linux/drivers/net/ethernet/intel/e1000e/ich8lan.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 82562G 10/100 Network Connection
  23 * 82562G-2 10/100 Network Connection
  24 * 82562GT 10/100 Network Connection
  25 * 82562GT-2 10/100 Network Connection
  26 * 82562V 10/100 Network Connection
  27 * 82562V-2 10/100 Network Connection
  28 * 82566DC-2 Gigabit Network Connection
  29 * 82566DC Gigabit Network Connection
  30 * 82566DM-2 Gigabit Network Connection
  31 * 82566DM Gigabit Network Connection
  32 * 82566MC Gigabit Network Connection
  33 * 82566MM Gigabit Network Connection
  34 * 82567LM Gigabit Network Connection
  35 * 82567LF Gigabit Network Connection
  36 * 82567V Gigabit Network Connection
  37 * 82567LM-2 Gigabit Network Connection
  38 * 82567LF-2 Gigabit Network Connection
  39 * 82567V-2 Gigabit Network Connection
  40 * 82567LF-3 Gigabit Network Connection
  41 * 82567LM-3 Gigabit Network Connection
  42 * 82567LM-4 Gigabit Network Connection
  43 * 82577LM Gigabit Network Connection
  44 * 82577LC Gigabit Network Connection
  45 * 82578DM Gigabit Network Connection
  46 * 82578DC Gigabit Network Connection
  47 * 82579LM Gigabit Network Connection
  48 * 82579V Gigabit Network Connection
  49 * Ethernet Connection I217-LM
  50 * Ethernet Connection I217-V
  51 * Ethernet Connection I218-V
  52 * Ethernet Connection I218-LM
  53 * Ethernet Connection (2) I218-LM
  54 * Ethernet Connection (2) I218-V
  55 * Ethernet Connection (3) I218-LM
  56 * Ethernet Connection (3) I218-V
  57 */
  58
  59#include "e1000.h"
  60
  61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  62/* Offset 04h HSFSTS */
  63union ich8_hws_flash_status {
  64        struct ich8_hsfsts {
  65                u16 flcdone:1;  /* bit 0 Flash Cycle Done */
  66                u16 flcerr:1;   /* bit 1 Flash Cycle Error */
  67                u16 dael:1;     /* bit 2 Direct Access error Log */
  68                u16 berasesz:2; /* bit 4:3 Sector Erase Size */
  69                u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
  70                u16 reserved1:2;        /* bit 13:6 Reserved */
  71                u16 reserved2:6;        /* bit 13:6 Reserved */
  72                u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
  73                u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
  74        } hsf_status;
  75        u16 regval;
  76};
  77
  78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  79/* Offset 06h FLCTL */
  80union ich8_hws_flash_ctrl {
  81        struct ich8_hsflctl {
  82                u16 flcgo:1;    /* 0 Flash Cycle Go */
  83                u16 flcycle:2;  /* 2:1 Flash Cycle */
  84                u16 reserved:5; /* 7:3 Reserved  */
  85                u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
  86                u16 flockdn:6;  /* 15:10 Reserved */
  87        } hsf_ctrl;
  88        u16 regval;
  89};
  90
  91/* ICH Flash Region Access Permissions */
  92union ich8_hws_flash_regacc {
  93        struct ich8_flracc {
  94                u32 grra:8;     /* 0:7 GbE region Read Access */
  95                u32 grwa:8;     /* 8:15 GbE region Write Access */
  96                u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
  97                u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
  98        } hsf_flregacc;
  99        u16 regval;
 100};
 101
 102/* ICH Flash Protected Region */
 103union ich8_flash_protected_range {
 104        struct ich8_pr {
 105                u32 base:13;    /* 0:12 Protected Range Base */
 106                u32 reserved1:2;        /* 13:14 Reserved */
 107                u32 rpe:1;      /* 15 Read Protection Enable */
 108                u32 limit:13;   /* 16:28 Protected Range Limit */
 109                u32 reserved2:2;        /* 29:30 Reserved */
 110                u32 wpe:1;      /* 31 Write Protection Enable */
 111        } range;
 112        u32 regval;
 113};
 114
 115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 119                                                u32 offset, u8 byte);
 120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 121                                         u8 *data);
 122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 123                                         u16 *data);
 124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 125                                         u8 size, u16 *data);
 126static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 127                                           u32 *data);
 128static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 129                                          u32 offset, u32 *data);
 130static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 131                                            u32 offset, u32 data);
 132static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 133                                                 u32 offset, u32 dword);
 134static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 135static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 139static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 140static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 143static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 144static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 145static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 146static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 147static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 148static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 150static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 151static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 152static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 153static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 154static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 155static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 156static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 157static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 158
 159static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 160{
 161        return readw(hw->flash_address + reg);
 162}
 163
 164static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 165{
 166        return readl(hw->flash_address + reg);
 167}
 168
 169static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 170{
 171        writew(val, hw->flash_address + reg);
 172}
 173
 174static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 175{
 176        writel(val, hw->flash_address + reg);
 177}
 178
 179#define er16flash(reg)          __er16flash(hw, (reg))
 180#define er32flash(reg)          __er32flash(hw, (reg))
 181#define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
 182#define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
 183
 184/**
 185 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 186 *  @hw: pointer to the HW structure
 187 *
 188 *  Test access to the PHY registers by reading the PHY ID registers.  If
 189 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 190 *  otherwise assume the read PHY ID is correct if it is valid.
 191 *
 192 *  Assumes the sw/fw/hw semaphore is already acquired.
 193 **/
 194static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 195{
 196        u16 phy_reg = 0;
 197        u32 phy_id = 0;
 198        s32 ret_val = 0;
 199        u16 retry_count;
 200        u32 mac_reg = 0;
 201
 202        for (retry_count = 0; retry_count < 2; retry_count++) {
 203                ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 204                if (ret_val || (phy_reg == 0xFFFF))
 205                        continue;
 206                phy_id = (u32)(phy_reg << 16);
 207
 208                ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 209                if (ret_val || (phy_reg == 0xFFFF)) {
 210                        phy_id = 0;
 211                        continue;
 212                }
 213                phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 214                break;
 215        }
 216
 217        if (hw->phy.id) {
 218                if (hw->phy.id == phy_id)
 219                        goto out;
 220        } else if (phy_id) {
 221                hw->phy.id = phy_id;
 222                hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 223                goto out;
 224        }
 225
 226        /* In case the PHY needs to be in mdio slow mode,
 227         * set slow mode and try to get the PHY id again.
 228         */
 229        if (hw->mac.type < e1000_pch_lpt) {
 230                hw->phy.ops.release(hw);
 231                ret_val = e1000_set_mdio_slow_mode_hv(hw);
 232                if (!ret_val)
 233                        ret_val = e1000e_get_phy_id(hw);
 234                hw->phy.ops.acquire(hw);
 235        }
 236
 237        if (ret_val)
 238                return false;
 239out:
 240        if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
 241                /* Only unforce SMBus if ME is not active */
 242                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 243                        /* Unforce SMBus mode in PHY */
 244                        e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 245                        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 246                        e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 247
 248                        /* Unforce SMBus mode in MAC */
 249                        mac_reg = er32(CTRL_EXT);
 250                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 251                        ew32(CTRL_EXT, mac_reg);
 252                }
 253        }
 254
 255        return true;
 256}
 257
 258/**
 259 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 260 *  @hw: pointer to the HW structure
 261 *
 262 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 263 *  used to reset the PHY to a quiescent state when necessary.
 264 **/
 265static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 266{
 267        u32 mac_reg;
 268
 269        /* Set Phy Config Counter to 50msec */
 270        mac_reg = er32(FEXTNVM3);
 271        mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 272        mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 273        ew32(FEXTNVM3, mac_reg);
 274
 275        /* Toggle LANPHYPC Value bit */
 276        mac_reg = er32(CTRL);
 277        mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 278        mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 279        ew32(CTRL, mac_reg);
 280        e1e_flush();
 281        usleep_range(10, 20);
 282        mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 283        ew32(CTRL, mac_reg);
 284        e1e_flush();
 285
 286        if (hw->mac.type < e1000_pch_lpt) {
 287                msleep(50);
 288        } else {
 289                u16 count = 20;
 290
 291                do {
 292                        usleep_range(5000, 10000);
 293                } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 294
 295                msleep(30);
 296        }
 297}
 298
 299/**
 300 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 301 *  @hw: pointer to the HW structure
 302 *
 303 *  Workarounds/flow necessary for PHY initialization during driver load
 304 *  and resume paths.
 305 **/
 306static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 307{
 308        struct e1000_adapter *adapter = hw->adapter;
 309        u32 mac_reg, fwsm = er32(FWSM);
 310        s32 ret_val;
 311
 312        /* Gate automatic PHY configuration by hardware on managed and
 313         * non-managed 82579 and newer adapters.
 314         */
 315        e1000_gate_hw_phy_config_ich8lan(hw, true);
 316
 317        /* It is not possible to be certain of the current state of ULP
 318         * so forcibly disable it.
 319         */
 320        hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 321        e1000_disable_ulp_lpt_lp(hw, true);
 322
 323        ret_val = hw->phy.ops.acquire(hw);
 324        if (ret_val) {
 325                e_dbg("Failed to initialize PHY flow\n");
 326                goto out;
 327        }
 328
 329        /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 330         * inaccessible and resetting the PHY is not blocked, toggle the
 331         * LANPHYPC Value bit to force the interconnect to PCIe mode.
 332         */
 333        switch (hw->mac.type) {
 334        case e1000_pch_lpt:
 335        case e1000_pch_spt:
 336                if (e1000_phy_is_accessible_pchlan(hw))
 337                        break;
 338
 339                /* Before toggling LANPHYPC, see if PHY is accessible by
 340                 * forcing MAC to SMBus mode first.
 341                 */
 342                mac_reg = er32(CTRL_EXT);
 343                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 344                ew32(CTRL_EXT, mac_reg);
 345
 346                /* Wait 50 milliseconds for MAC to finish any retries
 347                 * that it might be trying to perform from previous
 348                 * attempts to acknowledge any phy read requests.
 349                 */
 350                msleep(50);
 351
 352                /* fall-through */
 353        case e1000_pch2lan:
 354                if (e1000_phy_is_accessible_pchlan(hw))
 355                        break;
 356
 357                /* fall-through */
 358        case e1000_pchlan:
 359                if ((hw->mac.type == e1000_pchlan) &&
 360                    (fwsm & E1000_ICH_FWSM_FW_VALID))
 361                        break;
 362
 363                if (hw->phy.ops.check_reset_block(hw)) {
 364                        e_dbg("Required LANPHYPC toggle blocked by ME\n");
 365                        ret_val = -E1000_ERR_PHY;
 366                        break;
 367                }
 368
 369                /* Toggle LANPHYPC Value bit */
 370                e1000_toggle_lanphypc_pch_lpt(hw);
 371                if (hw->mac.type >= e1000_pch_lpt) {
 372                        if (e1000_phy_is_accessible_pchlan(hw))
 373                                break;
 374
 375                        /* Toggling LANPHYPC brings the PHY out of SMBus mode
 376                         * so ensure that the MAC is also out of SMBus mode
 377                         */
 378                        mac_reg = er32(CTRL_EXT);
 379                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 380                        ew32(CTRL_EXT, mac_reg);
 381
 382                        if (e1000_phy_is_accessible_pchlan(hw))
 383                                break;
 384
 385                        ret_val = -E1000_ERR_PHY;
 386                }
 387                break;
 388        default:
 389                break;
 390        }
 391
 392        hw->phy.ops.release(hw);
 393        if (!ret_val) {
 394
 395                /* Check to see if able to reset PHY.  Print error if not */
 396                if (hw->phy.ops.check_reset_block(hw)) {
 397                        e_err("Reset blocked by ME\n");
 398                        goto out;
 399                }
 400
 401                /* Reset the PHY before any access to it.  Doing so, ensures
 402                 * that the PHY is in a known good state before we read/write
 403                 * PHY registers.  The generic reset is sufficient here,
 404                 * because we haven't determined the PHY type yet.
 405                 */
 406                ret_val = e1000e_phy_hw_reset_generic(hw);
 407                if (ret_val)
 408                        goto out;
 409
 410                /* On a successful reset, possibly need to wait for the PHY
 411                 * to quiesce to an accessible state before returning control
 412                 * to the calling function.  If the PHY does not quiesce, then
 413                 * return E1000E_BLK_PHY_RESET, as this is the condition that
 414                 *  the PHY is in.
 415                 */
 416                ret_val = hw->phy.ops.check_reset_block(hw);
 417                if (ret_val)
 418                        e_err("ME blocked access to PHY after reset\n");
 419        }
 420
 421out:
 422        /* Ungate automatic PHY configuration on non-managed 82579 */
 423        if ((hw->mac.type == e1000_pch2lan) &&
 424            !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 425                usleep_range(10000, 20000);
 426                e1000_gate_hw_phy_config_ich8lan(hw, false);
 427        }
 428
 429        return ret_val;
 430}
 431
 432/**
 433 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 434 *  @hw: pointer to the HW structure
 435 *
 436 *  Initialize family-specific PHY parameters and function pointers.
 437 **/
 438static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 439{
 440        struct e1000_phy_info *phy = &hw->phy;
 441        s32 ret_val;
 442
 443        phy->addr = 1;
 444        phy->reset_delay_us = 100;
 445
 446        phy->ops.set_page = e1000_set_page_igp;
 447        phy->ops.read_reg = e1000_read_phy_reg_hv;
 448        phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 449        phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 450        phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 451        phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 452        phy->ops.write_reg = e1000_write_phy_reg_hv;
 453        phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 454        phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 455        phy->ops.power_up = e1000_power_up_phy_copper;
 456        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 457        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 458
 459        phy->id = e1000_phy_unknown;
 460
 461        ret_val = e1000_init_phy_workarounds_pchlan(hw);
 462        if (ret_val)
 463                return ret_val;
 464
 465        if (phy->id == e1000_phy_unknown)
 466                switch (hw->mac.type) {
 467                default:
 468                        ret_val = e1000e_get_phy_id(hw);
 469                        if (ret_val)
 470                                return ret_val;
 471                        if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 472                                break;
 473                        /* fall-through */
 474                case e1000_pch2lan:
 475                case e1000_pch_lpt:
 476                case e1000_pch_spt:
 477                        /* In case the PHY needs to be in mdio slow mode,
 478                         * set slow mode and try to get the PHY id again.
 479                         */
 480                        ret_val = e1000_set_mdio_slow_mode_hv(hw);
 481                        if (ret_val)
 482                                return ret_val;
 483                        ret_val = e1000e_get_phy_id(hw);
 484                        if (ret_val)
 485                                return ret_val;
 486                        break;
 487                }
 488        phy->type = e1000e_get_phy_type_from_id(phy->id);
 489
 490        switch (phy->type) {
 491        case e1000_phy_82577:
 492        case e1000_phy_82579:
 493        case e1000_phy_i217:
 494                phy->ops.check_polarity = e1000_check_polarity_82577;
 495                phy->ops.force_speed_duplex =
 496                    e1000_phy_force_speed_duplex_82577;
 497                phy->ops.get_cable_length = e1000_get_cable_length_82577;
 498                phy->ops.get_info = e1000_get_phy_info_82577;
 499                phy->ops.commit = e1000e_phy_sw_reset;
 500                break;
 501        case e1000_phy_82578:
 502                phy->ops.check_polarity = e1000_check_polarity_m88;
 503                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 504                phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 505                phy->ops.get_info = e1000e_get_phy_info_m88;
 506                break;
 507        default:
 508                ret_val = -E1000_ERR_PHY;
 509                break;
 510        }
 511
 512        return ret_val;
 513}
 514
 515/**
 516 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Initialize family-specific PHY parameters and function pointers.
 520 **/
 521static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 522{
 523        struct e1000_phy_info *phy = &hw->phy;
 524        s32 ret_val;
 525        u16 i = 0;
 526
 527        phy->addr = 1;
 528        phy->reset_delay_us = 100;
 529
 530        phy->ops.power_up = e1000_power_up_phy_copper;
 531        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 532
 533        /* We may need to do this twice - once for IGP and if that fails,
 534         * we'll set BM func pointers and try again
 535         */
 536        ret_val = e1000e_determine_phy_address(hw);
 537        if (ret_val) {
 538                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 539                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 540                ret_val = e1000e_determine_phy_address(hw);
 541                if (ret_val) {
 542                        e_dbg("Cannot determine PHY addr. Erroring out\n");
 543                        return ret_val;
 544                }
 545        }
 546
 547        phy->id = 0;
 548        while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 549               (i++ < 100)) {
 550                usleep_range(1000, 2000);
 551                ret_val = e1000e_get_phy_id(hw);
 552                if (ret_val)
 553                        return ret_val;
 554        }
 555
 556        /* Verify phy id */
 557        switch (phy->id) {
 558        case IGP03E1000_E_PHY_ID:
 559                phy->type = e1000_phy_igp_3;
 560                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 561                phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 562                phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 563                phy->ops.get_info = e1000e_get_phy_info_igp;
 564                phy->ops.check_polarity = e1000_check_polarity_igp;
 565                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 566                break;
 567        case IFE_E_PHY_ID:
 568        case IFE_PLUS_E_PHY_ID:
 569        case IFE_C_E_PHY_ID:
 570                phy->type = e1000_phy_ife;
 571                phy->autoneg_mask = E1000_ALL_NOT_GIG;
 572                phy->ops.get_info = e1000_get_phy_info_ife;
 573                phy->ops.check_polarity = e1000_check_polarity_ife;
 574                phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 575                break;
 576        case BME1000_E_PHY_ID:
 577                phy->type = e1000_phy_bm;
 578                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 579                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 580                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 581                phy->ops.commit = e1000e_phy_sw_reset;
 582                phy->ops.get_info = e1000e_get_phy_info_m88;
 583                phy->ops.check_polarity = e1000_check_polarity_m88;
 584                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 585                break;
 586        default:
 587                return -E1000_ERR_PHY;
 588        }
 589
 590        return 0;
 591}
 592
 593/**
 594 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 595 *  @hw: pointer to the HW structure
 596 *
 597 *  Initialize family-specific NVM parameters and function
 598 *  pointers.
 599 **/
 600static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 601{
 602        struct e1000_nvm_info *nvm = &hw->nvm;
 603        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 604        u32 gfpreg, sector_base_addr, sector_end_addr;
 605        u16 i;
 606        u32 nvm_size;
 607
 608        nvm->type = e1000_nvm_flash_sw;
 609
 610        if (hw->mac.type == e1000_pch_spt) {
 611                /* in SPT, gfpreg doesn't exist. NVM size is taken from the
 612                 * STRAP register. This is because in SPT the GbE Flash region
 613                 * is no longer accessed through the flash registers. Instead,
 614                 * the mechanism has changed, and the Flash region access
 615                 * registers are now implemented in GbE memory space.
 616                 */
 617                nvm->flash_base_addr = 0;
 618                nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 619                    * NVM_SIZE_MULTIPLIER;
 620                nvm->flash_bank_size = nvm_size / 2;
 621                /* Adjust to word count */
 622                nvm->flash_bank_size /= sizeof(u16);
 623                /* Set the base address for flash register access */
 624                hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 625        } else {
 626                /* Can't read flash registers if register set isn't mapped. */
 627                if (!hw->flash_address) {
 628                        e_dbg("ERROR: Flash registers not mapped\n");
 629                        return -E1000_ERR_CONFIG;
 630                }
 631
 632                gfpreg = er32flash(ICH_FLASH_GFPREG);
 633
 634                /* sector_X_addr is a "sector"-aligned address (4096 bytes)
 635                 * Add 1 to sector_end_addr since this sector is included in
 636                 * the overall size.
 637                 */
 638                sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 639                sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 640
 641                /* flash_base_addr is byte-aligned */
 642                nvm->flash_base_addr = sector_base_addr
 643                    << FLASH_SECTOR_ADDR_SHIFT;
 644
 645                /* find total size of the NVM, then cut in half since the total
 646                 * size represents two separate NVM banks.
 647                 */
 648                nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 649                                        << FLASH_SECTOR_ADDR_SHIFT);
 650                nvm->flash_bank_size /= 2;
 651                /* Adjust to word count */
 652                nvm->flash_bank_size /= sizeof(u16);
 653        }
 654
 655        nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 656
 657        /* Clear shadow ram */
 658        for (i = 0; i < nvm->word_size; i++) {
 659                dev_spec->shadow_ram[i].modified = false;
 660                dev_spec->shadow_ram[i].value = 0xFFFF;
 661        }
 662
 663        return 0;
 664}
 665
 666/**
 667 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 668 *  @hw: pointer to the HW structure
 669 *
 670 *  Initialize family-specific MAC parameters and function
 671 *  pointers.
 672 **/
 673static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 674{
 675        struct e1000_mac_info *mac = &hw->mac;
 676
 677        /* Set media type function pointer */
 678        hw->phy.media_type = e1000_media_type_copper;
 679
 680        /* Set mta register count */
 681        mac->mta_reg_count = 32;
 682        /* Set rar entry count */
 683        mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 684        if (mac->type == e1000_ich8lan)
 685                mac->rar_entry_count--;
 686        /* FWSM register */
 687        mac->has_fwsm = true;
 688        /* ARC subsystem not supported */
 689        mac->arc_subsystem_valid = false;
 690        /* Adaptive IFS supported */
 691        mac->adaptive_ifs = true;
 692
 693        /* LED and other operations */
 694        switch (mac->type) {
 695        case e1000_ich8lan:
 696        case e1000_ich9lan:
 697        case e1000_ich10lan:
 698                /* check management mode */
 699                mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 700                /* ID LED init */
 701                mac->ops.id_led_init = e1000e_id_led_init_generic;
 702                /* blink LED */
 703                mac->ops.blink_led = e1000e_blink_led_generic;
 704                /* setup LED */
 705                mac->ops.setup_led = e1000e_setup_led_generic;
 706                /* cleanup LED */
 707                mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 708                /* turn on/off LED */
 709                mac->ops.led_on = e1000_led_on_ich8lan;
 710                mac->ops.led_off = e1000_led_off_ich8lan;
 711                break;
 712        case e1000_pch2lan:
 713                mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 714                mac->ops.rar_set = e1000_rar_set_pch2lan;
 715                /* fall-through */
 716        case e1000_pch_lpt:
 717        case e1000_pch_spt:
 718        case e1000_pchlan:
 719                /* check management mode */
 720                mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 721                /* ID LED init */
 722                mac->ops.id_led_init = e1000_id_led_init_pchlan;
 723                /* setup LED */
 724                mac->ops.setup_led = e1000_setup_led_pchlan;
 725                /* cleanup LED */
 726                mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 727                /* turn on/off LED */
 728                mac->ops.led_on = e1000_led_on_pchlan;
 729                mac->ops.led_off = e1000_led_off_pchlan;
 730                break;
 731        default:
 732                break;
 733        }
 734
 735        if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
 736                mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 737                mac->ops.rar_set = e1000_rar_set_pch_lpt;
 738                mac->ops.setup_physical_interface =
 739                    e1000_setup_copper_link_pch_lpt;
 740                mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 741        }
 742
 743        /* Enable PCS Lock-loss workaround for ICH8 */
 744        if (mac->type == e1000_ich8lan)
 745                e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 746
 747        return 0;
 748}
 749
 750/**
 751 *  __e1000_access_emi_reg_locked - Read/write EMI register
 752 *  @hw: pointer to the HW structure
 753 *  @addr: EMI address to program
 754 *  @data: pointer to value to read/write from/to the EMI address
 755 *  @read: boolean flag to indicate read or write
 756 *
 757 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 758 **/
 759static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 760                                         u16 *data, bool read)
 761{
 762        s32 ret_val;
 763
 764        ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 765        if (ret_val)
 766                return ret_val;
 767
 768        if (read)
 769                ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 770        else
 771                ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 772
 773        return ret_val;
 774}
 775
 776/**
 777 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 778 *  @hw: pointer to the HW structure
 779 *  @addr: EMI address to program
 780 *  @data: value to be read from the EMI address
 781 *
 782 *  Assumes the SW/FW/HW Semaphore is already acquired.
 783 **/
 784s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 785{
 786        return __e1000_access_emi_reg_locked(hw, addr, data, true);
 787}
 788
 789/**
 790 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 791 *  @hw: pointer to the HW structure
 792 *  @addr: EMI address to program
 793 *  @data: value to be written to the EMI address
 794 *
 795 *  Assumes the SW/FW/HW Semaphore is already acquired.
 796 **/
 797s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 798{
 799        return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 800}
 801
 802/**
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 807 *  the link and the EEE capabilities of the link partner.  The LPI Control
 808 *  register bits will remain set only if/when link is up.
 809 *
 810 *  EEE LPI must not be asserted earlier than one second after link is up.
 811 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 812 *  can be link issues with some switches.  Other devices can have EEE LPI
 813 *  enabled immediately upon link up since they have a timer in hardware which
 814 *  prevents LPI from being asserted too early.
 815 **/
 816s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 817{
 818        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 819        s32 ret_val;
 820        u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 821
 822        switch (hw->phy.type) {
 823        case e1000_phy_82579:
 824                lpa = I82579_EEE_LP_ABILITY;
 825                pcs_status = I82579_EEE_PCS_STATUS;
 826                adv_addr = I82579_EEE_ADVERTISEMENT;
 827                break;
 828        case e1000_phy_i217:
 829                lpa = I217_EEE_LP_ABILITY;
 830                pcs_status = I217_EEE_PCS_STATUS;
 831                adv_addr = I217_EEE_ADVERTISEMENT;
 832                break;
 833        default:
 834                return 0;
 835        }
 836
 837        ret_val = hw->phy.ops.acquire(hw);
 838        if (ret_val)
 839                return ret_val;
 840
 841        ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 842        if (ret_val)
 843                goto release;
 844
 845        /* Clear bits that enable EEE in various speeds */
 846        lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 847
 848        /* Enable EEE if not disabled by user */
 849        if (!dev_spec->eee_disable) {
 850                /* Save off link partner's EEE ability */
 851                ret_val = e1000_read_emi_reg_locked(hw, lpa,
 852                                                    &dev_spec->eee_lp_ability);
 853                if (ret_val)
 854                        goto release;
 855
 856                /* Read EEE advertisement */
 857                ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 858                if (ret_val)
 859                        goto release;
 860
 861                /* Enable EEE only for speeds in which the link partner is
 862                 * EEE capable and for which we advertise EEE.
 863                 */
 864                if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 865                        lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 866
 867                if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 868                        e1e_rphy_locked(hw, MII_LPA, &data);
 869                        if (data & LPA_100FULL)
 870                                lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 871                        else
 872                                /* EEE is not supported in 100Half, so ignore
 873                                 * partner's EEE in 100 ability if full-duplex
 874                                 * is not advertised.
 875                                 */
 876                                dev_spec->eee_lp_ability &=
 877                                    ~I82579_EEE_100_SUPPORTED;
 878                }
 879        }
 880
 881        if (hw->phy.type == e1000_phy_82579) {
 882                ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 883                                                    &data);
 884                if (ret_val)
 885                        goto release;
 886
 887                data &= ~I82579_LPI_100_PLL_SHUT;
 888                ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 889                                                     data);
 890        }
 891
 892        /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 893        ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 894        if (ret_val)
 895                goto release;
 896
 897        ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 898release:
 899        hw->phy.ops.release(hw);
 900
 901        return ret_val;
 902}
 903
 904/**
 905 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 906 *  @hw:   pointer to the HW structure
 907 *  @link: link up bool flag
 908 *
 909 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 910 *  preventing further DMA write requests.  Workaround the issue by disabling
 911 *  the de-assertion of the clock request when in 1Gpbs mode.
 912 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 913 *  speeds in order to avoid Tx hangs.
 914 **/
 915static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 916{
 917        u32 fextnvm6 = er32(FEXTNVM6);
 918        u32 status = er32(STATUS);
 919        s32 ret_val = 0;
 920        u16 reg;
 921
 922        if (link && (status & E1000_STATUS_SPEED_1000)) {
 923                ret_val = hw->phy.ops.acquire(hw);
 924                if (ret_val)
 925                        return ret_val;
 926
 927                ret_val =
 928                    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 929                                                &reg);
 930                if (ret_val)
 931                        goto release;
 932
 933                ret_val =
 934                    e1000e_write_kmrn_reg_locked(hw,
 935                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 936                                                 reg &
 937                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 938                if (ret_val)
 939                        goto release;
 940
 941                usleep_range(10, 20);
 942
 943                ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 944
 945                ret_val =
 946                    e1000e_write_kmrn_reg_locked(hw,
 947                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 948                                                 reg);
 949release:
 950                hw->phy.ops.release(hw);
 951        } else {
 952                /* clear FEXTNVM6 bit 8 on link down or 10/100 */
 953                fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 954
 955                if ((hw->phy.revision > 5) || !link ||
 956                    ((status & E1000_STATUS_SPEED_100) &&
 957                     (status & E1000_STATUS_FD)))
 958                        goto update_fextnvm6;
 959
 960                ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 961                if (ret_val)
 962                        return ret_val;
 963
 964                /* Clear link status transmit timeout */
 965                reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 966
 967                if (status & E1000_STATUS_SPEED_100) {
 968                        /* Set inband Tx timeout to 5x10us for 100Half */
 969                        reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 970
 971                        /* Do not extend the K1 entry latency for 100Half */
 972                        fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 973                } else {
 974                        /* Set inband Tx timeout to 50x10us for 10Full/Half */
 975                        reg |= 50 <<
 976                            I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 977
 978                        /* Extend the K1 entry latency for 10 Mbps */
 979                        fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 980                }
 981
 982                ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 983                if (ret_val)
 984                        return ret_val;
 985
 986update_fextnvm6:
 987                ew32(FEXTNVM6, fextnvm6);
 988        }
 989
 990        return ret_val;
 991}
 992
 993/**
 994 *  e1000_platform_pm_pch_lpt - Set platform power management values
 995 *  @hw: pointer to the HW structure
 996 *  @link: bool indicating link status
 997 *
 998 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 999 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 *  when link is up (which must not exceed the maximum latency supported
1001 *  by the platform), otherwise specify there is no LTR requirement.
1002 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 *  Capability register set, on this device LTR is set by writing the
1005 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 *  message to the PMC.
1008 **/
1009static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010{
1011        u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012            link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013        u16 lat_enc = 0;        /* latency encoded */
1014
1015        if (link) {
1016                u16 speed, duplex, scale = 0;
1017                u16 max_snoop, max_nosnoop;
1018                u16 max_ltr_enc;        /* max LTR latency encoded */
1019                u64 value;
1020                u32 rxa;
1021
1022                if (!hw->adapter->max_frame_size) {
1023                        e_dbg("max_frame_size not set.\n");
1024                        return -E1000_ERR_CONFIG;
1025                }
1026
1027                hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028                if (!speed) {
1029                        e_dbg("Speed not set.\n");
1030                        return -E1000_ERR_CONFIG;
1031                }
1032
1033                /* Rx Packet Buffer Allocation size (KB) */
1034                rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035
1036                /* Determine the maximum latency tolerated by the device.
1037                 *
1038                 * Per the PCIe spec, the tolerated latencies are encoded as
1039                 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040                 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041                 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1042                 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043                 */
1044                rxa *= 512;
1045                value = (rxa > hw->adapter->max_frame_size) ?
1046                        (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047                        0;
1048
1049                while (value > PCI_LTR_VALUE_MASK) {
1050                        scale++;
1051                        value = DIV_ROUND_UP(value, (1 << 5));
1052                }
1053                if (scale > E1000_LTRV_SCALE_MAX) {
1054                        e_dbg("Invalid LTR latency scale %d\n", scale);
1055                        return -E1000_ERR_CONFIG;
1056                }
1057                lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058
1059                /* Determine the maximum latency tolerated by the platform */
1060                pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061                                     &max_snoop);
1062                pci_read_config_word(hw->adapter->pdev,
1063                                     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064                max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065
1066                if (lat_enc > max_ltr_enc)
1067                        lat_enc = max_ltr_enc;
1068        }
1069
1070        /* Set Snoop and No-Snoop latencies the same */
1071        reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072        ew32(LTRV, reg);
1073
1074        return 0;
1075}
1076
1077/**
1078 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 *  @hw: pointer to the HW structure
1080 *  @to_sx: boolean indicating a system power state transition to Sx
1081 *
1082 *  When link is down, configure ULP mode to significantly reduce the power
1083 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1084 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1085 *  system, configure the ULP mode by software.
1086 */
1087s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088{
1089        u32 mac_reg;
1090        s32 ret_val = 0;
1091        u16 phy_reg;
1092        u16 oem_reg = 0;
1093
1094        if ((hw->mac.type < e1000_pch_lpt) ||
1095            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100                return 0;
1101
1102        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103                /* Request ME configure ULP mode in the PHY */
1104                mac_reg = er32(H2ME);
1105                mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106                ew32(H2ME, mac_reg);
1107
1108                goto out;
1109        }
1110
1111        if (!to_sx) {
1112                int i = 0;
1113
1114                /* Poll up to 5 seconds for Cable Disconnected indication */
1115                while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116                        /* Bail if link is re-acquired */
1117                        if (er32(STATUS) & E1000_STATUS_LU)
1118                                return -E1000_ERR_PHY;
1119
1120                        if (i++ == 100)
1121                                break;
1122
1123                        msleep(50);
1124                }
1125                e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126                      (er32(FEXT) &
1127                       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128        }
1129
1130        ret_val = hw->phy.ops.acquire(hw);
1131        if (ret_val)
1132                goto out;
1133
1134        /* Force SMBus mode in PHY */
1135        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136        if (ret_val)
1137                goto release;
1138        phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140
1141        /* Force SMBus mode in MAC */
1142        mac_reg = er32(CTRL_EXT);
1143        mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144        ew32(CTRL_EXT, mac_reg);
1145
1146        /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1147         * LPLU and disable Gig speed when entering ULP
1148         */
1149        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150                ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151                                                       &oem_reg);
1152                if (ret_val)
1153                        goto release;
1154
1155                phy_reg = oem_reg;
1156                phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157
1158                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159                                                        phy_reg);
1160
1161                if (ret_val)
1162                        goto release;
1163        }
1164
1165        /* Set Inband ULP Exit, Reset to SMBus mode and
1166         * Disable SMBus Release on PERST# in PHY
1167         */
1168        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169        if (ret_val)
1170                goto release;
1171        phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172                    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173        if (to_sx) {
1174                if (er32(WUFC) & E1000_WUFC_LNKC)
1175                        phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176                else
1177                        phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178
1179                phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180                phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181        } else {
1182                phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183                phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184                phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185        }
1186        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187
1188        /* Set Disable SMBus Release on PERST# in MAC */
1189        mac_reg = er32(FEXTNVM7);
1190        mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191        ew32(FEXTNVM7, mac_reg);
1192
1193        /* Commit ULP changes in PHY by starting auto ULP configuration */
1194        phy_reg |= I218_ULP_CONFIG1_START;
1195        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196
1197        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198            to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200                                                        oem_reg);
1201                if (ret_val)
1202                        goto release;
1203        }
1204
1205release:
1206        hw->phy.ops.release(hw);
1207out:
1208        if (ret_val)
1209                e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210        else
1211                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212
1213        return ret_val;
1214}
1215
1216/**
1217 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 *  @hw: pointer to the HW structure
1219 *  @force: boolean indicating whether or not to force disabling ULP
1220 *
1221 *  Un-configure ULP mode when link is up, the system is transitioned from
1222 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1223 *  system, poll for an indication from ME that ULP has been un-configured.
1224 *  If not on an ME enabled system, un-configure the ULP mode by software.
1225 *
1226 *  During nominal operation, this function is called when link is acquired
1227 *  to disable ULP mode (force=false); otherwise, for example when unloading
1228 *  the driver or during Sx->S0 transitions, this is called with force=true
1229 *  to forcibly disable ULP.
1230 */
1231static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232{
1233        s32 ret_val = 0;
1234        u32 mac_reg;
1235        u16 phy_reg;
1236        int i = 0;
1237
1238        if ((hw->mac.type < e1000_pch_lpt) ||
1239            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244                return 0;
1245
1246        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247                if (force) {
1248                        /* Request ME un-configure ULP mode in the PHY */
1249                        mac_reg = er32(H2ME);
1250                        mac_reg &= ~E1000_H2ME_ULP;
1251                        mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252                        ew32(H2ME, mac_reg);
1253                }
1254
1255                /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1256                while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257                        if (i++ == 10) {
1258                                ret_val = -E1000_ERR_PHY;
1259                                goto out;
1260                        }
1261
1262                        usleep_range(10000, 20000);
1263                }
1264                e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1265
1266                if (force) {
1267                        mac_reg = er32(H2ME);
1268                        mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269                        ew32(H2ME, mac_reg);
1270                } else {
1271                        /* Clear H2ME.ULP after ME ULP configuration */
1272                        mac_reg = er32(H2ME);
1273                        mac_reg &= ~E1000_H2ME_ULP;
1274                        ew32(H2ME, mac_reg);
1275                }
1276
1277                goto out;
1278        }
1279
1280        ret_val = hw->phy.ops.acquire(hw);
1281        if (ret_val)
1282                goto out;
1283
1284        if (force)
1285                /* Toggle LANPHYPC Value bit */
1286                e1000_toggle_lanphypc_pch_lpt(hw);
1287
1288        /* Unforce SMBus mode in PHY */
1289        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290        if (ret_val) {
1291                /* The MAC might be in PCIe mode, so temporarily force to
1292                 * SMBus mode in order to access the PHY.
1293                 */
1294                mac_reg = er32(CTRL_EXT);
1295                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296                ew32(CTRL_EXT, mac_reg);
1297
1298                msleep(50);
1299
1300                ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301                                                       &phy_reg);
1302                if (ret_val)
1303                        goto release;
1304        }
1305        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307
1308        /* Unforce SMBus mode in MAC */
1309        mac_reg = er32(CTRL_EXT);
1310        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311        ew32(CTRL_EXT, mac_reg);
1312
1313        /* When ULP mode was previously entered, K1 was disabled by the
1314         * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1315         */
1316        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317        if (ret_val)
1318                goto release;
1319        phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320        e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321
1322        /* Clear ULP enabled configuration */
1323        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324        if (ret_val)
1325                goto release;
1326        phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327                     I218_ULP_CONFIG1_STICKY_ULP |
1328                     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329                     I218_ULP_CONFIG1_WOL_HOST |
1330                     I218_ULP_CONFIG1_INBAND_EXIT |
1331                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1332        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1333
1334        /* Commit ULP changes by starting auto ULP configuration */
1335        phy_reg |= I218_ULP_CONFIG1_START;
1336        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1337
1338        /* Clear Disable SMBus Release on PERST# in MAC */
1339        mac_reg = er32(FEXTNVM7);
1340        mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1341        ew32(FEXTNVM7, mac_reg);
1342
1343release:
1344        hw->phy.ops.release(hw);
1345        if (force) {
1346                e1000_phy_hw_reset(hw);
1347                msleep(50);
1348        }
1349out:
1350        if (ret_val)
1351                e_dbg("Error in ULP disable flow: %d\n", ret_val);
1352        else
1353                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1354
1355        return ret_val;
1356}
1357
1358/**
1359 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1360 *  @hw: pointer to the HW structure
1361 *
1362 *  Checks to see of the link status of the hardware has changed.  If a
1363 *  change in link status has been detected, then we read the PHY registers
1364 *  to get the current speed/duplex if link exists.
1365 **/
1366static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1367{
1368        struct e1000_mac_info *mac = &hw->mac;
1369        s32 ret_val, tipg_reg = 0;
1370        u16 emi_addr, emi_val = 0;
1371        bool link;
1372        u16 phy_reg;
1373
1374        /* We only want to go out to the PHY registers to see if Auto-Neg
1375         * has completed and/or if our link status has changed.  The
1376         * get_link_status flag is set upon receiving a Link Status
1377         * Change or Rx Sequence Error interrupt.
1378         */
1379        if (!mac->get_link_status)
1380                return 0;
1381
1382        /* First we want to see if the MII Status Register reports
1383         * link.  If so, then we want to get the current speed/duplex
1384         * of the PHY.
1385         */
1386        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1387        if (ret_val)
1388                return ret_val;
1389
1390        if (hw->mac.type == e1000_pchlan) {
1391                ret_val = e1000_k1_gig_workaround_hv(hw, link);
1392                if (ret_val)
1393                        return ret_val;
1394        }
1395
1396        /* When connected at 10Mbps half-duplex, some parts are excessively
1397         * aggressive resulting in many collisions. To avoid this, increase
1398         * the IPG and reduce Rx latency in the PHY.
1399         */
1400        if (((hw->mac.type == e1000_pch2lan) ||
1401             (hw->mac.type == e1000_pch_lpt) ||
1402             (hw->mac.type == e1000_pch_spt)) && link) {
1403                u16 speed, duplex;
1404
1405                e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1406                tipg_reg = er32(TIPG);
1407                tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1408
1409                if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1410                        tipg_reg |= 0xFF;
1411                        /* Reduce Rx latency in analog PHY */
1412                        emi_val = 0;
1413                } else if (hw->mac.type == e1000_pch_spt &&
1414                           duplex == FULL_DUPLEX && speed != SPEED_1000) {
1415                        tipg_reg |= 0xC;
1416                        emi_val = 1;
1417                } else {
1418
1419                        /* Roll back the default values */
1420                        tipg_reg |= 0x08;
1421                        emi_val = 1;
1422                }
1423
1424                ew32(TIPG, tipg_reg);
1425
1426                ret_val = hw->phy.ops.acquire(hw);
1427                if (ret_val)
1428                        return ret_val;
1429
1430                if (hw->mac.type == e1000_pch2lan)
1431                        emi_addr = I82579_RX_CONFIG;
1432                else
1433                        emi_addr = I217_RX_CONFIG;
1434                ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1435
1436                hw->phy.ops.release(hw);
1437
1438                if (ret_val)
1439                        return ret_val;
1440
1441                if (hw->mac.type == e1000_pch_spt) {
1442                        u16 data;
1443                        u16 ptr_gap;
1444
1445                        if (speed == SPEED_1000) {
1446                                ret_val = hw->phy.ops.acquire(hw);
1447                                if (ret_val)
1448                                        return ret_val;
1449
1450                                ret_val = e1e_rphy_locked(hw,
1451                                                          PHY_REG(776, 20),
1452                                                          &data);
1453                                if (ret_val) {
1454                                        hw->phy.ops.release(hw);
1455                                        return ret_val;
1456                                }
1457
1458                                ptr_gap = (data & (0x3FF << 2)) >> 2;
1459                                if (ptr_gap < 0x18) {
1460                                        data &= ~(0x3FF << 2);
1461                                        data |= (0x18 << 2);
1462                                        ret_val =
1463                                            e1e_wphy_locked(hw,
1464                                                            PHY_REG(776, 20),
1465                                                            data);
1466                                }
1467                                hw->phy.ops.release(hw);
1468                                if (ret_val)
1469                                        return ret_val;
1470                        }
1471                }
1472        }
1473
1474        /* I217 Packet Loss issue:
1475         * ensure that FEXTNVM4 Beacon Duration is set correctly
1476         * on power up.
1477         * Set the Beacon Duration for I217 to 8 usec
1478         */
1479        if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1480                u32 mac_reg;
1481
1482                mac_reg = er32(FEXTNVM4);
1483                mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1484                mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1485                ew32(FEXTNVM4, mac_reg);
1486        }
1487
1488        /* Work-around I218 hang issue */
1489        if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1490            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1491            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1492            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1493                ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1494                if (ret_val)
1495                        return ret_val;
1496        }
1497        if ((hw->mac.type == e1000_pch_lpt) ||
1498            (hw->mac.type == e1000_pch_spt)) {
1499                /* Set platform power management values for
1500                 * Latency Tolerance Reporting (LTR)
1501                 */
1502                ret_val = e1000_platform_pm_pch_lpt(hw, link);
1503                if (ret_val)
1504                        return ret_val;
1505        }
1506
1507        /* Clear link partner's EEE ability */
1508        hw->dev_spec.ich8lan.eee_lp_ability = 0;
1509
1510        /* FEXTNVM6 K1-off workaround */
1511        if (hw->mac.type == e1000_pch_spt) {
1512                u32 pcieanacfg = er32(PCIEANACFG);
1513                u32 fextnvm6 = er32(FEXTNVM6);
1514
1515                if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1516                        fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1517                else
1518                        fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1519
1520                ew32(FEXTNVM6, fextnvm6);
1521        }
1522
1523        if (!link)
1524                return 0;       /* No link detected */
1525
1526        mac->get_link_status = false;
1527
1528        switch (hw->mac.type) {
1529        case e1000_pch2lan:
1530                ret_val = e1000_k1_workaround_lv(hw);
1531                if (ret_val)
1532                        return ret_val;
1533                /* fall-thru */
1534        case e1000_pchlan:
1535                if (hw->phy.type == e1000_phy_82578) {
1536                        ret_val = e1000_link_stall_workaround_hv(hw);
1537                        if (ret_val)
1538                                return ret_val;
1539                }
1540
1541                /* Workaround for PCHx parts in half-duplex:
1542                 * Set the number of preambles removed from the packet
1543                 * when it is passed from the PHY to the MAC to prevent
1544                 * the MAC from misinterpreting the packet type.
1545                 */
1546                e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1547                phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1548
1549                if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1550                        phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1551
1552                e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1553                break;
1554        default:
1555                break;
1556        }
1557
1558        /* Check if there was DownShift, must be checked
1559         * immediately after link-up
1560         */
1561        e1000e_check_downshift(hw);
1562
1563        /* Enable/Disable EEE after link up */
1564        if (hw->phy.type > e1000_phy_82579) {
1565                ret_val = e1000_set_eee_pchlan(hw);
1566                if (ret_val)
1567                        return ret_val;
1568        }
1569
1570        /* If we are forcing speed/duplex, then we simply return since
1571         * we have already determined whether we have link or not.
1572         */
1573        if (!mac->autoneg)
1574                return -E1000_ERR_CONFIG;
1575
1576        /* Auto-Neg is enabled.  Auto Speed Detection takes care
1577         * of MAC speed/duplex configuration.  So we only need to
1578         * configure Collision Distance in the MAC.
1579         */
1580        mac->ops.config_collision_dist(hw);
1581
1582        /* Configure Flow Control now that Auto-Neg has completed.
1583         * First, we need to restore the desired flow control
1584         * settings because we may have had to re-autoneg with a
1585         * different link partner.
1586         */
1587        ret_val = e1000e_config_fc_after_link_up(hw);
1588        if (ret_val)
1589                e_dbg("Error configuring flow control\n");
1590
1591        return ret_val;
1592}
1593
1594static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1595{
1596        struct e1000_hw *hw = &adapter->hw;
1597        s32 rc;
1598
1599        rc = e1000_init_mac_params_ich8lan(hw);
1600        if (rc)
1601                return rc;
1602
1603        rc = e1000_init_nvm_params_ich8lan(hw);
1604        if (rc)
1605                return rc;
1606
1607        switch (hw->mac.type) {
1608        case e1000_ich8lan:
1609        case e1000_ich9lan:
1610        case e1000_ich10lan:
1611                rc = e1000_init_phy_params_ich8lan(hw);
1612                break;
1613        case e1000_pchlan:
1614        case e1000_pch2lan:
1615        case e1000_pch_lpt:
1616        case e1000_pch_spt:
1617                rc = e1000_init_phy_params_pchlan(hw);
1618                break;
1619        default:
1620                break;
1621        }
1622        if (rc)
1623                return rc;
1624
1625        /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1626         * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1627         */
1628        if ((adapter->hw.phy.type == e1000_phy_ife) ||
1629            ((adapter->hw.mac.type >= e1000_pch2lan) &&
1630             (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1631                adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1632                adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1633
1634                hw->mac.ops.blink_led = NULL;
1635        }
1636
1637        if ((adapter->hw.mac.type == e1000_ich8lan) &&
1638            (adapter->hw.phy.type != e1000_phy_ife))
1639                adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1640
1641        /* Enable workaround for 82579 w/ ME enabled */
1642        if ((adapter->hw.mac.type == e1000_pch2lan) &&
1643            (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1644                adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1645
1646        return 0;
1647}
1648
1649static DEFINE_MUTEX(nvm_mutex);
1650
1651/**
1652 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1653 *  @hw: pointer to the HW structure
1654 *
1655 *  Acquires the mutex for performing NVM operations.
1656 **/
1657static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1658{
1659        mutex_lock(&nvm_mutex);
1660
1661        return 0;
1662}
1663
1664/**
1665 *  e1000_release_nvm_ich8lan - Release NVM mutex
1666 *  @hw: pointer to the HW structure
1667 *
1668 *  Releases the mutex used while performing NVM operations.
1669 **/
1670static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1671{
1672        mutex_unlock(&nvm_mutex);
1673}
1674
1675/**
1676 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1677 *  @hw: pointer to the HW structure
1678 *
1679 *  Acquires the software control flag for performing PHY and select
1680 *  MAC CSR accesses.
1681 **/
1682static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1683{
1684        u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1685        s32 ret_val = 0;
1686
1687        if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1688                             &hw->adapter->state)) {
1689                e_dbg("contention for Phy access\n");
1690                return -E1000_ERR_PHY;
1691        }
1692
1693        while (timeout) {
1694                extcnf_ctrl = er32(EXTCNF_CTRL);
1695                if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1696                        break;
1697
1698                mdelay(1);
1699                timeout--;
1700        }
1701
1702        if (!timeout) {
1703                e_dbg("SW has already locked the resource.\n");
1704                ret_val = -E1000_ERR_CONFIG;
1705                goto out;
1706        }
1707
1708        timeout = SW_FLAG_TIMEOUT;
1709
1710        extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1711        ew32(EXTCNF_CTRL, extcnf_ctrl);
1712
1713        while (timeout) {
1714                extcnf_ctrl = er32(EXTCNF_CTRL);
1715                if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1716                        break;
1717
1718                mdelay(1);
1719                timeout--;
1720        }
1721
1722        if (!timeout) {
1723                e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1724                      er32(FWSM), extcnf_ctrl);
1725                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1726                ew32(EXTCNF_CTRL, extcnf_ctrl);
1727                ret_val = -E1000_ERR_CONFIG;
1728                goto out;
1729        }
1730
1731out:
1732        if (ret_val)
1733                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1734
1735        return ret_val;
1736}
1737
1738/**
1739 *  e1000_release_swflag_ich8lan - Release software control flag
1740 *  @hw: pointer to the HW structure
1741 *
1742 *  Releases the software control flag for performing PHY and select
1743 *  MAC CSR accesses.
1744 **/
1745static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1746{
1747        u32 extcnf_ctrl;
1748
1749        extcnf_ctrl = er32(EXTCNF_CTRL);
1750
1751        if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1752                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1753                ew32(EXTCNF_CTRL, extcnf_ctrl);
1754        } else {
1755                e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1756        }
1757
1758        clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1759}
1760
1761/**
1762 *  e1000_check_mng_mode_ich8lan - Checks management mode
1763 *  @hw: pointer to the HW structure
1764 *
1765 *  This checks if the adapter has any manageability enabled.
1766 *  This is a function pointer entry point only called by read/write
1767 *  routines for the PHY and NVM parts.
1768 **/
1769static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1770{
1771        u32 fwsm;
1772
1773        fwsm = er32(FWSM);
1774        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1775                ((fwsm & E1000_FWSM_MODE_MASK) ==
1776                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1777}
1778
1779/**
1780 *  e1000_check_mng_mode_pchlan - Checks management mode
1781 *  @hw: pointer to the HW structure
1782 *
1783 *  This checks if the adapter has iAMT enabled.
1784 *  This is a function pointer entry point only called by read/write
1785 *  routines for the PHY and NVM parts.
1786 **/
1787static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1788{
1789        u32 fwsm;
1790
1791        fwsm = er32(FWSM);
1792        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1793            (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1794}
1795
1796/**
1797 *  e1000_rar_set_pch2lan - Set receive address register
1798 *  @hw: pointer to the HW structure
1799 *  @addr: pointer to the receive address
1800 *  @index: receive address array register
1801 *
1802 *  Sets the receive address array register at index to the address passed
1803 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1804 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1805 *  Use SHRA[0-3] in place of those reserved for ME.
1806 **/
1807static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1808{
1809        u32 rar_low, rar_high;
1810
1811        /* HW expects these in little endian so we reverse the byte order
1812         * from network order (big endian) to little endian
1813         */
1814        rar_low = ((u32)addr[0] |
1815                   ((u32)addr[1] << 8) |
1816                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1817
1818        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1819
1820        /* If MAC address zero, no need to set the AV bit */
1821        if (rar_low || rar_high)
1822                rar_high |= E1000_RAH_AV;
1823
1824        if (index == 0) {
1825                ew32(RAL(index), rar_low);
1826                e1e_flush();
1827                ew32(RAH(index), rar_high);
1828                e1e_flush();
1829                return 0;
1830        }
1831
1832        /* RAR[1-6] are owned by manageability.  Skip those and program the
1833         * next address into the SHRA register array.
1834         */
1835        if (index < (u32)(hw->mac.rar_entry_count)) {
1836                s32 ret_val;
1837
1838                ret_val = e1000_acquire_swflag_ich8lan(hw);
1839                if (ret_val)
1840                        goto out;
1841
1842                ew32(SHRAL(index - 1), rar_low);
1843                e1e_flush();
1844                ew32(SHRAH(index - 1), rar_high);
1845                e1e_flush();
1846
1847                e1000_release_swflag_ich8lan(hw);
1848
1849                /* verify the register updates */
1850                if ((er32(SHRAL(index - 1)) == rar_low) &&
1851                    (er32(SHRAH(index - 1)) == rar_high))
1852                        return 0;
1853
1854                e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1855                      (index - 1), er32(FWSM));
1856        }
1857
1858out:
1859        e_dbg("Failed to write receive address at index %d\n", index);
1860        return -E1000_ERR_CONFIG;
1861}
1862
1863/**
1864 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1865 *  @hw: pointer to the HW structure
1866 *
1867 *  Get the number of available receive registers that the Host can
1868 *  program. SHRA[0-10] are the shared receive address registers
1869 *  that are shared between the Host and manageability engine (ME).
1870 *  ME can reserve any number of addresses and the host needs to be
1871 *  able to tell how many available registers it has access to.
1872 **/
1873static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1874{
1875        u32 wlock_mac;
1876        u32 num_entries;
1877
1878        wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1879        wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1880
1881        switch (wlock_mac) {
1882        case 0:
1883                /* All SHRA[0..10] and RAR[0] available */
1884                num_entries = hw->mac.rar_entry_count;
1885                break;
1886        case 1:
1887                /* Only RAR[0] available */
1888                num_entries = 1;
1889                break;
1890        default:
1891                /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1892                num_entries = wlock_mac + 1;
1893                break;
1894        }
1895
1896        return num_entries;
1897}
1898
1899/**
1900 *  e1000_rar_set_pch_lpt - Set receive address registers
1901 *  @hw: pointer to the HW structure
1902 *  @addr: pointer to the receive address
1903 *  @index: receive address array register
1904 *
1905 *  Sets the receive address register array at index to the address passed
1906 *  in by addr. For LPT, RAR[0] is the base address register that is to
1907 *  contain the MAC address. SHRA[0-10] are the shared receive address
1908 *  registers that are shared between the Host and manageability engine (ME).
1909 **/
1910static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1911{
1912        u32 rar_low, rar_high;
1913        u32 wlock_mac;
1914
1915        /* HW expects these in little endian so we reverse the byte order
1916         * from network order (big endian) to little endian
1917         */
1918        rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1919                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1920
1921        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1922
1923        /* If MAC address zero, no need to set the AV bit */
1924        if (rar_low || rar_high)
1925                rar_high |= E1000_RAH_AV;
1926
1927        if (index == 0) {
1928                ew32(RAL(index), rar_low);
1929                e1e_flush();
1930                ew32(RAH(index), rar_high);
1931                e1e_flush();
1932                return 0;
1933        }
1934
1935        /* The manageability engine (ME) can lock certain SHRAR registers that
1936         * it is using - those registers are unavailable for use.
1937         */
1938        if (index < hw->mac.rar_entry_count) {
1939                wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1940                wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1941
1942                /* Check if all SHRAR registers are locked */
1943                if (wlock_mac == 1)
1944                        goto out;
1945
1946                if ((wlock_mac == 0) || (index <= wlock_mac)) {
1947                        s32 ret_val;
1948
1949                        ret_val = e1000_acquire_swflag_ich8lan(hw);
1950
1951                        if (ret_val)
1952                                goto out;
1953
1954                        ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1955                        e1e_flush();
1956                        ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1957                        e1e_flush();
1958
1959                        e1000_release_swflag_ich8lan(hw);
1960
1961                        /* verify the register updates */
1962                        if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1963                            (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1964                                return 0;
1965                }
1966        }
1967
1968out:
1969        e_dbg("Failed to write receive address at index %d\n", index);
1970        return -E1000_ERR_CONFIG;
1971}
1972
1973/**
1974 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1975 *  @hw: pointer to the HW structure
1976 *
1977 *  Checks if firmware is blocking the reset of the PHY.
1978 *  This is a function pointer entry point only called by
1979 *  reset routines.
1980 **/
1981static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1982{
1983        bool blocked = false;
1984        int i = 0;
1985
1986        while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1987               (i++ < 10))
1988                usleep_range(10000, 20000);
1989        return blocked ? E1000_BLK_PHY_RESET : 0;
1990}
1991
1992/**
1993 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1994 *  @hw: pointer to the HW structure
1995 *
1996 *  Assumes semaphore already acquired.
1997 *
1998 **/
1999static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2000{
2001        u16 phy_data;
2002        u32 strap = er32(STRAP);
2003        u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2004            E1000_STRAP_SMT_FREQ_SHIFT;
2005        s32 ret_val;
2006
2007        strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2008
2009        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2010        if (ret_val)
2011                return ret_val;
2012
2013        phy_data &= ~HV_SMB_ADDR_MASK;
2014        phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2015        phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2016
2017        if (hw->phy.type == e1000_phy_i217) {
2018                /* Restore SMBus frequency */
2019                if (freq--) {
2020                        phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2021                        phy_data |= (freq & (1 << 0)) <<
2022                            HV_SMB_ADDR_FREQ_LOW_SHIFT;
2023                        phy_data |= (freq & (1 << 1)) <<
2024                            (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2025                } else {
2026                        e_dbg("Unsupported SMB frequency in PHY\n");
2027                }
2028        }
2029
2030        return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2031}
2032
2033/**
2034 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2035 *  @hw:   pointer to the HW structure
2036 *
2037 *  SW should configure the LCD from the NVM extended configuration region
2038 *  as a workaround for certain parts.
2039 **/
2040static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2041{
2042        struct e1000_phy_info *phy = &hw->phy;
2043        u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2044        s32 ret_val = 0;
2045        u16 word_addr, reg_data, reg_addr, phy_page = 0;
2046
2047        /* Initialize the PHY from the NVM on ICH platforms.  This
2048         * is needed due to an issue where the NVM configuration is
2049         * not properly autoloaded after power transitions.
2050         * Therefore, after each PHY reset, we will load the
2051         * configuration data out of the NVM manually.
2052         */
2053        switch (hw->mac.type) {
2054        case e1000_ich8lan:
2055                if (phy->type != e1000_phy_igp_3)
2056                        return ret_val;
2057
2058                if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2059                    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2060                        sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2061                        break;
2062                }
2063                /* Fall-thru */
2064        case e1000_pchlan:
2065        case e1000_pch2lan:
2066        case e1000_pch_lpt:
2067        case e1000_pch_spt:
2068                sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2069                break;
2070        default:
2071                return ret_val;
2072        }
2073
2074        ret_val = hw->phy.ops.acquire(hw);
2075        if (ret_val)
2076                return ret_val;
2077
2078        data = er32(FEXTNVM);
2079        if (!(data & sw_cfg_mask))
2080                goto release;
2081
2082        /* Make sure HW does not configure LCD from PHY
2083         * extended configuration before SW configuration
2084         */
2085        data = er32(EXTCNF_CTRL);
2086        if ((hw->mac.type < e1000_pch2lan) &&
2087            (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2088                goto release;
2089
2090        cnf_size = er32(EXTCNF_SIZE);
2091        cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2092        cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2093        if (!cnf_size)
2094                goto release;
2095
2096        cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2097        cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2098
2099        if (((hw->mac.type == e1000_pchlan) &&
2100             !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2101            (hw->mac.type > e1000_pchlan)) {
2102                /* HW configures the SMBus address and LEDs when the
2103                 * OEM and LCD Write Enable bits are set in the NVM.
2104                 * When both NVM bits are cleared, SW will configure
2105                 * them instead.
2106                 */
2107                ret_val = e1000_write_smbus_addr(hw);
2108                if (ret_val)
2109                        goto release;
2110
2111                data = er32(LEDCTL);
2112                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2113                                                        (u16)data);
2114                if (ret_val)
2115                        goto release;
2116        }
2117
2118        /* Configure LCD from extended configuration region. */
2119
2120        /* cnf_base_addr is in DWORD */
2121        word_addr = (u16)(cnf_base_addr << 1);
2122
2123        for (i = 0; i < cnf_size; i++) {
2124                ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2125                if (ret_val)
2126                        goto release;
2127
2128                ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2129                                         1, &reg_addr);
2130                if (ret_val)
2131                        goto release;
2132
2133                /* Save off the PHY page for future writes. */
2134                if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2135                        phy_page = reg_data;
2136                        continue;
2137                }
2138
2139                reg_addr &= PHY_REG_MASK;
2140                reg_addr |= phy_page;
2141
2142                ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2143                if (ret_val)
2144                        goto release;
2145        }
2146
2147release:
2148        hw->phy.ops.release(hw);
2149        return ret_val;
2150}
2151
2152/**
2153 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2154 *  @hw:   pointer to the HW structure
2155 *  @link: link up bool flag
2156 *
2157 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2158 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2159 *  If link is down, the function will restore the default K1 setting located
2160 *  in the NVM.
2161 **/
2162static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2163{
2164        s32 ret_val = 0;
2165        u16 status_reg = 0;
2166        bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2167
2168        if (hw->mac.type != e1000_pchlan)
2169                return 0;
2170
2171        /* Wrap the whole flow with the sw flag */
2172        ret_val = hw->phy.ops.acquire(hw);
2173        if (ret_val)
2174                return ret_val;
2175
2176        /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2177        if (link) {
2178                if (hw->phy.type == e1000_phy_82578) {
2179                        ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2180                                                  &status_reg);
2181                        if (ret_val)
2182                                goto release;
2183
2184                        status_reg &= (BM_CS_STATUS_LINK_UP |
2185                                       BM_CS_STATUS_RESOLVED |
2186                                       BM_CS_STATUS_SPEED_MASK);
2187
2188                        if (status_reg == (BM_CS_STATUS_LINK_UP |
2189                                           BM_CS_STATUS_RESOLVED |
2190                                           BM_CS_STATUS_SPEED_1000))
2191                                k1_enable = false;
2192                }
2193
2194                if (hw->phy.type == e1000_phy_82577) {
2195                        ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2196                        if (ret_val)
2197                                goto release;
2198
2199                        status_reg &= (HV_M_STATUS_LINK_UP |
2200                                       HV_M_STATUS_AUTONEG_COMPLETE |
2201                                       HV_M_STATUS_SPEED_MASK);
2202
2203                        if (status_reg == (HV_M_STATUS_LINK_UP |
2204                                           HV_M_STATUS_AUTONEG_COMPLETE |
2205                                           HV_M_STATUS_SPEED_1000))
2206                                k1_enable = false;
2207                }
2208
2209                /* Link stall fix for link up */
2210                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2211                if (ret_val)
2212                        goto release;
2213
2214        } else {
2215                /* Link stall fix for link down */
2216                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2217                if (ret_val)
2218                        goto release;
2219        }
2220
2221        ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2222
2223release:
2224        hw->phy.ops.release(hw);
2225
2226        return ret_val;
2227}
2228
2229/**
2230 *  e1000_configure_k1_ich8lan - Configure K1 power state
2231 *  @hw: pointer to the HW structure
2232 *  @enable: K1 state to configure
2233 *
2234 *  Configure the K1 power state based on the provided parameter.
2235 *  Assumes semaphore already acquired.
2236 *
2237 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2238 **/
2239s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2240{
2241        s32 ret_val;
2242        u32 ctrl_reg = 0;
2243        u32 ctrl_ext = 0;
2244        u32 reg = 0;
2245        u16 kmrn_reg = 0;
2246
2247        ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2248                                              &kmrn_reg);
2249        if (ret_val)
2250                return ret_val;
2251
2252        if (k1_enable)
2253                kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2254        else
2255                kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2256
2257        ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2258                                               kmrn_reg);
2259        if (ret_val)
2260                return ret_val;
2261
2262        usleep_range(20, 40);
2263        ctrl_ext = er32(CTRL_EXT);
2264        ctrl_reg = er32(CTRL);
2265
2266        reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2267        reg |= E1000_CTRL_FRCSPD;
2268        ew32(CTRL, reg);
2269
2270        ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2271        e1e_flush();
2272        usleep_range(20, 40);
2273        ew32(CTRL, ctrl_reg);
2274        ew32(CTRL_EXT, ctrl_ext);
2275        e1e_flush();
2276        usleep_range(20, 40);
2277
2278        return 0;
2279}
2280
2281/**
2282 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2283 *  @hw:       pointer to the HW structure
2284 *  @d0_state: boolean if entering d0 or d3 device state
2285 *
2286 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2287 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2288 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2289 **/
2290static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2291{
2292        s32 ret_val = 0;
2293        u32 mac_reg;
2294        u16 oem_reg;
2295
2296        if (hw->mac.type < e1000_pchlan)
2297                return ret_val;
2298
2299        ret_val = hw->phy.ops.acquire(hw);
2300        if (ret_val)
2301                return ret_val;
2302
2303        if (hw->mac.type == e1000_pchlan) {
2304                mac_reg = er32(EXTCNF_CTRL);
2305                if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2306                        goto release;
2307        }
2308
2309        mac_reg = er32(FEXTNVM);
2310        if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2311                goto release;
2312
2313        mac_reg = er32(PHY_CTRL);
2314
2315        ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2316        if (ret_val)
2317                goto release;
2318
2319        oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2320
2321        if (d0_state) {
2322                if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2323                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2324
2325                if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2326                        oem_reg |= HV_OEM_BITS_LPLU;
2327        } else {
2328                if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2329                               E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2330                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2331
2332                if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2333                               E1000_PHY_CTRL_NOND0A_LPLU))
2334                        oem_reg |= HV_OEM_BITS_LPLU;
2335        }
2336
2337        /* Set Restart auto-neg to activate the bits */
2338        if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2339            !hw->phy.ops.check_reset_block(hw))
2340                oem_reg |= HV_OEM_BITS_RESTART_AN;
2341
2342        ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2343
2344release:
2345        hw->phy.ops.release(hw);
2346
2347        return ret_val;
2348}
2349
2350/**
2351 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2352 *  @hw:   pointer to the HW structure
2353 **/
2354static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2355{
2356        s32 ret_val;
2357        u16 data;
2358
2359        ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2360        if (ret_val)
2361                return ret_val;
2362
2363        data |= HV_KMRN_MDIO_SLOW;
2364
2365        ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2366
2367        return ret_val;
2368}
2369
2370/**
2371 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2372 *  done after every PHY reset.
2373 **/
2374static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2375{
2376        s32 ret_val = 0;
2377        u16 phy_data;
2378
2379        if (hw->mac.type != e1000_pchlan)
2380                return 0;
2381
2382        /* Set MDIO slow mode before any other MDIO access */
2383        if (hw->phy.type == e1000_phy_82577) {
2384                ret_val = e1000_set_mdio_slow_mode_hv(hw);
2385                if (ret_val)
2386                        return ret_val;
2387        }
2388
2389        if (((hw->phy.type == e1000_phy_82577) &&
2390             ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2391            ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2392                /* Disable generation of early preamble */
2393                ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2394                if (ret_val)
2395                        return ret_val;
2396
2397                /* Preamble tuning for SSC */
2398                ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2399                if (ret_val)
2400                        return ret_val;
2401        }
2402
2403        if (hw->phy.type == e1000_phy_82578) {
2404                /* Return registers to default by doing a soft reset then
2405                 * writing 0x3140 to the control register.
2406                 */
2407                if (hw->phy.revision < 2) {
2408                        e1000e_phy_sw_reset(hw);
2409                        ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2410                }
2411        }
2412
2413        /* Select page 0 */
2414        ret_val = hw->phy.ops.acquire(hw);
2415        if (ret_val)
2416                return ret_val;
2417
2418        hw->phy.addr = 1;
2419        ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2420        hw->phy.ops.release(hw);
2421        if (ret_val)
2422                return ret_val;
2423
2424        /* Configure the K1 Si workaround during phy reset assuming there is
2425         * link so that it disables K1 if link is in 1Gbps.
2426         */
2427        ret_val = e1000_k1_gig_workaround_hv(hw, true);
2428        if (ret_val)
2429                return ret_val;
2430
2431        /* Workaround for link disconnects on a busy hub in half duplex */
2432        ret_val = hw->phy.ops.acquire(hw);
2433        if (ret_val)
2434                return ret_val;
2435        ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2436        if (ret_val)
2437                goto release;
2438        ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2439        if (ret_val)
2440                goto release;
2441
2442        /* set MSE higher to enable link to stay up when noise is high */
2443        ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2444release:
2445        hw->phy.ops.release(hw);
2446
2447        return ret_val;
2448}
2449
2450/**
2451 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2452 *  @hw:   pointer to the HW structure
2453 **/
2454void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2455{
2456        u32 mac_reg;
2457        u16 i, phy_reg = 0;
2458        s32 ret_val;
2459
2460        ret_val = hw->phy.ops.acquire(hw);
2461        if (ret_val)
2462                return;
2463        ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2464        if (ret_val)
2465                goto release;
2466
2467        /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2468        for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2469                mac_reg = er32(RAL(i));
2470                hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2471                                           (u16)(mac_reg & 0xFFFF));
2472                hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2473                                           (u16)((mac_reg >> 16) & 0xFFFF));
2474
2475                mac_reg = er32(RAH(i));
2476                hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2477                                           (u16)(mac_reg & 0xFFFF));
2478                hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2479                                           (u16)((mac_reg & E1000_RAH_AV)
2480                                                 >> 16));
2481        }
2482
2483        e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2484
2485release:
2486        hw->phy.ops.release(hw);
2487}
2488
2489/**
2490 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2491 *  with 82579 PHY
2492 *  @hw: pointer to the HW structure
2493 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2494 **/
2495s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2496{
2497        s32 ret_val = 0;
2498        u16 phy_reg, data;
2499        u32 mac_reg;
2500        u16 i;
2501
2502        if (hw->mac.type < e1000_pch2lan)
2503                return 0;
2504
2505        /* disable Rx path while enabling/disabling workaround */
2506        e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2507        ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2508        if (ret_val)
2509                return ret_val;
2510
2511        if (enable) {
2512                /* Write Rx addresses (rar_entry_count for RAL/H, and
2513                 * SHRAL/H) and initial CRC values to the MAC
2514                 */
2515                for (i = 0; i < hw->mac.rar_entry_count; i++) {
2516                        u8 mac_addr[ETH_ALEN] = { 0 };
2517                        u32 addr_high, addr_low;
2518
2519                        addr_high = er32(RAH(i));
2520                        if (!(addr_high & E1000_RAH_AV))
2521                                continue;
2522                        addr_low = er32(RAL(i));
2523                        mac_addr[0] = (addr_low & 0xFF);
2524                        mac_addr[1] = ((addr_low >> 8) & 0xFF);
2525                        mac_addr[2] = ((addr_low >> 16) & 0xFF);
2526                        mac_addr[3] = ((addr_low >> 24) & 0xFF);
2527                        mac_addr[4] = (addr_high & 0xFF);
2528                        mac_addr[5] = ((addr_high >> 8) & 0xFF);
2529
2530                        ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2531                }
2532
2533                /* Write Rx addresses to the PHY */
2534                e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2535
2536                /* Enable jumbo frame workaround in the MAC */
2537                mac_reg = er32(FFLT_DBG);
2538                mac_reg &= ~(1 << 14);
2539                mac_reg |= (7 << 15);
2540                ew32(FFLT_DBG, mac_reg);
2541
2542                mac_reg = er32(RCTL);
2543                mac_reg |= E1000_RCTL_SECRC;
2544                ew32(RCTL, mac_reg);
2545
2546                ret_val = e1000e_read_kmrn_reg(hw,
2547                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2548                                               &data);
2549                if (ret_val)
2550                        return ret_val;
2551                ret_val = e1000e_write_kmrn_reg(hw,
2552                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2553                                                data | (1 << 0));
2554                if (ret_val)
2555                        return ret_val;
2556                ret_val = e1000e_read_kmrn_reg(hw,
2557                                               E1000_KMRNCTRLSTA_HD_CTRL,
2558                                               &data);
2559                if (ret_val)
2560                        return ret_val;
2561                data &= ~(0xF << 8);
2562                data |= (0xB << 8);
2563                ret_val = e1000e_write_kmrn_reg(hw,
2564                                                E1000_KMRNCTRLSTA_HD_CTRL,
2565                                                data);
2566                if (ret_val)
2567                        return ret_val;
2568
2569                /* Enable jumbo frame workaround in the PHY */
2570                e1e_rphy(hw, PHY_REG(769, 23), &data);
2571                data &= ~(0x7F << 5);
2572                data |= (0x37 << 5);
2573                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2574                if (ret_val)
2575                        return ret_val;
2576                e1e_rphy(hw, PHY_REG(769, 16), &data);
2577                data &= ~(1 << 13);
2578                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2579                if (ret_val)
2580                        return ret_val;
2581                e1e_rphy(hw, PHY_REG(776, 20), &data);
2582                data &= ~(0x3FF << 2);
2583                data |= (E1000_TX_PTR_GAP << 2);
2584                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2585                if (ret_val)
2586                        return ret_val;
2587                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2588                if (ret_val)
2589                        return ret_val;
2590                e1e_rphy(hw, HV_PM_CTRL, &data);
2591                ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2592                if (ret_val)
2593                        return ret_val;
2594        } else {
2595                /* Write MAC register values back to h/w defaults */
2596                mac_reg = er32(FFLT_DBG);
2597                mac_reg &= ~(0xF << 14);
2598                ew32(FFLT_DBG, mac_reg);
2599
2600                mac_reg = er32(RCTL);
2601                mac_reg &= ~E1000_RCTL_SECRC;
2602                ew32(RCTL, mac_reg);
2603
2604                ret_val = e1000e_read_kmrn_reg(hw,
2605                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2606                                               &data);
2607                if (ret_val)
2608                        return ret_val;
2609                ret_val = e1000e_write_kmrn_reg(hw,
2610                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2611                                                data & ~(1 << 0));
2612                if (ret_val)
2613                        return ret_val;
2614                ret_val = e1000e_read_kmrn_reg(hw,
2615                                               E1000_KMRNCTRLSTA_HD_CTRL,
2616                                               &data);
2617                if (ret_val)
2618                        return ret_val;
2619                data &= ~(0xF << 8);
2620                data |= (0xB << 8);
2621                ret_val = e1000e_write_kmrn_reg(hw,
2622                                                E1000_KMRNCTRLSTA_HD_CTRL,
2623                                                data);
2624                if (ret_val)
2625                        return ret_val;
2626
2627                /* Write PHY register values back to h/w defaults */
2628                e1e_rphy(hw, PHY_REG(769, 23), &data);
2629                data &= ~(0x7F << 5);
2630                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2631                if (ret_val)
2632                        return ret_val;
2633                e1e_rphy(hw, PHY_REG(769, 16), &data);
2634                data |= (1 << 13);
2635                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2636                if (ret_val)
2637                        return ret_val;
2638                e1e_rphy(hw, PHY_REG(776, 20), &data);
2639                data &= ~(0x3FF << 2);
2640                data |= (0x8 << 2);
2641                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2642                if (ret_val)
2643                        return ret_val;
2644                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2645                if (ret_val)
2646                        return ret_val;
2647                e1e_rphy(hw, HV_PM_CTRL, &data);
2648                ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2649                if (ret_val)
2650                        return ret_val;
2651        }
2652
2653        /* re-enable Rx path after enabling/disabling workaround */
2654        return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2655}
2656
2657/**
2658 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2659 *  done after every PHY reset.
2660 **/
2661static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2662{
2663        s32 ret_val = 0;
2664
2665        if (hw->mac.type != e1000_pch2lan)
2666                return 0;
2667
2668        /* Set MDIO slow mode before any other MDIO access */
2669        ret_val = e1000_set_mdio_slow_mode_hv(hw);
2670        if (ret_val)
2671                return ret_val;
2672
2673        ret_val = hw->phy.ops.acquire(hw);
2674        if (ret_val)
2675                return ret_val;
2676        /* set MSE higher to enable link to stay up when noise is high */
2677        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2678        if (ret_val)
2679                goto release;
2680        /* drop link after 5 times MSE threshold was reached */
2681        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2682release:
2683        hw->phy.ops.release(hw);
2684
2685        return ret_val;
2686}
2687
2688/**
2689 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2690 *  @hw:   pointer to the HW structure
2691 *
2692 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2693 *  Disable K1 in 1000Mbps and 100Mbps
2694 **/
2695static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2696{
2697        s32 ret_val = 0;
2698        u16 status_reg = 0;
2699
2700        if (hw->mac.type != e1000_pch2lan)
2701                return 0;
2702
2703        /* Set K1 beacon duration based on 10Mbs speed */
2704        ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2705        if (ret_val)
2706                return ret_val;
2707
2708        if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2709            == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2710                if (status_reg &
2711                    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2712                        u16 pm_phy_reg;
2713
2714                        /* LV 1G/100 Packet drop issue wa  */
2715                        ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2716                        if (ret_val)
2717                                return ret_val;
2718                        pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2719                        ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2720                        if (ret_val)
2721                                return ret_val;
2722                } else {
2723                        u32 mac_reg;
2724
2725                        mac_reg = er32(FEXTNVM4);
2726                        mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2727                        mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2728                        ew32(FEXTNVM4, mac_reg);
2729                }
2730        }
2731
2732        return ret_val;
2733}
2734
2735/**
2736 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2737 *  @hw:   pointer to the HW structure
2738 *  @gate: boolean set to true to gate, false to ungate
2739 *
2740 *  Gate/ungate the automatic PHY configuration via hardware; perform
2741 *  the configuration via software instead.
2742 **/
2743static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2744{
2745        u32 extcnf_ctrl;
2746
2747        if (hw->mac.type < e1000_pch2lan)
2748                return;
2749
2750        extcnf_ctrl = er32(EXTCNF_CTRL);
2751
2752        if (gate)
2753                extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2754        else
2755                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2756
2757        ew32(EXTCNF_CTRL, extcnf_ctrl);
2758}
2759
2760/**
2761 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2762 *  @hw: pointer to the HW structure
2763 *
2764 *  Check the appropriate indication the MAC has finished configuring the
2765 *  PHY after a software reset.
2766 **/
2767static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2768{
2769        u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2770
2771        /* Wait for basic configuration completes before proceeding */
2772        do {
2773                data = er32(STATUS);
2774                data &= E1000_STATUS_LAN_INIT_DONE;
2775                usleep_range(100, 200);
2776        } while ((!data) && --loop);
2777
2778        /* If basic configuration is incomplete before the above loop
2779         * count reaches 0, loading the configuration from NVM will
2780         * leave the PHY in a bad state possibly resulting in no link.
2781         */
2782        if (loop == 0)
2783                e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2784
2785        /* Clear the Init Done bit for the next init event */
2786        data = er32(STATUS);
2787        data &= ~E1000_STATUS_LAN_INIT_DONE;
2788        ew32(STATUS, data);
2789}
2790
2791/**
2792 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2793 *  @hw: pointer to the HW structure
2794 **/
2795static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2796{
2797        s32 ret_val = 0;
2798        u16 reg;
2799
2800        if (hw->phy.ops.check_reset_block(hw))
2801                return 0;
2802
2803        /* Allow time for h/w to get to quiescent state after reset */
2804        usleep_range(10000, 20000);
2805
2806        /* Perform any necessary post-reset workarounds */
2807        switch (hw->mac.type) {
2808        case e1000_pchlan:
2809                ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2810                if (ret_val)
2811                        return ret_val;
2812                break;
2813        case e1000_pch2lan:
2814                ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2815                if (ret_val)
2816                        return ret_val;
2817                break;
2818        default:
2819                break;
2820        }
2821
2822        /* Clear the host wakeup bit after lcd reset */
2823        if (hw->mac.type >= e1000_pchlan) {
2824                e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2825                reg &= ~BM_WUC_HOST_WU_BIT;
2826                e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2827        }
2828
2829        /* Configure the LCD with the extended configuration region in NVM */
2830        ret_val = e1000_sw_lcd_config_ich8lan(hw);
2831        if (ret_val)
2832                return ret_val;
2833
2834        /* Configure the LCD with the OEM bits in NVM */
2835        ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2836
2837        if (hw->mac.type == e1000_pch2lan) {
2838                /* Ungate automatic PHY configuration on non-managed 82579 */
2839                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2840                        usleep_range(10000, 20000);
2841                        e1000_gate_hw_phy_config_ich8lan(hw, false);
2842                }
2843
2844                /* Set EEE LPI Update Timer to 200usec */
2845                ret_val = hw->phy.ops.acquire(hw);
2846                if (ret_val)
2847                        return ret_val;
2848                ret_val = e1000_write_emi_reg_locked(hw,
2849                                                     I82579_LPI_UPDATE_TIMER,
2850                                                     0x1387);
2851                hw->phy.ops.release(hw);
2852        }
2853
2854        return ret_val;
2855}
2856
2857/**
2858 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2859 *  @hw: pointer to the HW structure
2860 *
2861 *  Resets the PHY
2862 *  This is a function pointer entry point called by drivers
2863 *  or other shared routines.
2864 **/
2865static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2866{
2867        s32 ret_val = 0;
2868
2869        /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2870        if ((hw->mac.type == e1000_pch2lan) &&
2871            !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2872                e1000_gate_hw_phy_config_ich8lan(hw, true);
2873
2874        ret_val = e1000e_phy_hw_reset_generic(hw);
2875        if (ret_val)
2876                return ret_val;
2877
2878        return e1000_post_phy_reset_ich8lan(hw);
2879}
2880
2881/**
2882 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2883 *  @hw: pointer to the HW structure
2884 *  @active: true to enable LPLU, false to disable
2885 *
2886 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2887 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2888 *  the phy speed. This function will manually set the LPLU bit and restart
2889 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2890 *  since it configures the same bit.
2891 **/
2892static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2893{
2894        s32 ret_val;
2895        u16 oem_reg;
2896
2897        ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2898        if (ret_val)
2899                return ret_val;
2900
2901        if (active)
2902                oem_reg |= HV_OEM_BITS_LPLU;
2903        else
2904                oem_reg &= ~HV_OEM_BITS_LPLU;
2905
2906        if (!hw->phy.ops.check_reset_block(hw))
2907                oem_reg |= HV_OEM_BITS_RESTART_AN;
2908
2909        return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2910}
2911
2912/**
2913 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2914 *  @hw: pointer to the HW structure
2915 *  @active: true to enable LPLU, false to disable
2916 *
2917 *  Sets the LPLU D0 state according to the active flag.  When
2918 *  activating LPLU this function also disables smart speed
2919 *  and vice versa.  LPLU will not be activated unless the
2920 *  device autonegotiation advertisement meets standards of
2921 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2922 *  This is a function pointer entry point only called by
2923 *  PHY setup routines.
2924 **/
2925static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2926{
2927        struct e1000_phy_info *phy = &hw->phy;
2928        u32 phy_ctrl;
2929        s32 ret_val = 0;
2930        u16 data;
2931
2932        if (phy->type == e1000_phy_ife)
2933                return 0;
2934
2935        phy_ctrl = er32(PHY_CTRL);
2936
2937        if (active) {
2938                phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2939                ew32(PHY_CTRL, phy_ctrl);
2940
2941                if (phy->type != e1000_phy_igp_3)
2942                        return 0;
2943
2944                /* Call gig speed drop workaround on LPLU before accessing
2945                 * any PHY registers
2946                 */
2947                if (hw->mac.type == e1000_ich8lan)
2948                        e1000e_gig_downshift_workaround_ich8lan(hw);
2949
2950                /* When LPLU is enabled, we should disable SmartSpeed */
2951                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2952                if (ret_val)
2953                        return ret_val;
2954                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2955                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2956                if (ret_val)
2957                        return ret_val;
2958        } else {
2959                phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2960                ew32(PHY_CTRL, phy_ctrl);
2961
2962                if (phy->type != e1000_phy_igp_3)
2963                        return 0;
2964
2965                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2966                 * during Dx states where the power conservation is most
2967                 * important.  During driver activity we should enable
2968                 * SmartSpeed, so performance is maintained.
2969                 */
2970                if (phy->smart_speed == e1000_smart_speed_on) {
2971                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2972                                           &data);
2973                        if (ret_val)
2974                                return ret_val;
2975
2976                        data |= IGP01E1000_PSCFR_SMART_SPEED;
2977                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2978                                           data);
2979                        if (ret_val)
2980                                return ret_val;
2981                } else if (phy->smart_speed == e1000_smart_speed_off) {
2982                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2983                                           &data);
2984                        if (ret_val)
2985                                return ret_val;
2986
2987                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2988                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2989                                           data);
2990                        if (ret_val)
2991                                return ret_val;
2992                }
2993        }
2994
2995        return 0;
2996}
2997
2998/**
2999 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3000 *  @hw: pointer to the HW structure
3001 *  @active: true to enable LPLU, false to disable
3002 *
3003 *  Sets the LPLU D3 state according to the active flag.  When
3004 *  activating LPLU this function also disables smart speed
3005 *  and vice versa.  LPLU will not be activated unless the
3006 *  device autonegotiation advertisement meets standards of
3007 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3008 *  This is a function pointer entry point only called by
3009 *  PHY setup routines.
3010 **/
3011static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3012{
3013        struct e1000_phy_info *phy = &hw->phy;
3014        u32 phy_ctrl;
3015        s32 ret_val = 0;
3016        u16 data;
3017
3018        phy_ctrl = er32(PHY_CTRL);
3019
3020        if (!active) {
3021                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3022                ew32(PHY_CTRL, phy_ctrl);
3023
3024                if (phy->type != e1000_phy_igp_3)
3025                        return 0;
3026
3027                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3028                 * during Dx states where the power conservation is most
3029                 * important.  During driver activity we should enable
3030                 * SmartSpeed, so performance is maintained.
3031                 */
3032                if (phy->smart_speed == e1000_smart_speed_on) {
3033                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3034                                           &data);
3035                        if (ret_val)
3036                                return ret_val;
3037
3038                        data |= IGP01E1000_PSCFR_SMART_SPEED;
3039                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3040                                           data);
3041                        if (ret_val)
3042                                return ret_val;
3043                } else if (phy->smart_speed == e1000_smart_speed_off) {
3044                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3045                                           &data);
3046                        if (ret_val)
3047                                return ret_val;
3048
3049                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3050                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3051                                           data);
3052                        if (ret_val)
3053                                return ret_val;
3054                }
3055        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3056                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3057                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3058                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3059                ew32(PHY_CTRL, phy_ctrl);
3060
3061                if (phy->type != e1000_phy_igp_3)
3062                        return 0;
3063
3064                /* Call gig speed drop workaround on LPLU before accessing
3065                 * any PHY registers
3066                 */
3067                if (hw->mac.type == e1000_ich8lan)
3068                        e1000e_gig_downshift_workaround_ich8lan(hw);
3069
3070                /* When LPLU is enabled, we should disable SmartSpeed */
3071                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3072                if (ret_val)
3073                        return ret_val;
3074
3075                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3077        }
3078
3079        return ret_val;
3080}
3081
3082/**
3083 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3084 *  @hw: pointer to the HW structure
3085 *  @bank:  pointer to the variable that returns the active bank
3086 *
3087 *  Reads signature byte from the NVM using the flash access registers.
3088 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3089 **/
3090static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3091{
3092        u32 eecd;
3093        struct e1000_nvm_info *nvm = &hw->nvm;
3094        u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3095        u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3096        u8 sig_byte = 0;
3097        s32 ret_val;
3098
3099        switch (hw->mac.type) {
3100                /* In SPT, read from the CTRL_EXT reg instead of
3101                 * accessing the sector valid bits from the nvm
3102                 */
3103        case e1000_pch_spt:
3104                *bank = er32(CTRL_EXT)
3105                    & E1000_CTRL_EXT_NVMVS;
3106                if ((*bank == 0) || (*bank == 1)) {
3107                        e_dbg("ERROR: No valid NVM bank present\n");
3108                        return -E1000_ERR_NVM;
3109                } else {
3110                        *bank = *bank - 2;
3111                        return 0;
3112                }
3113                break;
3114        case e1000_ich8lan:
3115        case e1000_ich9lan:
3116                eecd = er32(EECD);
3117                if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3118                    E1000_EECD_SEC1VAL_VALID_MASK) {
3119                        if (eecd & E1000_EECD_SEC1VAL)
3120                                *bank = 1;
3121                        else
3122                                *bank = 0;
3123
3124                        return 0;
3125                }
3126                e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3127                /* fall-thru */
3128        default:
3129                /* set bank to 0 in case flash read fails */
3130                *bank = 0;
3131
3132                /* Check bank 0 */
3133                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3134                                                        &sig_byte);
3135                if (ret_val)
3136                        return ret_val;
3137                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3138                    E1000_ICH_NVM_SIG_VALUE) {
3139                        *bank = 0;
3140                        return 0;
3141                }
3142
3143                /* Check bank 1 */
3144                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3145                                                        bank1_offset,
3146                                                        &sig_byte);
3147                if (ret_val)
3148                        return ret_val;
3149                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3150                    E1000_ICH_NVM_SIG_VALUE) {
3151                        *bank = 1;
3152                        return 0;
3153                }
3154
3155                e_dbg("ERROR: No valid NVM bank present\n");
3156                return -E1000_ERR_NVM;
3157        }
3158}
3159
3160/**
3161 *  e1000_read_nvm_spt - NVM access for SPT
3162 *  @hw: pointer to the HW structure
3163 *  @offset: The offset (in bytes) of the word(s) to read.
3164 *  @words: Size of data to read in words.
3165 *  @data: pointer to the word(s) to read at offset.
3166 *
3167 *  Reads a word(s) from the NVM
3168 **/
3169static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3170                              u16 *data)
3171{
3172        struct e1000_nvm_info *nvm = &hw->nvm;
3173        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3174        u32 act_offset;
3175        s32 ret_val = 0;
3176        u32 bank = 0;
3177        u32 dword = 0;
3178        u16 offset_to_read;
3179        u16 i;
3180
3181        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3182            (words == 0)) {
3183                e_dbg("nvm parameter(s) out of bounds\n");
3184                ret_val = -E1000_ERR_NVM;
3185                goto out;
3186        }
3187
3188        nvm->ops.acquire(hw);
3189
3190        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3191        if (ret_val) {
3192                e_dbg("Could not detect valid bank, assuming bank 0\n");
3193                bank = 0;
3194        }
3195
3196        act_offset = (bank) ? nvm->flash_bank_size : 0;
3197        act_offset += offset;
3198
3199        ret_val = 0;
3200
3201        for (i = 0; i < words; i += 2) {
3202                if (words - i == 1) {
3203                        if (dev_spec->shadow_ram[offset + i].modified) {
3204                                data[i] =
3205                                    dev_spec->shadow_ram[offset + i].value;
3206                        } else {
3207                                offset_to_read = act_offset + i -
3208                                    ((act_offset + i) % 2);
3209                                ret_val =
3210                                  e1000_read_flash_dword_ich8lan(hw,
3211                                                                 offset_to_read,
3212                                                                 &dword);
3213                                if (ret_val)
3214                                        break;
3215                                if ((act_offset + i) % 2 == 0)
3216                                        data[i] = (u16)(dword & 0xFFFF);
3217                                else
3218                                        data[i] = (u16)((dword >> 16) & 0xFFFF);
3219                        }
3220                } else {
3221                        offset_to_read = act_offset + i;
3222                        if (!(dev_spec->shadow_ram[offset + i].modified) ||
3223                            !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3224                                ret_val =
3225                                  e1000_read_flash_dword_ich8lan(hw,
3226                                                                 offset_to_read,
3227                                                                 &dword);
3228                                if (ret_val)
3229                                        break;
3230                        }
3231                        if (dev_spec->shadow_ram[offset + i].modified)
3232                                data[i] =
3233                                    dev_spec->shadow_ram[offset + i].value;
3234                        else
3235                                data[i] = (u16)(dword & 0xFFFF);
3236                        if (dev_spec->shadow_ram[offset + i].modified)
3237                                data[i + 1] =
3238                                    dev_spec->shadow_ram[offset + i + 1].value;
3239                        else
3240                                data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3241                }
3242        }
3243
3244        nvm->ops.release(hw);
3245
3246out:
3247        if (ret_val)
3248                e_dbg("NVM read error: %d\n", ret_val);
3249
3250        return ret_val;
3251}
3252
3253/**
3254 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3255 *  @hw: pointer to the HW structure
3256 *  @offset: The offset (in bytes) of the word(s) to read.
3257 *  @words: Size of data to read in words
3258 *  @data: Pointer to the word(s) to read at offset.
3259 *
3260 *  Reads a word(s) from the NVM using the flash access registers.
3261 **/
3262static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3263                                  u16 *data)
3264{
3265        struct e1000_nvm_info *nvm = &hw->nvm;
3266        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3267        u32 act_offset;
3268        s32 ret_val = 0;
3269        u32 bank = 0;
3270        u16 i, word;
3271
3272        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3273            (words == 0)) {
3274                e_dbg("nvm parameter(s) out of bounds\n");
3275                ret_val = -E1000_ERR_NVM;
3276                goto out;
3277        }
3278
3279        nvm->ops.acquire(hw);
3280
3281        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3282        if (ret_val) {
3283                e_dbg("Could not detect valid bank, assuming bank 0\n");
3284                bank = 0;
3285        }
3286
3287        act_offset = (bank) ? nvm->flash_bank_size : 0;
3288        act_offset += offset;
3289
3290        ret_val = 0;
3291        for (i = 0; i < words; i++) {
3292                if (dev_spec->shadow_ram[offset + i].modified) {
3293                        data[i] = dev_spec->shadow_ram[offset + i].value;
3294                } else {
3295                        ret_val = e1000_read_flash_word_ich8lan(hw,
3296                                                                act_offset + i,
3297                                                                &word);
3298                        if (ret_val)
3299                                break;
3300                        data[i] = word;
3301                }
3302        }
3303
3304        nvm->ops.release(hw);
3305
3306out:
3307        if (ret_val)
3308                e_dbg("NVM read error: %d\n", ret_val);
3309
3310        return ret_val;
3311}
3312
3313/**
3314 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3315 *  @hw: pointer to the HW structure
3316 *
3317 *  This function does initial flash setup so that a new read/write/erase cycle
3318 *  can be started.
3319 **/
3320static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3321{
3322        union ich8_hws_flash_status hsfsts;
3323        s32 ret_val = -E1000_ERR_NVM;
3324
3325        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3326
3327        /* Check if the flash descriptor is valid */
3328        if (!hsfsts.hsf_status.fldesvalid) {
3329                e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3330                return -E1000_ERR_NVM;
3331        }
3332
3333        /* Clear FCERR and DAEL in hw status by writing 1 */
3334        hsfsts.hsf_status.flcerr = 1;
3335        hsfsts.hsf_status.dael = 1;
3336        if (hw->mac.type == e1000_pch_spt)
3337                ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3338        else
3339                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3340
3341        /* Either we should have a hardware SPI cycle in progress
3342         * bit to check against, in order to start a new cycle or
3343         * FDONE bit should be changed in the hardware so that it
3344         * is 1 after hardware reset, which can then be used as an
3345         * indication whether a cycle is in progress or has been
3346         * completed.
3347         */
3348
3349        if (!hsfsts.hsf_status.flcinprog) {
3350                /* There is no cycle running at present,
3351                 * so we can start a cycle.
3352                 * Begin by setting Flash Cycle Done.
3353                 */
3354                hsfsts.hsf_status.flcdone = 1;
3355                if (hw->mac.type == e1000_pch_spt)
3356                        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3357                else
3358                        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3359                ret_val = 0;
3360        } else {
3361                s32 i;
3362
3363                /* Otherwise poll for sometime so the current
3364                 * cycle has a chance to end before giving up.
3365                 */
3366                for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3367                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3368                        if (!hsfsts.hsf_status.flcinprog) {
3369                                ret_val = 0;
3370                                break;
3371                        }
3372                        udelay(1);
3373                }
3374                if (!ret_val) {
3375                        /* Successful in waiting for previous cycle to timeout,
3376                         * now set the Flash Cycle Done.
3377                         */
3378                        hsfsts.hsf_status.flcdone = 1;
3379                        if (hw->mac.type == e1000_pch_spt)
3380                                ew32flash(ICH_FLASH_HSFSTS,
3381                                          hsfsts.regval & 0xFFFF);
3382                        else
3383                                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3384                } else {
3385                        e_dbg("Flash controller busy, cannot get access\n");
3386                }
3387        }
3388
3389        return ret_val;
3390}
3391
3392/**
3393 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3394 *  @hw: pointer to the HW structure
3395 *  @timeout: maximum time to wait for completion
3396 *
3397 *  This function starts a flash cycle and waits for its completion.
3398 **/
3399static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3400{
3401        union ich8_hws_flash_ctrl hsflctl;
3402        union ich8_hws_flash_status hsfsts;
3403        u32 i = 0;
3404
3405        /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3406        if (hw->mac.type == e1000_pch_spt)
3407                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3408        else
3409                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3410        hsflctl.hsf_ctrl.flcgo = 1;
3411
3412        if (hw->mac.type == e1000_pch_spt)
3413                ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3414        else
3415                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3416
3417        /* wait till FDONE bit is set to 1 */
3418        do {
3419                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3420                if (hsfsts.hsf_status.flcdone)
3421                        break;
3422                udelay(1);
3423        } while (i++ < timeout);
3424
3425        if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3426                return 0;
3427
3428        return -E1000_ERR_NVM;
3429}
3430
3431/**
3432 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3433 *  @hw: pointer to the HW structure
3434 *  @offset: offset to data location
3435 *  @data: pointer to the location for storing the data
3436 *
3437 *  Reads the flash dword at offset into data.  Offset is converted
3438 *  to bytes before read.
3439 **/
3440static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3441                                          u32 *data)
3442{
3443        /* Must convert word offset into bytes. */
3444        offset <<= 1;
3445        return e1000_read_flash_data32_ich8lan(hw, offset, data);
3446}
3447
3448/**
3449 *  e1000_read_flash_word_ich8lan - Read word from flash
3450 *  @hw: pointer to the HW structure
3451 *  @offset: offset to data location
3452 *  @data: pointer to the location for storing the data
3453 *
3454 *  Reads the flash word at offset into data.  Offset is converted
3455 *  to bytes before read.
3456 **/
3457static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3458                                         u16 *data)
3459{
3460        /* Must convert offset into bytes. */
3461        offset <<= 1;
3462
3463        return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3464}
3465
3466/**
3467 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3468 *  @hw: pointer to the HW structure
3469 *  @offset: The offset of the byte to read.
3470 *  @data: Pointer to a byte to store the value read.
3471 *
3472 *  Reads a single byte from the NVM using the flash access registers.
3473 **/
3474static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3475                                         u8 *data)
3476{
3477        s32 ret_val;
3478        u16 word = 0;
3479
3480        /* In SPT, only 32 bits access is supported,
3481         * so this function should not be called.
3482         */
3483        if (hw->mac.type == e1000_pch_spt)
3484                return -E1000_ERR_NVM;
3485        else
3486                ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3487
3488        if (ret_val)
3489                return ret_val;
3490
3491        *data = (u8)word;
3492
3493        return 0;
3494}
3495
3496/**
3497 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3498 *  @hw: pointer to the HW structure
3499 *  @offset: The offset (in bytes) of the byte or word to read.
3500 *  @size: Size of data to read, 1=byte 2=word
3501 *  @data: Pointer to the word to store the value read.
3502 *
3503 *  Reads a byte or word from the NVM using the flash access registers.
3504 **/
3505static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3506                                         u8 size, u16 *data)
3507{
3508        union ich8_hws_flash_status hsfsts;
3509        union ich8_hws_flash_ctrl hsflctl;
3510        u32 flash_linear_addr;
3511        u32 flash_data = 0;
3512        s32 ret_val = -E1000_ERR_NVM;
3513        u8 count = 0;
3514
3515        if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3516                return -E1000_ERR_NVM;
3517
3518        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3519                             hw->nvm.flash_base_addr);
3520
3521        do {
3522                udelay(1);
3523                /* Steps */
3524                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3525                if (ret_val)
3526                        break;
3527
3528                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3529                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3530                hsflctl.hsf_ctrl.fldbcount = size - 1;
3531                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3532                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3533
3534                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3535
3536                ret_val =
3537                    e1000_flash_cycle_ich8lan(hw,
3538                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3539
3540                /* Check if FCERR is set to 1, if set to 1, clear it
3541                 * and try the whole sequence a few more times, else
3542                 * read in (shift in) the Flash Data0, the order is
3543                 * least significant byte first msb to lsb
3544                 */
3545                if (!ret_val) {
3546                        flash_data = er32flash(ICH_FLASH_FDATA0);
3547                        if (size == 1)
3548                                *data = (u8)(flash_data & 0x000000FF);
3549                        else if (size == 2)
3550                                *data = (u16)(flash_data & 0x0000FFFF);
3551                        break;
3552                } else {
3553                        /* If we've gotten here, then things are probably
3554                         * completely hosed, but if the error condition is
3555                         * detected, it won't hurt to give it another try...
3556                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3557                         */
3558                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3559                        if (hsfsts.hsf_status.flcerr) {
3560                                /* Repeat for some time before giving up. */
3561                                continue;
3562                        } else if (!hsfsts.hsf_status.flcdone) {
3563                                e_dbg("Timeout error - flash cycle did not complete.\n");
3564                                break;
3565                        }
3566                }
3567        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3568
3569        return ret_val;
3570}
3571
3572/**
3573 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3574 *  @hw: pointer to the HW structure
3575 *  @offset: The offset (in bytes) of the dword to read.
3576 *  @data: Pointer to the dword to store the value read.
3577 *
3578 *  Reads a byte or word from the NVM using the flash access registers.
3579 **/
3580
3581static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3582                                           u32 *data)
3583{
3584        union ich8_hws_flash_status hsfsts;
3585        union ich8_hws_flash_ctrl hsflctl;
3586        u32 flash_linear_addr;
3587        s32 ret_val = -E1000_ERR_NVM;
3588        u8 count = 0;
3589
3590        if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3591            hw->mac.type != e1000_pch_spt)
3592                return -E1000_ERR_NVM;
3593        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3594                             hw->nvm.flash_base_addr);
3595
3596        do {
3597                udelay(1);
3598                /* Steps */
3599                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3600                if (ret_val)
3601                        break;
3602                /* In SPT, This register is in Lan memory space, not flash.
3603                 * Therefore, only 32 bit access is supported
3604                 */
3605                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3606
3607                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3608                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3609                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3610                /* In SPT, This register is in Lan memory space, not flash.
3611                 * Therefore, only 32 bit access is supported
3612                 */
3613                ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3614                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3615
3616                ret_val =
3617                   e1000_flash_cycle_ich8lan(hw,
3618                                             ICH_FLASH_READ_COMMAND_TIMEOUT);
3619
3620                /* Check if FCERR is set to 1, if set to 1, clear it
3621                 * and try the whole sequence a few more times, else
3622                 * read in (shift in) the Flash Data0, the order is
3623                 * least significant byte first msb to lsb
3624                 */
3625                if (!ret_val) {
3626                        *data = er32flash(ICH_FLASH_FDATA0);
3627                        break;
3628                } else {
3629                        /* If we've gotten here, then things are probably
3630                         * completely hosed, but if the error condition is
3631                         * detected, it won't hurt to give it another try...
3632                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3633                         */
3634                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3635                        if (hsfsts.hsf_status.flcerr) {
3636                                /* Repeat for some time before giving up. */
3637                                continue;
3638                        } else if (!hsfsts.hsf_status.flcdone) {
3639                                e_dbg("Timeout error - flash cycle did not complete.\n");
3640                                break;
3641                        }
3642                }
3643        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3644
3645        return ret_val;
3646}
3647
3648/**
3649 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3650 *  @hw: pointer to the HW structure
3651 *  @offset: The offset (in bytes) of the word(s) to write.
3652 *  @words: Size of data to write in words
3653 *  @data: Pointer to the word(s) to write at offset.
3654 *
3655 *  Writes a byte or word to the NVM using the flash access registers.
3656 **/
3657static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3658                                   u16 *data)
3659{
3660        struct e1000_nvm_info *nvm = &hw->nvm;
3661        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3662        u16 i;
3663
3664        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3665            (words == 0)) {
3666                e_dbg("nvm parameter(s) out of bounds\n");
3667                return -E1000_ERR_NVM;
3668        }
3669
3670        nvm->ops.acquire(hw);
3671
3672        for (i = 0; i < words; i++) {
3673                dev_spec->shadow_ram[offset + i].modified = true;
3674                dev_spec->shadow_ram[offset + i].value = data[i];
3675        }
3676
3677        nvm->ops.release(hw);
3678
3679        return 0;
3680}
3681
3682/**
3683 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3684 *  @hw: pointer to the HW structure
3685 *
3686 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3687 *  which writes the checksum to the shadow ram.  The changes in the shadow
3688 *  ram are then committed to the EEPROM by processing each bank at a time
3689 *  checking for the modified bit and writing only the pending changes.
3690 *  After a successful commit, the shadow ram is cleared and is ready for
3691 *  future writes.
3692 **/
3693static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3694{
3695        struct e1000_nvm_info *nvm = &hw->nvm;
3696        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3697        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3698        s32 ret_val;
3699        u32 dword = 0;
3700
3701        ret_val = e1000e_update_nvm_checksum_generic(hw);
3702        if (ret_val)
3703                goto out;
3704
3705        if (nvm->type != e1000_nvm_flash_sw)
3706                goto out;
3707
3708        nvm->ops.acquire(hw);
3709
3710        /* We're writing to the opposite bank so if we're on bank 1,
3711         * write to bank 0 etc.  We also need to erase the segment that
3712         * is going to be written
3713         */
3714        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3715        if (ret_val) {
3716                e_dbg("Could not detect valid bank, assuming bank 0\n");
3717                bank = 0;
3718        }
3719
3720        if (bank == 0) {
3721                new_bank_offset = nvm->flash_bank_size;
3722                old_bank_offset = 0;
3723                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3724                if (ret_val)
3725                        goto release;
3726        } else {
3727                old_bank_offset = nvm->flash_bank_size;
3728                new_bank_offset = 0;
3729                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3730                if (ret_val)
3731                        goto release;
3732        }
3733        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3734                /* Determine whether to write the value stored
3735                 * in the other NVM bank or a modified value stored
3736                 * in the shadow RAM
3737                 */
3738                ret_val = e1000_read_flash_dword_ich8lan(hw,
3739                                                         i + old_bank_offset,
3740                                                         &dword);
3741
3742                if (dev_spec->shadow_ram[i].modified) {
3743                        dword &= 0xffff0000;
3744                        dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3745                }
3746                if (dev_spec->shadow_ram[i + 1].modified) {
3747                        dword &= 0x0000ffff;
3748                        dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3749                                  << 16);
3750                }
3751                if (ret_val)
3752                        break;
3753
3754                /* If the word is 0x13, then make sure the signature bits
3755                 * (15:14) are 11b until the commit has completed.
3756                 * This will allow us to write 10b which indicates the
3757                 * signature is valid.  We want to do this after the write
3758                 * has completed so that we don't mark the segment valid
3759                 * while the write is still in progress
3760                 */
3761                if (i == E1000_ICH_NVM_SIG_WORD - 1)
3762                        dword |= E1000_ICH_NVM_SIG_MASK << 16;
3763
3764                /* Convert offset to bytes. */
3765                act_offset = (i + new_bank_offset) << 1;
3766
3767                usleep_range(100, 200);
3768
3769                /* Write the data to the new bank. Offset in words */
3770                act_offset = i + new_bank_offset;
3771                ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3772                                                                dword);
3773                if (ret_val)
3774                        break;
3775        }
3776
3777        /* Don't bother writing the segment valid bits if sector
3778         * programming failed.
3779         */
3780        if (ret_val) {
3781                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3782                e_dbg("Flash commit failed.\n");
3783                goto release;
3784        }
3785
3786        /* Finally validate the new segment by setting bit 15:14
3787         * to 10b in word 0x13 , this can be done without an
3788         * erase as well since these bits are 11 to start with
3789         * and we need to change bit 14 to 0b
3790         */
3791        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3792
3793        /*offset in words but we read dword */
3794        --act_offset;
3795        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3796
3797        if (ret_val)
3798                goto release;
3799
3800        dword &= 0xBFFFFFFF;
3801        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3802
3803        if (ret_val)
3804                goto release;
3805
3806        /* And invalidate the previously valid segment by setting
3807         * its signature word (0x13) high_byte to 0b. This can be
3808         * done without an erase because flash erase sets all bits
3809         * to 1's. We can write 1's to 0's without an erase
3810         */
3811        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3812
3813        /* offset in words but we read dword */
3814        act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3815        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3816
3817        if (ret_val)
3818                goto release;
3819
3820        dword &= 0x00FFFFFF;
3821        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3822
3823        if (ret_val)
3824                goto release;
3825
3826        /* Great!  Everything worked, we can now clear the cached entries. */
3827        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3828                dev_spec->shadow_ram[i].modified = false;
3829                dev_spec->shadow_ram[i].value = 0xFFFF;
3830        }
3831
3832release:
3833        nvm->ops.release(hw);
3834
3835        /* Reload the EEPROM, or else modifications will not appear
3836         * until after the next adapter reset.
3837         */
3838        if (!ret_val) {
3839                nvm->ops.reload(hw);
3840                usleep_range(10000, 20000);
3841        }
3842
3843out:
3844        if (ret_val)
3845                e_dbg("NVM update error: %d\n", ret_val);
3846
3847        return ret_val;
3848}
3849
3850/**
3851 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3852 *  @hw: pointer to the HW structure
3853 *
3854 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3855 *  which writes the checksum to the shadow ram.  The changes in the shadow
3856 *  ram are then committed to the EEPROM by processing each bank at a time
3857 *  checking for the modified bit and writing only the pending changes.
3858 *  After a successful commit, the shadow ram is cleared and is ready for
3859 *  future writes.
3860 **/
3861static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3862{
3863        struct e1000_nvm_info *nvm = &hw->nvm;
3864        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3865        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3866        s32 ret_val;
3867        u16 data = 0;
3868
3869        ret_val = e1000e_update_nvm_checksum_generic(hw);
3870        if (ret_val)
3871                goto out;
3872
3873        if (nvm->type != e1000_nvm_flash_sw)
3874                goto out;
3875
3876        nvm->ops.acquire(hw);
3877
3878        /* We're writing to the opposite bank so if we're on bank 1,
3879         * write to bank 0 etc.  We also need to erase the segment that
3880         * is going to be written
3881         */
3882        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3883        if (ret_val) {
3884                e_dbg("Could not detect valid bank, assuming bank 0\n");
3885                bank = 0;
3886        }
3887
3888        if (bank == 0) {
3889                new_bank_offset = nvm->flash_bank_size;
3890                old_bank_offset = 0;
3891                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3892                if (ret_val)
3893                        goto release;
3894        } else {
3895                old_bank_offset = nvm->flash_bank_size;
3896                new_bank_offset = 0;
3897                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3898                if (ret_val)
3899                        goto release;
3900        }
3901        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3902                if (dev_spec->shadow_ram[i].modified) {
3903                        data = dev_spec->shadow_ram[i].value;
3904                } else {
3905                        ret_val = e1000_read_flash_word_ich8lan(hw, i +
3906                                                                old_bank_offset,
3907                                                                &data);
3908                        if (ret_val)
3909                                break;
3910                }
3911
3912                /* If the word is 0x13, then make sure the signature bits
3913                 * (15:14) are 11b until the commit has completed.
3914                 * This will allow us to write 10b which indicates the
3915                 * signature is valid.  We want to do this after the write
3916                 * has completed so that we don't mark the segment valid
3917                 * while the write is still in progress
3918                 */
3919                if (i == E1000_ICH_NVM_SIG_WORD)
3920                        data |= E1000_ICH_NVM_SIG_MASK;
3921
3922                /* Convert offset to bytes. */
3923                act_offset = (i + new_bank_offset) << 1;
3924
3925                usleep_range(100, 200);
3926                /* Write the bytes to the new bank. */
3927                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3928                                                               act_offset,
3929                                                               (u8)data);
3930                if (ret_val)
3931                        break;
3932
3933                usleep_range(100, 200);
3934                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3935                                                               act_offset + 1,
3936                                                               (u8)(data >> 8));
3937                if (ret_val)
3938                        break;
3939        }
3940
3941        /* Don't bother writing the segment valid bits if sector
3942         * programming failed.
3943         */
3944        if (ret_val) {
3945                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3946                e_dbg("Flash commit failed.\n");
3947                goto release;
3948        }
3949
3950        /* Finally validate the new segment by setting bit 15:14
3951         * to 10b in word 0x13 , this can be done without an
3952         * erase as well since these bits are 11 to start with
3953         * and we need to change bit 14 to 0b
3954         */
3955        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3956        ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3957        if (ret_val)
3958                goto release;
3959
3960        data &= 0xBFFF;
3961        ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3962                                                       act_offset * 2 + 1,
3963                                                       (u8)(data >> 8));
3964        if (ret_val)
3965                goto release;
3966
3967        /* And invalidate the previously valid segment by setting
3968         * its signature word (0x13) high_byte to 0b. This can be
3969         * done without an erase because flash erase sets all bits
3970         * to 1's. We can write 1's to 0's without an erase
3971         */
3972        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3973        ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3974        if (ret_val)
3975                goto release;
3976
3977        /* Great!  Everything worked, we can now clear the cached entries. */
3978        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3979                dev_spec->shadow_ram[i].modified = false;
3980                dev_spec->shadow_ram[i].value = 0xFFFF;
3981        }
3982
3983release:
3984        nvm->ops.release(hw);
3985
3986        /* Reload the EEPROM, or else modifications will not appear
3987         * until after the next adapter reset.
3988         */
3989        if (!ret_val) {
3990                nvm->ops.reload(hw);
3991                usleep_range(10000, 20000);
3992        }
3993
3994out:
3995        if (ret_val)
3996                e_dbg("NVM update error: %d\n", ret_val);
3997
3998        return ret_val;
3999}
4000
4001/**
4002 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4003 *  @hw: pointer to the HW structure
4004 *
4005 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4006 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4007 *  calculated, in which case we need to calculate the checksum and set bit 6.
4008 **/
4009static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4010{
4011        s32 ret_val;
4012        u16 data;
4013        u16 word;
4014        u16 valid_csum_mask;
4015
4016        /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4017         * the checksum needs to be fixed.  This bit is an indication that
4018         * the NVM was prepared by OEM software and did not calculate
4019         * the checksum...a likely scenario.
4020         */
4021        switch (hw->mac.type) {
4022        case e1000_pch_lpt:
4023        case e1000_pch_spt:
4024                word = NVM_COMPAT;
4025                valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4026                break;
4027        default:
4028                word = NVM_FUTURE_INIT_WORD1;
4029                valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4030                break;
4031        }
4032
4033        ret_val = e1000_read_nvm(hw, word, 1, &data);
4034        if (ret_val)
4035                return ret_val;
4036
4037        if (!(data & valid_csum_mask)) {
4038                data |= valid_csum_mask;
4039                ret_val = e1000_write_nvm(hw, word, 1, &data);
4040                if (ret_val)
4041                        return ret_val;
4042                ret_val = e1000e_update_nvm_checksum(hw);
4043                if (ret_val)
4044                        return ret_val;
4045        }
4046
4047        return e1000e_validate_nvm_checksum_generic(hw);
4048}
4049
4050/**
4051 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4052 *  @hw: pointer to the HW structure
4053 *
4054 *  To prevent malicious write/erase of the NVM, set it to be read-only
4055 *  so that the hardware ignores all write/erase cycles of the NVM via
4056 *  the flash control registers.  The shadow-ram copy of the NVM will
4057 *  still be updated, however any updates to this copy will not stick
4058 *  across driver reloads.
4059 **/
4060void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4061{
4062        struct e1000_nvm_info *nvm = &hw->nvm;
4063        union ich8_flash_protected_range pr0;
4064        union ich8_hws_flash_status hsfsts;
4065        u32 gfpreg;
4066
4067        nvm->ops.acquire(hw);
4068
4069        gfpreg = er32flash(ICH_FLASH_GFPREG);
4070
4071        /* Write-protect GbE Sector of NVM */
4072        pr0.regval = er32flash(ICH_FLASH_PR0);
4073        pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4074        pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4075        pr0.range.wpe = true;
4076        ew32flash(ICH_FLASH_PR0, pr0.regval);
4077
4078        /* Lock down a subset of GbE Flash Control Registers, e.g.
4079         * PR0 to prevent the write-protection from being lifted.
4080         * Once FLOCKDN is set, the registers protected by it cannot
4081         * be written until FLOCKDN is cleared by a hardware reset.
4082         */
4083        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4084        hsfsts.hsf_status.flockdn = true;
4085        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4086
4087        nvm->ops.release(hw);
4088}
4089
4090/**
4091 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4092 *  @hw: pointer to the HW structure
4093 *  @offset: The offset (in bytes) of the byte/word to read.
4094 *  @size: Size of data to read, 1=byte 2=word
4095 *  @data: The byte(s) to write to the NVM.
4096 *
4097 *  Writes one/two bytes to the NVM using the flash access registers.
4098 **/
4099static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4100                                          u8 size, u16 data)
4101{
4102        union ich8_hws_flash_status hsfsts;
4103        union ich8_hws_flash_ctrl hsflctl;
4104        u32 flash_linear_addr;
4105        u32 flash_data = 0;
4106        s32 ret_val;
4107        u8 count = 0;
4108
4109        if (hw->mac.type == e1000_pch_spt) {
4110                if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4111                        return -E1000_ERR_NVM;
4112        } else {
4113                if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4114                        return -E1000_ERR_NVM;
4115        }
4116
4117        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4118                             hw->nvm.flash_base_addr);
4119
4120        do {
4121                udelay(1);
4122                /* Steps */
4123                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4124                if (ret_val)
4125                        break;
4126                /* In SPT, This register is in Lan memory space, not
4127                 * flash.  Therefore, only 32 bit access is supported
4128                 */
4129                if (hw->mac.type == e1000_pch_spt)
4130                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4131                else
4132                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4133
4134                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4135                hsflctl.hsf_ctrl.fldbcount = size - 1;
4136                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4137                /* In SPT, This register is in Lan memory space,
4138                 * not flash.  Therefore, only 32 bit access is
4139                 * supported
4140                 */
4141                if (hw->mac.type == e1000_pch_spt)
4142                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4143                else
4144                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4145
4146                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4147
4148                if (size == 1)
4149                        flash_data = (u32)data & 0x00FF;
4150                else
4151                        flash_data = (u32)data;
4152
4153                ew32flash(ICH_FLASH_FDATA0, flash_data);
4154
4155                /* check if FCERR is set to 1 , if set to 1, clear it
4156                 * and try the whole sequence a few more times else done
4157                 */
4158                ret_val =
4159                    e1000_flash_cycle_ich8lan(hw,
4160                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4161                if (!ret_val)
4162                        break;
4163
4164                /* If we're here, then things are most likely
4165                 * completely hosed, but if the error condition
4166                 * is detected, it won't hurt to give it another
4167                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4168                 */
4169                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4170                if (hsfsts.hsf_status.flcerr)
4171                        /* Repeat for some time before giving up. */
4172                        continue;
4173                if (!hsfsts.hsf_status.flcdone) {
4174                        e_dbg("Timeout error - flash cycle did not complete.\n");
4175                        break;
4176                }
4177        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4178
4179        return ret_val;
4180}
4181
4182/**
4183*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4184*  @hw: pointer to the HW structure
4185*  @offset: The offset (in bytes) of the dwords to read.
4186*  @data: The 4 bytes to write to the NVM.
4187*
4188*  Writes one/two/four bytes to the NVM using the flash access registers.
4189**/
4190static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4191                                            u32 data)
4192{
4193        union ich8_hws_flash_status hsfsts;
4194        union ich8_hws_flash_ctrl hsflctl;
4195        u32 flash_linear_addr;
4196        s32 ret_val;
4197        u8 count = 0;
4198
4199        if (hw->mac.type == e1000_pch_spt) {
4200                if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4201                        return -E1000_ERR_NVM;
4202        }
4203        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4204                             hw->nvm.flash_base_addr);
4205        do {
4206                udelay(1);
4207                /* Steps */
4208                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4209                if (ret_val)
4210                        break;
4211
4212                /* In SPT, This register is in Lan memory space, not
4213                 * flash.  Therefore, only 32 bit access is supported
4214                 */
4215                if (hw->mac.type == e1000_pch_spt)
4216                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4217                            >> 16;
4218                else
4219                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4220
4221                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4222                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4223
4224                /* In SPT, This register is in Lan memory space,
4225                 * not flash.  Therefore, only 32 bit access is
4226                 * supported
4227                 */
4228                if (hw->mac.type == e1000_pch_spt)
4229                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4230                else
4231                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4232
4233                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4234
4235                ew32flash(ICH_FLASH_FDATA0, data);
4236
4237                /* check if FCERR is set to 1 , if set to 1, clear it
4238                 * and try the whole sequence a few more times else done
4239                 */
4240                ret_val =
4241                   e1000_flash_cycle_ich8lan(hw,
4242                                             ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4243
4244                if (!ret_val)
4245                        break;
4246
4247                /* If we're here, then things are most likely
4248                 * completely hosed, but if the error condition
4249                 * is detected, it won't hurt to give it another
4250                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4251                 */
4252                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4253
4254                if (hsfsts.hsf_status.flcerr)
4255                        /* Repeat for some time before giving up. */
4256                        continue;
4257                if (!hsfsts.hsf_status.flcdone) {
4258                        e_dbg("Timeout error - flash cycle did not complete.\n");
4259                        break;
4260                }
4261        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4262
4263        return ret_val;
4264}
4265
4266/**
4267 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4268 *  @hw: pointer to the HW structure
4269 *  @offset: The index of the byte to read.
4270 *  @data: The byte to write to the NVM.
4271 *
4272 *  Writes a single byte to the NVM using the flash access registers.
4273 **/
4274static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4275                                          u8 data)
4276{
4277        u16 word = (u16)data;
4278
4279        return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4280}
4281
4282/**
4283*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4284*  @hw: pointer to the HW structure
4285*  @offset: The offset of the word to write.
4286*  @dword: The dword to write to the NVM.
4287*
4288*  Writes a single dword to the NVM using the flash access registers.
4289*  Goes through a retry algorithm before giving up.
4290**/
4291static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4292                                                 u32 offset, u32 dword)
4293{
4294        s32 ret_val;
4295        u16 program_retries;
4296
4297        /* Must convert word offset into bytes. */
4298        offset <<= 1;
4299        ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4300
4301        if (!ret_val)
4302                return ret_val;
4303        for (program_retries = 0; program_retries < 100; program_retries++) {
4304                e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4305                usleep_range(100, 200);
4306                ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4307                if (!ret_val)
4308                        break;
4309        }
4310        if (program_retries == 100)
4311                return -E1000_ERR_NVM;
4312
4313        return 0;
4314}
4315
4316/**
4317 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4318 *  @hw: pointer to the HW structure
4319 *  @offset: The offset of the byte to write.
4320 *  @byte: The byte to write to the NVM.
4321 *
4322 *  Writes a single byte to the NVM using the flash access registers.
4323 *  Goes through a retry algorithm before giving up.
4324 **/
4325static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4326                                                u32 offset, u8 byte)
4327{
4328        s32 ret_val;
4329        u16 program_retries;
4330
4331        ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4332        if (!ret_val)
4333                return ret_val;
4334
4335        for (program_retries = 0; program_retries < 100; program_retries++) {
4336                e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4337                usleep_range(100, 200);
4338                ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4339                if (!ret_val)
4340                        break;
4341        }
4342        if (program_retries == 100)
4343                return -E1000_ERR_NVM;
4344
4345        return 0;
4346}
4347
4348/**
4349 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4350 *  @hw: pointer to the HW structure
4351 *  @bank: 0 for first bank, 1 for second bank, etc.
4352 *
4353 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4354 *  bank N is 4096 * N + flash_reg_addr.
4355 **/
4356static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4357{
4358        struct e1000_nvm_info *nvm = &hw->nvm;
4359        union ich8_hws_flash_status hsfsts;
4360        union ich8_hws_flash_ctrl hsflctl;
4361        u32 flash_linear_addr;
4362        /* bank size is in 16bit words - adjust to bytes */
4363        u32 flash_bank_size = nvm->flash_bank_size * 2;
4364        s32 ret_val;
4365        s32 count = 0;
4366        s32 j, iteration, sector_size;
4367
4368        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4369
4370        /* Determine HW Sector size: Read BERASE bits of hw flash status
4371         * register
4372         * 00: The Hw sector is 256 bytes, hence we need to erase 16
4373         *     consecutive sectors.  The start index for the nth Hw sector
4374         *     can be calculated as = bank * 4096 + n * 256
4375         * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4376         *     The start index for the nth Hw sector can be calculated
4377         *     as = bank * 4096
4378         * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4379         *     (ich9 only, otherwise error condition)
4380         * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4381         */
4382        switch (hsfsts.hsf_status.berasesz) {
4383        case 0:
4384                /* Hw sector size 256 */
4385                sector_size = ICH_FLASH_SEG_SIZE_256;
4386                iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4387                break;
4388        case 1:
4389                sector_size = ICH_FLASH_SEG_SIZE_4K;
4390                iteration = 1;
4391                break;
4392        case 2:
4393                sector_size = ICH_FLASH_SEG_SIZE_8K;
4394                iteration = 1;
4395                break;
4396        case 3:
4397                sector_size = ICH_FLASH_SEG_SIZE_64K;
4398                iteration = 1;
4399                break;
4400        default:
4401                return -E1000_ERR_NVM;
4402        }
4403
4404        /* Start with the base address, then add the sector offset. */
4405        flash_linear_addr = hw->nvm.flash_base_addr;
4406        flash_linear_addr += (bank) ? flash_bank_size : 0;
4407
4408        for (j = 0; j < iteration; j++) {
4409                do {
4410                        u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4411
4412                        /* Steps */
4413                        ret_val = e1000_flash_cycle_init_ich8lan(hw);
4414                        if (ret_val)
4415                                return ret_val;
4416
4417                        /* Write a value 11 (block Erase) in Flash
4418                         * Cycle field in hw flash control
4419                         */
4420                        if (hw->mac.type == e1000_pch_spt)
4421                                hsflctl.regval =
4422                                    er32flash(ICH_FLASH_HSFSTS) >> 16;
4423                        else
4424                                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4425
4426                        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4427                        if (hw->mac.type == e1000_pch_spt)
4428                                ew32flash(ICH_FLASH_HSFSTS,
4429                                          hsflctl.regval << 16);
4430                        else
4431                                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4432
4433                        /* Write the last 24 bits of an index within the
4434                         * block into Flash Linear address field in Flash
4435                         * Address.
4436                         */
4437                        flash_linear_addr += (j * sector_size);
4438                        ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4439
4440                        ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4441                        if (!ret_val)
4442                                break;
4443
4444                        /* Check if FCERR is set to 1.  If 1,
4445                         * clear it and try the whole sequence
4446                         * a few more times else Done
4447                         */
4448                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4449                        if (hsfsts.hsf_status.flcerr)
4450                                /* repeat for some time before giving up */
4451                                continue;
4452                        else if (!hsfsts.hsf_status.flcdone)
4453                                return ret_val;
4454                } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4455        }
4456
4457        return 0;
4458}
4459
4460/**
4461 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4462 *  @hw: pointer to the HW structure
4463 *  @data: Pointer to the LED settings
4464 *
4465 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4466 *  settings is all 0's or F's, set the LED default to a valid LED default
4467 *  setting.
4468 **/
4469static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4470{
4471        s32 ret_val;
4472
4473        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4474        if (ret_val) {
4475                e_dbg("NVM Read Error\n");
4476                return ret_val;
4477        }
4478
4479        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4480                *data = ID_LED_DEFAULT_ICH8LAN;
4481
4482        return 0;
4483}
4484
4485/**
4486 *  e1000_id_led_init_pchlan - store LED configurations
4487 *  @hw: pointer to the HW structure
4488 *
4489 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4490 *  the PHY LED configuration register.
4491 *
4492 *  PCH also does not have an "always on" or "always off" mode which
4493 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4494 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4495 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4496 *  link based on logic in e1000_led_[on|off]_pchlan().
4497 **/
4498static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4499{
4500        struct e1000_mac_info *mac = &hw->mac;
4501        s32 ret_val;
4502        const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4503        const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4504        u16 data, i, temp, shift;
4505
4506        /* Get default ID LED modes */
4507        ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4508        if (ret_val)
4509                return ret_val;
4510
4511        mac->ledctl_default = er32(LEDCTL);
4512        mac->ledctl_mode1 = mac->ledctl_default;
4513        mac->ledctl_mode2 = mac->ledctl_default;
4514
4515        for (i = 0; i < 4; i++) {
4516                temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4517                shift = (i * 5);
4518                switch (temp) {
4519                case ID_LED_ON1_DEF2:
4520                case ID_LED_ON1_ON2:
4521                case ID_LED_ON1_OFF2:
4522                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4523                        mac->ledctl_mode1 |= (ledctl_on << shift);
4524                        break;
4525                case ID_LED_OFF1_DEF2:
4526                case ID_LED_OFF1_ON2:
4527                case ID_LED_OFF1_OFF2:
4528                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4529                        mac->ledctl_mode1 |= (ledctl_off << shift);
4530                        break;
4531                default:
4532                        /* Do nothing */
4533                        break;
4534                }
4535                switch (temp) {
4536                case ID_LED_DEF1_ON2:
4537                case ID_LED_ON1_ON2:
4538                case ID_LED_OFF1_ON2:
4539                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4540                        mac->ledctl_mode2 |= (ledctl_on << shift);
4541                        break;
4542                case ID_LED_DEF1_OFF2:
4543                case ID_LED_ON1_OFF2:
4544                case ID_LED_OFF1_OFF2:
4545                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4546                        mac->ledctl_mode2 |= (ledctl_off << shift);
4547                        break;
4548                default:
4549                        /* Do nothing */
4550                        break;
4551                }
4552        }
4553
4554        return 0;
4555}
4556
4557/**
4558 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4559 *  @hw: pointer to the HW structure
4560 *
4561 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4562 *  register, so the the bus width is hard coded.
4563 **/
4564static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4565{
4566        struct e1000_bus_info *bus = &hw->bus;
4567        s32 ret_val;
4568
4569        ret_val = e1000e_get_bus_info_pcie(hw);
4570
4571        /* ICH devices are "PCI Express"-ish.  They have
4572         * a configuration space, but do not contain
4573         * PCI Express Capability registers, so bus width
4574         * must be hardcoded.
4575         */
4576        if (bus->width == e1000_bus_width_unknown)
4577                bus->width = e1000_bus_width_pcie_x1;
4578
4579        return ret_val;
4580}
4581
4582/**
4583 *  e1000_reset_hw_ich8lan - Reset the hardware
4584 *  @hw: pointer to the HW structure
4585 *
4586 *  Does a full reset of the hardware which includes a reset of the PHY and
4587 *  MAC.
4588 **/
4589static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4590{
4591        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4592        u16 kum_cfg;
4593        u32 ctrl, reg;
4594        s32 ret_val;
4595
4596        /* Prevent the PCI-E bus from sticking if there is no TLP connection
4597         * on the last TLP read/write transaction when MAC is reset.
4598         */
4599        ret_val = e1000e_disable_pcie_master(hw);
4600        if (ret_val)
4601                e_dbg("PCI-E Master disable polling has failed.\n");
4602
4603        e_dbg("Masking off all interrupts\n");
4604        ew32(IMC, 0xffffffff);
4605
4606        /* Disable the Transmit and Receive units.  Then delay to allow
4607         * any pending transactions to complete before we hit the MAC
4608         * with the global reset.
4609         */
4610        ew32(RCTL, 0);
4611        ew32(TCTL, E1000_TCTL_PSP);
4612        e1e_flush();
4613
4614        usleep_range(10000, 20000);
4615
4616        /* Workaround for ICH8 bit corruption issue in FIFO memory */
4617        if (hw->mac.type == e1000_ich8lan) {
4618                /* Set Tx and Rx buffer allocation to 8k apiece. */
4619                ew32(PBA, E1000_PBA_8K);
4620                /* Set Packet Buffer Size to 16k. */
4621                ew32(PBS, E1000_PBS_16K);
4622        }
4623
4624        if (hw->mac.type == e1000_pchlan) {
4625                /* Save the NVM K1 bit setting */
4626                ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4627                if (ret_val)
4628                        return ret_val;
4629
4630                if (kum_cfg & E1000_NVM_K1_ENABLE)
4631                        dev_spec->nvm_k1_enabled = true;
4632                else
4633                        dev_spec->nvm_k1_enabled = false;
4634        }
4635
4636        ctrl = er32(CTRL);
4637
4638        if (!hw->phy.ops.check_reset_block(hw)) {
4639                /* Full-chip reset requires MAC and PHY reset at the same
4640                 * time to make sure the interface between MAC and the
4641                 * external PHY is reset.
4642                 */
4643                ctrl |= E1000_CTRL_PHY_RST;
4644
4645                /* Gate automatic PHY configuration by hardware on
4646                 * non-managed 82579
4647                 */
4648                if ((hw->mac.type == e1000_pch2lan) &&
4649                    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4650                        e1000_gate_hw_phy_config_ich8lan(hw, true);
4651        }
4652        ret_val = e1000_acquire_swflag_ich8lan(hw);
4653        e_dbg("Issuing a global reset to ich8lan\n");
4654        ew32(CTRL, (ctrl | E1000_CTRL_RST));
4655        /* cannot issue a flush here because it hangs the hardware */
4656        msleep(20);
4657
4658        /* Set Phy Config Counter to 50msec */
4659        if (hw->mac.type == e1000_pch2lan) {
4660                reg = er32(FEXTNVM3);
4661                reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4662                reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4663                ew32(FEXTNVM3, reg);
4664        }
4665
4666        if (!ret_val)
4667                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4668
4669        if (ctrl & E1000_CTRL_PHY_RST) {
4670                ret_val = hw->phy.ops.get_cfg_done(hw);
4671                if (ret_val)
4672                        return ret_val;
4673
4674                ret_val = e1000_post_phy_reset_ich8lan(hw);
4675                if (ret_val)
4676                        return ret_val;
4677        }
4678
4679        /* For PCH, this write will make sure that any noise
4680         * will be detected as a CRC error and be dropped rather than show up
4681         * as a bad packet to the DMA engine.
4682         */
4683        if (hw->mac.type == e1000_pchlan)
4684                ew32(CRC_OFFSET, 0x65656565);
4685
4686        ew32(IMC, 0xffffffff);
4687        er32(ICR);
4688
4689        reg = er32(KABGTXD);
4690        reg |= E1000_KABGTXD_BGSQLBIAS;
4691        ew32(KABGTXD, reg);
4692
4693        return 0;
4694}
4695
4696/**
4697 *  e1000_init_hw_ich8lan - Initialize the hardware
4698 *  @hw: pointer to the HW structure
4699 *
4700 *  Prepares the hardware for transmit and receive by doing the following:
4701 *   - initialize hardware bits
4702 *   - initialize LED identification
4703 *   - setup receive address registers
4704 *   - setup flow control
4705 *   - setup transmit descriptors
4706 *   - clear statistics
4707 **/
4708static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4709{
4710        struct e1000_mac_info *mac = &hw->mac;
4711        u32 ctrl_ext, txdctl, snoop;
4712        s32 ret_val;
4713        u16 i;
4714
4715        e1000_initialize_hw_bits_ich8lan(hw);
4716
4717        /* Initialize identification LED */
4718        ret_val = mac->ops.id_led_init(hw);
4719        /* An error is not fatal and we should not stop init due to this */
4720        if (ret_val)
4721                e_dbg("Error initializing identification LED\n");
4722
4723        /* Setup the receive address. */
4724        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4725
4726        /* Zero out the Multicast HASH table */
4727        e_dbg("Zeroing the MTA\n");
4728        for (i = 0; i < mac->mta_reg_count; i++)
4729                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4730
4731        /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4732         * the ME.  Disable wakeup by clearing the host wakeup bit.
4733         * Reset the phy after disabling host wakeup to reset the Rx buffer.
4734         */
4735        if (hw->phy.type == e1000_phy_82578) {
4736                e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4737                i &= ~BM_WUC_HOST_WU_BIT;
4738                e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4739                ret_val = e1000_phy_hw_reset_ich8lan(hw);
4740                if (ret_val)
4741                        return ret_val;
4742        }
4743
4744        /* Setup link and flow control */
4745        ret_val = mac->ops.setup_link(hw);
4746
4747        /* Set the transmit descriptor write-back policy for both queues */
4748        txdctl = er32(TXDCTL(0));
4749        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4750                  E1000_TXDCTL_FULL_TX_DESC_WB);
4751        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4752                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4753        ew32(TXDCTL(0), txdctl);
4754        txdctl = er32(TXDCTL(1));
4755        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4756                  E1000_TXDCTL_FULL_TX_DESC_WB);
4757        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4758                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4759        ew32(TXDCTL(1), txdctl);
4760
4761        /* ICH8 has opposite polarity of no_snoop bits.
4762         * By default, we should use snoop behavior.
4763         */
4764        if (mac->type == e1000_ich8lan)
4765                snoop = PCIE_ICH8_SNOOP_ALL;
4766        else
4767                snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4768        e1000e_set_pcie_no_snoop(hw, snoop);
4769
4770        ctrl_ext = er32(CTRL_EXT);
4771        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4772        ew32(CTRL_EXT, ctrl_ext);
4773
4774        /* Clear all of the statistics registers (clear on read).  It is
4775         * important that we do this after we have tried to establish link
4776         * because the symbol error count will increment wildly if there
4777         * is no link.
4778         */
4779        e1000_clear_hw_cntrs_ich8lan(hw);
4780
4781        return ret_val;
4782}
4783
4784/**
4785 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4786 *  @hw: pointer to the HW structure
4787 *
4788 *  Sets/Clears required hardware bits necessary for correctly setting up the
4789 *  hardware for transmit and receive.
4790 **/
4791static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4792{
4793        u32 reg;
4794
4795        /* Extended Device Control */
4796        reg = er32(CTRL_EXT);
4797        reg |= (1 << 22);
4798        /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4799        if (hw->mac.type >= e1000_pchlan)
4800                reg |= E1000_CTRL_EXT_PHYPDEN;
4801        ew32(CTRL_EXT, reg);
4802
4803        /* Transmit Descriptor Control 0 */
4804        reg = er32(TXDCTL(0));
4805        reg |= (1 << 22);
4806        ew32(TXDCTL(0), reg);
4807
4808        /* Transmit Descriptor Control 1 */
4809        reg = er32(TXDCTL(1));
4810        reg |= (1 << 22);
4811        ew32(TXDCTL(1), reg);
4812
4813        /* Transmit Arbitration Control 0 */
4814        reg = er32(TARC(0));
4815        if (hw->mac.type == e1000_ich8lan)
4816                reg |= (1 << 28) | (1 << 29);
4817        reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4818        ew32(TARC(0), reg);
4819
4820        /* Transmit Arbitration Control 1 */
4821        reg = er32(TARC(1));
4822        if (er32(TCTL) & E1000_TCTL_MULR)
4823                reg &= ~(1 << 28);
4824        else
4825                reg |= (1 << 28);
4826        reg |= (1 << 24) | (1 << 26) | (1 << 30);
4827        ew32(TARC(1), reg);
4828
4829        /* Device Status */
4830        if (hw->mac.type == e1000_ich8lan) {
4831                reg = er32(STATUS);
4832                reg &= ~(1 << 31);
4833                ew32(STATUS, reg);
4834        }
4835
4836        /* work-around descriptor data corruption issue during nfs v2 udp
4837         * traffic, just disable the nfs filtering capability
4838         */
4839        reg = er32(RFCTL);
4840        reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4841
4842        /* Disable IPv6 extension header parsing because some malformed
4843         * IPv6 headers can hang the Rx.
4844         */
4845        if (hw->mac.type == e1000_ich8lan)
4846                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4847        ew32(RFCTL, reg);
4848
4849        /* Enable ECC on Lynxpoint */
4850        if ((hw->mac.type == e1000_pch_lpt) ||
4851            (hw->mac.type == e1000_pch_spt)) {
4852                reg = er32(PBECCSTS);
4853                reg |= E1000_PBECCSTS_ECC_ENABLE;
4854                ew32(PBECCSTS, reg);
4855
4856                reg = er32(CTRL);
4857                reg |= E1000_CTRL_MEHE;
4858                ew32(CTRL, reg);
4859        }
4860}
4861
4862/**
4863 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4864 *  @hw: pointer to the HW structure
4865 *
4866 *  Determines which flow control settings to use, then configures flow
4867 *  control.  Calls the appropriate media-specific link configuration
4868 *  function.  Assuming the adapter has a valid link partner, a valid link
4869 *  should be established.  Assumes the hardware has previously been reset
4870 *  and the transmitter and receiver are not enabled.
4871 **/
4872static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4873{
4874        s32 ret_val;
4875
4876        if (hw->phy.ops.check_reset_block(hw))
4877                return 0;
4878
4879        /* ICH parts do not have a word in the NVM to determine
4880         * the default flow control setting, so we explicitly
4881         * set it to full.
4882         */
4883        if (hw->fc.requested_mode == e1000_fc_default) {
4884                /* Workaround h/w hang when Tx flow control enabled */
4885                if (hw->mac.type == e1000_pchlan)
4886                        hw->fc.requested_mode = e1000_fc_rx_pause;
4887                else
4888                        hw->fc.requested_mode = e1000_fc_full;
4889        }
4890
4891        /* Save off the requested flow control mode for use later.  Depending
4892         * on the link partner's capabilities, we may or may not use this mode.
4893         */
4894        hw->fc.current_mode = hw->fc.requested_mode;
4895
4896        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4897
4898        /* Continue to configure the copper link. */
4899        ret_val = hw->mac.ops.setup_physical_interface(hw);
4900        if (ret_val)
4901                return ret_val;
4902
4903        ew32(FCTTV, hw->fc.pause_time);
4904        if ((hw->phy.type == e1000_phy_82578) ||
4905            (hw->phy.type == e1000_phy_82579) ||
4906            (hw->phy.type == e1000_phy_i217) ||
4907            (hw->phy.type == e1000_phy_82577)) {
4908                ew32(FCRTV_PCH, hw->fc.refresh_time);
4909
4910                ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4911                                   hw->fc.pause_time);
4912                if (ret_val)
4913                        return ret_val;
4914        }
4915
4916        return e1000e_set_fc_watermarks(hw);
4917}
4918
4919/**
4920 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4921 *  @hw: pointer to the HW structure
4922 *
4923 *  Configures the kumeran interface to the PHY to wait the appropriate time
4924 *  when polling the PHY, then call the generic setup_copper_link to finish
4925 *  configuring the copper link.
4926 **/
4927static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4928{
4929        u32 ctrl;
4930        s32 ret_val;
4931        u16 reg_data;
4932
4933        ctrl = er32(CTRL);
4934        ctrl |= E1000_CTRL_SLU;
4935        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4936        ew32(CTRL, ctrl);
4937
4938        /* Set the mac to wait the maximum time between each iteration
4939         * and increase the max iterations when polling the phy;
4940         * this fixes erroneous timeouts at 10Mbps.
4941         */
4942        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4943        if (ret_val)
4944                return ret_val;
4945        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4946                                       &reg_data);
4947        if (ret_val)
4948                return ret_val;
4949        reg_data |= 0x3F;
4950        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4951                                        reg_data);
4952        if (ret_val)
4953                return ret_val;
4954
4955        switch (hw->phy.type) {
4956        case e1000_phy_igp_3:
4957                ret_val = e1000e_copper_link_setup_igp(hw);
4958                if (ret_val)
4959                        return ret_val;
4960                break;
4961        case e1000_phy_bm:
4962        case e1000_phy_82578:
4963                ret_val = e1000e_copper_link_setup_m88(hw);
4964                if (ret_val)
4965                        return ret_val;
4966                break;
4967        case e1000_phy_82577:
4968        case e1000_phy_82579:
4969                ret_val = e1000_copper_link_setup_82577(hw);
4970                if (ret_val)
4971                        return ret_val;
4972                break;
4973        case e1000_phy_ife:
4974                ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4975                if (ret_val)
4976                        return ret_val;
4977
4978                reg_data &= ~IFE_PMC_AUTO_MDIX;
4979
4980                switch (hw->phy.mdix) {
4981                case 1:
4982                        reg_data &= ~IFE_PMC_FORCE_MDIX;
4983                        break;
4984                case 2:
4985                        reg_data |= IFE_PMC_FORCE_MDIX;
4986                        break;
4987                case 0:
4988                default:
4989                        reg_data |= IFE_PMC_AUTO_MDIX;
4990                        break;
4991                }
4992                ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4993                if (ret_val)
4994                        return ret_val;
4995                break;
4996        default:
4997                break;
4998        }
4999
5000        return e1000e_setup_copper_link(hw);
5001}
5002
5003/**
5004 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5005 *  @hw: pointer to the HW structure
5006 *
5007 *  Calls the PHY specific link setup function and then calls the
5008 *  generic setup_copper_link to finish configuring the link for
5009 *  Lynxpoint PCH devices
5010 **/
5011static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5012{
5013        u32 ctrl;
5014        s32 ret_val;
5015
5016        ctrl = er32(CTRL);
5017        ctrl |= E1000_CTRL_SLU;
5018        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5019        ew32(CTRL, ctrl);
5020
5021        ret_val = e1000_copper_link_setup_82577(hw);
5022        if (ret_val)
5023                return ret_val;
5024
5025        return e1000e_setup_copper_link(hw);
5026}
5027
5028/**
5029 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5030 *  @hw: pointer to the HW structure
5031 *  @speed: pointer to store current link speed
5032 *  @duplex: pointer to store the current link duplex
5033 *
5034 *  Calls the generic get_speed_and_duplex to retrieve the current link
5035 *  information and then calls the Kumeran lock loss workaround for links at
5036 *  gigabit speeds.
5037 **/
5038static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5039                                          u16 *duplex)
5040{
5041        s32 ret_val;
5042
5043        ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5044        if (ret_val)
5045                return ret_val;
5046
5047        if ((hw->mac.type == e1000_ich8lan) &&
5048            (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5049                ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5050        }
5051
5052        return ret_val;
5053}
5054
5055/**
5056 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5057 *  @hw: pointer to the HW structure
5058 *
5059 *  Work-around for 82566 Kumeran PCS lock loss:
5060 *  On link status change (i.e. PCI reset, speed change) and link is up and
5061 *  speed is gigabit-
5062 *    0) if workaround is optionally disabled do nothing
5063 *    1) wait 1ms for Kumeran link to come up
5064 *    2) check Kumeran Diagnostic register PCS lock loss bit
5065 *    3) if not set the link is locked (all is good), otherwise...
5066 *    4) reset the PHY
5067 *    5) repeat up to 10 times
5068 *  Note: this is only called for IGP3 copper when speed is 1gb.
5069 **/
5070static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5071{
5072        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5073        u32 phy_ctrl;
5074        s32 ret_val;
5075        u16 i, data;
5076        bool link;
5077
5078        if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5079                return 0;
5080
5081        /* Make sure link is up before proceeding.  If not just return.
5082         * Attempting this while link is negotiating fouled up link
5083         * stability
5084         */
5085        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5086        if (!link)
5087                return 0;
5088
5089        for (i = 0; i < 10; i++) {
5090                /* read once to clear */
5091                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5092                if (ret_val)
5093                        return ret_val;
5094                /* and again to get new status */
5095                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5096                if (ret_val)
5097                        return ret_val;
5098
5099                /* check for PCS lock */
5100                if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5101                        return 0;
5102
5103                /* Issue PHY reset */
5104                e1000_phy_hw_reset(hw);
5105                mdelay(5);
5106        }
5107        /* Disable GigE link negotiation */
5108        phy_ctrl = er32(PHY_CTRL);
5109        phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5110                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5111        ew32(PHY_CTRL, phy_ctrl);
5112
5113        /* Call gig speed drop workaround on Gig disable before accessing
5114         * any PHY registers
5115         */
5116        e1000e_gig_downshift_workaround_ich8lan(hw);
5117
5118        /* unable to acquire PCS lock */
5119        return -E1000_ERR_PHY;
5120}
5121
5122/**
5123 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5124 *  @hw: pointer to the HW structure
5125 *  @state: boolean value used to set the current Kumeran workaround state
5126 *
5127 *  If ICH8, set the current Kumeran workaround state (enabled - true
5128 *  /disabled - false).
5129 **/
5130void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5131                                                  bool state)
5132{
5133        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5134
5135        if (hw->mac.type != e1000_ich8lan) {
5136                e_dbg("Workaround applies to ICH8 only.\n");
5137                return;
5138        }
5139
5140        dev_spec->kmrn_lock_loss_workaround_enabled = state;
5141}
5142
5143/**
5144 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5145 *  @hw: pointer to the HW structure
5146 *
5147 *  Workaround for 82566 power-down on D3 entry:
5148 *    1) disable gigabit link
5149 *    2) write VR power-down enable
5150 *    3) read it back
5151 *  Continue if successful, else issue LCD reset and repeat
5152 **/
5153void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5154{
5155        u32 reg;
5156        u16 data;
5157        u8 retry = 0;
5158
5159        if (hw->phy.type != e1000_phy_igp_3)
5160                return;
5161
5162        /* Try the workaround twice (if needed) */
5163        do {
5164                /* Disable link */
5165                reg = er32(PHY_CTRL);
5166                reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5167                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5168                ew32(PHY_CTRL, reg);
5169
5170                /* Call gig speed drop workaround on Gig disable before
5171                 * accessing any PHY registers
5172                 */
5173                if (hw->mac.type == e1000_ich8lan)
5174                        e1000e_gig_downshift_workaround_ich8lan(hw);
5175
5176                /* Write VR power-down enable */
5177                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5178                data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5179                e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5180
5181                /* Read it back and test */
5182                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5183                data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5184                if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5185                        break;
5186
5187                /* Issue PHY reset and repeat at most one more time */
5188                reg = er32(CTRL);
5189                ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5190                retry++;
5191        } while (retry);
5192}
5193
5194/**
5195 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5196 *  @hw: pointer to the HW structure
5197 *
5198 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5199 *  LPLU, Gig disable, MDIC PHY reset):
5200 *    1) Set Kumeran Near-end loopback
5201 *    2) Clear Kumeran Near-end loopback
5202 *  Should only be called for ICH8[m] devices with any 1G Phy.
5203 **/
5204void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5205{
5206        s32 ret_val;
5207        u16 reg_data;
5208
5209        if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5210                return;
5211
5212        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5213                                       &reg_data);
5214        if (ret_val)
5215                return;
5216        reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5217        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5218                                        reg_data);
5219        if (ret_val)
5220                return;
5221        reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5222        e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5223}
5224
5225/**
5226 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5227 *  @hw: pointer to the HW structure
5228 *
5229 *  During S0 to Sx transition, it is possible the link remains at gig
5230 *  instead of negotiating to a lower speed.  Before going to Sx, set
5231 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5232 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5233 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5234 *  needs to be written.
5235 *  Parts that support (and are linked to a partner which support) EEE in
5236 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5237 *  than 10Mbps w/o EEE.
5238 **/
5239void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5240{
5241        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5242        u32 phy_ctrl;
5243        s32 ret_val;
5244
5245        phy_ctrl = er32(PHY_CTRL);
5246        phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5247
5248        if (hw->phy.type == e1000_phy_i217) {
5249                u16 phy_reg, device_id = hw->adapter->pdev->device;
5250
5251                if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5252                    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5253                    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5254                    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5255                    (hw->mac.type == e1000_pch_spt)) {
5256                        u32 fextnvm6 = er32(FEXTNVM6);
5257
5258                        ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5259                }
5260
5261                ret_val = hw->phy.ops.acquire(hw);
5262                if (ret_val)
5263                        goto out;
5264
5265                if (!dev_spec->eee_disable) {
5266                        u16 eee_advert;
5267
5268                        ret_val =
5269                            e1000_read_emi_reg_locked(hw,
5270                                                      I217_EEE_ADVERTISEMENT,
5271                                                      &eee_advert);
5272                        if (ret_val)
5273                                goto release;
5274
5275                        /* Disable LPLU if both link partners support 100BaseT
5276                         * EEE and 100Full is advertised on both ends of the
5277                         * link, and enable Auto Enable LPI since there will
5278                         * be no driver to enable LPI while in Sx.
5279                         */
5280                        if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5281                            (dev_spec->eee_lp_ability &
5282                             I82579_EEE_100_SUPPORTED) &&
5283                            (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5284                                phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5285                                              E1000_PHY_CTRL_NOND0A_LPLU);
5286
5287                                /* Set Auto Enable LPI after link up */
5288                                e1e_rphy_locked(hw,
5289                                                I217_LPI_GPIO_CTRL, &phy_reg);
5290                                phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5291                                e1e_wphy_locked(hw,
5292                                                I217_LPI_GPIO_CTRL, phy_reg);
5293                        }
5294                }
5295
5296                /* For i217 Intel Rapid Start Technology support,
5297                 * when the system is going into Sx and no manageability engine
5298                 * is present, the driver must configure proxy to reset only on
5299                 * power good.  LPI (Low Power Idle) state must also reset only
5300                 * on power good, as well as the MTA (Multicast table array).
5301                 * The SMBus release must also be disabled on LCD reset.
5302                 */
5303                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5304                        /* Enable proxy to reset only on power good. */
5305                        e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5306                        phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5307                        e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5308
5309                        /* Set bit enable LPI (EEE) to reset only on
5310                         * power good.
5311                         */
5312                        e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5313                        phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5314                        e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5315
5316                        /* Disable the SMB release on LCD reset. */
5317                        e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5318                        phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5319                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5320                }
5321
5322                /* Enable MTA to reset for Intel Rapid Start Technology
5323                 * Support
5324                 */
5325                e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5326                phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5327                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5328
5329release:
5330                hw->phy.ops.release(hw);
5331        }
5332out:
5333        ew32(PHY_CTRL, phy_ctrl);
5334
5335        if (hw->mac.type == e1000_ich8lan)
5336                e1000e_gig_downshift_workaround_ich8lan(hw);
5337
5338        if (hw->mac.type >= e1000_pchlan) {
5339                e1000_oem_bits_config_ich8lan(hw, false);
5340
5341                /* Reset PHY to activate OEM bits on 82577/8 */
5342                if (hw->mac.type == e1000_pchlan)
5343                        e1000e_phy_hw_reset_generic(hw);
5344
5345                ret_val = hw->phy.ops.acquire(hw);
5346                if (ret_val)
5347                        return;
5348                e1000_write_smbus_addr(hw);
5349                hw->phy.ops.release(hw);
5350        }
5351}
5352
5353/**
5354 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5355 *  @hw: pointer to the HW structure
5356 *
5357 *  During Sx to S0 transitions on non-managed devices or managed devices
5358 *  on which PHY resets are not blocked, if the PHY registers cannot be
5359 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5360 *  the PHY.
5361 *  On i217, setup Intel Rapid Start Technology.
5362 **/
5363void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5364{
5365        s32 ret_val;
5366
5367        if (hw->mac.type < e1000_pch2lan)
5368                return;
5369
5370        ret_val = e1000_init_phy_workarounds_pchlan(hw);
5371        if (ret_val) {
5372                e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5373                return;
5374        }
5375
5376        /* For i217 Intel Rapid Start Technology support when the system
5377         * is transitioning from Sx and no manageability engine is present
5378         * configure SMBus to restore on reset, disable proxy, and enable
5379         * the reset on MTA (Multicast table array).
5380         */
5381        if (hw->phy.type == e1000_phy_i217) {
5382                u16 phy_reg;
5383
5384                ret_val = hw->phy.ops.acquire(hw);
5385                if (ret_val) {
5386                        e_dbg("Failed to setup iRST\n");
5387                        return;
5388                }
5389
5390                /* Clear Auto Enable LPI after link up */
5391                e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5392                phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5393                e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5394
5395                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5396                        /* Restore clear on SMB if no manageability engine
5397                         * is present
5398                         */
5399                        ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5400                        if (ret_val)
5401                                goto release;
5402                        phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5403                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5404
5405                        /* Disable Proxy */
5406                        e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5407                }
5408                /* Enable reset on MTA */
5409                ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5410                if (ret_val)
5411                        goto release;
5412                phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5413                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5414release:
5415                if (ret_val)
5416                        e_dbg("Error %d in resume workarounds\n", ret_val);
5417                hw->phy.ops.release(hw);
5418        }
5419}
5420
5421/**
5422 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5423 *  @hw: pointer to the HW structure
5424 *
5425 *  Return the LED back to the default configuration.
5426 **/
5427static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5428{
5429        if (hw->phy.type == e1000_phy_ife)
5430                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5431
5432        ew32(LEDCTL, hw->mac.ledctl_default);
5433        return 0;
5434}
5435
5436/**
5437 *  e1000_led_on_ich8lan - Turn LEDs on
5438 *  @hw: pointer to the HW structure
5439 *
5440 *  Turn on the LEDs.
5441 **/
5442static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5443{
5444        if (hw->phy.type == e1000_phy_ife)
5445                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5446                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5447
5448        ew32(LEDCTL, hw->mac.ledctl_mode2);
5449        return 0;
5450}
5451
5452/**
5453 *  e1000_led_off_ich8lan - Turn LEDs off
5454 *  @hw: pointer to the HW structure
5455 *
5456 *  Turn off the LEDs.
5457 **/
5458static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5459{
5460        if (hw->phy.type == e1000_phy_ife)
5461                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5462                                (IFE_PSCL_PROBE_MODE |
5463                                 IFE_PSCL_PROBE_LEDS_OFF));
5464
5465        ew32(LEDCTL, hw->mac.ledctl_mode1);
5466        return 0;
5467}
5468
5469/**
5470 *  e1000_setup_led_pchlan - Configures SW controllable LED
5471 *  @hw: pointer to the HW structure
5472 *
5473 *  This prepares the SW controllable LED for use.
5474 **/
5475static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5476{
5477        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5478}
5479
5480/**
5481 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5482 *  @hw: pointer to the HW structure
5483 *
5484 *  Return the LED back to the default configuration.
5485 **/
5486static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5487{
5488        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5489}
5490
5491/**
5492 *  e1000_led_on_pchlan - Turn LEDs on
5493 *  @hw: pointer to the HW structure
5494 *
5495 *  Turn on the LEDs.
5496 **/
5497static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5498{
5499        u16 data = (u16)hw->mac.ledctl_mode2;
5500        u32 i, led;
5501
5502        /* If no link, then turn LED on by setting the invert bit
5503         * for each LED that's mode is "link_up" in ledctl_mode2.
5504         */
5505        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5506                for (i = 0; i < 3; i++) {
5507                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5508                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5509                            E1000_LEDCTL_MODE_LINK_UP)
5510                                continue;
5511                        if (led & E1000_PHY_LED0_IVRT)
5512                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5513                        else
5514                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5515                }
5516        }
5517
5518        return e1e_wphy(hw, HV_LED_CONFIG, data);
5519}
5520
5521/**
5522 *  e1000_led_off_pchlan - Turn LEDs off
5523 *  @hw: pointer to the HW structure
5524 *
5525 *  Turn off the LEDs.
5526 **/
5527static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5528{
5529        u16 data = (u16)hw->mac.ledctl_mode1;
5530        u32 i, led;
5531
5532        /* If no link, then turn LED off by clearing the invert bit
5533         * for each LED that's mode is "link_up" in ledctl_mode1.
5534         */
5535        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5536                for (i = 0; i < 3; i++) {
5537                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5538                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5539                            E1000_LEDCTL_MODE_LINK_UP)
5540                                continue;
5541                        if (led & E1000_PHY_LED0_IVRT)
5542                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5543                        else
5544                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5545                }
5546        }
5547
5548        return e1e_wphy(hw, HV_LED_CONFIG, data);
5549}
5550
5551/**
5552 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5553 *  @hw: pointer to the HW structure
5554 *
5555 *  Read appropriate register for the config done bit for completion status
5556 *  and configure the PHY through s/w for EEPROM-less parts.
5557 *
5558 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5559 *  config done bit, so only an error is logged and continues.  If we were
5560 *  to return with error, EEPROM-less silicon would not be able to be reset
5561 *  or change link.
5562 **/
5563static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5564{
5565        s32 ret_val = 0;
5566        u32 bank = 0;
5567        u32 status;
5568
5569        e1000e_get_cfg_done_generic(hw);
5570
5571        /* Wait for indication from h/w that it has completed basic config */
5572        if (hw->mac.type >= e1000_ich10lan) {
5573                e1000_lan_init_done_ich8lan(hw);
5574        } else {
5575                ret_val = e1000e_get_auto_rd_done(hw);
5576                if (ret_val) {
5577                        /* When auto config read does not complete, do not
5578                         * return with an error. This can happen in situations
5579                         * where there is no eeprom and prevents getting link.
5580                         */
5581                        e_dbg("Auto Read Done did not complete\n");
5582                        ret_val = 0;
5583                }
5584        }
5585
5586        /* Clear PHY Reset Asserted bit */
5587        status = er32(STATUS);
5588        if (status & E1000_STATUS_PHYRA)
5589                ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5590        else
5591                e_dbg("PHY Reset Asserted not set - needs delay\n");
5592
5593        /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5594        if (hw->mac.type <= e1000_ich9lan) {
5595                if (!(er32(EECD) & E1000_EECD_PRES) &&
5596                    (hw->phy.type == e1000_phy_igp_3)) {
5597                        e1000e_phy_init_script_igp3(hw);
5598                }
5599        } else {
5600                if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5601                        /* Maybe we should do a basic PHY config */
5602                        e_dbg("EEPROM not present\n");
5603                        ret_val = -E1000_ERR_CONFIG;
5604                }
5605        }
5606
5607        return ret_val;
5608}
5609
5610/**
5611 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5612 * @hw: pointer to the HW structure
5613 *
5614 * In the case of a PHY power down to save power, or to turn off link during a
5615 * driver unload, or wake on lan is not enabled, remove the link.
5616 **/
5617static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5618{
5619        /* If the management interface is not enabled, then power down */
5620        if (!(hw->mac.ops.check_mng_mode(hw) ||
5621              hw->phy.ops.check_reset_block(hw)))
5622                e1000_power_down_phy_copper(hw);
5623}
5624
5625/**
5626 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5627 *  @hw: pointer to the HW structure
5628 *
5629 *  Clears hardware counters specific to the silicon family and calls
5630 *  clear_hw_cntrs_generic to clear all general purpose counters.
5631 **/
5632static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5633{
5634        u16 phy_data;
5635        s32 ret_val;
5636
5637        e1000e_clear_hw_cntrs_base(hw);
5638
5639        er32(ALGNERRC);
5640        er32(RXERRC);
5641        er32(TNCRS);
5642        er32(CEXTERR);
5643        er32(TSCTC);
5644        er32(TSCTFC);
5645
5646        er32(MGTPRC);
5647        er32(MGTPDC);
5648        er32(MGTPTC);
5649
5650        er32(IAC);
5651        er32(ICRXOC);
5652
5653        /* Clear PHY statistics registers */
5654        if ((hw->phy.type == e1000_phy_82578) ||
5655            (hw->phy.type == e1000_phy_82579) ||
5656            (hw->phy.type == e1000_phy_i217) ||
5657            (hw->phy.type == e1000_phy_82577)) {
5658                ret_val = hw->phy.ops.acquire(hw);
5659                if (ret_val)
5660                        return;
5661                ret_val = hw->phy.ops.set_page(hw,
5662                                               HV_STATS_PAGE << IGP_PAGE_SHIFT);
5663                if (ret_val)
5664                        goto release;
5665                hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5666                hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5667                hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5668                hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5669                hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5670                hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5671                hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5672                hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5673                hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5674                hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5675                hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5676                hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5677                hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5678                hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5679release:
5680                hw->phy.ops.release(hw);
5681        }
5682}
5683
5684static const struct e1000_mac_operations ich8_mac_ops = {
5685        /* check_mng_mode dependent on mac type */
5686        .check_for_link         = e1000_check_for_copper_link_ich8lan,
5687        /* cleanup_led dependent on mac type */
5688        .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5689        .get_bus_info           = e1000_get_bus_info_ich8lan,
5690        .set_lan_id             = e1000_set_lan_id_single_port,
5691        .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5692        /* led_on dependent on mac type */
5693        /* led_off dependent on mac type */
5694        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5695        .reset_hw               = e1000_reset_hw_ich8lan,
5696        .init_hw                = e1000_init_hw_ich8lan,
5697        .setup_link             = e1000_setup_link_ich8lan,
5698        .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5699        /* id_led_init dependent on mac type */
5700        .config_collision_dist  = e1000e_config_collision_dist_generic,
5701        .rar_set                = e1000e_rar_set_generic,
5702        .rar_get_count          = e1000e_rar_get_count_generic,
5703};
5704
5705static const struct e1000_phy_operations ich8_phy_ops = {
5706        .acquire                = e1000_acquire_swflag_ich8lan,
5707        .check_reset_block      = e1000_check_reset_block_ich8lan,
5708        .commit                 = NULL,
5709        .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5710        .get_cable_length       = e1000e_get_cable_length_igp_2,
5711        .read_reg               = e1000e_read_phy_reg_igp,
5712        .release                = e1000_release_swflag_ich8lan,
5713        .reset                  = e1000_phy_hw_reset_ich8lan,
5714        .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5715        .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5716        .write_reg              = e1000e_write_phy_reg_igp,
5717};
5718
5719static const struct e1000_nvm_operations ich8_nvm_ops = {
5720        .acquire                = e1000_acquire_nvm_ich8lan,
5721        .read                   = e1000_read_nvm_ich8lan,
5722        .release                = e1000_release_nvm_ich8lan,
5723        .reload                 = e1000e_reload_nvm_generic,
5724        .update                 = e1000_update_nvm_checksum_ich8lan,
5725        .valid_led_default      = e1000_valid_led_default_ich8lan,
5726        .validate               = e1000_validate_nvm_checksum_ich8lan,
5727        .write                  = e1000_write_nvm_ich8lan,
5728};
5729
5730static const struct e1000_nvm_operations spt_nvm_ops = {
5731        .acquire                = e1000_acquire_nvm_ich8lan,
5732        .release                = e1000_release_nvm_ich8lan,
5733        .read                   = e1000_read_nvm_spt,
5734        .update                 = e1000_update_nvm_checksum_spt,
5735        .reload                 = e1000e_reload_nvm_generic,
5736        .valid_led_default      = e1000_valid_led_default_ich8lan,
5737        .validate               = e1000_validate_nvm_checksum_ich8lan,
5738        .write                  = e1000_write_nvm_ich8lan,
5739};
5740
5741const struct e1000_info e1000_ich8_info = {
5742        .mac                    = e1000_ich8lan,
5743        .flags                  = FLAG_HAS_WOL
5744                                  | FLAG_IS_ICH
5745                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5746                                  | FLAG_HAS_AMT
5747                                  | FLAG_HAS_FLASH
5748                                  | FLAG_APME_IN_WUC,
5749        .pba                    = 8,
5750        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5751        .get_variants           = e1000_get_variants_ich8lan,
5752        .mac_ops                = &ich8_mac_ops,
5753        .phy_ops                = &ich8_phy_ops,
5754        .nvm_ops                = &ich8_nvm_ops,
5755};
5756
5757const struct e1000_info e1000_ich9_info = {
5758        .mac                    = e1000_ich9lan,
5759        .flags                  = FLAG_HAS_JUMBO_FRAMES
5760                                  | FLAG_IS_ICH
5761                                  | FLAG_HAS_WOL
5762                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5763                                  | FLAG_HAS_AMT
5764                                  | FLAG_HAS_FLASH
5765                                  | FLAG_APME_IN_WUC,
5766        .pba                    = 18,
5767        .max_hw_frame_size      = DEFAULT_JUMBO,
5768        .get_variants           = e1000_get_variants_ich8lan,
5769        .mac_ops                = &ich8_mac_ops,
5770        .phy_ops                = &ich8_phy_ops,
5771        .nvm_ops                = &ich8_nvm_ops,
5772};
5773
5774const struct e1000_info e1000_ich10_info = {
5775        .mac                    = e1000_ich10lan,
5776        .flags                  = FLAG_HAS_JUMBO_FRAMES
5777                                  | FLAG_IS_ICH
5778                                  | FLAG_HAS_WOL
5779                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5780                                  | FLAG_HAS_AMT
5781                                  | FLAG_HAS_FLASH
5782                                  | FLAG_APME_IN_WUC,
5783        .pba                    = 18,
5784        .max_hw_frame_size      = DEFAULT_JUMBO,
5785        .get_variants           = e1000_get_variants_ich8lan,
5786        .mac_ops                = &ich8_mac_ops,
5787        .phy_ops                = &ich8_phy_ops,
5788        .nvm_ops                = &ich8_nvm_ops,
5789};
5790
5791const struct e1000_info e1000_pch_info = {
5792        .mac                    = e1000_pchlan,
5793        .flags                  = FLAG_IS_ICH
5794                                  | FLAG_HAS_WOL
5795                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5796                                  | FLAG_HAS_AMT
5797                                  | FLAG_HAS_FLASH
5798                                  | FLAG_HAS_JUMBO_FRAMES
5799                                  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5800                                  | FLAG_APME_IN_WUC,
5801        .flags2                 = FLAG2_HAS_PHY_STATS,
5802        .pba                    = 26,
5803        .max_hw_frame_size      = 4096,
5804        .get_variants           = e1000_get_variants_ich8lan,
5805        .mac_ops                = &ich8_mac_ops,
5806        .phy_ops                = &ich8_phy_ops,
5807        .nvm_ops                = &ich8_nvm_ops,
5808};
5809
5810const struct e1000_info e1000_pch2_info = {
5811        .mac                    = e1000_pch2lan,
5812        .flags                  = FLAG_IS_ICH
5813                                  | FLAG_HAS_WOL
5814                                  | FLAG_HAS_HW_TIMESTAMP
5815                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5816                                  | FLAG_HAS_AMT
5817                                  | FLAG_HAS_FLASH
5818                                  | FLAG_HAS_JUMBO_FRAMES
5819                                  | FLAG_APME_IN_WUC,
5820        .flags2                 = FLAG2_HAS_PHY_STATS
5821                                  | FLAG2_HAS_EEE,
5822        .pba                    = 26,
5823        .max_hw_frame_size      = 9022,
5824        .get_variants           = e1000_get_variants_ich8lan,
5825        .mac_ops                = &ich8_mac_ops,
5826        .phy_ops                = &ich8_phy_ops,
5827        .nvm_ops                = &ich8_nvm_ops,
5828};
5829
5830const struct e1000_info e1000_pch_lpt_info = {
5831        .mac                    = e1000_pch_lpt,
5832        .flags                  = FLAG_IS_ICH
5833                                  | FLAG_HAS_WOL
5834                                  | FLAG_HAS_HW_TIMESTAMP
5835                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5836                                  | FLAG_HAS_AMT
5837                                  | FLAG_HAS_FLASH
5838                                  | FLAG_HAS_JUMBO_FRAMES
5839                                  | FLAG_APME_IN_WUC,
5840        .flags2                 = FLAG2_HAS_PHY_STATS
5841                                  | FLAG2_HAS_EEE,
5842        .pba                    = 26,
5843        .max_hw_frame_size      = 9022,
5844        .get_variants           = e1000_get_variants_ich8lan,
5845        .mac_ops                = &ich8_mac_ops,
5846        .phy_ops                = &ich8_phy_ops,
5847        .nvm_ops                = &ich8_nvm_ops,
5848};
5849
5850const struct e1000_info e1000_pch_spt_info = {
5851        .mac                    = e1000_pch_spt,
5852        .flags                  = FLAG_IS_ICH
5853                                  | FLAG_HAS_WOL
5854                                  | FLAG_HAS_HW_TIMESTAMP
5855                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5856                                  | FLAG_HAS_AMT
5857                                  | FLAG_HAS_FLASH
5858                                  | FLAG_HAS_JUMBO_FRAMES
5859                                  | FLAG_APME_IN_WUC,
5860        .flags2                 = FLAG2_HAS_PHY_STATS
5861                                  | FLAG2_HAS_EEE,
5862        .pba                    = 26,
5863        .max_hw_frame_size      = 9022,
5864        .get_variants           = e1000_get_variants_ich8lan,
5865        .mac_ops                = &ich8_mac_ops,
5866        .phy_ops                = &ich8_phy_ops,
5867        .nvm_ops                = &spt_nvm_ops,
5868};
5869