linux/drivers/net/ethernet/intel/igb/e1000_phy.c
<<
>>
Prefs
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#include <linux/if_ether.h>
  25#include <linux/delay.h>
  26
  27#include "e1000_mac.h"
  28#include "e1000_phy.h"
  29
  30static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
  31static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
  32                                             u16 *phy_ctrl);
  33static s32  igb_wait_autoneg(struct e1000_hw *hw);
  34static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
  35
  36/* Cable length tables */
  37static const u16 e1000_m88_cable_length_table[] = {
  38        0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  39
  40static const u16 e1000_igp_2_cable_length_table[] = {
  41        0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
  42        0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
  43        6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
  44        21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
  45        40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
  46        60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
  47        83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
  48        104, 109, 114, 118, 121, 124};
  49
  50/**
  51 *  igb_check_reset_block - Check if PHY reset is blocked
  52 *  @hw: pointer to the HW structure
  53 *
  54 *  Read the PHY management control register and check whether a PHY reset
  55 *  is blocked.  If a reset is not blocked return 0, otherwise
  56 *  return E1000_BLK_PHY_RESET (12).
  57 **/
  58s32 igb_check_reset_block(struct e1000_hw *hw)
  59{
  60        u32 manc;
  61
  62        manc = rd32(E1000_MANC);
  63
  64        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  65}
  66
  67/**
  68 *  igb_get_phy_id - Retrieve the PHY ID and revision
  69 *  @hw: pointer to the HW structure
  70 *
  71 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  72 *  revision in the hardware structure.
  73 **/
  74s32 igb_get_phy_id(struct e1000_hw *hw)
  75{
  76        struct e1000_phy_info *phy = &hw->phy;
  77        s32 ret_val = 0;
  78        u16 phy_id;
  79
  80        ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
  81        if (ret_val)
  82                goto out;
  83
  84        phy->id = (u32)(phy_id << 16);
  85        udelay(20);
  86        ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
  87        if (ret_val)
  88                goto out;
  89
  90        phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  91        phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  92
  93out:
  94        return ret_val;
  95}
  96
  97/**
  98 *  igb_phy_reset_dsp - Reset PHY DSP
  99 *  @hw: pointer to the HW structure
 100 *
 101 *  Reset the digital signal processor.
 102 **/
 103static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
 104{
 105        s32 ret_val = 0;
 106
 107        if (!(hw->phy.ops.write_reg))
 108                goto out;
 109
 110        ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 111        if (ret_val)
 112                goto out;
 113
 114        ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
 115
 116out:
 117        return ret_val;
 118}
 119
 120/**
 121 *  igb_read_phy_reg_mdic - Read MDI control register
 122 *  @hw: pointer to the HW structure
 123 *  @offset: register offset to be read
 124 *  @data: pointer to the read data
 125 *
 126 *  Reads the MDI control regsiter in the PHY at offset and stores the
 127 *  information read to data.
 128 **/
 129s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 130{
 131        struct e1000_phy_info *phy = &hw->phy;
 132        u32 i, mdic = 0;
 133        s32 ret_val = 0;
 134
 135        if (offset > MAX_PHY_REG_ADDRESS) {
 136                hw_dbg("PHY Address %d is out of range\n", offset);
 137                ret_val = -E1000_ERR_PARAM;
 138                goto out;
 139        }
 140
 141        /* Set up Op-code, Phy Address, and register offset in the MDI
 142         * Control register.  The MAC will take care of interfacing with the
 143         * PHY to retrieve the desired data.
 144         */
 145        mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 146                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 147                (E1000_MDIC_OP_READ));
 148
 149        wr32(E1000_MDIC, mdic);
 150
 151        /* Poll the ready bit to see if the MDI read completed
 152         * Increasing the time out as testing showed failures with
 153         * the lower time out
 154         */
 155        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 156                udelay(50);
 157                mdic = rd32(E1000_MDIC);
 158                if (mdic & E1000_MDIC_READY)
 159                        break;
 160        }
 161        if (!(mdic & E1000_MDIC_READY)) {
 162                hw_dbg("MDI Read did not complete\n");
 163                ret_val = -E1000_ERR_PHY;
 164                goto out;
 165        }
 166        if (mdic & E1000_MDIC_ERROR) {
 167                hw_dbg("MDI Error\n");
 168                ret_val = -E1000_ERR_PHY;
 169                goto out;
 170        }
 171        *data = (u16) mdic;
 172
 173out:
 174        return ret_val;
 175}
 176
 177/**
 178 *  igb_write_phy_reg_mdic - Write MDI control register
 179 *  @hw: pointer to the HW structure
 180 *  @offset: register offset to write to
 181 *  @data: data to write to register at offset
 182 *
 183 *  Writes data to MDI control register in the PHY at offset.
 184 **/
 185s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 186{
 187        struct e1000_phy_info *phy = &hw->phy;
 188        u32 i, mdic = 0;
 189        s32 ret_val = 0;
 190
 191        if (offset > MAX_PHY_REG_ADDRESS) {
 192                hw_dbg("PHY Address %d is out of range\n", offset);
 193                ret_val = -E1000_ERR_PARAM;
 194                goto out;
 195        }
 196
 197        /* Set up Op-code, Phy Address, and register offset in the MDI
 198         * Control register.  The MAC will take care of interfacing with the
 199         * PHY to retrieve the desired data.
 200         */
 201        mdic = (((u32)data) |
 202                (offset << E1000_MDIC_REG_SHIFT) |
 203                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 204                (E1000_MDIC_OP_WRITE));
 205
 206        wr32(E1000_MDIC, mdic);
 207
 208        /* Poll the ready bit to see if the MDI read completed
 209         * Increasing the time out as testing showed failures with
 210         * the lower time out
 211         */
 212        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 213                udelay(50);
 214                mdic = rd32(E1000_MDIC);
 215                if (mdic & E1000_MDIC_READY)
 216                        break;
 217        }
 218        if (!(mdic & E1000_MDIC_READY)) {
 219                hw_dbg("MDI Write did not complete\n");
 220                ret_val = -E1000_ERR_PHY;
 221                goto out;
 222        }
 223        if (mdic & E1000_MDIC_ERROR) {
 224                hw_dbg("MDI Error\n");
 225                ret_val = -E1000_ERR_PHY;
 226                goto out;
 227        }
 228
 229out:
 230        return ret_val;
 231}
 232
 233/**
 234 *  igb_read_phy_reg_i2c - Read PHY register using i2c
 235 *  @hw: pointer to the HW structure
 236 *  @offset: register offset to be read
 237 *  @data: pointer to the read data
 238 *
 239 *  Reads the PHY register at offset using the i2c interface and stores the
 240 *  retrieved information in data.
 241 **/
 242s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
 243{
 244        struct e1000_phy_info *phy = &hw->phy;
 245        u32 i, i2ccmd = 0;
 246
 247        /* Set up Op-code, Phy Address, and register address in the I2CCMD
 248         * register.  The MAC will take care of interfacing with the
 249         * PHY to retrieve the desired data.
 250         */
 251        i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 252                  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 253                  (E1000_I2CCMD_OPCODE_READ));
 254
 255        wr32(E1000_I2CCMD, i2ccmd);
 256
 257        /* Poll the ready bit to see if the I2C read completed */
 258        for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 259                udelay(50);
 260                i2ccmd = rd32(E1000_I2CCMD);
 261                if (i2ccmd & E1000_I2CCMD_READY)
 262                        break;
 263        }
 264        if (!(i2ccmd & E1000_I2CCMD_READY)) {
 265                hw_dbg("I2CCMD Read did not complete\n");
 266                return -E1000_ERR_PHY;
 267        }
 268        if (i2ccmd & E1000_I2CCMD_ERROR) {
 269                hw_dbg("I2CCMD Error bit set\n");
 270                return -E1000_ERR_PHY;
 271        }
 272
 273        /* Need to byte-swap the 16-bit value. */
 274        *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
 275
 276        return 0;
 277}
 278
 279/**
 280 *  igb_write_phy_reg_i2c - Write PHY register using i2c
 281 *  @hw: pointer to the HW structure
 282 *  @offset: register offset to write to
 283 *  @data: data to write at register offset
 284 *
 285 *  Writes the data to PHY register at the offset using the i2c interface.
 286 **/
 287s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
 288{
 289        struct e1000_phy_info *phy = &hw->phy;
 290        u32 i, i2ccmd = 0;
 291        u16 phy_data_swapped;
 292
 293        /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
 294        if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
 295                hw_dbg("PHY I2C Address %d is out of range.\n",
 296                          hw->phy.addr);
 297                return -E1000_ERR_CONFIG;
 298        }
 299
 300        /* Swap the data bytes for the I2C interface */
 301        phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
 302
 303        /* Set up Op-code, Phy Address, and register address in the I2CCMD
 304         * register.  The MAC will take care of interfacing with the
 305         * PHY to retrieve the desired data.
 306         */
 307        i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 308                  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 309                  E1000_I2CCMD_OPCODE_WRITE |
 310                  phy_data_swapped);
 311
 312        wr32(E1000_I2CCMD, i2ccmd);
 313
 314        /* Poll the ready bit to see if the I2C read completed */
 315        for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 316                udelay(50);
 317                i2ccmd = rd32(E1000_I2CCMD);
 318                if (i2ccmd & E1000_I2CCMD_READY)
 319                        break;
 320        }
 321        if (!(i2ccmd & E1000_I2CCMD_READY)) {
 322                hw_dbg("I2CCMD Write did not complete\n");
 323                return -E1000_ERR_PHY;
 324        }
 325        if (i2ccmd & E1000_I2CCMD_ERROR) {
 326                hw_dbg("I2CCMD Error bit set\n");
 327                return -E1000_ERR_PHY;
 328        }
 329
 330        return 0;
 331}
 332
 333/**
 334 *  igb_read_sfp_data_byte - Reads SFP module data.
 335 *  @hw: pointer to the HW structure
 336 *  @offset: byte location offset to be read
 337 *  @data: read data buffer pointer
 338 *
 339 *  Reads one byte from SFP module data stored
 340 *  in SFP resided EEPROM memory or SFP diagnostic area.
 341 *  Function should be called with
 342 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
 343 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
 344 *  access
 345 **/
 346s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
 347{
 348        u32 i = 0;
 349        u32 i2ccmd = 0;
 350        u32 data_local = 0;
 351
 352        if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
 353                hw_dbg("I2CCMD command address exceeds upper limit\n");
 354                return -E1000_ERR_PHY;
 355        }
 356
 357        /* Set up Op-code, EEPROM Address,in the I2CCMD
 358         * register. The MAC will take care of interfacing with the
 359         * EEPROM to retrieve the desired data.
 360         */
 361        i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 362                  E1000_I2CCMD_OPCODE_READ);
 363
 364        wr32(E1000_I2CCMD, i2ccmd);
 365
 366        /* Poll the ready bit to see if the I2C read completed */
 367        for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 368                udelay(50);
 369                data_local = rd32(E1000_I2CCMD);
 370                if (data_local & E1000_I2CCMD_READY)
 371                        break;
 372        }
 373        if (!(data_local & E1000_I2CCMD_READY)) {
 374                hw_dbg("I2CCMD Read did not complete\n");
 375                return -E1000_ERR_PHY;
 376        }
 377        if (data_local & E1000_I2CCMD_ERROR) {
 378                hw_dbg("I2CCMD Error bit set\n");
 379                return -E1000_ERR_PHY;
 380        }
 381        *data = (u8) data_local & 0xFF;
 382
 383        return 0;
 384}
 385
 386/**
 387 *  igb_read_phy_reg_igp - Read igp PHY register
 388 *  @hw: pointer to the HW structure
 389 *  @offset: register offset to be read
 390 *  @data: pointer to the read data
 391 *
 392 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 393 *  and storing the retrieved information in data.  Release any acquired
 394 *  semaphores before exiting.
 395 **/
 396s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 397{
 398        s32 ret_val = 0;
 399
 400        if (!(hw->phy.ops.acquire))
 401                goto out;
 402
 403        ret_val = hw->phy.ops.acquire(hw);
 404        if (ret_val)
 405                goto out;
 406
 407        if (offset > MAX_PHY_MULTI_PAGE_REG) {
 408                ret_val = igb_write_phy_reg_mdic(hw,
 409                                                 IGP01E1000_PHY_PAGE_SELECT,
 410                                                 (u16)offset);
 411                if (ret_val) {
 412                        hw->phy.ops.release(hw);
 413                        goto out;
 414                }
 415        }
 416
 417        ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 418                                        data);
 419
 420        hw->phy.ops.release(hw);
 421
 422out:
 423        return ret_val;
 424}
 425
 426/**
 427 *  igb_write_phy_reg_igp - Write igp PHY register
 428 *  @hw: pointer to the HW structure
 429 *  @offset: register offset to write to
 430 *  @data: data to write at register offset
 431 *
 432 *  Acquires semaphore, if necessary, then writes the data to PHY register
 433 *  at the offset.  Release any acquired semaphores before exiting.
 434 **/
 435s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 436{
 437        s32 ret_val = 0;
 438
 439        if (!(hw->phy.ops.acquire))
 440                goto out;
 441
 442        ret_val = hw->phy.ops.acquire(hw);
 443        if (ret_val)
 444                goto out;
 445
 446        if (offset > MAX_PHY_MULTI_PAGE_REG) {
 447                ret_val = igb_write_phy_reg_mdic(hw,
 448                                                 IGP01E1000_PHY_PAGE_SELECT,
 449                                                 (u16)offset);
 450                if (ret_val) {
 451                        hw->phy.ops.release(hw);
 452                        goto out;
 453                }
 454        }
 455
 456        ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 457                                         data);
 458
 459        hw->phy.ops.release(hw);
 460
 461out:
 462        return ret_val;
 463}
 464
 465/**
 466 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
 467 *  @hw: pointer to the HW structure
 468 *
 469 *  Sets up Carrier-sense on Transmit and downshift values.
 470 **/
 471s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
 472{
 473        struct e1000_phy_info *phy = &hw->phy;
 474        s32 ret_val;
 475        u16 phy_data;
 476
 477        if (phy->reset_disable) {
 478                ret_val = 0;
 479                goto out;
 480        }
 481
 482        if (phy->type == e1000_phy_82580) {
 483                ret_val = hw->phy.ops.reset(hw);
 484                if (ret_val) {
 485                        hw_dbg("Error resetting the PHY.\n");
 486                        goto out;
 487                }
 488        }
 489
 490        /* Enable CRS on TX. This must be set for half-duplex operation. */
 491        ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
 492        if (ret_val)
 493                goto out;
 494
 495        phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
 496
 497        /* Enable downshift */
 498        phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
 499
 500        ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
 501        if (ret_val)
 502                goto out;
 503
 504        /* Set MDI/MDIX mode */
 505        ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
 506        if (ret_val)
 507                goto out;
 508        phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
 509        /* Options:
 510         *   0 - Auto (default)
 511         *   1 - MDI mode
 512         *   2 - MDI-X mode
 513         */
 514        switch (hw->phy.mdix) {
 515        case 1:
 516                break;
 517        case 2:
 518                phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
 519                break;
 520        case 0:
 521        default:
 522                phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
 523                break;
 524        }
 525        ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
 526
 527out:
 528        return ret_val;
 529}
 530
 531/**
 532 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 533 *  @hw: pointer to the HW structure
 534 *
 535 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 536 *  and downshift values are set also.
 537 **/
 538s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
 539{
 540        struct e1000_phy_info *phy = &hw->phy;
 541        s32 ret_val;
 542        u16 phy_data;
 543
 544        if (phy->reset_disable) {
 545                ret_val = 0;
 546                goto out;
 547        }
 548
 549        /* Enable CRS on TX. This must be set for half-duplex operation. */
 550        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 551        if (ret_val)
 552                goto out;
 553
 554        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 555
 556        /* Options:
 557         *   MDI/MDI-X = 0 (default)
 558         *   0 - Auto for all speeds
 559         *   1 - MDI mode
 560         *   2 - MDI-X mode
 561         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 562         */
 563        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 564
 565        switch (phy->mdix) {
 566        case 1:
 567                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 568                break;
 569        case 2:
 570                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 571                break;
 572        case 3:
 573                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 574                break;
 575        case 0:
 576        default:
 577                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 578                break;
 579        }
 580
 581        /* Options:
 582         *   disable_polarity_correction = 0 (default)
 583         *       Automatic Correction for Reversed Cable Polarity
 584         *   0 - Disabled
 585         *   1 - Enabled
 586         */
 587        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 588        if (phy->disable_polarity_correction == 1)
 589                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 590
 591        ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 592        if (ret_val)
 593                goto out;
 594
 595        if (phy->revision < E1000_REVISION_4) {
 596                /* Force TX_CLK in the Extended PHY Specific Control Register
 597                 * to 25MHz clock.
 598                 */
 599                ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 600                                            &phy_data);
 601                if (ret_val)
 602                        goto out;
 603
 604                phy_data |= M88E1000_EPSCR_TX_CLK_25;
 605
 606                if ((phy->revision == E1000_REVISION_2) &&
 607                    (phy->id == M88E1111_I_PHY_ID)) {
 608                        /* 82573L PHY - set the downshift counter to 5x. */
 609                        phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 610                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 611                } else {
 612                        /* Configure Master and Slave downshift values */
 613                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 614                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 615                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 616                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 617                }
 618                ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 619                                             phy_data);
 620                if (ret_val)
 621                        goto out;
 622        }
 623
 624        /* Commit the changes. */
 625        ret_val = igb_phy_sw_reset(hw);
 626        if (ret_val) {
 627                hw_dbg("Error committing the PHY changes\n");
 628                goto out;
 629        }
 630
 631out:
 632        return ret_val;
 633}
 634
 635/**
 636 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
 637 *  @hw: pointer to the HW structure
 638 *
 639 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
 640 *  Also enables and sets the downshift parameters.
 641 **/
 642s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
 643{
 644        struct e1000_phy_info *phy = &hw->phy;
 645        s32 ret_val;
 646        u16 phy_data;
 647
 648        if (phy->reset_disable)
 649                return 0;
 650
 651        /* Enable CRS on Tx. This must be set for half-duplex operation. */
 652        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 653        if (ret_val)
 654                return ret_val;
 655
 656        /* Options:
 657         *   MDI/MDI-X = 0 (default)
 658         *   0 - Auto for all speeds
 659         *   1 - MDI mode
 660         *   2 - MDI-X mode
 661         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 662         */
 663        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 664
 665        switch (phy->mdix) {
 666        case 1:
 667                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 668                break;
 669        case 2:
 670                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 671                break;
 672        case 3:
 673                /* M88E1112 does not support this mode) */
 674                if (phy->id != M88E1112_E_PHY_ID) {
 675                        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 676                        break;
 677                }
 678        case 0:
 679        default:
 680                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 681                break;
 682        }
 683
 684        /* Options:
 685         *   disable_polarity_correction = 0 (default)
 686         *       Automatic Correction for Reversed Cable Polarity
 687         *   0 - Disabled
 688         *   1 - Enabled
 689         */
 690        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 691        if (phy->disable_polarity_correction == 1)
 692                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 693
 694        /* Enable downshift and setting it to X6 */
 695        if (phy->id == M88E1543_E_PHY_ID) {
 696                phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
 697                ret_val =
 698                    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 699                if (ret_val)
 700                        return ret_val;
 701
 702                ret_val = igb_phy_sw_reset(hw);
 703                if (ret_val) {
 704                        hw_dbg("Error committing the PHY changes\n");
 705                        return ret_val;
 706                }
 707        }
 708
 709        phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
 710        phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
 711        phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
 712
 713        ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 714        if (ret_val)
 715                return ret_val;
 716
 717        /* Commit the changes. */
 718        ret_val = igb_phy_sw_reset(hw);
 719        if (ret_val) {
 720                hw_dbg("Error committing the PHY changes\n");
 721                return ret_val;
 722        }
 723        ret_val = igb_set_master_slave_mode(hw);
 724        if (ret_val)
 725                return ret_val;
 726
 727        return 0;
 728}
 729
 730/**
 731 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 732 *  @hw: pointer to the HW structure
 733 *
 734 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 735 *  igp PHY's.
 736 **/
 737s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
 738{
 739        struct e1000_phy_info *phy = &hw->phy;
 740        s32 ret_val;
 741        u16 data;
 742
 743        if (phy->reset_disable) {
 744                ret_val = 0;
 745                goto out;
 746        }
 747
 748        ret_val = phy->ops.reset(hw);
 749        if (ret_val) {
 750                hw_dbg("Error resetting the PHY.\n");
 751                goto out;
 752        }
 753
 754        /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 755         * timeout issues when LFS is enabled.
 756         */
 757        msleep(100);
 758
 759        /* The NVM settings will configure LPLU in D3 for
 760         * non-IGP1 PHYs.
 761         */
 762        if (phy->type == e1000_phy_igp) {
 763                /* disable lplu d3 during driver init */
 764                if (phy->ops.set_d3_lplu_state)
 765                        ret_val = phy->ops.set_d3_lplu_state(hw, false);
 766                if (ret_val) {
 767                        hw_dbg("Error Disabling LPLU D3\n");
 768                        goto out;
 769                }
 770        }
 771
 772        /* disable lplu d0 during driver init */
 773        ret_val = phy->ops.set_d0_lplu_state(hw, false);
 774        if (ret_val) {
 775                hw_dbg("Error Disabling LPLU D0\n");
 776                goto out;
 777        }
 778        /* Configure mdi-mdix settings */
 779        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 780        if (ret_val)
 781                goto out;
 782
 783        data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 784
 785        switch (phy->mdix) {
 786        case 1:
 787                data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 788                break;
 789        case 2:
 790                data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 791                break;
 792        case 0:
 793        default:
 794                data |= IGP01E1000_PSCR_AUTO_MDIX;
 795                break;
 796        }
 797        ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
 798        if (ret_val)
 799                goto out;
 800
 801        /* set auto-master slave resolution settings */
 802        if (hw->mac.autoneg) {
 803                /* when autonegotiation advertisement is only 1000Mbps then we
 804                 * should disable SmartSpeed and enable Auto MasterSlave
 805                 * resolution as hardware default.
 806                 */
 807                if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 808                        /* Disable SmartSpeed */
 809                        ret_val = phy->ops.read_reg(hw,
 810                                                    IGP01E1000_PHY_PORT_CONFIG,
 811                                                    &data);
 812                        if (ret_val)
 813                                goto out;
 814
 815                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 816                        ret_val = phy->ops.write_reg(hw,
 817                                                     IGP01E1000_PHY_PORT_CONFIG,
 818                                                     data);
 819                        if (ret_val)
 820                                goto out;
 821
 822                        /* Set auto Master/Slave resolution process */
 823                        ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 824                        if (ret_val)
 825                                goto out;
 826
 827                        data &= ~CR_1000T_MS_ENABLE;
 828                        ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 829                        if (ret_val)
 830                                goto out;
 831                }
 832
 833                ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 834                if (ret_val)
 835                        goto out;
 836
 837                /* load defaults for future use */
 838                phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 839                        ((data & CR_1000T_MS_VALUE) ?
 840                        e1000_ms_force_master :
 841                        e1000_ms_force_slave) :
 842                        e1000_ms_auto;
 843
 844                switch (phy->ms_type) {
 845                case e1000_ms_force_master:
 846                        data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 847                        break;
 848                case e1000_ms_force_slave:
 849                        data |= CR_1000T_MS_ENABLE;
 850                        data &= ~(CR_1000T_MS_VALUE);
 851                        break;
 852                case e1000_ms_auto:
 853                        data &= ~CR_1000T_MS_ENABLE;
 854                default:
 855                        break;
 856                }
 857                ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 858                if (ret_val)
 859                        goto out;
 860        }
 861
 862out:
 863        return ret_val;
 864}
 865
 866/**
 867 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 868 *  @hw: pointer to the HW structure
 869 *
 870 *  Performs initial bounds checking on autoneg advertisement parameter, then
 871 *  configure to advertise the full capability.  Setup the PHY to autoneg
 872 *  and restart the negotiation process between the link partner.  If
 873 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 874 **/
 875static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
 876{
 877        struct e1000_phy_info *phy = &hw->phy;
 878        s32 ret_val;
 879        u16 phy_ctrl;
 880
 881        /* Perform some bounds checking on the autoneg advertisement
 882         * parameter.
 883         */
 884        phy->autoneg_advertised &= phy->autoneg_mask;
 885
 886        /* If autoneg_advertised is zero, we assume it was not defaulted
 887         * by the calling code so we set to advertise full capability.
 888         */
 889        if (phy->autoneg_advertised == 0)
 890                phy->autoneg_advertised = phy->autoneg_mask;
 891
 892        hw_dbg("Reconfiguring auto-neg advertisement params\n");
 893        ret_val = igb_phy_setup_autoneg(hw);
 894        if (ret_val) {
 895                hw_dbg("Error Setting up Auto-Negotiation\n");
 896                goto out;
 897        }
 898        hw_dbg("Restarting Auto-Neg\n");
 899
 900        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
 901         * the Auto Neg Restart bit in the PHY control register.
 902         */
 903        ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
 904        if (ret_val)
 905                goto out;
 906
 907        phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 908        ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
 909        if (ret_val)
 910                goto out;
 911
 912        /* Does the user want to wait for Auto-Neg to complete here, or
 913         * check at a later time (for example, callback routine).
 914         */
 915        if (phy->autoneg_wait_to_complete) {
 916                ret_val = igb_wait_autoneg(hw);
 917                if (ret_val) {
 918                        hw_dbg("Error while waiting for autoneg to complete\n");
 919                        goto out;
 920                }
 921        }
 922
 923        hw->mac.get_link_status = true;
 924
 925out:
 926        return ret_val;
 927}
 928
 929/**
 930 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 931 *  @hw: pointer to the HW structure
 932 *
 933 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 934 *  register and if the PHY is already setup for auto-negotiation, then
 935 *  return successful.  Otherwise, setup advertisement and flow control to
 936 *  the appropriate values for the wanted auto-negotiation.
 937 **/
 938static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
 939{
 940        struct e1000_phy_info *phy = &hw->phy;
 941        s32 ret_val;
 942        u16 mii_autoneg_adv_reg;
 943        u16 mii_1000t_ctrl_reg = 0;
 944
 945        phy->autoneg_advertised &= phy->autoneg_mask;
 946
 947        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
 948        ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 949        if (ret_val)
 950                goto out;
 951
 952        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 953                /* Read the MII 1000Base-T Control Register (Address 9). */
 954                ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
 955                                            &mii_1000t_ctrl_reg);
 956                if (ret_val)
 957                        goto out;
 958        }
 959
 960        /* Need to parse both autoneg_advertised and fc and set up
 961         * the appropriate PHY registers.  First we will parse for
 962         * autoneg_advertised software override.  Since we can advertise
 963         * a plethora of combinations, we need to check each bit
 964         * individually.
 965         */
 966
 967        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
 968         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 969         * the  1000Base-T Control Register (Address 9).
 970         */
 971        mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 972                                 NWAY_AR_100TX_HD_CAPS |
 973                                 NWAY_AR_10T_FD_CAPS   |
 974                                 NWAY_AR_10T_HD_CAPS);
 975        mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 976
 977        hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 978
 979        /* Do we want to advertise 10 Mb Half Duplex? */
 980        if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 981                hw_dbg("Advertise 10mb Half duplex\n");
 982                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 983        }
 984
 985        /* Do we want to advertise 10 Mb Full Duplex? */
 986        if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 987                hw_dbg("Advertise 10mb Full duplex\n");
 988                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 989        }
 990
 991        /* Do we want to advertise 100 Mb Half Duplex? */
 992        if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 993                hw_dbg("Advertise 100mb Half duplex\n");
 994                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 995        }
 996
 997        /* Do we want to advertise 100 Mb Full Duplex? */
 998        if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 999                hw_dbg("Advertise 100mb Full duplex\n");
1000                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1001        }
1002
1003        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1004        if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1005                hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1006
1007        /* Do we want to advertise 1000 Mb Full Duplex? */
1008        if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1009                hw_dbg("Advertise 1000mb Full duplex\n");
1010                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1011        }
1012
1013        /* Check for a software override of the flow control settings, and
1014         * setup the PHY advertisement registers accordingly.  If
1015         * auto-negotiation is enabled, then software will have to set the
1016         * "PAUSE" bits to the correct value in the Auto-Negotiation
1017         * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1018         * negotiation.
1019         *
1020         * The possible values of the "fc" parameter are:
1021         *      0:  Flow control is completely disabled
1022         *      1:  Rx flow control is enabled (we can receive pause frames
1023         *          but not send pause frames).
1024         *      2:  Tx flow control is enabled (we can send pause frames
1025         *          but we do not support receiving pause frames).
1026         *      3:  Both Rx and TX flow control (symmetric) are enabled.
1027         *  other:  No software override.  The flow control configuration
1028         *          in the EEPROM is used.
1029         */
1030        switch (hw->fc.current_mode) {
1031        case e1000_fc_none:
1032                /* Flow control (RX & TX) is completely disabled by a
1033                 * software over-ride.
1034                 */
1035                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036                break;
1037        case e1000_fc_rx_pause:
1038                /* RX Flow control is enabled, and TX Flow control is
1039                 * disabled, by a software over-ride.
1040                 *
1041                 * Since there really isn't a way to advertise that we are
1042                 * capable of RX Pause ONLY, we will advertise that we
1043                 * support both symmetric and asymmetric RX PAUSE.  Later
1044                 * (in e1000_config_fc_after_link_up) we will disable the
1045                 * hw's ability to send PAUSE frames.
1046                 */
1047                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1048                break;
1049        case e1000_fc_tx_pause:
1050                /* TX Flow control is enabled, and RX Flow control is
1051                 * disabled, by a software over-ride.
1052                 */
1053                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1054                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1055                break;
1056        case e1000_fc_full:
1057                /* Flow control (both RX and TX) is enabled by a software
1058                 * over-ride.
1059                 */
1060                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1061                break;
1062        default:
1063                hw_dbg("Flow control param set incorrectly\n");
1064                ret_val = -E1000_ERR_CONFIG;
1065                goto out;
1066        }
1067
1068        ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1069        if (ret_val)
1070                goto out;
1071
1072        hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1073
1074        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1075                ret_val = phy->ops.write_reg(hw,
1076                                             PHY_1000T_CTRL,
1077                                             mii_1000t_ctrl_reg);
1078                if (ret_val)
1079                        goto out;
1080        }
1081
1082out:
1083        return ret_val;
1084}
1085
1086/**
1087 *  igb_setup_copper_link - Configure copper link settings
1088 *  @hw: pointer to the HW structure
1089 *
1090 *  Calls the appropriate function to configure the link for auto-neg or forced
1091 *  speed and duplex.  Then we check for link, once link is established calls
1092 *  to configure collision distance and flow control are called.  If link is
1093 *  not established, we return -E1000_ERR_PHY (-2).
1094 **/
1095s32 igb_setup_copper_link(struct e1000_hw *hw)
1096{
1097        s32 ret_val;
1098        bool link;
1099
1100        if (hw->mac.autoneg) {
1101                /* Setup autoneg and flow control advertisement and perform
1102                 * autonegotiation.
1103                 */
1104                ret_val = igb_copper_link_autoneg(hw);
1105                if (ret_val)
1106                        goto out;
1107        } else {
1108                /* PHY will be set to 10H, 10F, 100H or 100F
1109                 * depending on user settings.
1110                 */
1111                hw_dbg("Forcing Speed and Duplex\n");
1112                ret_val = hw->phy.ops.force_speed_duplex(hw);
1113                if (ret_val) {
1114                        hw_dbg("Error Forcing Speed and Duplex\n");
1115                        goto out;
1116                }
1117        }
1118
1119        /* Check link status. Wait up to 100 microseconds for link to become
1120         * valid.
1121         */
1122        ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1123        if (ret_val)
1124                goto out;
1125
1126        if (link) {
1127                hw_dbg("Valid link established!!!\n");
1128                igb_config_collision_dist(hw);
1129                ret_val = igb_config_fc_after_link_up(hw);
1130        } else {
1131                hw_dbg("Unable to establish link!!!\n");
1132        }
1133
1134out:
1135        return ret_val;
1136}
1137
1138/**
1139 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1140 *  @hw: pointer to the HW structure
1141 *
1142 *  Calls the PHY setup function to force speed and duplex.  Clears the
1143 *  auto-crossover to force MDI manually.  Waits for link and returns
1144 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1145 **/
1146s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1147{
1148        struct e1000_phy_info *phy = &hw->phy;
1149        s32 ret_val;
1150        u16 phy_data;
1151        bool link;
1152
1153        ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1154        if (ret_val)
1155                goto out;
1156
1157        igb_phy_force_speed_duplex_setup(hw, &phy_data);
1158
1159        ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1160        if (ret_val)
1161                goto out;
1162
1163        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1164         * forced whenever speed and duplex are forced.
1165         */
1166        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1167        if (ret_val)
1168                goto out;
1169
1170        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1171        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1172
1173        ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1174        if (ret_val)
1175                goto out;
1176
1177        hw_dbg("IGP PSCR: %X\n", phy_data);
1178
1179        udelay(1);
1180
1181        if (phy->autoneg_wait_to_complete) {
1182                hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1183
1184                ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1185                if (ret_val)
1186                        goto out;
1187
1188                if (!link)
1189                        hw_dbg("Link taking longer than expected.\n");
1190
1191                /* Try once more */
1192                ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1193                if (ret_val)
1194                        goto out;
1195        }
1196
1197out:
1198        return ret_val;
1199}
1200
1201/**
1202 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1203 *  @hw: pointer to the HW structure
1204 *
1205 *  Calls the PHY setup function to force speed and duplex.  Clears the
1206 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1207 *  changes.  If time expires while waiting for link up, we reset the DSP.
1208 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1209 *  successful completion, else return corresponding error code.
1210 **/
1211s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1212{
1213        struct e1000_phy_info *phy = &hw->phy;
1214        s32 ret_val;
1215        u16 phy_data;
1216        bool link;
1217
1218        /* I210 and I211 devices support Auto-Crossover in forced operation. */
1219        if (phy->type != e1000_phy_i210) {
1220                /* Clear Auto-Crossover to force MDI manually.  M88E1000
1221                 * requires MDI forced whenever speed and duplex are forced.
1222                 */
1223                ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1224                                            &phy_data);
1225                if (ret_val)
1226                        goto out;
1227
1228                phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1229                ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1230                                             phy_data);
1231                if (ret_val)
1232                        goto out;
1233
1234                hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1235        }
1236
1237        ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1238        if (ret_val)
1239                goto out;
1240
1241        igb_phy_force_speed_duplex_setup(hw, &phy_data);
1242
1243        ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1244        if (ret_val)
1245                goto out;
1246
1247        /* Reset the phy to commit changes. */
1248        ret_val = igb_phy_sw_reset(hw);
1249        if (ret_val)
1250                goto out;
1251
1252        if (phy->autoneg_wait_to_complete) {
1253                hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1254
1255                ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1256                if (ret_val)
1257                        goto out;
1258
1259                if (!link) {
1260                        bool reset_dsp = true;
1261
1262                        switch (hw->phy.id) {
1263                        case I347AT4_E_PHY_ID:
1264                        case M88E1112_E_PHY_ID:
1265                        case M88E1543_E_PHY_ID:
1266                        case M88E1512_E_PHY_ID:
1267                        case I210_I_PHY_ID:
1268                                reset_dsp = false;
1269                                break;
1270                        default:
1271                                if (hw->phy.type != e1000_phy_m88)
1272                                        reset_dsp = false;
1273                                break;
1274                        }
1275                        if (!reset_dsp) {
1276                                hw_dbg("Link taking longer than expected.\n");
1277                        } else {
1278                                /* We didn't get link.
1279                                 * Reset the DSP and cross our fingers.
1280                                 */
1281                                ret_val = phy->ops.write_reg(hw,
1282                                                M88E1000_PHY_PAGE_SELECT,
1283                                                0x001d);
1284                                if (ret_val)
1285                                        goto out;
1286                                ret_val = igb_phy_reset_dsp(hw);
1287                                if (ret_val)
1288                                        goto out;
1289                        }
1290                }
1291
1292                /* Try once more */
1293                ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1294                                           100000, &link);
1295                if (ret_val)
1296                        goto out;
1297        }
1298
1299        if (hw->phy.type != e1000_phy_m88 ||
1300            hw->phy.id == I347AT4_E_PHY_ID ||
1301            hw->phy.id == M88E1112_E_PHY_ID ||
1302            hw->phy.id == M88E1543_E_PHY_ID ||
1303            hw->phy.id == M88E1512_E_PHY_ID ||
1304            hw->phy.id == I210_I_PHY_ID)
1305                goto out;
1306
1307        ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1308        if (ret_val)
1309                goto out;
1310
1311        /* Resetting the phy means we need to re-force TX_CLK in the
1312         * Extended PHY Specific Control Register to 25MHz clock from
1313         * the reset value of 2.5MHz.
1314         */
1315        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1316        ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1317        if (ret_val)
1318                goto out;
1319
1320        /* In addition, we must re-enable CRS on Tx for both half and full
1321         * duplex.
1322         */
1323        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1324        if (ret_val)
1325                goto out;
1326
1327        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1328        ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1329
1330out:
1331        return ret_val;
1332}
1333
1334/**
1335 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1336 *  @hw: pointer to the HW structure
1337 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1338 *
1339 *  Forces speed and duplex on the PHY by doing the following: disable flow
1340 *  control, force speed/duplex on the MAC, disable auto speed detection,
1341 *  disable auto-negotiation, configure duplex, configure speed, configure
1342 *  the collision distance, write configuration to CTRL register.  The
1343 *  caller must write to the PHY_CONTROL register for these settings to
1344 *  take affect.
1345 **/
1346static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1347                                             u16 *phy_ctrl)
1348{
1349        struct e1000_mac_info *mac = &hw->mac;
1350        u32 ctrl;
1351
1352        /* Turn off flow control when forcing speed/duplex */
1353        hw->fc.current_mode = e1000_fc_none;
1354
1355        /* Force speed/duplex on the mac */
1356        ctrl = rd32(E1000_CTRL);
1357        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1358        ctrl &= ~E1000_CTRL_SPD_SEL;
1359
1360        /* Disable Auto Speed Detection */
1361        ctrl &= ~E1000_CTRL_ASDE;
1362
1363        /* Disable autoneg on the phy */
1364        *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1365
1366        /* Forcing Full or Half Duplex? */
1367        if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1368                ctrl &= ~E1000_CTRL_FD;
1369                *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1370                hw_dbg("Half Duplex\n");
1371        } else {
1372                ctrl |= E1000_CTRL_FD;
1373                *phy_ctrl |= MII_CR_FULL_DUPLEX;
1374                hw_dbg("Full Duplex\n");
1375        }
1376
1377        /* Forcing 10mb or 100mb? */
1378        if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1379                ctrl |= E1000_CTRL_SPD_100;
1380                *phy_ctrl |= MII_CR_SPEED_100;
1381                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1382                hw_dbg("Forcing 100mb\n");
1383        } else {
1384                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1385                *phy_ctrl |= MII_CR_SPEED_10;
1386                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1387                hw_dbg("Forcing 10mb\n");
1388        }
1389
1390        igb_config_collision_dist(hw);
1391
1392        wr32(E1000_CTRL, ctrl);
1393}
1394
1395/**
1396 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1397 *  @hw: pointer to the HW structure
1398 *  @active: boolean used to enable/disable lplu
1399 *
1400 *  Success returns 0, Failure returns 1
1401 *
1402 *  The low power link up (lplu) state is set to the power management level D3
1403 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1404 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1405 *  is used during Dx states where the power conservation is most important.
1406 *  During driver activity, SmartSpeed should be enabled so performance is
1407 *  maintained.
1408 **/
1409s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1410{
1411        struct e1000_phy_info *phy = &hw->phy;
1412        s32 ret_val = 0;
1413        u16 data;
1414
1415        if (!(hw->phy.ops.read_reg))
1416                goto out;
1417
1418        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1419        if (ret_val)
1420                goto out;
1421
1422        if (!active) {
1423                data &= ~IGP02E1000_PM_D3_LPLU;
1424                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1425                                             data);
1426                if (ret_val)
1427                        goto out;
1428                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1429                 * during Dx states where the power conservation is most
1430                 * important.  During driver activity we should enable
1431                 * SmartSpeed, so performance is maintained.
1432                 */
1433                if (phy->smart_speed == e1000_smart_speed_on) {
1434                        ret_val = phy->ops.read_reg(hw,
1435                                                    IGP01E1000_PHY_PORT_CONFIG,
1436                                                    &data);
1437                        if (ret_val)
1438                                goto out;
1439
1440                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1441                        ret_val = phy->ops.write_reg(hw,
1442                                                     IGP01E1000_PHY_PORT_CONFIG,
1443                                                     data);
1444                        if (ret_val)
1445                                goto out;
1446                } else if (phy->smart_speed == e1000_smart_speed_off) {
1447                        ret_val = phy->ops.read_reg(hw,
1448                                                     IGP01E1000_PHY_PORT_CONFIG,
1449                                                     &data);
1450                        if (ret_val)
1451                                goto out;
1452
1453                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1454                        ret_val = phy->ops.write_reg(hw,
1455                                                     IGP01E1000_PHY_PORT_CONFIG,
1456                                                     data);
1457                        if (ret_val)
1458                                goto out;
1459                }
1460        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1461                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1462                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1463                data |= IGP02E1000_PM_D3_LPLU;
1464                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1465                                              data);
1466                if (ret_val)
1467                        goto out;
1468
1469                /* When LPLU is enabled, we should disable SmartSpeed */
1470                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1471                                            &data);
1472                if (ret_val)
1473                        goto out;
1474
1475                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1476                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1477                                             data);
1478        }
1479
1480out:
1481        return ret_val;
1482}
1483
1484/**
1485 *  igb_check_downshift - Checks whether a downshift in speed occurred
1486 *  @hw: pointer to the HW structure
1487 *
1488 *  Success returns 0, Failure returns 1
1489 *
1490 *  A downshift is detected by querying the PHY link health.
1491 **/
1492s32 igb_check_downshift(struct e1000_hw *hw)
1493{
1494        struct e1000_phy_info *phy = &hw->phy;
1495        s32 ret_val;
1496        u16 phy_data, offset, mask;
1497
1498        switch (phy->type) {
1499        case e1000_phy_i210:
1500        case e1000_phy_m88:
1501        case e1000_phy_gg82563:
1502                offset  = M88E1000_PHY_SPEC_STATUS;
1503                mask    = M88E1000_PSSR_DOWNSHIFT;
1504                break;
1505        case e1000_phy_igp_2:
1506        case e1000_phy_igp:
1507        case e1000_phy_igp_3:
1508                offset  = IGP01E1000_PHY_LINK_HEALTH;
1509                mask    = IGP01E1000_PLHR_SS_DOWNGRADE;
1510                break;
1511        default:
1512                /* speed downshift not supported */
1513                phy->speed_downgraded = false;
1514                ret_val = 0;
1515                goto out;
1516        }
1517
1518        ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1519
1520        if (!ret_val)
1521                phy->speed_downgraded = (phy_data & mask) ? true : false;
1522
1523out:
1524        return ret_val;
1525}
1526
1527/**
1528 *  igb_check_polarity_m88 - Checks the polarity.
1529 *  @hw: pointer to the HW structure
1530 *
1531 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1532 *
1533 *  Polarity is determined based on the PHY specific status register.
1534 **/
1535s32 igb_check_polarity_m88(struct e1000_hw *hw)
1536{
1537        struct e1000_phy_info *phy = &hw->phy;
1538        s32 ret_val;
1539        u16 data;
1540
1541        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1542
1543        if (!ret_val)
1544                phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1545                                      ? e1000_rev_polarity_reversed
1546                                      : e1000_rev_polarity_normal;
1547
1548        return ret_val;
1549}
1550
1551/**
1552 *  igb_check_polarity_igp - Checks the polarity.
1553 *  @hw: pointer to the HW structure
1554 *
1555 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1556 *
1557 *  Polarity is determined based on the PHY port status register, and the
1558 *  current speed (since there is no polarity at 100Mbps).
1559 **/
1560static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1561{
1562        struct e1000_phy_info *phy = &hw->phy;
1563        s32 ret_val;
1564        u16 data, offset, mask;
1565
1566        /* Polarity is determined based on the speed of
1567         * our connection.
1568         */
1569        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1570        if (ret_val)
1571                goto out;
1572
1573        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1574            IGP01E1000_PSSR_SPEED_1000MBPS) {
1575                offset  = IGP01E1000_PHY_PCS_INIT_REG;
1576                mask    = IGP01E1000_PHY_POLARITY_MASK;
1577        } else {
1578                /* This really only applies to 10Mbps since
1579                 * there is no polarity for 100Mbps (always 0).
1580                 */
1581                offset  = IGP01E1000_PHY_PORT_STATUS;
1582                mask    = IGP01E1000_PSSR_POLARITY_REVERSED;
1583        }
1584
1585        ret_val = phy->ops.read_reg(hw, offset, &data);
1586
1587        if (!ret_val)
1588                phy->cable_polarity = (data & mask)
1589                                      ? e1000_rev_polarity_reversed
1590                                      : e1000_rev_polarity_normal;
1591
1592out:
1593        return ret_val;
1594}
1595
1596/**
1597 *  igb_wait_autoneg - Wait for auto-neg completion
1598 *  @hw: pointer to the HW structure
1599 *
1600 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1601 *  limit to expire, which ever happens first.
1602 **/
1603static s32 igb_wait_autoneg(struct e1000_hw *hw)
1604{
1605        s32 ret_val = 0;
1606        u16 i, phy_status;
1607
1608        /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1609        for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1610                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1611                if (ret_val)
1612                        break;
1613                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1614                if (ret_val)
1615                        break;
1616                if (phy_status & MII_SR_AUTONEG_COMPLETE)
1617                        break;
1618                msleep(100);
1619        }
1620
1621        /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1622         * has completed.
1623         */
1624        return ret_val;
1625}
1626
1627/**
1628 *  igb_phy_has_link - Polls PHY for link
1629 *  @hw: pointer to the HW structure
1630 *  @iterations: number of times to poll for link
1631 *  @usec_interval: delay between polling attempts
1632 *  @success: pointer to whether polling was successful or not
1633 *
1634 *  Polls the PHY status register for link, 'iterations' number of times.
1635 **/
1636s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1637                     u32 usec_interval, bool *success)
1638{
1639        s32 ret_val = 0;
1640        u16 i, phy_status;
1641
1642        for (i = 0; i < iterations; i++) {
1643                /* Some PHYs require the PHY_STATUS register to be read
1644                 * twice due to the link bit being sticky.  No harm doing
1645                 * it across the board.
1646                 */
1647                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1648                if (ret_val && usec_interval > 0) {
1649                        /* If the first read fails, another entity may have
1650                         * ownership of the resources, wait and try again to
1651                         * see if they have relinquished the resources yet.
1652                         */
1653                        if (usec_interval >= 1000)
1654                                mdelay(usec_interval/1000);
1655                        else
1656                                udelay(usec_interval);
1657                }
1658                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1659                if (ret_val)
1660                        break;
1661                if (phy_status & MII_SR_LINK_STATUS)
1662                        break;
1663                if (usec_interval >= 1000)
1664                        mdelay(usec_interval/1000);
1665                else
1666                        udelay(usec_interval);
1667        }
1668
1669        *success = (i < iterations) ? true : false;
1670
1671        return ret_val;
1672}
1673
1674/**
1675 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1676 *  @hw: pointer to the HW structure
1677 *
1678 *  Reads the PHY specific status register to retrieve the cable length
1679 *  information.  The cable length is determined by averaging the minimum and
1680 *  maximum values to get the "average" cable length.  The m88 PHY has four
1681 *  possible cable length values, which are:
1682 *      Register Value          Cable Length
1683 *      0                       < 50 meters
1684 *      1                       50 - 80 meters
1685 *      2                       80 - 110 meters
1686 *      3                       110 - 140 meters
1687 *      4                       > 140 meters
1688 **/
1689s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1690{
1691        struct e1000_phy_info *phy = &hw->phy;
1692        s32 ret_val;
1693        u16 phy_data, index;
1694
1695        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1696        if (ret_val)
1697                goto out;
1698
1699        index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1700                M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1701        if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1702                ret_val = -E1000_ERR_PHY;
1703                goto out;
1704        }
1705
1706        phy->min_cable_length = e1000_m88_cable_length_table[index];
1707        phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1708
1709        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1710
1711out:
1712        return ret_val;
1713}
1714
1715s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1716{
1717        struct e1000_phy_info *phy = &hw->phy;
1718        s32 ret_val;
1719        u16 phy_data, phy_data2, index, default_page, is_cm;
1720
1721        switch (hw->phy.id) {
1722        case I210_I_PHY_ID:
1723                /* Get cable length from PHY Cable Diagnostics Control Reg */
1724                ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1725                                            (I347AT4_PCDL + phy->addr),
1726                                            &phy_data);
1727                if (ret_val)
1728                        return ret_val;
1729
1730                /* Check if the unit of cable length is meters or cm */
1731                ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1732                                            I347AT4_PCDC, &phy_data2);
1733                if (ret_val)
1734                        return ret_val;
1735
1736                is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1737
1738                /* Populate the phy structure with cable length in meters */
1739                phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1740                phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1741                phy->cable_length = phy_data / (is_cm ? 100 : 1);
1742                break;
1743        case M88E1543_E_PHY_ID:
1744        case M88E1512_E_PHY_ID:
1745        case I347AT4_E_PHY_ID:
1746                /* Remember the original page select and set it to 7 */
1747                ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1748                                            &default_page);
1749                if (ret_val)
1750                        goto out;
1751
1752                ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1753                if (ret_val)
1754                        goto out;
1755
1756                /* Get cable length from PHY Cable Diagnostics Control Reg */
1757                ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1758                                            &phy_data);
1759                if (ret_val)
1760                        goto out;
1761
1762                /* Check if the unit of cable length is meters or cm */
1763                ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1764                if (ret_val)
1765                        goto out;
1766
1767                is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1768
1769                /* Populate the phy structure with cable length in meters */
1770                phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1771                phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1772                phy->cable_length = phy_data / (is_cm ? 100 : 1);
1773
1774                /* Reset the page selec to its original value */
1775                ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1776                                             default_page);
1777                if (ret_val)
1778                        goto out;
1779                break;
1780        case M88E1112_E_PHY_ID:
1781                /* Remember the original page select and set it to 5 */
1782                ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1783                                            &default_page);
1784                if (ret_val)
1785                        goto out;
1786
1787                ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1788                if (ret_val)
1789                        goto out;
1790
1791                ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1792                                            &phy_data);
1793                if (ret_val)
1794                        goto out;
1795
1796                index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1797                        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1798                if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1799                        ret_val = -E1000_ERR_PHY;
1800                        goto out;
1801                }
1802
1803                phy->min_cable_length = e1000_m88_cable_length_table[index];
1804                phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1805
1806                phy->cable_length = (phy->min_cable_length +
1807                                     phy->max_cable_length) / 2;
1808
1809                /* Reset the page select to its original value */
1810                ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1811                                             default_page);
1812                if (ret_val)
1813                        goto out;
1814
1815                break;
1816        default:
1817                ret_val = -E1000_ERR_PHY;
1818                goto out;
1819        }
1820
1821out:
1822        return ret_val;
1823}
1824
1825/**
1826 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1827 *  @hw: pointer to the HW structure
1828 *
1829 *  The automatic gain control (agc) normalizes the amplitude of the
1830 *  received signal, adjusting for the attenuation produced by the
1831 *  cable.  By reading the AGC registers, which represent the
1832 *  combination of coarse and fine gain value, the value can be put
1833 *  into a lookup table to obtain the approximate cable length
1834 *  for each channel.
1835 **/
1836s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1837{
1838        struct e1000_phy_info *phy = &hw->phy;
1839        s32 ret_val = 0;
1840        u16 phy_data, i, agc_value = 0;
1841        u16 cur_agc_index, max_agc_index = 0;
1842        u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1843        static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1844                IGP02E1000_PHY_AGC_A,
1845                IGP02E1000_PHY_AGC_B,
1846                IGP02E1000_PHY_AGC_C,
1847                IGP02E1000_PHY_AGC_D
1848        };
1849
1850        /* Read the AGC registers for all channels */
1851        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1852                ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1853                if (ret_val)
1854                        goto out;
1855
1856                /* Getting bits 15:9, which represent the combination of
1857                 * coarse and fine gain values.  The result is a number
1858                 * that can be put into the lookup table to obtain the
1859                 * approximate cable length.
1860                 */
1861                cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1862                                IGP02E1000_AGC_LENGTH_MASK;
1863
1864                /* Array index bound check. */
1865                if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1866                    (cur_agc_index == 0)) {
1867                        ret_val = -E1000_ERR_PHY;
1868                        goto out;
1869                }
1870
1871                /* Remove min & max AGC values from calculation. */
1872                if (e1000_igp_2_cable_length_table[min_agc_index] >
1873                    e1000_igp_2_cable_length_table[cur_agc_index])
1874                        min_agc_index = cur_agc_index;
1875                if (e1000_igp_2_cable_length_table[max_agc_index] <
1876                    e1000_igp_2_cable_length_table[cur_agc_index])
1877                        max_agc_index = cur_agc_index;
1878
1879                agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1880        }
1881
1882        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1883                      e1000_igp_2_cable_length_table[max_agc_index]);
1884        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1885
1886        /* Calculate cable length with the error range of +/- 10 meters. */
1887        phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1888                                 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1889        phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1890
1891        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1892
1893out:
1894        return ret_val;
1895}
1896
1897/**
1898 *  igb_get_phy_info_m88 - Retrieve PHY information
1899 *  @hw: pointer to the HW structure
1900 *
1901 *  Valid for only copper links.  Read the PHY status register (sticky read)
1902 *  to verify that link is up.  Read the PHY special control register to
1903 *  determine the polarity and 10base-T extended distance.  Read the PHY
1904 *  special status register to determine MDI/MDIx and current speed.  If
1905 *  speed is 1000, then determine cable length, local and remote receiver.
1906 **/
1907s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1908{
1909        struct e1000_phy_info *phy = &hw->phy;
1910        s32  ret_val;
1911        u16 phy_data;
1912        bool link;
1913
1914        if (phy->media_type != e1000_media_type_copper) {
1915                hw_dbg("Phy info is only valid for copper media\n");
1916                ret_val = -E1000_ERR_CONFIG;
1917                goto out;
1918        }
1919
1920        ret_val = igb_phy_has_link(hw, 1, 0, &link);
1921        if (ret_val)
1922                goto out;
1923
1924        if (!link) {
1925                hw_dbg("Phy info is only valid if link is up\n");
1926                ret_val = -E1000_ERR_CONFIG;
1927                goto out;
1928        }
1929
1930        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1931        if (ret_val)
1932                goto out;
1933
1934        phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1935                                   ? true : false;
1936
1937        ret_val = igb_check_polarity_m88(hw);
1938        if (ret_val)
1939                goto out;
1940
1941        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1942        if (ret_val)
1943                goto out;
1944
1945        phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1946
1947        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1948                ret_val = phy->ops.get_cable_length(hw);
1949                if (ret_val)
1950                        goto out;
1951
1952                ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1953                if (ret_val)
1954                        goto out;
1955
1956                phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1957                                ? e1000_1000t_rx_status_ok
1958                                : e1000_1000t_rx_status_not_ok;
1959
1960                phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1961                                 ? e1000_1000t_rx_status_ok
1962                                 : e1000_1000t_rx_status_not_ok;
1963        } else {
1964                /* Set values to "undefined" */
1965                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1966                phy->local_rx = e1000_1000t_rx_status_undefined;
1967                phy->remote_rx = e1000_1000t_rx_status_undefined;
1968        }
1969
1970out:
1971        return ret_val;
1972}
1973
1974/**
1975 *  igb_get_phy_info_igp - Retrieve igp PHY information
1976 *  @hw: pointer to the HW structure
1977 *
1978 *  Read PHY status to determine if link is up.  If link is up, then
1979 *  set/determine 10base-T extended distance and polarity correction.  Read
1980 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1981 *  determine on the cable length, local and remote receiver.
1982 **/
1983s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1984{
1985        struct e1000_phy_info *phy = &hw->phy;
1986        s32 ret_val;
1987        u16 data;
1988        bool link;
1989
1990        ret_val = igb_phy_has_link(hw, 1, 0, &link);
1991        if (ret_val)
1992                goto out;
1993
1994        if (!link) {
1995                hw_dbg("Phy info is only valid if link is up\n");
1996                ret_val = -E1000_ERR_CONFIG;
1997                goto out;
1998        }
1999
2000        phy->polarity_correction = true;
2001
2002        ret_val = igb_check_polarity_igp(hw);
2003        if (ret_val)
2004                goto out;
2005
2006        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2007        if (ret_val)
2008                goto out;
2009
2010        phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2011
2012        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2013            IGP01E1000_PSSR_SPEED_1000MBPS) {
2014                ret_val = phy->ops.get_cable_length(hw);
2015                if (ret_val)
2016                        goto out;
2017
2018                ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2019                if (ret_val)
2020                        goto out;
2021
2022                phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2023                                ? e1000_1000t_rx_status_ok
2024                                : e1000_1000t_rx_status_not_ok;
2025
2026                phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2027                                 ? e1000_1000t_rx_status_ok
2028                                 : e1000_1000t_rx_status_not_ok;
2029        } else {
2030                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2031                phy->local_rx = e1000_1000t_rx_status_undefined;
2032                phy->remote_rx = e1000_1000t_rx_status_undefined;
2033        }
2034
2035out:
2036        return ret_val;
2037}
2038
2039/**
2040 *  igb_phy_sw_reset - PHY software reset
2041 *  @hw: pointer to the HW structure
2042 *
2043 *  Does a software reset of the PHY by reading the PHY control register and
2044 *  setting/write the control register reset bit to the PHY.
2045 **/
2046s32 igb_phy_sw_reset(struct e1000_hw *hw)
2047{
2048        s32 ret_val = 0;
2049        u16 phy_ctrl;
2050
2051        if (!(hw->phy.ops.read_reg))
2052                goto out;
2053
2054        ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2055        if (ret_val)
2056                goto out;
2057
2058        phy_ctrl |= MII_CR_RESET;
2059        ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2060        if (ret_val)
2061                goto out;
2062
2063        udelay(1);
2064
2065out:
2066        return ret_val;
2067}
2068
2069/**
2070 *  igb_phy_hw_reset - PHY hardware reset
2071 *  @hw: pointer to the HW structure
2072 *
2073 *  Verify the reset block is not blocking us from resetting.  Acquire
2074 *  semaphore (if necessary) and read/set/write the device control reset
2075 *  bit in the PHY.  Wait the appropriate delay time for the device to
2076 *  reset and release the semaphore (if necessary).
2077 **/
2078s32 igb_phy_hw_reset(struct e1000_hw *hw)
2079{
2080        struct e1000_phy_info *phy = &hw->phy;
2081        s32  ret_val;
2082        u32 ctrl;
2083
2084        ret_val = igb_check_reset_block(hw);
2085        if (ret_val) {
2086                ret_val = 0;
2087                goto out;
2088        }
2089
2090        ret_val = phy->ops.acquire(hw);
2091        if (ret_val)
2092                goto out;
2093
2094        ctrl = rd32(E1000_CTRL);
2095        wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2096        wrfl();
2097
2098        udelay(phy->reset_delay_us);
2099
2100        wr32(E1000_CTRL, ctrl);
2101        wrfl();
2102
2103        udelay(150);
2104
2105        phy->ops.release(hw);
2106
2107        ret_val = phy->ops.get_cfg_done(hw);
2108
2109out:
2110        return ret_val;
2111}
2112
2113/**
2114 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2115 *  @hw: pointer to the HW structure
2116 *
2117 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2118 **/
2119s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2120{
2121        hw_dbg("Running IGP 3 PHY init script\n");
2122
2123        /* PHY init IGP 3 */
2124        /* Enable rise/fall, 10-mode work in class-A */
2125        hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2126        /* Remove all caps from Replica path filter */
2127        hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2128        /* Bias trimming for ADC, AFE and Driver (Default) */
2129        hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2130        /* Increase Hybrid poly bias */
2131        hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2132        /* Add 4% to TX amplitude in Giga mode */
2133        hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2134        /* Disable trimming (TTT) */
2135        hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2136        /* Poly DC correction to 94.6% + 2% for all channels */
2137        hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2138        /* ABS DC correction to 95.9% */
2139        hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2140        /* BG temp curve trim */
2141        hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2142        /* Increasing ADC OPAMP stage 1 currents to max */
2143        hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2144        /* Force 1000 ( required for enabling PHY regs configuration) */
2145        hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2146        /* Set upd_freq to 6 */
2147        hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2148        /* Disable NPDFE */
2149        hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2150        /* Disable adaptive fixed FFE (Default) */
2151        hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2152        /* Enable FFE hysteresis */
2153        hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2154        /* Fixed FFE for short cable lengths */
2155        hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2156        /* Fixed FFE for medium cable lengths */
2157        hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2158        /* Fixed FFE for long cable lengths */
2159        hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2160        /* Enable Adaptive Clip Threshold */
2161        hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2162        /* AHT reset limit to 1 */
2163        hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2164        /* Set AHT master delay to 127 msec */
2165        hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2166        /* Set scan bits for AHT */
2167        hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2168        /* Set AHT Preset bits */
2169        hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2170        /* Change integ_factor of channel A to 3 */
2171        hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2172        /* Change prop_factor of channels BCD to 8 */
2173        hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2174        /* Change cg_icount + enable integbp for channels BCD */
2175        hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2176        /* Change cg_icount + enable integbp + change prop_factor_master
2177         * to 8 for channel A
2178         */
2179        hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2180        /* Disable AHT in Slave mode on channel A */
2181        hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2182        /* Enable LPLU and disable AN to 1000 in non-D0a states,
2183         * Enable SPD+B2B
2184         */
2185        hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2186        /* Enable restart AN on an1000_dis change */
2187        hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2188        /* Enable wh_fifo read clock in 10/100 modes */
2189        hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2190        /* Restart AN, Speed selection is 1000 */
2191        hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2192
2193        return 0;
2194}
2195
2196/**
2197 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2198 *  @hw: pointer to the HW structure
2199 *
2200 *  Initialize Marvel 1512 to work correctly with Avoton.
2201 **/
2202s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2203{
2204        struct e1000_phy_info *phy = &hw->phy;
2205        s32 ret_val = 0;
2206
2207        /* Switch to PHY page 0xFF. */
2208        ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2209        if (ret_val)
2210                goto out;
2211
2212        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2213        if (ret_val)
2214                goto out;
2215
2216        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2217        if (ret_val)
2218                goto out;
2219
2220        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2221        if (ret_val)
2222                goto out;
2223
2224        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2225        if (ret_val)
2226                goto out;
2227
2228        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2229        if (ret_val)
2230                goto out;
2231
2232        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2233        if (ret_val)
2234                goto out;
2235
2236        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2237        if (ret_val)
2238                goto out;
2239
2240        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2241        if (ret_val)
2242                goto out;
2243
2244        /* Switch to PHY page 0xFB. */
2245        ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2246        if (ret_val)
2247                goto out;
2248
2249        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2250        if (ret_val)
2251                goto out;
2252
2253        /* Switch to PHY page 0x12. */
2254        ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2255        if (ret_val)
2256                goto out;
2257
2258        /* Change mode to SGMII-to-Copper */
2259        ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2260        if (ret_val)
2261                goto out;
2262
2263        /* Return the PHY to page 0. */
2264        ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2265        if (ret_val)
2266                goto out;
2267
2268        ret_val = igb_phy_sw_reset(hw);
2269        if (ret_val) {
2270                hw_dbg("Error committing the PHY changes\n");
2271                return ret_val;
2272        }
2273
2274        /* msec_delay(1000); */
2275        usleep_range(1000, 2000);
2276out:
2277        return ret_val;
2278}
2279
2280/**
2281 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2282 * @hw: pointer to the HW structure
2283 *
2284 * In the case of a PHY power down to save power, or to turn off link during a
2285 * driver unload, restore the link to previous settings.
2286 **/
2287void igb_power_up_phy_copper(struct e1000_hw *hw)
2288{
2289        u16 mii_reg = 0;
2290
2291        /* The PHY will retain its settings across a power down/up cycle */
2292        hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2293        mii_reg &= ~MII_CR_POWER_DOWN;
2294        hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2295}
2296
2297/**
2298 * igb_power_down_phy_copper - Power down copper PHY
2299 * @hw: pointer to the HW structure
2300 *
2301 * Power down PHY to save power when interface is down and wake on lan
2302 * is not enabled.
2303 **/
2304void igb_power_down_phy_copper(struct e1000_hw *hw)
2305{
2306        u16 mii_reg = 0;
2307
2308        /* The PHY will retain its settings across a power down/up cycle */
2309        hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2310        mii_reg |= MII_CR_POWER_DOWN;
2311        hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2312        usleep_range(1000, 2000);
2313}
2314
2315/**
2316 *  igb_check_polarity_82580 - Checks the polarity.
2317 *  @hw: pointer to the HW structure
2318 *
2319 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2320 *
2321 *  Polarity is determined based on the PHY specific status register.
2322 **/
2323static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2324{
2325        struct e1000_phy_info *phy = &hw->phy;
2326        s32 ret_val;
2327        u16 data;
2328
2329
2330        ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2331
2332        if (!ret_val)
2333                phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2334                                      ? e1000_rev_polarity_reversed
2335                                      : e1000_rev_polarity_normal;
2336
2337        return ret_val;
2338}
2339
2340/**
2341 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2342 *  @hw: pointer to the HW structure
2343 *
2344 *  Calls the PHY setup function to force speed and duplex.  Clears the
2345 *  auto-crossover to force MDI manually.  Waits for link and returns
2346 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2347 **/
2348s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2349{
2350        struct e1000_phy_info *phy = &hw->phy;
2351        s32 ret_val;
2352        u16 phy_data;
2353        bool link;
2354
2355        ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2356        if (ret_val)
2357                goto out;
2358
2359        igb_phy_force_speed_duplex_setup(hw, &phy_data);
2360
2361        ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2362        if (ret_val)
2363                goto out;
2364
2365        /* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2366         * forced whenever speed and duplex are forced.
2367         */
2368        ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2369        if (ret_val)
2370                goto out;
2371
2372        phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2373
2374        ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2375        if (ret_val)
2376                goto out;
2377
2378        hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2379
2380        udelay(1);
2381
2382        if (phy->autoneg_wait_to_complete) {
2383                hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2384
2385                ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2386                if (ret_val)
2387                        goto out;
2388
2389                if (!link)
2390                        hw_dbg("Link taking longer than expected.\n");
2391
2392                /* Try once more */
2393                ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2394                if (ret_val)
2395                        goto out;
2396        }
2397
2398out:
2399        return ret_val;
2400}
2401
2402/**
2403 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2404 *  @hw: pointer to the HW structure
2405 *
2406 *  Read PHY status to determine if link is up.  If link is up, then
2407 *  set/determine 10base-T extended distance and polarity correction.  Read
2408 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2409 *  determine on the cable length, local and remote receiver.
2410 **/
2411s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2412{
2413        struct e1000_phy_info *phy = &hw->phy;
2414        s32 ret_val;
2415        u16 data;
2416        bool link;
2417
2418        ret_val = igb_phy_has_link(hw, 1, 0, &link);
2419        if (ret_val)
2420                goto out;
2421
2422        if (!link) {
2423                hw_dbg("Phy info is only valid if link is up\n");
2424                ret_val = -E1000_ERR_CONFIG;
2425                goto out;
2426        }
2427
2428        phy->polarity_correction = true;
2429
2430        ret_val = igb_check_polarity_82580(hw);
2431        if (ret_val)
2432                goto out;
2433
2434        ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2435        if (ret_val)
2436                goto out;
2437
2438        phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2439
2440        if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2441            I82580_PHY_STATUS2_SPEED_1000MBPS) {
2442                ret_val = hw->phy.ops.get_cable_length(hw);
2443                if (ret_val)
2444                        goto out;
2445
2446                ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2447                if (ret_val)
2448                        goto out;
2449
2450                phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2451                                ? e1000_1000t_rx_status_ok
2452                                : e1000_1000t_rx_status_not_ok;
2453
2454                phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2455                                 ? e1000_1000t_rx_status_ok
2456                                 : e1000_1000t_rx_status_not_ok;
2457        } else {
2458                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2459                phy->local_rx = e1000_1000t_rx_status_undefined;
2460                phy->remote_rx = e1000_1000t_rx_status_undefined;
2461        }
2462
2463out:
2464        return ret_val;
2465}
2466
2467/**
2468 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2469 *  @hw: pointer to the HW structure
2470 *
2471 * Reads the diagnostic status register and verifies result is valid before
2472 * placing it in the phy_cable_length field.
2473 **/
2474s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2475{
2476        struct e1000_phy_info *phy = &hw->phy;
2477        s32 ret_val;
2478        u16 phy_data, length;
2479
2480        ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2481        if (ret_val)
2482                goto out;
2483
2484        length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2485                 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2486
2487        if (length == E1000_CABLE_LENGTH_UNDEFINED)
2488                ret_val = -E1000_ERR_PHY;
2489
2490        phy->cable_length = length;
2491
2492out:
2493        return ret_val;
2494}
2495
2496/**
2497 *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2498 *  @hw: pointer to the HW structure
2499 *  @offset: lower half is register offset to write to
2500 *     upper half is page to use.
2501 *  @data: data to write at register offset
2502 *
2503 *  Acquires semaphore, if necessary, then writes the data to PHY register
2504 *  at the offset.  Release any acquired semaphores before exiting.
2505 **/
2506s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2507{
2508        s32 ret_val;
2509        u16 page = offset >> GS40G_PAGE_SHIFT;
2510
2511        offset = offset & GS40G_OFFSET_MASK;
2512        ret_val = hw->phy.ops.acquire(hw);
2513        if (ret_val)
2514                return ret_val;
2515
2516        ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2517        if (ret_val)
2518                goto release;
2519        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2520
2521release:
2522        hw->phy.ops.release(hw);
2523        return ret_val;
2524}
2525
2526/**
2527 *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2528 *  @hw: pointer to the HW structure
2529 *  @offset: lower half is register offset to read to
2530 *     upper half is page to use.
2531 *  @data: data to read at register offset
2532 *
2533 *  Acquires semaphore, if necessary, then reads the data in the PHY register
2534 *  at the offset.  Release any acquired semaphores before exiting.
2535 **/
2536s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2537{
2538        s32 ret_val;
2539        u16 page = offset >> GS40G_PAGE_SHIFT;
2540
2541        offset = offset & GS40G_OFFSET_MASK;
2542        ret_val = hw->phy.ops.acquire(hw);
2543        if (ret_val)
2544                return ret_val;
2545
2546        ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2547        if (ret_val)
2548                goto release;
2549        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2550
2551release:
2552        hw->phy.ops.release(hw);
2553        return ret_val;
2554}
2555
2556/**
2557 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2558 *  @hw: pointer to the HW structure
2559 *
2560 *  Sets up Master/slave mode
2561 **/
2562static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2563{
2564        s32 ret_val;
2565        u16 phy_data;
2566
2567        /* Resolve Master/Slave mode */
2568        ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2569        if (ret_val)
2570                return ret_val;
2571
2572        /* load defaults for future use */
2573        hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2574                                   ((phy_data & CR_1000T_MS_VALUE) ?
2575                                    e1000_ms_force_master :
2576                                    e1000_ms_force_slave) : e1000_ms_auto;
2577
2578        switch (hw->phy.ms_type) {
2579        case e1000_ms_force_master:
2580                phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2581                break;
2582        case e1000_ms_force_slave:
2583                phy_data |= CR_1000T_MS_ENABLE;
2584                phy_data &= ~(CR_1000T_MS_VALUE);
2585                break;
2586        case e1000_ms_auto:
2587                phy_data &= ~CR_1000T_MS_ENABLE;
2588                /* fall-through */
2589        default:
2590                break;
2591        }
2592
2593        return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2594}
2595