(priv->clk_wol);
3559
3560        phy_init_hw(priv->phydev);
3561        /* Speed settings must be restored */
3562        bcmgenet_mii_config(priv->dev);
3563
3564        /* disable ethernet MAC while updating its registers */
3565        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3566
3567        bcmgenet_set_hw_addr(priv, dev->dev_addr);
3568
3569        if (priv->internal_phy) {
3570                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3571                reg |= EXT_ENERGY_DET_MASK;
3572                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3573        }
3574
3575        if (priv->wolopts)
3576                bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3577
3578        /* Disable RX/TX DMA and flush TX queues */
3579        dma_ctrl = bcmgenet_dma_disable(priv);
3580
3581        /* Reinitialize TDMA and RDMA and SW housekeeping */
3582        ret = bcmgenet_init_dma(priv);
3583        if (ret) {
3584                netdev_err(dev, "failed to initialize DMA\n");
3585                goto out_clk_disable;
3586        }
3587
3588        /* Always enable ring 16 - descriptor ring */
3589        bcmgenet_enable_dma(priv, dma_ctrl);
3590
3591        netif_device_attach(dev);
3592
3593        phy_resume(priv->phydev);
3594
3595        if (priv->eee.eee_enabled)
3596                bcmgenet_eee_enable_set(dev, true);
3597
3598        bcmgenet_netif_start(dev);
3599
3600        return 0;
3601
3602out_clk_disable:
3603        clk_disable_unprepare(priv->clk);
3604        return ret;
3605}
3606#endif /* CONFIG_PM_SLEEP */
3607
3608static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3609
3610static struct platform_driver bcmgenet_driver = {
3611        .probe  = bcmgenet_probe,
3612        .remove = bcmgenet_remove,
3613        .driver = {
3614                .name   = "bcmgenet",
3615                .of_match_table = bcmgenet_match,
3616                .pm     = &bcmgenet_pm_ops,
3617        },
3618};
3619module_platform_driver(bcmgenet_driver);
3620
3621MODULE_AUTHOR("Broadcom Corporation");
3622MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3623MODULE_ALIAS("platform:bcmgenet");
3624MODULE_LICENSE("GPL");
3625