linux/drivers/net/ethernet/intel/igb/igb_main.c
<<
>>
Prefs
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/module.h>
  27#include <linux/types.h>
  28#include <linux/init.h>
  29#include <linux/bitops.h>
  30#include <linux/vmalloc.h>
  31#include <linux/pagemap.h>
  32#include <linux/netdevice.h>
  33#include <linux/ipv6.h>
  34#include <linux/slab.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37#include <linux/net_tstamp.h>
  38#include <linux/mii.h>
  39#include <linux/ethtool.h>
  40#include <linux/if.h>
  41#include <linux/if_vlan.h>
  42#include <linux/pci.h>
  43#include <linux/pci-aspm.h>
  44#include <linux/delay.h>
  45#include <linux/interrupt.h>
  46#include <linux/ip.h>
  47#include <linux/tcp.h>
  48#include <linux/sctp.h>
  49#include <linux/if_ether.h>
  50#include <linux/aer.h>
  51#include <linux/prefetch.h>
  52#include <linux/pm_runtime.h>
  53#ifdef CONFIG_IGB_DCA
  54#include <linux/dca.h>
  55#endif
  56#include <linux/i2c.h>
  57#include "igb.h"
  58
  59#define MAJ 5
  60#define MIN 3
  61#define BUILD 0
  62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  63__stringify(BUILD) "-k"
  64char igb_driver_name[] = "igb";
  65char igb_driver_version[] = DRV_VERSION;
  66static const char igb_driver_string[] =
  67                                "Intel(R) Gigabit Ethernet Network Driver";
  68static const char igb_copyright[] =
  69                                "Copyright (c) 2007-2014 Intel Corporation.";
  70
  71static const struct e1000_info *igb_info_tbl[] = {
  72        [board_82575] = &e1000_82575_info,
  73};
  74
  75static const struct pci_device_id igb_pci_tbl[] = {
  76        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  77        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  78        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  79        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  80        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  81        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  82        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  83        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  84        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  85        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  86        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  87        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  88        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  89        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  90        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  91        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  92        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  93        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  94        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  95        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  96        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  97        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  98        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  99        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
 100        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
 101        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
 102        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
 103        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
 104        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
 105        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
 106        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 107        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 108        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 109        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 110        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 111        /* required last entry */
 112        {0, }
 113};
 114
 115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 116
 117static int igb_setup_all_tx_resources(struct igb_adapter *);
 118static int igb_setup_all_rx_resources(struct igb_adapter *);
 119static void igb_free_all_tx_resources(struct igb_adapter *);
 120static void igb_free_all_rx_resources(struct igb_adapter *);
 121static void igb_setup_mrqc(struct igb_adapter *);
 122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 123static void igb_remove(struct pci_dev *pdev);
 124static int igb_sw_init(struct igb_adapter *);
 125static int igb_open(struct net_device *);
 126static int igb_close(struct net_device *);
 127static void igb_configure(struct igb_adapter *);
 128static void igb_configure_tx(struct igb_adapter *);
 129static void igb_configure_rx(struct igb_adapter *);
 130static void igb_clean_all_tx_rings(struct igb_adapter *);
 131static void igb_clean_all_rx_rings(struct igb_adapter *);
 132static void igb_clean_tx_ring(struct igb_ring *);
 133static void igb_clean_rx_ring(struct igb_ring *);
 134static void igb_set_rx_mode(struct net_device *);
 135static void igb_update_phy_info(unsigned long);
 136static void igb_watchdog(unsigned long);
 137static void igb_watchdog_task(struct work_struct *);
 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
 140                                          struct rtnl_link_stats64 *stats);
 141static int igb_change_mtu(struct net_device *, int);
 142static int igb_set_mac(struct net_device *, void *);
 143static void igb_set_uta(struct igb_adapter *adapter);
 144static irqreturn_t igb_intr(int irq, void *);
 145static irqreturn_t igb_intr_msi(int irq, void *);
 146static irqreturn_t igb_msix_other(int irq, void *);
 147static irqreturn_t igb_msix_ring(int irq, void *);
 148#ifdef CONFIG_IGB_DCA
 149static void igb_update_dca(struct igb_q_vector *);
 150static void igb_setup_dca(struct igb_adapter *);
 151#endif /* CONFIG_IGB_DCA */
 152static int igb_poll(struct napi_struct *, int);
 153static bool igb_clean_tx_irq(struct igb_q_vector *);
 154static int igb_clean_rx_irq(struct igb_q_vector *, int);
 155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 156static void igb_tx_timeout(struct net_device *);
 157static void igb_reset_task(struct work_struct *);
 158static void igb_vlan_mode(struct net_device *netdev,
 159                          netdev_features_t features);
 160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 162static void igb_restore_vlan(struct igb_adapter *);
 163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
 164static void igb_ping_all_vfs(struct igb_adapter *);
 165static void igb_msg_task(struct igb_adapter *);
 166static void igb_vmm_control(struct igb_adapter *);
 167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 171                               int vf, u16 vlan, u8 qos);
 172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 174                                   bool setting);
 175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 176                                 struct ifla_vf_info *ivi);
 177static void igb_check_vf_rate_limit(struct igb_adapter *);
 178
 179#ifdef CONFIG_PCI_IOV
 180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 182static int igb_disable_sriov(struct pci_dev *dev);
 183static int igb_pci_disable_sriov(struct pci_dev *dev);
 184#endif
 185
 186#ifdef CONFIG_PM
 187#ifdef CONFIG_PM_SLEEP
 188static int igb_suspend(struct device *);
 189#endif
 190static int igb_resume(struct device *);
 191static int igb_runtime_suspend(struct device *dev);
 192static int igb_runtime_resume(struct device *dev);
 193static int igb_runtime_idle(struct device *dev);
 194static const struct dev_pm_ops igb_pm_ops = {
 195        SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 196        SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 197                        igb_runtime_idle)
 198};
 199#endif
 200static void igb_shutdown(struct pci_dev *);
 201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 202#ifdef CONFIG_IGB_DCA
 203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 204static struct notifier_block dca_notifier = {
 205        .notifier_call  = igb_notify_dca,
 206        .next           = NULL,
 207        .priority       = 0
 208};
 209#endif
 210#ifdef CONFIG_NET_POLL_CONTROLLER
 211/* for netdump / net console */
 212static void igb_netpoll(struct net_device *);
 213#endif
 214#ifdef CONFIG_PCI_IOV
 215static unsigned int max_vfs;
 216module_param(max_vfs, uint, 0);
 217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 218#endif /* CONFIG_PCI_IOV */
 219
 220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 221                     pci_channel_state_t);
 222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 223static void igb_io_resume(struct pci_dev *);
 224
 225static const struct pci_error_handlers igb_err_handler = {
 226        .error_detected = igb_io_error_detected,
 227        .slot_reset = igb_io_slot_reset,
 228        .resume = igb_io_resume,
 229};
 230
 231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 232
 233static struct pci_driver igb_driver = {
 234        .name     = igb_driver_name,
 235        .id_table = igb_pci_tbl,
 236        .probe    = igb_probe,
 237        .remove   = igb_remove,
 238#ifdef CONFIG_PM
 239        .driver.pm = &igb_pm_ops,
 240#endif
 241        .shutdown = igb_shutdown,
 242        .sriov_configure = igb_pci_sriov_configure,
 243        .err_handler = &igb_err_handler
 244};
 245
 246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 248MODULE_LICENSE("GPL");
 249MODULE_VERSION(DRV_VERSION);
 250
 251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 252static int debug = -1;
 253module_param(debug, int, 0);
 254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 255
 256struct igb_reg_info {
 257        u32 ofs;
 258        char *name;
 259};
 260
 261static const struct igb_reg_info igb_reg_info_tbl[] = {
 262
 263        /* General Registers */
 264        {E1000_CTRL, "CTRL"},
 265        {E1000_STATUS, "STATUS"},
 266        {E1000_CTRL_EXT, "CTRL_EXT"},
 267
 268        /* Interrupt Registers */
 269        {E1000_ICR, "ICR"},
 270
 271        /* RX Registers */
 272        {E1000_RCTL, "RCTL"},
 273        {E1000_RDLEN(0), "RDLEN"},
 274        {E1000_RDH(0), "RDH"},
 275        {E1000_RDT(0), "RDT"},
 276        {E1000_RXDCTL(0), "RXDCTL"},
 277        {E1000_RDBAL(0), "RDBAL"},
 278        {E1000_RDBAH(0), "RDBAH"},
 279
 280        /* TX Registers */
 281        {E1000_TCTL, "TCTL"},
 282        {E1000_TDBAL(0), "TDBAL"},
 283        {E1000_TDBAH(0), "TDBAH"},
 284        {E1000_TDLEN(0), "TDLEN"},
 285        {E1000_TDH(0), "TDH"},
 286        {E1000_TDT(0), "TDT"},
 287        {E1000_TXDCTL(0), "TXDCTL"},
 288        {E1000_TDFH, "TDFH"},
 289        {E1000_TDFT, "TDFT"},
 290        {E1000_TDFHS, "TDFHS"},
 291        {E1000_TDFPC, "TDFPC"},
 292
 293        /* List Terminator */
 294        {}
 295};
 296
 297/* igb_regdump - register printout routine */
 298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 299{
 300        int n = 0;
 301        char rname[16];
 302        u32 regs[8];
 303
 304        switch (reginfo->ofs) {
 305        case E1000_RDLEN(0):
 306                for (n = 0; n < 4; n++)
 307                        regs[n] = rd32(E1000_RDLEN(n));
 308                break;
 309        case E1000_RDH(0):
 310                for (n = 0; n < 4; n++)
 311                        regs[n] = rd32(E1000_RDH(n));
 312                break;
 313        case E1000_RDT(0):
 314                for (n = 0; n < 4; n++)
 315                        regs[n] = rd32(E1000_RDT(n));
 316                break;
 317        case E1000_RXDCTL(0):
 318                for (n = 0; n < 4; n++)
 319                        regs[n] = rd32(E1000_RXDCTL(n));
 320                break;
 321        case E1000_RDBAL(0):
 322                for (n = 0; n < 4; n++)
 323                        regs[n] = rd32(E1000_RDBAL(n));
 324                break;
 325        case E1000_RDBAH(0):
 326                for (n = 0; n < 4; n++)
 327                        regs[n] = rd32(E1000_RDBAH(n));
 328                break;
 329        case E1000_TDBAL(0):
 330                for (n = 0; n < 4; n++)
 331                        regs[n] = rd32(E1000_RDBAL(n));
 332                break;
 333        case E1000_TDBAH(0):
 334                for (n = 0; n < 4; n++)
 335                        regs[n] = rd32(E1000_TDBAH(n));
 336                break;
 337        case E1000_TDLEN(0):
 338                for (n = 0; n < 4; n++)
 339                        regs[n] = rd32(E1000_TDLEN(n));
 340                break;
 341        case E1000_TDH(0):
 342                for (n = 0; n < 4; n++)
 343                        regs[n] = rd32(E1000_TDH(n));
 344                break;
 345        case E1000_TDT(0):
 346                for (n = 0; n < 4; n++)
 347                        regs[n] = rd32(E1000_TDT(n));
 348                break;
 349        case E1000_TXDCTL(0):
 350                for (n = 0; n < 4; n++)
 351                        regs[n] = rd32(E1000_TXDCTL(n));
 352                break;
 353        default:
 354                pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 355                return;
 356        }
 357
 358        snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 359        pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 360                regs[2], regs[3]);
 361}
 362
 363/* igb_dump - Print registers, Tx-rings and Rx-rings */
 364static void igb_dump(struct igb_adapter *adapter)
 365{
 366        struct net_device *netdev = adapter->netdev;
 367        struct e1000_hw *hw = &adapter->hw;
 368        struct igb_reg_info *reginfo;
 369        struct igb_ring *tx_ring;
 370        union e1000_adv_tx_desc *tx_desc;
 371        struct my_u0 { u64 a; u64 b; } *u0;
 372        struct igb_ring *rx_ring;
 373        union e1000_adv_rx_desc *rx_desc;
 374        u32 staterr;
 375        u16 i, n;
 376
 377        if (!netif_msg_hw(adapter))
 378                return;
 379
 380        /* Print netdevice Info */
 381        if (netdev) {
 382                dev_info(&adapter->pdev->dev, "Net device Info\n");
 383                pr_info("Device Name     state            trans_start      last_rx\n");
 384                pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 385                        netdev->state, netdev->trans_start, netdev->last_rx);
 386        }
 387
 388        /* Print Registers */
 389        dev_info(&adapter->pdev->dev, "Register Dump\n");
 390        pr_info(" Register Name   Value\n");
 391        for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 392             reginfo->name; reginfo++) {
 393                igb_regdump(hw, reginfo);
 394        }
 395
 396        /* Print TX Ring Summary */
 397        if (!netdev || !netif_running(netdev))
 398                goto exit;
 399
 400        dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 401        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 402        for (n = 0; n < adapter->num_tx_queues; n++) {
 403                struct igb_tx_buffer *buffer_info;
 404                tx_ring = adapter->tx_ring[n];
 405                buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 406                pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 407                        n, tx_ring->next_to_use, tx_ring->next_to_clean,
 408                        (u64)dma_unmap_addr(buffer_info, dma),
 409                        dma_unmap_len(buffer_info, len),
 410                        buffer_info->next_to_watch,
 411                        (u64)buffer_info->time_stamp);
 412        }
 413
 414        /* Print TX Rings */
 415        if (!netif_msg_tx_done(adapter))
 416                goto rx_ring_summary;
 417
 418        dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 419
 420        /* Transmit Descriptor Formats
 421         *
 422         * Advanced Transmit Descriptor
 423         *   +--------------------------------------------------------------+
 424         * 0 |         Buffer Address [63:0]                                |
 425         *   +--------------------------------------------------------------+
 426         * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 427         *   +--------------------------------------------------------------+
 428         *   63      46 45    40 39 38 36 35 32 31   24             15       0
 429         */
 430
 431        for (n = 0; n < adapter->num_tx_queues; n++) {
 432                tx_ring = adapter->tx_ring[n];
 433                pr_info("------------------------------------\n");
 434                pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 435                pr_info("------------------------------------\n");
 436                pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 437
 438                for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 439                        const char *next_desc;
 440                        struct igb_tx_buffer *buffer_info;
 441                        tx_desc = IGB_TX_DESC(tx_ring, i);
 442                        buffer_info = &tx_ring->tx_buffer_info[i];
 443                        u0 = (struct my_u0 *)tx_desc;
 444                        if (i == tx_ring->next_to_use &&
 445                            i == tx_ring->next_to_clean)
 446                                next_desc = " NTC/U";
 447                        else if (i == tx_ring->next_to_use)
 448                                next_desc = " NTU";
 449                        else if (i == tx_ring->next_to_clean)
 450                                next_desc = " NTC";
 451                        else
 452                                next_desc = "";
 453
 454                        pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 455                                i, le64_to_cpu(u0->a),
 456                                le64_to_cpu(u0->b),
 457                                (u64)dma_unmap_addr(buffer_info, dma),
 458                                dma_unmap_len(buffer_info, len),
 459                                buffer_info->next_to_watch,
 460                                (u64)buffer_info->time_stamp,
 461                                buffer_info->skb, next_desc);
 462
 463                        if (netif_msg_pktdata(adapter) && buffer_info->skb)
 464                                print_hex_dump(KERN_INFO, "",
 465                                        DUMP_PREFIX_ADDRESS,
 466                                        16, 1, buffer_info->skb->data,
 467                                        dma_unmap_len(buffer_info, len),
 468                                        true);
 469                }
 470        }
 471
 472        /* Print RX Rings Summary */
 473rx_ring_summary:
 474        dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 475        pr_info("Queue [NTU] [NTC]\n");
 476        for (n = 0; n < adapter->num_rx_queues; n++) {
 477                rx_ring = adapter->rx_ring[n];
 478                pr_info(" %5d %5X %5X\n",
 479                        n, rx_ring->next_to_use, rx_ring->next_to_clean);
 480        }
 481
 482        /* Print RX Rings */
 483        if (!netif_msg_rx_status(adapter))
 484                goto exit;
 485
 486        dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 487
 488        /* Advanced Receive Descriptor (Read) Format
 489         *    63                                           1        0
 490         *    +-----------------------------------------------------+
 491         *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 492         *    +----------------------------------------------+------+
 493         *  8 |       Header Buffer Address [63:1]           |  DD  |
 494         *    +-----------------------------------------------------+
 495         *
 496         *
 497         * Advanced Receive Descriptor (Write-Back) Format
 498         *
 499         *   63       48 47    32 31  30      21 20 17 16   4 3     0
 500         *   +------------------------------------------------------+
 501         * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 502         *   | Checksum   Ident  |   |           |    | Type | Type |
 503         *   +------------------------------------------------------+
 504         * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 505         *   +------------------------------------------------------+
 506         *   63       48 47    32 31            20 19               0
 507         */
 508
 509        for (n = 0; n < adapter->num_rx_queues; n++) {
 510                rx_ring = adapter->rx_ring[n];
 511                pr_info("------------------------------------\n");
 512                pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 513                pr_info("------------------------------------\n");
 514                pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 515                pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 516
 517                for (i = 0; i < rx_ring->count; i++) {
 518                        const char *next_desc;
 519                        struct igb_rx_buffer *buffer_info;
 520                        buffer_info = &rx_ring->rx_buffer_info[i];
 521                        rx_desc = IGB_RX_DESC(rx_ring, i);
 522                        u0 = (struct my_u0 *)rx_desc;
 523                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 524
 525                        if (i == rx_ring->next_to_use)
 526                                next_desc = " NTU";
 527                        else if (i == rx_ring->next_to_clean)
 528                                next_desc = " NTC";
 529                        else
 530                                next_desc = "";
 531
 532                        if (staterr & E1000_RXD_STAT_DD) {
 533                                /* Descriptor Done */
 534                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 535                                        "RWB", i,
 536                                        le64_to_cpu(u0->a),
 537                                        le64_to_cpu(u0->b),
 538                                        next_desc);
 539                        } else {
 540                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 541                                        "R  ", i,
 542                                        le64_to_cpu(u0->a),
 543                                        le64_to_cpu(u0->b),
 544                                        (u64)buffer_info->dma,
 545                                        next_desc);
 546
 547                                if (netif_msg_pktdata(adapter) &&
 548                                    buffer_info->dma && buffer_info->page) {
 549                                        print_hex_dump(KERN_INFO, "",
 550                                          DUMP_PREFIX_ADDRESS,
 551                                          16, 1,
 552                                          page_address(buffer_info->page) +
 553                                                      buffer_info->page_offset,
 554                                          IGB_RX_BUFSZ, true);
 555                                }
 556                        }
 557                }
 558        }
 559
 560exit:
 561        return;
 562}
 563
 564/**
 565 *  igb_get_i2c_data - Reads the I2C SDA data bit
 566 *  @hw: pointer to hardware structure
 567 *  @i2cctl: Current value of I2CCTL register
 568 *
 569 *  Returns the I2C data bit value
 570 **/
 571static int igb_get_i2c_data(void *data)
 572{
 573        struct igb_adapter *adapter = (struct igb_adapter *)data;
 574        struct e1000_hw *hw = &adapter->hw;
 575        s32 i2cctl = rd32(E1000_I2CPARAMS);
 576
 577        return !!(i2cctl & E1000_I2C_DATA_IN);
 578}
 579
 580/**
 581 *  igb_set_i2c_data - Sets the I2C data bit
 582 *  @data: pointer to hardware structure
 583 *  @state: I2C data value (0 or 1) to set
 584 *
 585 *  Sets the I2C data bit
 586 **/
 587static void igb_set_i2c_data(void *data, int state)
 588{
 589        struct igb_adapter *adapter = (struct igb_adapter *)data;
 590        struct e1000_hw *hw = &adapter->hw;
 591        s32 i2cctl = rd32(E1000_I2CPARAMS);
 592
 593        if (state)
 594                i2cctl |= E1000_I2C_DATA_OUT;
 595        else
 596                i2cctl &= ~E1000_I2C_DATA_OUT;
 597
 598        i2cctl &= ~E1000_I2C_DATA_OE_N;
 599        i2cctl |= E1000_I2C_CLK_OE_N;
 600        wr32(E1000_I2CPARAMS, i2cctl);
 601        wrfl();
 602
 603}
 604
 605/**
 606 *  igb_set_i2c_clk - Sets the I2C SCL clock
 607 *  @data: pointer to hardware structure
 608 *  @state: state to set clock
 609 *
 610 *  Sets the I2C clock line to state
 611 **/
 612static void igb_set_i2c_clk(void *data, int state)
 613{
 614        struct igb_adapter *adapter = (struct igb_adapter *)data;
 615        struct e1000_hw *hw = &adapter->hw;
 616        s32 i2cctl = rd32(E1000_I2CPARAMS);
 617
 618        if (state) {
 619                i2cctl |= E1000_I2C_CLK_OUT;
 620                i2cctl &= ~E1000_I2C_CLK_OE_N;
 621        } else {
 622                i2cctl &= ~E1000_I2C_CLK_OUT;
 623                i2cctl &= ~E1000_I2C_CLK_OE_N;
 624        }
 625        wr32(E1000_I2CPARAMS, i2cctl);
 626        wrfl();
 627}
 628
 629/**
 630 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 631 *  @data: pointer to hardware structure
 632 *
 633 *  Gets the I2C clock state
 634 **/
 635static int igb_get_i2c_clk(void *data)
 636{
 637        struct igb_adapter *adapter = (struct igb_adapter *)data;
 638        struct e1000_hw *hw = &adapter->hw;
 639        s32 i2cctl = rd32(E1000_I2CPARAMS);
 640
 641        return !!(i2cctl & E1000_I2C_CLK_IN);
 642}
 643
 644static const struct i2c_algo_bit_data igb_i2c_algo = {
 645        .setsda         = igb_set_i2c_data,
 646        .setscl         = igb_set_i2c_clk,
 647        .getsda         = igb_get_i2c_data,
 648        .getscl         = igb_get_i2c_clk,
 649        .udelay         = 5,
 650        .timeout        = 20,
 651};
 652
 653/**
 654 *  igb_get_hw_dev - return device
 655 *  @hw: pointer to hardware structure
 656 *
 657 *  used by hardware layer to print debugging information
 658 **/
 659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 660{
 661        struct igb_adapter *adapter = hw->back;
 662        return adapter->netdev;
 663}
 664
 665/**
 666 *  igb_init_module - Driver Registration Routine
 667 *
 668 *  igb_init_module is the first routine called when the driver is
 669 *  loaded. All it does is register with the PCI subsystem.
 670 **/
 671static int __init igb_init_module(void)
 672{
 673        int ret;
 674
 675        pr_info("%s - version %s\n",
 676               igb_driver_string, igb_driver_version);
 677        pr_info("%s\n", igb_copyright);
 678
 679#ifdef CONFIG_IGB_DCA
 680        dca_register_notify(&dca_notifier);
 681#endif
 682        ret = pci_register_driver(&igb_driver);
 683        return ret;
 684}
 685
 686module_init(igb_init_module);
 687
 688/**
 689 *  igb_exit_module - Driver Exit Cleanup Routine
 690 *
 691 *  igb_exit_module is called just before the driver is removed
 692 *  from memory.
 693 **/
 694static void __exit igb_exit_module(void)
 695{
 696#ifdef CONFIG_IGB_DCA
 697        dca_unregister_notify(&dca_notifier);
 698#endif
 699        pci_unregister_driver(&igb_driver);
 700}
 701
 702module_exit(igb_exit_module);
 703
 704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 705/**
 706 *  igb_cache_ring_register - Descriptor ring to register mapping
 707 *  @adapter: board private structure to initialize
 708 *
 709 *  Once we know the feature-set enabled for the device, we'll cache
 710 *  the register offset the descriptor ring is assigned to.
 711 **/
 712static void igb_cache_ring_register(struct igb_adapter *adapter)
 713{
 714        int i = 0, j = 0;
 715        u32 rbase_offset = adapter->vfs_allocated_count;
 716
 717        switch (adapter->hw.mac.type) {
 718        case e1000_82576:
 719                /* The queues are allocated for virtualization such that VF 0
 720                 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 721                 * In order to avoid collision we start at the first free queue
 722                 * and continue consuming queues in the same sequence
 723                 */
 724                if (adapter->vfs_allocated_count) {
 725                        for (; i < adapter->rss_queues; i++)
 726                                adapter->rx_ring[i]->reg_idx = rbase_offset +
 727                                                               Q_IDX_82576(i);
 728                }
 729                /* Fall through */
 730        case e1000_82575:
 731        case e1000_82580:
 732        case e1000_i350:
 733        case e1000_i354:
 734        case e1000_i210:
 735        case e1000_i211:
 736                /* Fall through */
 737        default:
 738                for (; i < adapter->num_rx_queues; i++)
 739                        adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 740                for (; j < adapter->num_tx_queues; j++)
 741                        adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 742                break;
 743        }
 744}
 745
 746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 747{
 748        struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 749        u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
 750        u32 value = 0;
 751
 752        if (E1000_REMOVED(hw_addr))
 753                return ~value;
 754
 755        value = readl(&hw_addr[reg]);
 756
 757        /* reads should not return all F's */
 758        if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 759                struct net_device *netdev = igb->netdev;
 760                hw->hw_addr = NULL;
 761                netif_device_detach(netdev);
 762                netdev_err(netdev, "PCIe link lost, device now detached\n");
 763        }
 764
 765        return value;
 766}
 767
 768/**
 769 *  igb_write_ivar - configure ivar for given MSI-X vector
 770 *  @hw: pointer to the HW structure
 771 *  @msix_vector: vector number we are allocating to a given ring
 772 *  @index: row index of IVAR register to write within IVAR table
 773 *  @offset: column offset of in IVAR, should be multiple of 8
 774 *
 775 *  This function is intended to handle the writing of the IVAR register
 776 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 777 *  each containing an cause allocation for an Rx and Tx ring, and a
 778 *  variable number of rows depending on the number of queues supported.
 779 **/
 780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 781                           int index, int offset)
 782{
 783        u32 ivar = array_rd32(E1000_IVAR0, index);
 784
 785        /* clear any bits that are currently set */
 786        ivar &= ~((u32)0xFF << offset);
 787
 788        /* write vector and valid bit */
 789        ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 790
 791        array_wr32(E1000_IVAR0, index, ivar);
 792}
 793
 794#define IGB_N0_QUEUE -1
 795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 796{
 797        struct igb_adapter *adapter = q_vector->adapter;
 798        struct e1000_hw *hw = &adapter->hw;
 799        int rx_queue = IGB_N0_QUEUE;
 800        int tx_queue = IGB_N0_QUEUE;
 801        u32 msixbm = 0;
 802
 803        if (q_vector->rx.ring)
 804                rx_queue = q_vector->rx.ring->reg_idx;
 805        if (q_vector->tx.ring)
 806                tx_queue = q_vector->tx.ring->reg_idx;
 807
 808        switch (hw->mac.type) {
 809        case e1000_82575:
 810                /* The 82575 assigns vectors using a bitmask, which matches the
 811                 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 812                 * or more queues to a vector, we write the appropriate bits
 813                 * into the MSIXBM register for that vector.
 814                 */
 815                if (rx_queue > IGB_N0_QUEUE)
 816                        msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 817                if (tx_queue > IGB_N0_QUEUE)
 818                        msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 819                if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 820                        msixbm |= E1000_EIMS_OTHER;
 821                array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 822                q_vector->eims_value = msixbm;
 823                break;
 824        case e1000_82576:
 825                /* 82576 uses a table that essentially consists of 2 columns
 826                 * with 8 rows.  The ordering is column-major so we use the
 827                 * lower 3 bits as the row index, and the 4th bit as the
 828                 * column offset.
 829                 */
 830                if (rx_queue > IGB_N0_QUEUE)
 831                        igb_write_ivar(hw, msix_vector,
 832                                       rx_queue & 0x7,
 833                                       (rx_queue & 0x8) << 1);
 834                if (tx_queue > IGB_N0_QUEUE)
 835                        igb_write_ivar(hw, msix_vector,
 836                                       tx_queue & 0x7,
 837                                       ((tx_queue & 0x8) << 1) + 8);
 838                q_vector->eims_value = 1 << msix_vector;
 839                break;
 840        case e1000_82580:
 841        case e1000_i350:
 842        case e1000_i354:
 843        case e1000_i210:
 844        case e1000_i211:
 845                /* On 82580 and newer adapters the scheme is similar to 82576
 846                 * however instead of ordering column-major we have things
 847                 * ordered row-major.  So we traverse the table by using
 848                 * bit 0 as the column offset, and the remaining bits as the
 849                 * row index.
 850                 */
 851                if (rx_queue > IGB_N0_QUEUE)
 852                        igb_write_ivar(hw, msix_vector,
 853                                       rx_queue >> 1,
 854                                       (rx_queue & 0x1) << 4);
 855                if (tx_queue > IGB_N0_QUEUE)
 856                        igb_write_ivar(hw, msix_vector,
 857                                       tx_queue >> 1,
 858                                       ((tx_queue & 0x1) << 4) + 8);
 859                q_vector->eims_value = 1 << msix_vector;
 860                break;
 861        default:
 862                BUG();
 863                break;
 864        }
 865
 866        /* add q_vector eims value to global eims_enable_mask */
 867        adapter->eims_enable_mask |= q_vector->eims_value;
 868
 869        /* configure q_vector to set itr on first interrupt */
 870        q_vector->set_itr = 1;
 871}
 872
 873/**
 874 *  igb_configure_msix - Configure MSI-X hardware
 875 *  @adapter: board private structure to initialize
 876 *
 877 *  igb_configure_msix sets up the hardware to properly
 878 *  generate MSI-X interrupts.
 879 **/
 880static void igb_configure_msix(struct igb_adapter *adapter)
 881{
 882        u32 tmp;
 883        int i, vector = 0;
 884        struct e1000_hw *hw = &adapter->hw;
 885
 886        adapter->eims_enable_mask = 0;
 887
 888        /* set vector for other causes, i.e. link changes */
 889        switch (hw->mac.type) {
 890        case e1000_82575:
 891                tmp = rd32(E1000_CTRL_EXT);
 892                /* enable MSI-X PBA support*/
 893                tmp |= E1000_CTRL_EXT_PBA_CLR;
 894
 895                /* Auto-Mask interrupts upon ICR read. */
 896                tmp |= E1000_CTRL_EXT_EIAME;
 897                tmp |= E1000_CTRL_EXT_IRCA;
 898
 899                wr32(E1000_CTRL_EXT, tmp);
 900
 901                /* enable msix_other interrupt */
 902                array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 903                adapter->eims_other = E1000_EIMS_OTHER;
 904
 905                break;
 906
 907        case e1000_82576:
 908        case e1000_82580:
 909        case e1000_i350:
 910        case e1000_i354:
 911        case e1000_i210:
 912        case e1000_i211:
 913                /* Turn on MSI-X capability first, or our settings
 914                 * won't stick.  And it will take days to debug.
 915                 */
 916                wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 917                     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 918                     E1000_GPIE_NSICR);
 919
 920                /* enable msix_other interrupt */
 921                adapter->eims_other = 1 << vector;
 922                tmp = (vector++ | E1000_IVAR_VALID) << 8;
 923
 924                wr32(E1000_IVAR_MISC, tmp);
 925                break;
 926        default:
 927                /* do nothing, since nothing else supports MSI-X */
 928                break;
 929        } /* switch (hw->mac.type) */
 930
 931        adapter->eims_enable_mask |= adapter->eims_other;
 932
 933        for (i = 0; i < adapter->num_q_vectors; i++)
 934                igb_assign_vector(adapter->q_vector[i], vector++);
 935
 936        wrfl();
 937}
 938
 939/**
 940 *  igb_request_msix - Initialize MSI-X interrupts
 941 *  @adapter: board private structure to initialize
 942 *
 943 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 944 *  kernel.
 945 **/
 946static int igb_request_msix(struct igb_adapter *adapter)
 947{
 948        struct net_device *netdev = adapter->netdev;
 949        struct e1000_hw *hw = &adapter->hw;
 950        int i, err = 0, vector = 0, free_vector = 0;
 951
 952        err = request_irq(adapter->msix_entries[vector].vector,
 953                          igb_msix_other, 0, netdev->name, adapter);
 954        if (err)
 955                goto err_out;
 956
 957        for (i = 0; i < adapter->num_q_vectors; i++) {
 958                struct igb_q_vector *q_vector = adapter->q_vector[i];
 959
 960                vector++;
 961
 962                q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
 963
 964                if (q_vector->rx.ring && q_vector->tx.ring)
 965                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 966                                q_vector->rx.ring->queue_index);
 967                else if (q_vector->tx.ring)
 968                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 969                                q_vector->tx.ring->queue_index);
 970                else if (q_vector->rx.ring)
 971                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 972                                q_vector->rx.ring->queue_index);
 973                else
 974                        sprintf(q_vector->name, "%s-unused", netdev->name);
 975
 976                err = request_irq(adapter->msix_entries[vector].vector,
 977                                  igb_msix_ring, 0, q_vector->name,
 978                                  q_vector);
 979                if (err)
 980                        goto err_free;
 981        }
 982
 983        igb_configure_msix(adapter);
 984        return 0;
 985
 986err_free:
 987        /* free already assigned IRQs */
 988        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 989
 990        vector--;
 991        for (i = 0; i < vector; i++) {
 992                free_irq(adapter->msix_entries[free_vector++].vector,
 993                         adapter->q_vector[i]);
 994        }
 995err_out:
 996        return err;
 997}
 998
 999/**
1000 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 *  @adapter: board private structure to initialize
1002 *  @v_idx: Index of vector to be freed
1003 *
1004 *  This function frees the memory allocated to the q_vector.
1005 **/
1006static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007{
1008        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010        adapter->q_vector[v_idx] = NULL;
1011
1012        /* igb_get_stats64() might access the rings on this vector,
1013         * we must wait a grace period before freeing it.
1014         */
1015        if (q_vector)
1016                kfree_rcu(q_vector, rcu);
1017}
1018
1019/**
1020 *  igb_reset_q_vector - Reset config for interrupt vector
1021 *  @adapter: board private structure to initialize
1022 *  @v_idx: Index of vector to be reset
1023 *
1024 *  If NAPI is enabled it will delete any references to the
1025 *  NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028{
1029        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031        /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032         * allocated. So, q_vector is NULL so we should stop here.
1033         */
1034        if (!q_vector)
1035                return;
1036
1037        if (q_vector->tx.ring)
1038                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040        if (q_vector->rx.ring)
1041                adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043        netif_napi_del(&q_vector->napi);
1044
1045}
1046
1047static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048{
1049        int v_idx = adapter->num_q_vectors;
1050
1051        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                pci_disable_msix(adapter->pdev);
1053        else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                pci_disable_msi(adapter->pdev);
1055
1056        while (v_idx--)
1057                igb_reset_q_vector(adapter, v_idx);
1058}
1059
1060/**
1061 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 *  @adapter: board private structure to initialize
1063 *
1064 *  This function frees the memory allocated to the q_vectors.  In addition if
1065 *  NAPI is enabled it will delete any references to the NAPI struct prior
1066 *  to freeing the q_vector.
1067 **/
1068static void igb_free_q_vectors(struct igb_adapter *adapter)
1069{
1070        int v_idx = adapter->num_q_vectors;
1071
1072        adapter->num_tx_queues = 0;
1073        adapter->num_rx_queues = 0;
1074        adapter->num_q_vectors = 0;
1075
1076        while (v_idx--) {
1077                igb_reset_q_vector(adapter, v_idx);
1078                igb_free_q_vector(adapter, v_idx);
1079        }
1080}
1081
1082/**
1083 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 *  @adapter: board private structure to initialize
1085 *
1086 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 *  MSI-X interrupts allocated.
1088 */
1089static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090{
1091        igb_free_q_vectors(adapter);
1092        igb_reset_interrupt_capability(adapter);
1093}
1094
1095/**
1096 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 *  @adapter: board private structure to initialize
1098 *  @msix: boolean value of MSIX capability
1099 *
1100 *  Attempt to configure interrupts using the best available
1101 *  capabilities of the hardware and kernel.
1102 **/
1103static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104{
1105        int err;
1106        int numvecs, i;
1107
1108        if (!msix)
1109                goto msi_only;
1110        adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112        /* Number of supported queues. */
1113        adapter->num_rx_queues = adapter->rss_queues;
1114        if (adapter->vfs_allocated_count)
1115                adapter->num_tx_queues = 1;
1116        else
1117                adapter->num_tx_queues = adapter->rss_queues;
1118
1119        /* start with one vector for every Rx queue */
1120        numvecs = adapter->num_rx_queues;
1121
1122        /* if Tx handler is separate add 1 for every Tx queue */
1123        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                numvecs += adapter->num_tx_queues;
1125
1126        /* store the number of vectors reserved for queues */
1127        adapter->num_q_vectors = numvecs;
1128
1129        /* add 1 vector for link status interrupts */
1130        numvecs++;
1131        for (i = 0; i < numvecs; i++)
1132                adapter->msix_entries[i].entry = i;
1133
1134        err = pci_enable_msix_range(adapter->pdev,
1135                                    adapter->msix_entries,
1136                                    numvecs,
1137                                    numvecs);
1138        if (err > 0)
1139                return;
1140
1141        igb_reset_interrupt_capability(adapter);
1142
1143        /* If we can't do MSI-X, try MSI */
1144msi_only:
1145        adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146#ifdef CONFIG_PCI_IOV
1147        /* disable SR-IOV for non MSI-X configurations */
1148        if (adapter->vf_data) {
1149                struct e1000_hw *hw = &adapter->hw;
1150                /* disable iov and allow time for transactions to clear */
1151                pci_disable_sriov(adapter->pdev);
1152                msleep(500);
1153
1154                kfree(adapter->vf_data);
1155                adapter->vf_data = NULL;
1156                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                wrfl();
1158                msleep(100);
1159                dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160        }
1161#endif
1162        adapter->vfs_allocated_count = 0;
1163        adapter->rss_queues = 1;
1164        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165        adapter->num_rx_queues = 1;
1166        adapter->num_tx_queues = 1;
1167        adapter->num_q_vectors = 1;
1168        if (!pci_enable_msi(adapter->pdev))
1169                adapter->flags |= IGB_FLAG_HAS_MSI;
1170}
1171
1172static void igb_add_ring(struct igb_ring *ring,
1173                         struct igb_ring_container *head)
1174{
1175        head->ring = ring;
1176        head->count++;
1177}
1178
1179/**
1180 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 *  @adapter: board private structure to initialize
1182 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 *  @v_idx: index of vector in adapter struct
1184 *  @txr_count: total number of Tx rings to allocate
1185 *  @txr_idx: index of first Tx ring to allocate
1186 *  @rxr_count: total number of Rx rings to allocate
1187 *  @rxr_idx: index of first Rx ring to allocate
1188 *
1189 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190 **/
1191static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                              int v_count, int v_idx,
1193                              int txr_count, int txr_idx,
1194                              int rxr_count, int rxr_idx)
1195{
1196        struct igb_q_vector *q_vector;
1197        struct igb_ring *ring;
1198        int ring_count, size;
1199
1200        /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201        if (txr_count > 1 || rxr_count > 1)
1202                return -ENOMEM;
1203
1204        ring_count = txr_count + rxr_count;
1205        size = sizeof(struct igb_q_vector) +
1206               (sizeof(struct igb_ring) * ring_count);
1207
1208        /* allocate q_vector and rings */
1209        q_vector = adapter->q_vector[v_idx];
1210        if (!q_vector) {
1211                q_vector = kzalloc(size, GFP_KERNEL);
1212        } else if (size > ksize(q_vector)) {
1213                kfree_rcu(q_vector, rcu);
1214                q_vector = kzalloc(size, GFP_KERNEL);
1215        } else {
1216                memset(q_vector, 0, size);
1217        }
1218        if (!q_vector)
1219                return -ENOMEM;
1220
1221        /* initialize NAPI */
1222        netif_napi_add(adapter->netdev, &q_vector->napi,
1223                       igb_poll, 64);
1224
1225        /* tie q_vector and adapter together */
1226        adapter->q_vector[v_idx] = q_vector;
1227        q_vector->adapter = adapter;
1228
1229        /* initialize work limits */
1230        q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232        /* initialize ITR configuration */
1233        q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1234        q_vector->itr_val = IGB_START_ITR;
1235
1236        /* initialize pointer to rings */
1237        ring = q_vector->ring;
1238
1239        /* intialize ITR */
1240        if (rxr_count) {
1241                /* rx or rx/tx vector */
1242                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243                        q_vector->itr_val = adapter->rx_itr_setting;
1244        } else {
1245                /* tx only vector */
1246                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247                        q_vector->itr_val = adapter->tx_itr_setting;
1248        }
1249
1250        if (txr_count) {
1251                /* assign generic ring traits */
1252                ring->dev = &adapter->pdev->dev;
1253                ring->netdev = adapter->netdev;
1254
1255                /* configure backlink on ring */
1256                ring->q_vector = q_vector;
1257
1258                /* update q_vector Tx values */
1259                igb_add_ring(ring, &q_vector->tx);
1260
1261                /* For 82575, context index must be unique per ring. */
1262                if (adapter->hw.mac.type == e1000_82575)
1263                        set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265                /* apply Tx specific ring traits */
1266                ring->count = adapter->tx_ring_count;
1267                ring->queue_index = txr_idx;
1268
1269                u64_stats_init(&ring->tx_syncp);
1270                u64_stats_init(&ring->tx_syncp2);
1271
1272                /* assign ring to adapter */
1273                adapter->tx_ring[txr_idx] = ring;
1274
1275                /* push pointer to next ring */
1276                ring++;
1277        }
1278
1279        if (rxr_count) {
1280                /* assign generic ring traits */
1281                ring->dev = &adapter->pdev->dev;
1282                ring->netdev = adapter->netdev;
1283
1284                /* configure backlink on ring */
1285                ring->q_vector = q_vector;
1286
1287                /* update q_vector Rx values */
1288                igb_add_ring(ring, &q_vector->rx);
1289
1290                /* set flag indicating ring supports SCTP checksum offload */
1291                if (adapter->hw.mac.type >= e1000_82576)
1292                        set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                /* On i350, i354, i210, and i211, loopback VLAN packets
1295                 * have the tag byte-swapped.
1296                 */
1297                if (adapter->hw.mac.type >= e1000_i350)
1298                        set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                /* apply Rx specific ring traits */
1301                ring->count = adapter->rx_ring_count;
1302                ring->queue_index = rxr_idx;
1303
1304                u64_stats_init(&ring->rx_syncp);
1305
1306                /* assign ring to adapter */
1307                adapter->rx_ring[rxr_idx] = ring;
1308        }
1309
1310        return 0;
1311}
1312
1313
1314/**
1315 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 *  @adapter: board private structure to initialize
1317 *
1318 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319 *  return -ENOMEM.
1320 **/
1321static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322{
1323        int q_vectors = adapter->num_q_vectors;
1324        int rxr_remaining = adapter->num_rx_queues;
1325        int txr_remaining = adapter->num_tx_queues;
1326        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327        int err;
1328
1329        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                for (; rxr_remaining; v_idx++) {
1331                        err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                 0, 0, 1, rxr_idx);
1333
1334                        if (err)
1335                                goto err_out;
1336
1337                        /* update counts and index */
1338                        rxr_remaining--;
1339                        rxr_idx++;
1340                }
1341        }
1342
1343        for (; v_idx < q_vectors; v_idx++) {
1344                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                         tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                if (err)
1351                        goto err_out;
1352
1353                /* update counts and index */
1354                rxr_remaining -= rqpv;
1355                txr_remaining -= tqpv;
1356                rxr_idx++;
1357                txr_idx++;
1358        }
1359
1360        return 0;
1361
1362err_out:
1363        adapter->num_tx_queues = 0;
1364        adapter->num_rx_queues = 0;
1365        adapter->num_q_vectors = 0;
1366
1367        while (v_idx--)
1368                igb_free_q_vector(adapter, v_idx);
1369
1370        return -ENOMEM;
1371}
1372
1373/**
1374 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 *  @adapter: board private structure to initialize
1376 *  @msix: boolean value of MSIX capability
1377 *
1378 *  This function initializes the interrupts and allocates all of the queues.
1379 **/
1380static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381{
1382        struct pci_dev *pdev = adapter->pdev;
1383        int err;
1384
1385        igb_set_interrupt_capability(adapter, msix);
1386
1387        err = igb_alloc_q_vectors(adapter);
1388        if (err) {
1389                dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                goto err_alloc_q_vectors;
1391        }
1392
1393        igb_cache_ring_register(adapter);
1394
1395        return 0;
1396
1397err_alloc_q_vectors:
1398        igb_reset_interrupt_capability(adapter);
1399        return err;
1400}
1401
1402/**
1403 *  igb_request_irq - initialize interrupts
1404 *  @adapter: board private structure to initialize
1405 *
1406 *  Attempts to configure interrupts using the best available
1407 *  capabilities of the hardware and kernel.
1408 **/
1409static int igb_request_irq(struct igb_adapter *adapter)
1410{
1411        struct net_device *netdev = adapter->netdev;
1412        struct pci_dev *pdev = adapter->pdev;
1413        int err = 0;
1414
1415        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                err = igb_request_msix(adapter);
1417                if (!err)
1418                        goto request_done;
1419                /* fall back to MSI */
1420                igb_free_all_tx_resources(adapter);
1421                igb_free_all_rx_resources(adapter);
1422
1423                igb_clear_interrupt_scheme(adapter);
1424                err = igb_init_interrupt_scheme(adapter, false);
1425                if (err)
1426                        goto request_done;
1427
1428                igb_setup_all_tx_resources(adapter);
1429                igb_setup_all_rx_resources(adapter);
1430                igb_configure(adapter);
1431        }
1432
1433        igb_assign_vector(adapter->q_vector[0], 0);
1434
1435        if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                  netdev->name, adapter);
1438                if (!err)
1439                        goto request_done;
1440
1441                /* fall back to legacy interrupts */
1442                igb_reset_interrupt_capability(adapter);
1443                adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444        }
1445
1446        err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                          netdev->name, adapter);
1448
1449        if (err)
1450                dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                        err);
1452
1453request_done:
1454        return err;
1455}
1456
1457static void igb_free_irq(struct igb_adapter *adapter)
1458{
1459        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                int vector = 0, i;
1461
1462                free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                for (i = 0; i < adapter->num_q_vectors; i++)
1465                        free_irq(adapter->msix_entries[vector++].vector,
1466                                 adapter->q_vector[i]);
1467        } else {
1468                free_irq(adapter->pdev->irq, adapter);
1469        }
1470}
1471
1472/**
1473 *  igb_irq_disable - Mask off interrupt generation on the NIC
1474 *  @adapter: board private structure
1475 **/
1476static void igb_irq_disable(struct igb_adapter *adapter)
1477{
1478        struct e1000_hw *hw = &adapter->hw;
1479
1480        /* we need to be careful when disabling interrupts.  The VFs are also
1481         * mapped into these registers and so clearing the bits can cause
1482         * issues on the VF drivers so we only need to clear what we set
1483         */
1484        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                u32 regval = rd32(E1000_EIAM);
1486
1487                wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                regval = rd32(E1000_EIAC);
1490                wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491        }
1492
1493        wr32(E1000_IAM, 0);
1494        wr32(E1000_IMC, ~0);
1495        wrfl();
1496        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                int i;
1498
1499                for (i = 0; i < adapter->num_q_vectors; i++)
1500                        synchronize_irq(adapter->msix_entries[i].vector);
1501        } else {
1502                synchronize_irq(adapter->pdev->irq);
1503        }
1504}
1505
1506/**
1507 *  igb_irq_enable - Enable default interrupt generation settings
1508 *  @adapter: board private structure
1509 **/
1510static void igb_irq_enable(struct igb_adapter *adapter)
1511{
1512        struct e1000_hw *hw = &adapter->hw;
1513
1514        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                u32 regval = rd32(E1000_EIAC);
1517
1518                wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                regval = rd32(E1000_EIAM);
1520                wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                if (adapter->vfs_allocated_count) {
1523                        wr32(E1000_MBVFIMR, 0xFF);
1524                        ims |= E1000_IMS_VMMB;
1525                }
1526                wr32(E1000_IMS, ims);
1527        } else {
1528                wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                E1000_IMS_DRSTA);
1530                wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                E1000_IMS_DRSTA);
1532        }
1533}
1534
1535static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536{
1537        struct e1000_hw *hw = &adapter->hw;
1538        u16 vid = adapter->hw.mng_cookie.vlan_id;
1539        u16 old_vid = adapter->mng_vlan_id;
1540
1541        if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542                /* add VID to filter table */
1543                igb_vfta_set(hw, vid, true);
1544                adapter->mng_vlan_id = vid;
1545        } else {
1546                adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547        }
1548
1549        if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550            (vid != old_vid) &&
1551            !test_bit(old_vid, adapter->active_vlans)) {
1552                /* remove VID from filter table */
1553                igb_vfta_set(hw, old_vid, false);
1554        }
1555}
1556
1557/**
1558 *  igb_release_hw_control - release control of the h/w to f/w
1559 *  @adapter: address of board private structure
1560 *
1561 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562 *  For ASF and Pass Through versions of f/w this means that the
1563 *  driver is no longer loaded.
1564 **/
1565static void igb_release_hw_control(struct igb_adapter *adapter)
1566{
1567        struct e1000_hw *hw = &adapter->hw;
1568        u32 ctrl_ext;
1569
1570        /* Let firmware take over control of h/w */
1571        ctrl_ext = rd32(E1000_CTRL_EXT);
1572        wr32(E1000_CTRL_EXT,
1573                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574}
1575
1576/**
1577 *  igb_get_hw_control - get control of the h/w from f/w
1578 *  @adapter: address of board private structure
1579 *
1580 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581 *  For ASF and Pass Through versions of f/w this means that
1582 *  the driver is loaded.
1583 **/
1584static void igb_get_hw_control(struct igb_adapter *adapter)
1585{
1586        struct e1000_hw *hw = &adapter->hw;
1587        u32 ctrl_ext;
1588
1589        /* Let firmware know the driver has taken over */
1590        ctrl_ext = rd32(E1000_CTRL_EXT);
1591        wr32(E1000_CTRL_EXT,
1592                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593}
1594
1595/**
1596 *  igb_configure - configure the hardware for RX and TX
1597 *  @adapter: private board structure
1598 **/
1599static void igb_configure(struct igb_adapter *adapter)
1600{
1601        struct net_device *netdev = adapter->netdev;
1602        int i;
1603
1604        igb_get_hw_control(adapter);
1605        igb_set_rx_mode(netdev);
1606
1607        igb_restore_vlan(adapter);
1608
1609        igb_setup_tctl(adapter);
1610        igb_setup_mrqc(adapter);
1611        igb_setup_rctl(adapter);
1612
1613        igb_configure_tx(adapter);
1614        igb_configure_rx(adapter);
1615
1616        igb_rx_fifo_flush_82575(&adapter->hw);
1617
1618        /* call igb_desc_unused which always leaves
1619         * at least 1 descriptor unused to make sure
1620         * next_to_use != next_to_clean
1621         */
1622        for (i = 0; i < adapter->num_rx_queues; i++) {
1623                struct igb_ring *ring = adapter->rx_ring[i];
1624                igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1625        }
1626}
1627
1628/**
1629 *  igb_power_up_link - Power up the phy/serdes link
1630 *  @adapter: address of board private structure
1631 **/
1632void igb_power_up_link(struct igb_adapter *adapter)
1633{
1634        igb_reset_phy(&adapter->hw);
1635
1636        if (adapter->hw.phy.media_type == e1000_media_type_copper)
1637                igb_power_up_phy_copper(&adapter->hw);
1638        else
1639                igb_power_up_serdes_link_82575(&adapter->hw);
1640
1641        igb_setup_link(&adapter->hw);
1642}
1643
1644/**
1645 *  igb_power_down_link - Power down the phy/serdes link
1646 *  @adapter: address of board private structure
1647 */
1648static void igb_power_down_link(struct igb_adapter *adapter)
1649{
1650        if (adapter->hw.phy.media_type == e1000_media_type_copper)
1651                igb_power_down_phy_copper_82575(&adapter->hw);
1652        else
1653                igb_shutdown_serdes_link_82575(&adapter->hw);
1654}
1655
1656/**
1657 * Detect and switch function for Media Auto Sense
1658 * @adapter: address of the board private structure
1659 **/
1660static void igb_check_swap_media(struct igb_adapter *adapter)
1661{
1662        struct e1000_hw *hw = &adapter->hw;
1663        u32 ctrl_ext, connsw;
1664        bool swap_now = false;
1665
1666        ctrl_ext = rd32(E1000_CTRL_EXT);
1667        connsw = rd32(E1000_CONNSW);
1668
1669        /* need to live swap if current media is copper and we have fiber/serdes
1670         * to go to.
1671         */
1672
1673        if ((hw->phy.media_type == e1000_media_type_copper) &&
1674            (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1675                swap_now = true;
1676        } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1677                /* copper signal takes time to appear */
1678                if (adapter->copper_tries < 4) {
1679                        adapter->copper_tries++;
1680                        connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1681                        wr32(E1000_CONNSW, connsw);
1682                        return;
1683                } else {
1684                        adapter->copper_tries = 0;
1685                        if ((connsw & E1000_CONNSW_PHYSD) &&
1686                            (!(connsw & E1000_CONNSW_PHY_PDN))) {
1687                                swap_now = true;
1688                                connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1689                                wr32(E1000_CONNSW, connsw);
1690                        }
1691                }
1692        }
1693
1694        if (!swap_now)
1695                return;
1696
1697        switch (hw->phy.media_type) {
1698        case e1000_media_type_copper:
1699                netdev_info(adapter->netdev,
1700                        "MAS: changing media to fiber/serdes\n");
1701                ctrl_ext |=
1702                        E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703                adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704                adapter->copper_tries = 0;
1705                break;
1706        case e1000_media_type_internal_serdes:
1707        case e1000_media_type_fiber:
1708                netdev_info(adapter->netdev,
1709                        "MAS: changing media to copper\n");
1710                ctrl_ext &=
1711                        ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1712                adapter->flags |= IGB_FLAG_MEDIA_RESET;
1713                break;
1714        default:
1715                /* shouldn't get here during regular operation */
1716                netdev_err(adapter->netdev,
1717                        "AMS: Invalid media type found, returning\n");
1718                break;
1719        }
1720        wr32(E1000_CTRL_EXT, ctrl_ext);
1721}
1722
1723/**
1724 *  igb_up - Open the interface and prepare it to handle traffic
1725 *  @adapter: board private structure
1726 **/
1727int igb_up(struct igb_adapter *adapter)
1728{
1729        struct e1000_hw *hw = &adapter->hw;
1730        int i;
1731
1732        /* hardware has been reset, we need to reload some things */
1733        igb_configure(adapter);
1734
1735        clear_bit(__IGB_DOWN, &adapter->state);
1736
1737        for (i = 0; i < adapter->num_q_vectors; i++)
1738                napi_enable(&(adapter->q_vector[i]->napi));
1739
1740        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1741                igb_configure_msix(adapter);
1742        else
1743                igb_assign_vector(adapter->q_vector[0], 0);
1744
1745        /* Clear any pending interrupts. */
1746        rd32(E1000_ICR);
1747        igb_irq_enable(adapter);
1748
1749        /* notify VFs that reset has been completed */
1750        if (adapter->vfs_allocated_count) {
1751                u32 reg_data = rd32(E1000_CTRL_EXT);
1752
1753                reg_data |= E1000_CTRL_EXT_PFRSTD;
1754                wr32(E1000_CTRL_EXT, reg_data);
1755        }
1756
1757        netif_tx_start_all_queues(adapter->netdev);
1758
1759        /* start the watchdog. */
1760        hw->mac.get_link_status = 1;
1761        schedule_work(&adapter->watchdog_task);
1762
1763        if ((adapter->flags & IGB_FLAG_EEE) &&
1764            (!hw->dev_spec._82575.eee_disable))
1765                adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1766
1767        return 0;
1768}
1769
1770void igb_down(struct igb_adapter *adapter)
1771{
1772        struct net_device *netdev = adapter->netdev;
1773        struct e1000_hw *hw = &adapter->hw;
1774        u32 tctl, rctl;
1775        int i;
1776
1777        /* signal that we're down so the interrupt handler does not
1778         * reschedule our watchdog timer
1779         */
1780        set_bit(__IGB_DOWN, &adapter->state);
1781
1782        /* disable receives in the hardware */
1783        rctl = rd32(E1000_RCTL);
1784        wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1785        /* flush and sleep below */
1786
1787        netif_carrier_off(netdev);
1788        netif_tx_stop_all_queues(netdev);
1789
1790        /* disable transmits in the hardware */
1791        tctl = rd32(E1000_TCTL);
1792        tctl &= ~E1000_TCTL_EN;
1793        wr32(E1000_TCTL, tctl);
1794        /* flush both disables and wait for them to finish */
1795        wrfl();
1796        usleep_range(10000, 11000);
1797
1798        igb_irq_disable(adapter);
1799
1800        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1801
1802        for (i = 0; i < adapter->num_q_vectors; i++) {
1803                if (adapter->q_vector[i]) {
1804                        napi_synchronize(&adapter->q_vector[i]->napi);
1805                        napi_disable(&adapter->q_vector[i]->napi);
1806                }
1807        }
1808
1809        del_timer_sync(&adapter->watchdog_timer);
1810        del_timer_sync(&adapter->phy_info_timer);
1811
1812        /* record the stats before reset*/
1813        spin_lock(&adapter->stats64_lock);
1814        igb_update_stats(adapter, &adapter->stats64);
1815        spin_unlock(&adapter->stats64_lock);
1816
1817        adapter->link_speed = 0;
1818        adapter->link_duplex = 0;
1819
1820        if (!pci_channel_offline(adapter->pdev))
1821                igb_reset(adapter);
1822        igb_clean_all_tx_rings(adapter);
1823        igb_clean_all_rx_rings(adapter);
1824#ifdef CONFIG_IGB_DCA
1825
1826        /* since we reset the hardware DCA settings were cleared */
1827        igb_setup_dca(adapter);
1828#endif
1829}
1830
1831void igb_reinit_locked(struct igb_adapter *adapter)
1832{
1833        WARN_ON(in_interrupt());
1834        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1835                usleep_range(1000, 2000);
1836        igb_down(adapter);
1837        igb_up(adapter);
1838        clear_bit(__IGB_RESETTING, &adapter->state);
1839}
1840
1841/** igb_enable_mas - Media Autosense re-enable after swap
1842 *
1843 * @adapter: adapter struct
1844 **/
1845static void igb_enable_mas(struct igb_adapter *adapter)
1846{
1847        struct e1000_hw *hw = &adapter->hw;
1848        u32 connsw = rd32(E1000_CONNSW);
1849
1850        /* configure for SerDes media detect */
1851        if ((hw->phy.media_type == e1000_media_type_copper) &&
1852            (!(connsw & E1000_CONNSW_SERDESD))) {
1853                connsw |= E1000_CONNSW_ENRGSRC;
1854                connsw |= E1000_CONNSW_AUTOSENSE_EN;
1855                wr32(E1000_CONNSW, connsw);
1856                wrfl();
1857        }
1858}
1859
1860void igb_reset(struct igb_adapter *adapter)
1861{
1862        struct pci_dev *pdev = adapter->pdev;
1863        struct e1000_hw *hw = &adapter->hw;
1864        struct e1000_mac_info *mac = &hw->mac;
1865        struct e1000_fc_info *fc = &hw->fc;
1866        u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1867
1868        /* Repartition Pba for greater than 9k mtu
1869         * To take effect CTRL.RST is required.
1870         */
1871        switch (mac->type) {
1872        case e1000_i350:
1873        case e1000_i354:
1874        case e1000_82580:
1875                pba = rd32(E1000_RXPBS);
1876                pba = igb_rxpbs_adjust_82580(pba);
1877                break;
1878        case e1000_82576:
1879                pba = rd32(E1000_RXPBS);
1880                pba &= E1000_RXPBS_SIZE_MASK_82576;
1881                break;
1882        case e1000_82575:
1883        case e1000_i210:
1884        case e1000_i211:
1885        default:
1886                pba = E1000_PBA_34K;
1887                break;
1888        }
1889
1890        if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1891            (mac->type < e1000_82576)) {
1892                /* adjust PBA for jumbo frames */
1893                wr32(E1000_PBA, pba);
1894
1895                /* To maintain wire speed transmits, the Tx FIFO should be
1896                 * large enough to accommodate two full transmit packets,
1897                 * rounded up to the next 1KB and expressed in KB.  Likewise,
1898                 * the Rx FIFO should be large enough to accommodate at least
1899                 * one full receive packet and is similarly rounded up and
1900                 * expressed in KB.
1901                 */
1902                pba = rd32(E1000_PBA);
1903                /* upper 16 bits has Tx packet buffer allocation size in KB */
1904                tx_space = pba >> 16;
1905                /* lower 16 bits has Rx packet buffer allocation size in KB */
1906                pba &= 0xffff;
1907                /* the Tx fifo also stores 16 bytes of information about the Tx
1908                 * but don't include ethernet FCS because hardware appends it
1909                 */
1910                min_tx_space = (adapter->max_frame_size +
1911                                sizeof(union e1000_adv_tx_desc) -
1912                                ETH_FCS_LEN) * 2;
1913                min_tx_space = ALIGN(min_tx_space, 1024);
1914                min_tx_space >>= 10;
1915                /* software strips receive CRC, so leave room for it */
1916                min_rx_space = adapter->max_frame_size;
1917                min_rx_space = ALIGN(min_rx_space, 1024);
1918                min_rx_space >>= 10;
1919
1920                /* If current Tx allocation is less than the min Tx FIFO size,
1921                 * and the min Tx FIFO size is less than the current Rx FIFO
1922                 * allocation, take space away from current Rx allocation
1923                 */
1924                if (tx_space < min_tx_space &&
1925                    ((min_tx_space - tx_space) < pba)) {
1926                        pba = pba - (min_tx_space - tx_space);
1927
1928                        /* if short on Rx space, Rx wins and must trump Tx
1929                         * adjustment
1930                         */
1931                        if (pba < min_rx_space)
1932                                pba = min_rx_space;
1933                }
1934                wr32(E1000_PBA, pba);
1935        }
1936
1937        /* flow control settings */
1938        /* The high water mark must be low enough to fit one full frame
1939         * (or the size used for early receive) above it in the Rx FIFO.
1940         * Set it to the lower of:
1941         * - 90% of the Rx FIFO size, or
1942         * - the full Rx FIFO size minus one full frame
1943         */
1944        hwm = min(((pba << 10) * 9 / 10),
1945                        ((pba << 10) - 2 * adapter->max_frame_size));
1946
1947        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1948        fc->low_water = fc->high_water - 16;
1949        fc->pause_time = 0xFFFF;
1950        fc->send_xon = 1;
1951        fc->current_mode = fc->requested_mode;
1952
1953        /* disable receive for all VFs and wait one second */
1954        if (adapter->vfs_allocated_count) {
1955                int i;
1956
1957                for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1958                        adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1959
1960                /* ping all the active vfs to let them know we are going down */
1961                igb_ping_all_vfs(adapter);
1962
1963                /* disable transmits and receives */
1964                wr32(E1000_VFRE, 0);
1965                wr32(E1000_VFTE, 0);
1966        }
1967
1968        /* Allow time for pending master requests to run */
1969        hw->mac.ops.reset_hw(hw);
1970        wr32(E1000_WUC, 0);
1971
1972        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1973                /* need to resetup here after media swap */
1974                adapter->ei.get_invariants(hw);
1975                adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1976        }
1977        if ((mac->type == e1000_82575) &&
1978            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1979                igb_enable_mas(adapter);
1980        }
1981        if (hw->mac.ops.init_hw(hw))
1982                dev_err(&pdev->dev, "Hardware Error\n");
1983
1984        /* Flow control settings reset on hardware reset, so guarantee flow
1985         * control is off when forcing speed.
1986         */
1987        if (!hw->mac.autoneg)
1988                igb_force_mac_fc(hw);
1989
1990        igb_init_dmac(adapter, pba);
1991#ifdef CONFIG_IGB_HWMON
1992        /* Re-initialize the thermal sensor on i350 devices. */
1993        if (!test_bit(__IGB_DOWN, &adapter->state)) {
1994                if (mac->type == e1000_i350 && hw->bus.func == 0) {
1995                        /* If present, re-initialize the external thermal sensor
1996                         * interface.
1997                         */
1998                        if (adapter->ets)
1999                                mac->ops.init_thermal_sensor_thresh(hw);
2000                }
2001        }
2002#endif
2003        /* Re-establish EEE setting */
2004        if (hw->phy.media_type == e1000_media_type_copper) {
2005                switch (mac->type) {
2006                case e1000_i350:
2007                case e1000_i210:
2008                case e1000_i211:
2009                        igb_set_eee_i350(hw, true, true);
2010                        break;
2011                case e1000_i354:
2012                        igb_set_eee_i354(hw, true, true);
2013                        break;
2014                default:
2015                        break;
2016                }
2017        }
2018        if (!netif_running(adapter->netdev))
2019                igb_power_down_link(adapter);
2020
2021        igb_update_mng_vlan(adapter);
2022
2023        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2024        wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2025
2026        /* Re-enable PTP, where applicable. */
2027        igb_ptp_reset(adapter);
2028
2029        igb_get_phy_info(hw);
2030}
2031
2032static netdev_features_t igb_fix_features(struct net_device *netdev,
2033        netdev_features_t features)
2034{
2035        /* Since there is no support for separate Rx/Tx vlan accel
2036         * enable/disable make sure Tx flag is always in same state as Rx.
2037         */
2038        if (features & NETIF_F_HW_VLAN_CTAG_RX)
2039                features |= NETIF_F_HW_VLAN_CTAG_TX;
2040        else
2041                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2042
2043        return features;
2044}
2045
2046static int igb_set_features(struct net_device *netdev,
2047        netdev_features_t features)
2048{
2049        netdev_features_t changed = netdev->features ^ features;
2050        struct igb_adapter *adapter = netdev_priv(netdev);
2051
2052        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2053                igb_vlan_mode(netdev, features);
2054
2055        if (!(changed & NETIF_F_RXALL))
2056                return 0;
2057
2058        netdev->features = features;
2059
2060        if (netif_running(netdev))
2061                igb_reinit_locked(adapter);
2062        else
2063                igb_reset(adapter);
2064
2065        return 0;
2066}
2067
2068static const struct net_device_ops igb_netdev_ops = {
2069        .ndo_open               = igb_open,
2070        .ndo_stop               = igb_close,
2071        .ndo_start_xmit         = igb_xmit_frame,
2072        .ndo_get_stats64        = igb_get_stats64,
2073        .ndo_set_rx_mode        = igb_set_rx_mode,
2074        .ndo_set_mac_address    = igb_set_mac,
2075        .ndo_change_mtu         = igb_change_mtu,
2076        .ndo_do_ioctl           = igb_ioctl,
2077        .ndo_tx_timeout         = igb_tx_timeout,
2078        .ndo_validate_addr      = eth_validate_addr,
2079        .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2080        .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2081        .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2082        .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2083        .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2084        .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2085        .ndo_get_vf_config      = igb_ndo_get_vf_config,
2086#ifdef CONFIG_NET_POLL_CONTROLLER
2087        .ndo_poll_controller    = igb_netpoll,
2088#endif
2089        .ndo_fix_features       = igb_fix_features,
2090        .ndo_set_features       = igb_set_features,
2091        .ndo_features_check     = passthru_features_check,
2092};
2093
2094/**
2095 * igb_set_fw_version - Configure version string for ethtool
2096 * @adapter: adapter struct
2097 **/
2098void igb_set_fw_version(struct igb_adapter *adapter)
2099{
2100        struct e1000_hw *hw = &adapter->hw;
2101        struct e1000_fw_version fw;
2102
2103        igb_get_fw_version(hw, &fw);
2104
2105        switch (hw->mac.type) {
2106        case e1000_i210:
2107        case e1000_i211:
2108                if (!(igb_get_flash_presence_i210(hw))) {
2109                        snprintf(adapter->fw_version,
2110                                 sizeof(adapter->fw_version),
2111                                 "%2d.%2d-%d",
2112                                 fw.invm_major, fw.invm_minor,
2113                                 fw.invm_img_type);
2114                        break;
2115                }
2116                /* fall through */
2117        default:
2118                /* if option is rom valid, display its version too */
2119                if (fw.or_valid) {
2120                        snprintf(adapter->fw_version,
2121                                 sizeof(adapter->fw_version),
2122                                 "%d.%d, 0x%08x, %d.%d.%d",
2123                                 fw.eep_major, fw.eep_minor, fw.etrack_id,
2124                                 fw.or_major, fw.or_build, fw.or_patch);
2125                /* no option rom */
2126                } else if (fw.etrack_id != 0X0000) {
2127                        snprintf(adapter->fw_version,
2128                            sizeof(adapter->fw_version),
2129                            "%d.%d, 0x%08x",
2130                            fw.eep_major, fw.eep_minor, fw.etrack_id);
2131                } else {
2132                snprintf(adapter->fw_version,
2133                    sizeof(adapter->fw_version),
2134                    "%d.%d.%d",
2135                    fw.eep_major, fw.eep_minor, fw.eep_build);
2136                }
2137                break;
2138        }
2139}
2140
2141/**
2142 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2143 *
2144 * @adapter: adapter struct
2145 **/
2146static void igb_init_mas(struct igb_adapter *adapter)
2147{
2148        struct e1000_hw *hw = &adapter->hw;
2149        u16 eeprom_data;
2150
2151        hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2152        switch (hw->bus.func) {
2153        case E1000_FUNC_0:
2154                if (eeprom_data & IGB_MAS_ENABLE_0) {
2155                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2156                        netdev_info(adapter->netdev,
2157                                "MAS: Enabling Media Autosense for port %d\n",
2158                                hw->bus.func);
2159                }
2160                break;
2161        case E1000_FUNC_1:
2162                if (eeprom_data & IGB_MAS_ENABLE_1) {
2163                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164                        netdev_info(adapter->netdev,
2165                                "MAS: Enabling Media Autosense for port %d\n",
2166                                hw->bus.func);
2167                }
2168                break;
2169        case E1000_FUNC_2:
2170                if (eeprom_data & IGB_MAS_ENABLE_2) {
2171                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172                        netdev_info(adapter->netdev,
2173                                "MAS: Enabling Media Autosense for port %d\n",
2174                                hw->bus.func);
2175                }
2176                break;
2177        case E1000_FUNC_3:
2178                if (eeprom_data & IGB_MAS_ENABLE_3) {
2179                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180                        netdev_info(adapter->netdev,
2181                                "MAS: Enabling Media Autosense for port %d\n",
2182                                hw->bus.func);
2183                }
2184                break;
2185        default:
2186                /* Shouldn't get here */
2187                netdev_err(adapter->netdev,
2188                        "MAS: Invalid port configuration, returning\n");
2189                break;
2190        }
2191}
2192
2193/**
2194 *  igb_init_i2c - Init I2C interface
2195 *  @adapter: pointer to adapter structure
2196 **/
2197static s32 igb_init_i2c(struct igb_adapter *adapter)
2198{
2199        s32 status = 0;
2200
2201        /* I2C interface supported on i350 devices */
2202        if (adapter->hw.mac.type != e1000_i350)
2203                return 0;
2204
2205        /* Initialize the i2c bus which is controlled by the registers.
2206         * This bus will use the i2c_algo_bit structue that implements
2207         * the protocol through toggling of the 4 bits in the register.
2208         */
2209        adapter->i2c_adap.owner = THIS_MODULE;
2210        adapter->i2c_algo = igb_i2c_algo;
2211        adapter->i2c_algo.data = adapter;
2212        adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2213        adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2214        strlcpy(adapter->i2c_adap.name, "igb BB",
2215                sizeof(adapter->i2c_adap.name));
2216        status = i2c_bit_add_bus(&adapter->i2c_adap);
2217        return status;
2218}
2219
2220/**
2221 *  igb_probe - Device Initialization Routine
2222 *  @pdev: PCI device information struct
2223 *  @ent: entry in igb_pci_tbl
2224 *
2225 *  Returns 0 on success, negative on failure
2226 *
2227 *  igb_probe initializes an adapter identified by a pci_dev structure.
2228 *  The OS initialization, configuring of the adapter private structure,
2229 *  and a hardware reset occur.
2230 **/
2231static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2232{
2233        struct net_device *netdev;
2234        struct igb_adapter *adapter;
2235        struct e1000_hw *hw;
2236        u16 eeprom_data = 0;
2237        s32 ret_val;
2238        static int global_quad_port_a; /* global quad port a indication */
2239        const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2240        int err, pci_using_dac;
2241        u8 part_str[E1000_PBANUM_LENGTH];
2242
2243        /* Catch broken hardware that put the wrong VF device ID in
2244         * the PCIe SR-IOV capability.
2245         */
2246        if (pdev->is_virtfn) {
2247                WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2248                        pci_name(pdev), pdev->vendor, pdev->device);
2249                return -EINVAL;
2250        }
2251
2252        err = pci_enable_device_mem(pdev);
2253        if (err)
2254                return err;
2255
2256        pci_using_dac = 0;
2257        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2258        if (!err) {
2259                pci_using_dac = 1;
2260        } else {
2261                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2262                if (err) {
2263                        dev_err(&pdev->dev,
2264                                "No usable DMA configuration, aborting\n");
2265                        goto err_dma;
2266                }
2267        }
2268
2269        err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2270                                           IORESOURCE_MEM),
2271                                           igb_driver_name);
2272        if (err)
2273                goto err_pci_reg;
2274
2275        pci_enable_pcie_error_reporting(pdev);
2276
2277        pci_set_master(pdev);
2278        pci_save_state(pdev);
2279
2280        err = -ENOMEM;
2281        netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2282                                   IGB_MAX_TX_QUEUES);
2283        if (!netdev)
2284                goto err_alloc_etherdev;
2285
2286        SET_NETDEV_DEV(netdev, &pdev->dev);
2287
2288        pci_set_drvdata(pdev, netdev);
2289        adapter = netdev_priv(netdev);
2290        adapter->netdev = netdev;
2291        adapter->pdev = pdev;
2292        hw = &adapter->hw;
2293        hw->back = adapter;
2294        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2295
2296        err = -EIO;
2297        hw->hw_addr = pci_iomap(pdev, 0, 0);
2298        if (!hw->hw_addr)
2299                goto err_ioremap;
2300
2301        netdev->netdev_ops = &igb_netdev_ops;
2302        igb_set_ethtool_ops(netdev);
2303        netdev->watchdog_timeo = 5 * HZ;
2304
2305        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2306
2307        netdev->mem_start = pci_resource_start(pdev, 0);
2308        netdev->mem_end = pci_resource_end(pdev, 0);
2309
2310        /* PCI config space info */
2311        hw->vendor_id = pdev->vendor;
2312        hw->device_id = pdev->device;
2313        hw->revision_id = pdev->revision;
2314        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2315        hw->subsystem_device_id = pdev->subsystem_device;
2316
2317        /* Copy the default MAC, PHY and NVM function pointers */
2318        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2319        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2320        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2321        /* Initialize skew-specific constants */
2322        err = ei->get_invariants(hw);
2323        if (err)
2324                goto err_sw_init;
2325
2326        /* setup the private structure */
2327        err = igb_sw_init(adapter);
2328        if (err)
2329                goto err_sw_init;
2330
2331        igb_get_bus_info_pcie(hw);
2332
2333        hw->phy.autoneg_wait_to_complete = false;
2334
2335        /* Copper options */
2336        if (hw->phy.media_type == e1000_media_type_copper) {
2337                hw->phy.mdix = AUTO_ALL_MODES;
2338                hw->phy.disable_polarity_correction = false;
2339                hw->phy.ms_type = e1000_ms_hw_default;
2340        }
2341
2342        if (igb_check_reset_block(hw))
2343                dev_info(&pdev->dev,
2344                        "PHY reset is blocked due to SOL/IDER session.\n");
2345
2346        /* features is initialized to 0 in allocation, it might have bits
2347         * set by igb_sw_init so we should use an or instead of an
2348         * assignment.
2349         */
2350        netdev->features |= NETIF_F_SG |
2351                            NETIF_F_IP_CSUM |
2352                            NETIF_F_IPV6_CSUM |
2353                            NETIF_F_TSO |
2354                            NETIF_F_TSO6 |
2355                            NETIF_F_RXHASH |
2356                            NETIF_F_RXCSUM |
2357                            NETIF_F_HW_VLAN_CTAG_RX |
2358                            NETIF_F_HW_VLAN_CTAG_TX;
2359
2360        /* copy netdev features into list of user selectable features */
2361        netdev->hw_features |= netdev->features;
2362        netdev->hw_features |= NETIF_F_RXALL;
2363
2364        /* set this bit last since it cannot be part of hw_features */
2365        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2366
2367        netdev->vlan_features |= NETIF_F_TSO |
2368                                 NETIF_F_TSO6 |
2369                                 NETIF_F_IP_CSUM |
2370                                 NETIF_F_IPV6_CSUM |
2371                                 NETIF_F_SG;
2372
2373        netdev->priv_flags |= IFF_SUPP_NOFCS;
2374
2375        if (pci_using_dac) {
2376                netdev->features |= NETIF_F_HIGHDMA;
2377                netdev->vlan_features |= NETIF_F_HIGHDMA;
2378        }
2379
2380        if (hw->mac.type >= e1000_82576) {
2381                netdev->hw_features |= NETIF_F_SCTP_CSUM;
2382                netdev->features |= NETIF_F_SCTP_CSUM;
2383        }
2384
2385        netdev->priv_flags |= IFF_UNICAST_FLT;
2386
2387        adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2388
2389        /* before reading the NVM, reset the controller to put the device in a
2390         * known good starting state
2391         */
2392        hw->mac.ops.reset_hw(hw);
2393
2394        /* make sure the NVM is good , i211/i210 parts can have special NVM
2395         * that doesn't contain a checksum
2396         */
2397        switch (hw->mac.type) {
2398        case e1000_i210:
2399        case e1000_i211:
2400                if (igb_get_flash_presence_i210(hw)) {
2401                        if (hw->nvm.ops.validate(hw) < 0) {
2402                                dev_err(&pdev->dev,
2403                                        "The NVM Checksum Is Not Valid\n");
2404                                err = -EIO;
2405                                goto err_eeprom;
2406                        }
2407                }
2408                break;
2409        default:
2410                if (hw->nvm.ops.validate(hw) < 0) {
2411                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2412                        err = -EIO;
2413                        goto err_eeprom;
2414                }
2415                break;
2416        }
2417
2418        /* copy the MAC address out of the NVM */
2419        if (hw->mac.ops.read_mac_addr(hw))
2420                dev_err(&pdev->dev, "NVM Read Error\n");
2421
2422        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2423
2424        if (!is_valid_ether_addr(netdev->dev_addr)) {
2425                dev_err(&pdev->dev, "Invalid MAC Address\n");
2426                err = -EIO;
2427                goto err_eeprom;
2428        }
2429
2430        /* get firmware version for ethtool -i */
2431        igb_set_fw_version(adapter);
2432
2433        /* configure RXPBSIZE and TXPBSIZE */
2434        if (hw->mac.type == e1000_i210) {
2435                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2436                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2437        }
2438
2439        setup_timer(&adapter->watchdog_timer, igb_watchdog,
2440                    (unsigned long) adapter);
2441        setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2442                    (unsigned long) adapter);
2443
2444        INIT_WORK(&adapter->reset_task, igb_reset_task);
2445        INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2446
2447        /* Initialize link properties that are user-changeable */
2448        adapter->fc_autoneg = true;
2449        hw->mac.autoneg = true;
2450        hw->phy.autoneg_advertised = 0x2f;
2451
2452        hw->fc.requested_mode = e1000_fc_default;
2453        hw->fc.current_mode = e1000_fc_default;
2454
2455        igb_validate_mdi_setting(hw);
2456
2457        /* By default, support wake on port A */
2458        if (hw->bus.func == 0)
2459                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2460
2461        /* Check the NVM for wake support on non-port A ports */
2462        if (hw->mac.type >= e1000_82580)
2463                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2464                                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2465                                 &eeprom_data);
2466        else if (hw->bus.func == 1)
2467                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2468
2469        if (eeprom_data & IGB_EEPROM_APME)
2470                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2471
2472        /* now that we have the eeprom settings, apply the special cases where
2473         * the eeprom may be wrong or the board simply won't support wake on
2474         * lan on a particular port
2475         */
2476        switch (pdev->device) {
2477        case E1000_DEV_ID_82575GB_QUAD_COPPER:
2478                adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2479                break;
2480        case E1000_DEV_ID_82575EB_FIBER_SERDES:
2481        case E1000_DEV_ID_82576_FIBER:
2482        case E1000_DEV_ID_82576_SERDES:
2483                /* Wake events only supported on port A for dual fiber
2484                 * regardless of eeprom setting
2485                 */
2486                if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2487                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488                break;
2489        case E1000_DEV_ID_82576_QUAD_COPPER:
2490        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2491                /* if quad port adapter, disable WoL on all but port A */
2492                if (global_quad_port_a != 0)
2493                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2494                else
2495                        adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2496                /* Reset for multiple quad port adapters */
2497                if (++global_quad_port_a == 4)
2498                        global_quad_port_a = 0;
2499                break;
2500        default:
2501                /* If the device can't wake, don't set software support */
2502                if (!device_can_wakeup(&adapter->pdev->dev))
2503                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2504        }
2505
2506        /* initialize the wol settings based on the eeprom settings */
2507        if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2508                adapter->wol |= E1000_WUFC_MAG;
2509
2510        /* Some vendors want WoL disabled by default, but still supported */
2511        if ((hw->mac.type == e1000_i350) &&
2512            (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2513                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2514                adapter->wol = 0;
2515        }
2516
2517        device_set_wakeup_enable(&adapter->pdev->dev,
2518                                 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2519
2520        /* reset the hardware with the new settings */
2521        igb_reset(adapter);
2522
2523        /* Init the I2C interface */
2524        err = igb_init_i2c(adapter);
2525        if (err) {
2526                dev_err(&pdev->dev, "failed to init i2c interface\n");
2527                goto err_eeprom;
2528        }
2529
2530        /* let the f/w know that the h/w is now under the control of the
2531         * driver.
2532         */
2533        igb_get_hw_control(adapter);
2534
2535        strcpy(netdev->name, "eth%d");
2536        err = register_netdev(netdev);
2537        if (err)
2538                goto err_register;
2539
2540        /* carrier off reporting is important to ethtool even BEFORE open */
2541        netif_carrier_off(netdev);
2542
2543#ifdef CONFIG_IGB_DCA
2544        if (dca_add_requester(&pdev->dev) == 0) {
2545                adapter->flags |= IGB_FLAG_DCA_ENABLED;
2546                dev_info(&pdev->dev, "DCA enabled\n");
2547                igb_setup_dca(adapter);
2548        }
2549
2550#endif
2551#ifdef CONFIG_IGB_HWMON
2552        /* Initialize the thermal sensor on i350 devices. */
2553        if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2554                u16 ets_word;
2555
2556                /* Read the NVM to determine if this i350 device supports an
2557                 * external thermal sensor.
2558                 */
2559                hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2560                if (ets_word != 0x0000 && ets_word != 0xFFFF)
2561                        adapter->ets = true;
2562                else
2563                        adapter->ets = false;
2564                if (igb_sysfs_init(adapter))
2565                        dev_err(&pdev->dev,
2566                                "failed to allocate sysfs resources\n");
2567        } else {
2568                adapter->ets = false;
2569        }
2570#endif
2571        /* Check if Media Autosense is enabled */
2572        adapter->ei = *ei;
2573        if (hw->dev_spec._82575.mas_capable)
2574                igb_init_mas(adapter);
2575
2576        /* do hw tstamp init after resetting */
2577        igb_ptp_init(adapter);
2578
2579        dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2580        /* print bus type/speed/width info, not applicable to i354 */
2581        if (hw->mac.type != e1000_i354) {
2582                dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2583                         netdev->name,
2584                         ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2585                          (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2586                           "unknown"),
2587                         ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2588                          "Width x4" :
2589                          (hw->bus.width == e1000_bus_width_pcie_x2) ?
2590                          "Width x2" :
2591                          (hw->bus.width == e1000_bus_width_pcie_x1) ?
2592                          "Width x1" : "unknown"), netdev->dev_addr);
2593        }
2594
2595        if ((hw->mac.type >= e1000_i210 ||
2596             igb_get_flash_presence_i210(hw))) {
2597                ret_val = igb_read_part_string(hw, part_str,
2598                                               E1000_PBANUM_LENGTH);
2599        } else {
2600                ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2601        }
2602
2603        if (ret_val)
2604                strcpy(part_str, "Unknown");
2605        dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2606        dev_info(&pdev->dev,
2607                "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2608                (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2609                (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2610                adapter->num_rx_queues, adapter->num_tx_queues);
2611        if (hw->phy.media_type == e1000_media_type_copper) {
2612                switch (hw->mac.type) {
2613                case e1000_i350:
2614                case e1000_i210:
2615                case e1000_i211:
2616                        /* Enable EEE for internal copper PHY devices */
2617                        err = igb_set_eee_i350(hw, true, true);
2618                        if ((!err) &&
2619                            (!hw->dev_spec._82575.eee_disable)) {
2620                                adapter->eee_advert =
2621                                        MDIO_EEE_100TX | MDIO_EEE_1000T;
2622                                adapter->flags |= IGB_FLAG_EEE;
2623                        }
2624                        break;
2625                case e1000_i354:
2626                        if ((rd32(E1000_CTRL_EXT) &
2627                            E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2628                                err = igb_set_eee_i354(hw, true, true);
2629                                if ((!err) &&
2630                                        (!hw->dev_spec._82575.eee_disable)) {
2631                                        adapter->eee_advert =
2632                                           MDIO_EEE_100TX | MDIO_EEE_1000T;
2633                                        adapter->flags |= IGB_FLAG_EEE;
2634                                }
2635                        }
2636                        break;
2637                default:
2638                        break;
2639                }
2640        }
2641        pm_runtime_put_noidle(&pdev->dev);
2642        return 0;
2643
2644err_register:
2645        igb_release_hw_control(adapter);
2646        memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2647err_eeprom:
2648        if (!igb_check_reset_block(hw))
2649                igb_reset_phy(hw);
2650
2651        if (hw->flash_address)
2652                iounmap(hw->flash_address);
2653err_sw_init:
2654        kfree(adapter->shadow_vfta);
2655        igb_clear_interrupt_scheme(adapter);
2656#ifdef CONFIG_PCI_IOV
2657        igb_disable_sriov(pdev);
2658#endif
2659        pci_iounmap(pdev, hw->hw_addr);
2660err_ioremap:
2661        free_netdev(netdev);
2662err_alloc_etherdev:
2663        pci_release_selected_regions(pdev,
2664                                     pci_select_bars(pdev, IORESOURCE_MEM));
2665err_pci_reg:
2666err_dma:
2667        pci_disable_device(pdev);
2668        return err;
2669}
2670
2671#ifdef CONFIG_PCI_IOV
2672static int igb_disable_sriov(struct pci_dev *pdev)
2673{
2674        struct net_device *netdev = pci_get_drvdata(pdev);
2675        struct igb_adapter *adapter = netdev_priv(netdev);
2676        struct e1000_hw *hw = &adapter->hw;
2677
2678        /* reclaim resources allocated to VFs */
2679        if (adapter->vf_data) {
2680                /* disable iov and allow time for transactions to clear */
2681                if (pci_vfs_assigned(pdev)) {
2682                        dev_warn(&pdev->dev,
2683                                 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2684                        return -EPERM;
2685                } else {
2686                        pci_disable_sriov(pdev);
2687                        msleep(500);
2688                }
2689
2690                kfree(adapter->vf_data);
2691                adapter->vf_data = NULL;
2692                adapter->vfs_allocated_count = 0;
2693                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2694                wrfl();
2695                msleep(100);
2696                dev_info(&pdev->dev, "IOV Disabled\n");
2697
2698                /* Re-enable DMA Coalescing flag since IOV is turned off */
2699                adapter->flags |= IGB_FLAG_DMAC;
2700        }
2701
2702        return 0;
2703}
2704
2705static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2706{
2707        struct net_device *netdev = pci_get_drvdata(pdev);
2708        struct igb_adapter *adapter = netdev_priv(netdev);
2709        int old_vfs = pci_num_vf(pdev);
2710        int err = 0;
2711        int i;
2712
2713        if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2714                err = -EPERM;
2715                goto out;
2716        }
2717        if (!num_vfs)
2718                goto out;
2719
2720        if (old_vfs) {
2721                dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2722                         old_vfs, max_vfs);
2723                adapter->vfs_allocated_count = old_vfs;
2724        } else
2725                adapter->vfs_allocated_count = num_vfs;
2726
2727        adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2728                                sizeof(struct vf_data_storage), GFP_KERNEL);
2729
2730        /* if allocation failed then we do not support SR-IOV */
2731        if (!adapter->vf_data) {
2732                adapter->vfs_allocated_count = 0;
2733                dev_err(&pdev->dev,
2734                        "Unable to allocate memory for VF Data Storage\n");
2735                err = -ENOMEM;
2736                goto out;
2737        }
2738
2739        /* only call pci_enable_sriov() if no VFs are allocated already */
2740        if (!old_vfs) {
2741                err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2742                if (err)
2743                        goto err_out;
2744        }
2745        dev_info(&pdev->dev, "%d VFs allocated\n",
2746                 adapter->vfs_allocated_count);
2747        for (i = 0; i < adapter->vfs_allocated_count; i++)
2748                igb_vf_configure(adapter, i);
2749
2750        /* DMA Coalescing is not supported in IOV mode. */
2751        adapter->flags &= ~IGB_FLAG_DMAC;
2752        goto out;
2753
2754err_out:
2755        kfree(adapter->vf_data);
2756        adapter->vf_data = NULL;
2757        adapter->vfs_allocated_count = 0;
2758out:
2759        return err;
2760}
2761
2762#endif
2763/**
2764 *  igb_remove_i2c - Cleanup  I2C interface
2765 *  @adapter: pointer to adapter structure
2766 **/
2767static void igb_remove_i2c(struct igb_adapter *adapter)
2768{
2769        /* free the adapter bus structure */
2770        i2c_del_adapter(&adapter->i2c_adap);
2771}
2772
2773/**
2774 *  igb_remove - Device Removal Routine
2775 *  @pdev: PCI device information struct
2776 *
2777 *  igb_remove is called by the PCI subsystem to alert the driver
2778 *  that it should release a PCI device.  The could be caused by a
2779 *  Hot-Plug event, or because the driver is going to be removed from
2780 *  memory.
2781 **/
2782static void igb_remove(struct pci_dev *pdev)
2783{
2784        struct net_device *netdev = pci_get_drvdata(pdev);
2785        struct igb_adapter *adapter = netdev_priv(netdev);
2786        struct e1000_hw *hw = &adapter->hw;
2787
2788        pm_runtime_get_noresume(&pdev->dev);
2789#ifdef CONFIG_IGB_HWMON
2790        igb_sysfs_exit(adapter);
2791#endif
2792        igb_remove_i2c(adapter);
2793        igb_ptp_stop(adapter);
2794        /* The watchdog timer may be rescheduled, so explicitly
2795         * disable watchdog from being rescheduled.
2796         */
2797        set_bit(__IGB_DOWN, &adapter->state);
2798        del_timer_sync(&adapter->watchdog_timer);
2799        del_timer_sync(&adapter->phy_info_timer);
2800
2801        cancel_work_sync(&adapter->reset_task);
2802        cancel_work_sync(&adapter->watchdog_task);
2803
2804#ifdef CONFIG_IGB_DCA
2805        if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2806                dev_info(&pdev->dev, "DCA disabled\n");
2807                dca_remove_requester(&pdev->dev);
2808                adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2809                wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2810        }
2811#endif
2812
2813        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2814         * would have already happened in close and is redundant.
2815         */
2816        igb_release_hw_control(adapter);
2817
2818#ifdef CONFIG_PCI_IOV
2819        igb_disable_sriov(pdev);
2820#endif
2821
2822        unregister_netdev(netdev);
2823
2824        igb_clear_interrupt_scheme(adapter);
2825
2826        pci_iounmap(pdev, hw->hw_addr);
2827        if (hw->flash_address)
2828                iounmap(hw->flash_address);
2829        pci_release_selected_regions(pdev,
2830                                     pci_select_bars(pdev, IORESOURCE_MEM));
2831
2832        kfree(adapter->shadow_vfta);
2833        free_netdev(netdev);
2834
2835        pci_disable_pcie_error_reporting(pdev);
2836
2837        pci_disable_device(pdev);
2838}
2839
2840/**
2841 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2842 *  @adapter: board private structure to initialize
2843 *
2844 *  This function initializes the vf specific data storage and then attempts to
2845 *  allocate the VFs.  The reason for ordering it this way is because it is much
2846 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2847 *  the memory for the VFs.
2848 **/
2849static void igb_probe_vfs(struct igb_adapter *adapter)
2850{
2851#ifdef CONFIG_PCI_IOV
2852        struct pci_dev *pdev = adapter->pdev;
2853        struct e1000_hw *hw = &adapter->hw;
2854
2855        /* Virtualization features not supported on i210 family. */
2856        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2857                return;
2858
2859        pci_sriov_set_totalvfs(pdev, 7);
2860        igb_enable_sriov(pdev, max_vfs);
2861
2862#endif /* CONFIG_PCI_IOV */
2863}
2864
2865static void igb_init_queue_configuration(struct igb_adapter *adapter)
2866{
2867        struct e1000_hw *hw = &adapter->hw;
2868        u32 max_rss_queues;
2869
2870        /* Determine the maximum number of RSS queues supported. */
2871        switch (hw->mac.type) {
2872        case e1000_i211:
2873                max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2874                break;
2875        case e1000_82575:
2876        case e1000_i210:
2877                max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2878                break;
2879        case e1000_i350:
2880                /* I350 cannot do RSS and SR-IOV at the same time */
2881                if (!!adapter->vfs_allocated_count) {
2882                        max_rss_queues = 1;
2883                        break;
2884                }
2885                /* fall through */
2886        case e1000_82576:
2887                if (!!adapter->vfs_allocated_count) {
2888                        max_rss_queues = 2;
2889                        break;
2890                }
2891                /* fall through */
2892        case e1000_82580:
2893        case e1000_i354:
2894        default:
2895                max_rss_queues = IGB_MAX_RX_QUEUES;
2896                break;
2897        }
2898
2899        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2900
2901        igb_set_flag_queue_pairs(adapter, max_rss_queues);
2902}
2903
2904void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2905                              const u32 max_rss_queues)
2906{
2907        struct e1000_hw *hw = &adapter->hw;
2908
2909        /* Determine if we need to pair queues. */
2910        switch (hw->mac.type) {
2911        case e1000_82575:
2912        case e1000_i211:
2913                /* Device supports enough interrupts without queue pairing. */
2914                break;
2915        case e1000_82576:
2916                /* If VFs are going to be allocated with RSS queues then we
2917                 * should pair the queues in order to conserve interrupts due
2918                 * to limited supply.
2919                 */
2920                if ((adapter->rss_queues > 1) &&
2921                    (adapter->vfs_allocated_count > 6))
2922                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2923                /* fall through */
2924        case e1000_82580:
2925        case e1000_i350:
2926        case e1000_i354:
2927        case e1000_i210:
2928        default:
2929                /* If rss_queues > half of max_rss_queues, pair the queues in
2930                 * order to conserve interrupts due to limited supply.
2931                 */
2932                if (adapter->rss_queues > (max_rss_queues / 2))
2933                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2934                break;
2935        }
2936}
2937
2938/**
2939 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2940 *  @adapter: board private structure to initialize
2941 *
2942 *  igb_sw_init initializes the Adapter private data structure.
2943 *  Fields are initialized based on PCI device information and
2944 *  OS network device settings (MTU size).
2945 **/
2946static int igb_sw_init(struct igb_adapter *adapter)
2947{
2948        struct e1000_hw *hw = &adapter->hw;
2949        struct net_device *netdev = adapter->netdev;
2950        struct pci_dev *pdev = adapter->pdev;
2951
2952        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2953
2954        /* set default ring sizes */
2955        adapter->tx_ring_count = IGB_DEFAULT_TXD;
2956        adapter->rx_ring_count = IGB_DEFAULT_RXD;
2957
2958        /* set default ITR values */
2959        adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2960        adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2961
2962        /* set default work limits */
2963        adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2964
2965        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2966                                  VLAN_HLEN;
2967        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2968
2969        spin_lock_init(&adapter->stats64_lock);
2970#ifdef CONFIG_PCI_IOV
2971        switch (hw->mac.type) {
2972        case e1000_82576:
2973        case e1000_i350:
2974                if (max_vfs > 7) {
2975                        dev_warn(&pdev->dev,
2976                                 "Maximum of 7 VFs per PF, using max\n");
2977                        max_vfs = adapter->vfs_allocated_count = 7;
2978                } else
2979                        adapter->vfs_allocated_count = max_vfs;
2980                if (adapter->vfs_allocated_count)
2981                        dev_warn(&pdev->dev,
2982                                 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2983                break;
2984        default:
2985                break;
2986        }
2987#endif /* CONFIG_PCI_IOV */
2988
2989        /* Assume MSI-X interrupts, will be checked during IRQ allocation */
2990        adapter->flags |= IGB_FLAG_HAS_MSIX;
2991
2992        igb_probe_vfs(adapter);
2993
2994        igb_init_queue_configuration(adapter);
2995
2996        /* Setup and initialize a copy of the hw vlan table array */
2997        adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2998                                       GFP_ATOMIC);
2999
3000        /* This call may decrease the number of queues */
3001        if (igb_init_interrupt_scheme(adapter, true)) {
3002                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3003                return -ENOMEM;
3004        }
3005
3006        /* Explicitly disable IRQ since the NIC can be in any state. */
3007        igb_irq_disable(adapter);
3008
3009        if (hw->mac.type >= e1000_i350)
3010                adapter->flags &= ~IGB_FLAG_DMAC;
3011
3012        set_bit(__IGB_DOWN, &adapter->state);
3013        return 0;
3014}
3015
3016/**
3017 *  igb_open - Called when a network interface is made active
3018 *  @netdev: network interface device structure
3019 *
3020 *  Returns 0 on success, negative value on failure
3021 *
3022 *  The open entry point is called when a network interface is made
3023 *  active by the system (IFF_UP).  At this point all resources needed
3024 *  for transmit and receive operations are allocated, the interrupt
3025 *  handler is registered with the OS, the watchdog timer is started,
3026 *  and the stack is notified that the interface is ready.
3027 **/
3028static int __igb_open(struct net_device *netdev, bool resuming)
3029{
3030        struct igb_adapter *adapter = netdev_priv(netdev);
3031        struct e1000_hw *hw = &adapter->hw;
3032        struct pci_dev *pdev = adapter->pdev;
3033        int err;
3034        int i;
3035
3036        /* disallow open during test */
3037        if (test_bit(__IGB_TESTING, &adapter->state)) {
3038                WARN_ON(resuming);
3039                return -EBUSY;
3040        }
3041
3042        if (!resuming)
3043                pm_runtime_get_sync(&pdev->dev);
3044
3045        netif_carrier_off(netdev);
3046
3047        /* allocate transmit descriptors */
3048        err = igb_setup_all_tx_resources(adapter);
3049        if (err)
3050                goto err_setup_tx;
3051
3052        /* allocate receive descriptors */
3053        err = igb_setup_all_rx_resources(adapter);
3054        if (err)
3055                goto err_setup_rx;
3056
3057        igb_power_up_link(adapter);
3058
3059        /* before we allocate an interrupt, we must be ready to handle it.
3060         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3061         * as soon as we call pci_request_irq, so we have to setup our
3062         * clean_rx handler before we do so.
3063         */
3064        igb_configure(adapter);
3065
3066        err = igb_request_irq(adapter);
3067        if (err)
3068                goto err_req_irq;
3069
3070        /* Notify the stack of the actual queue counts. */
3071        err = netif_set_real_num_tx_queues(adapter->netdev,
3072                                           adapter->num_tx_queues);
3073        if (err)
3074                goto err_set_queues;
3075
3076        err = netif_set_real_num_rx_queues(adapter->netdev,
3077                                           adapter->num_rx_queues);
3078        if (err)
3079                goto err_set_queues;
3080
3081        /* From here on the code is the same as igb_up() */
3082        clear_bit(__IGB_DOWN, &adapter->state);
3083
3084        for (i = 0; i < adapter->num_q_vectors; i++)
3085                napi_enable(&(adapter->q_vector[i]->napi));
3086
3087        /* Clear any pending interrupts. */
3088        rd32(E1000_ICR);
3089
3090        igb_irq_enable(adapter);
3091
3092        /* notify VFs that reset has been completed */
3093        if (adapter->vfs_allocated_count) {
3094                u32 reg_data = rd32(E1000_CTRL_EXT);
3095
3096                reg_data |= E1000_CTRL_EXT_PFRSTD;
3097                wr32(E1000_CTRL_EXT, reg_data);
3098        }
3099
3100        netif_tx_start_all_queues(netdev);
3101
3102        if (!resuming)
3103                pm_runtime_put(&pdev->dev);
3104
3105        /* start the watchdog. */
3106        hw->mac.get_link_status = 1;
3107        schedule_work(&adapter->watchdog_task);
3108
3109        return 0;
3110
3111err_set_queues:
3112        igb_free_irq(adapter);
3113err_req_irq:
3114        igb_release_hw_control(adapter);
3115        igb_power_down_link(adapter);
3116        igb_free_all_rx_resources(adapter);
3117err_setup_rx:
3118        igb_free_all_tx_resources(adapter);
3119err_setup_tx:
3120        igb_reset(adapter);
3121        if (!resuming)
3122                pm_runtime_put(&pdev->dev);
3123
3124        return err;
3125}
3126
3127static int igb_open(struct net_device *netdev)
3128{
3129        return __igb_open(netdev, false);
3130}
3131
3132/**
3133 *  igb_close - Disables a network interface
3134 *  @netdev: network interface device structure
3135 *
3136 *  Returns 0, this is not allowed to fail
3137 *
3138 *  The close entry point is called when an interface is de-activated
3139 *  by the OS.  The hardware is still under the driver's control, but
3140 *  needs to be disabled.  A global MAC reset is issued to stop the
3141 *  hardware, and all transmit and receive resources are freed.
3142 **/
3143static int __igb_close(struct net_device *netdev, bool suspending)
3144{
3145        struct igb_adapter *adapter = netdev_priv(netdev);
3146        struct pci_dev *pdev = adapter->pdev;
3147
3148        WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3149
3150        if (!suspending)
3151                pm_runtime_get_sync(&pdev->dev);
3152
3153        igb_down(adapter);
3154        igb_free_irq(adapter);
3155
3156        igb_free_all_tx_resources(adapter);
3157        igb_free_all_rx_resources(adapter);
3158
3159        if (!suspending)
3160                pm_runtime_put_sync(&pdev->dev);
3161        return 0;
3162}
3163
3164static int igb_close(struct net_device *netdev)
3165{
3166        return __igb_close(netdev, false);
3167}
3168
3169/**
3170 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3171 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3172 *
3173 *  Return 0 on success, negative on failure
3174 **/
3175int igb_setup_tx_resources(struct igb_ring *tx_ring)
3176{
3177        struct device *dev = tx_ring->dev;
3178        int size;
3179
3180        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3181
3182        tx_ring->tx_buffer_info = vzalloc(size);
3183        if (!tx_ring->tx_buffer_info)
3184                goto err;
3185
3186        /* round up to nearest 4K */
3187        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3188        tx_ring->size = ALIGN(tx_ring->size, 4096);
3189
3190        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3191                                           &tx_ring->dma, GFP_KERNEL);
3192        if (!tx_ring->desc)
3193                goto err;
3194
3195        tx_ring->next_to_use = 0;
3196        tx_ring->next_to_clean = 0;
3197
3198        return 0;
3199
3200err:
3201        vfree(tx_ring->tx_buffer_info);
3202        tx_ring->tx_buffer_info = NULL;
3203        dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3204        return -ENOMEM;
3205}
3206
3207/**
3208 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3209 *                               (Descriptors) for all queues
3210 *  @adapter: board private structure
3211 *
3212 *  Return 0 on success, negative on failure
3213 **/
3214static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3215{
3216        struct pci_dev *pdev = adapter->pdev;
3217        int i, err = 0;
3218
3219        for (i = 0; i < adapter->num_tx_queues; i++) {
3220                err = igb_setup_tx_resources(adapter->tx_ring[i]);
3221                if (err) {
3222                        dev_err(&pdev->dev,
3223                                "Allocation for Tx Queue %u failed\n", i);
3224                        for (i--; i >= 0; i--)
3225                                igb_free_tx_resources(adapter->tx_ring[i]);
3226                        break;
3227                }
3228        }
3229
3230        return err;
3231}
3232
3233/**
3234 *  igb_setup_tctl - configure the transmit control registers
3235 *  @adapter: Board private structure
3236 **/
3237void igb_setup_tctl(struct igb_adapter *adapter)
3238{
3239        struct e1000_hw *hw = &adapter->hw;
3240        u32 tctl;
3241
3242        /* disable queue 0 which is enabled by default on 82575 and 82576 */
3243        wr32(E1000_TXDCTL(0), 0);
3244
3245        /* Program the Transmit Control Register */
3246        tctl = rd32(E1000_TCTL);
3247        tctl &= ~E1000_TCTL_CT;
3248        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3249                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3250
3251        igb_config_collision_dist(hw);
3252
3253        /* Enable transmits */
3254        tctl |= E1000_TCTL_EN;
3255
3256        wr32(E1000_TCTL, tctl);
3257}
3258
3259/**
3260 *  igb_configure_tx_ring - Configure transmit ring after Reset
3261 *  @adapter: board private structure
3262 *  @ring: tx ring to configure
3263 *
3264 *  Configure a transmit ring after a reset.
3265 **/
3266void igb_configure_tx_ring(struct igb_adapter *adapter,
3267                           struct igb_ring *ring)
3268{
3269        struct e1000_hw *hw = &adapter->hw;
3270        u32 txdctl = 0;
3271        u64 tdba = ring->dma;
3272        int reg_idx = ring->reg_idx;
3273
3274        /* disable the queue */
3275        wr32(E1000_TXDCTL(reg_idx), 0);
3276        wrfl();
3277        mdelay(10);
3278
3279        wr32(E1000_TDLEN(reg_idx),
3280             ring->count * sizeof(union e1000_adv_tx_desc));
3281        wr32(E1000_TDBAL(reg_idx),
3282             tdba & 0x00000000ffffffffULL);
3283        wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3284
3285        ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3286        wr32(E1000_TDH(reg_idx), 0);
3287        writel(0, ring->tail);
3288
3289        txdctl |= IGB_TX_PTHRESH;
3290        txdctl |= IGB_TX_HTHRESH << 8;
3291        txdctl |= IGB_TX_WTHRESH << 16;
3292
3293        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3294        wr32(E1000_TXDCTL(reg_idx), txdctl);
3295}
3296
3297/**
3298 *  igb_configure_tx - Configure transmit Unit after Reset
3299 *  @adapter: board private structure
3300 *
3301 *  Configure the Tx unit of the MAC after a reset.
3302 **/
3303static void igb_configure_tx(struct igb_adapter *adapter)
3304{
3305        int i;
3306
3307        for (i = 0; i < adapter->num_tx_queues; i++)
3308                igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3309}
3310
3311/**
3312 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3313 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3314 *
3315 *  Returns 0 on success, negative on failure
3316 **/
3317int igb_setup_rx_resources(struct igb_ring *rx_ring)
3318{
3319        struct device *dev = rx_ring->dev;
3320        int size;
3321
3322        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3323
3324        rx_ring->rx_buffer_info = vzalloc(size);
3325        if (!rx_ring->rx_buffer_info)
3326                goto err;
3327
3328        /* Round up to nearest 4K */
3329        rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3330        rx_ring->size = ALIGN(rx_ring->size, 4096);
3331
3332        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3333                                           &rx_ring->dma, GFP_KERNEL);
3334        if (!rx_ring->desc)
3335                goto err;
3336
3337        rx_ring->next_to_alloc = 0;
3338        rx_ring->next_to_clean = 0;
3339        rx_ring->next_to_use = 0;
3340
3341        return 0;
3342
3343err:
3344        vfree(rx_ring->rx_buffer_info);
3345        rx_ring->rx_buffer_info = NULL;
3346        dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3347        return -ENOMEM;
3348}
3349
3350/**
3351 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3352 *                               (Descriptors) for all queues
3353 *  @adapter: board private structure
3354 *
3355 *  Return 0 on success, negative on failure
3356 **/
3357static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3358{
3359        struct pci_dev *pdev = adapter->pdev;
3360        int i, err = 0;
3361
3362        for (i = 0; i < adapter->num_rx_queues; i++) {
3363                err = igb_setup_rx_resources(adapter->rx_ring[i]);
3364                if (err) {
3365                        dev_err(&pdev->dev,
3366                                "Allocation for Rx Queue %u failed\n", i);
3367                        for (i--; i >= 0; i--)
3368                                igb_free_rx_resources(adapter->rx_ring[i]);
3369                        break;
3370                }
3371        }
3372
3373        return err;
3374}
3375
3376/**
3377 *  igb_setup_mrqc - configure the multiple receive queue control registers
3378 *  @adapter: Board private structure
3379 **/
3380static void igb_setup_mrqc(struct igb_adapter *adapter)
3381{
3382        struct e1000_hw *hw = &adapter->hw;
3383        u32 mrqc, rxcsum;
3384        u32 j, num_rx_queues;
3385        u32 rss_key[10];
3386
3387        netdev_rss_key_fill(rss_key, sizeof(rss_key));
3388        for (j = 0; j < 10; j++)
3389                wr32(E1000_RSSRK(j), rss_key[j]);
3390
3391        num_rx_queues = adapter->rss_queues;
3392
3393        switch (hw->mac.type) {
3394        case e1000_82576:
3395                /* 82576 supports 2 RSS queues for SR-IOV */
3396                if (adapter->vfs_allocated_count)
3397                        num_rx_queues = 2;
3398                break;
3399        default:
3400                break;
3401        }
3402
3403        if (adapter->rss_indir_tbl_init != num_rx_queues) {
3404                for (j = 0; j < IGB_RETA_SIZE; j++)
3405                        adapter->rss_indir_tbl[j] =
3406                        (j * num_rx_queues) / IGB_RETA_SIZE;
3407                adapter->rss_indir_tbl_init = num_rx_queues;
3408        }
3409        igb_write_rss_indir_tbl(adapter);
3410
3411        /* Disable raw packet checksumming so that RSS hash is placed in
3412         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3413         * offloads as they are enabled by default
3414         */
3415        rxcsum = rd32(E1000_RXCSUM);
3416        rxcsum |= E1000_RXCSUM_PCSD;
3417
3418        if (adapter->hw.mac.type >= e1000_82576)
3419                /* Enable Receive Checksum Offload for SCTP */
3420                rxcsum |= E1000_RXCSUM_CRCOFL;
3421
3422        /* Don't need to set TUOFL or IPOFL, they default to 1 */
3423        wr32(E1000_RXCSUM, rxcsum);
3424
3425        /* Generate RSS hash based on packet types, TCP/UDP
3426         * port numbers and/or IPv4/v6 src and dst addresses
3427         */
3428        mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3429               E1000_MRQC_RSS_FIELD_IPV4_TCP |
3430               E1000_MRQC_RSS_FIELD_IPV6 |
3431               E1000_MRQC_RSS_FIELD_IPV6_TCP |
3432               E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3433
3434        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3435                mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3436        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3437                mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3438
3439        /* If VMDq is enabled then we set the appropriate mode for that, else
3440         * we default to RSS so that an RSS hash is calculated per packet even
3441         * if we are only using one queue
3442         */
3443        if (adapter->vfs_allocated_count) {
3444                if (hw->mac.type > e1000_82575) {
3445                        /* Set the default pool for the PF's first queue */
3446                        u32 vtctl = rd32(E1000_VT_CTL);
3447
3448                        vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3449                                   E1000_VT_CTL_DISABLE_DEF_POOL);
3450                        vtctl |= adapter->vfs_allocated_count <<
3451                                E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3452                        wr32(E1000_VT_CTL, vtctl);
3453                }
3454                if (adapter->rss_queues > 1)
3455                        mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3456                else
3457                        mrqc |= E1000_MRQC_ENABLE_VMDQ;
3458        } else {
3459                if (hw->mac.type != e1000_i211)
3460                        mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3461        }
3462        igb_vmm_control(adapter);
3463
3464        wr32(E1000_MRQC, mrqc);
3465}
3466
3467/**
3468 *  igb_setup_rctl - configure the receive control registers
3469 *  @adapter: Board private structure
3470 **/
3471void igb_setup_rctl(struct igb_adapter *adapter)
3472{
3473        struct e1000_hw *hw = &adapter->hw;
3474        u32 rctl;
3475
3476        rctl = rd32(E1000_RCTL);
3477
3478        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3479        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3480
3481        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3482                (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3483
3484        /* enable stripping of CRC. It's unlikely this will break BMC
3485         * redirection as it did with e1000. Newer features require
3486         * that the HW strips the CRC.
3487         */
3488        rctl |= E1000_RCTL_SECRC;
3489
3490        /* disable store bad packets and clear size bits. */
3491        rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3492
3493        /* enable LPE to prevent packets larger than max_frame_size */
3494        rctl |= E1000_RCTL_LPE;
3495
3496        /* disable queue 0 to prevent tail write w/o re-config */
3497        wr32(E1000_RXDCTL(0), 0);
3498
3499        /* Attention!!!  For SR-IOV PF driver operations you must enable
3500         * queue drop for all VF and PF queues to prevent head of line blocking
3501         * if an un-trusted VF does not provide descriptors to hardware.
3502         */
3503        if (adapter->vfs_allocated_count) {
3504                /* set all queue drop enable bits */
3505                wr32(E1000_QDE, ALL_QUEUES);
3506        }
3507
3508        /* This is useful for sniffing bad packets. */
3509        if (adapter->netdev->features & NETIF_F_RXALL) {
3510                /* UPE and MPE will be handled by normal PROMISC logic
3511                 * in e1000e_set_rx_mode
3512                 */
3513                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3514                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
3515                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3516
3517                rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3518                          E1000_RCTL_DPF | /* Allow filtered pause */
3519                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3520                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3521                 * and that breaks VLANs.
3522                 */
3523        }
3524
3525        wr32(E1000_RCTL, rctl);
3526}
3527
3528static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3529                                   int vfn)
3530{
3531        struct e1000_hw *hw = &adapter->hw;
3532        u32 vmolr;
3533
3534        /* if it isn't the PF check to see if VFs are enabled and
3535         * increase the size to support vlan tags
3536         */
3537        if (vfn < adapter->vfs_allocated_count &&
3538            adapter->vf_data[vfn].vlans_enabled)
3539                size += VLAN_TAG_SIZE;
3540
3541        vmolr = rd32(E1000_VMOLR(vfn));
3542        vmolr &= ~E1000_VMOLR_RLPML_MASK;
3543        vmolr |= size | E1000_VMOLR_LPE;
3544        wr32(E1000_VMOLR(vfn), vmolr);
3545
3546        return 0;
3547}
3548
3549/**
3550 *  igb_rlpml_set - set maximum receive packet size
3551 *  @adapter: board private structure
3552 *
3553 *  Configure maximum receivable packet size.
3554 **/
3555static void igb_rlpml_set(struct igb_adapter *adapter)
3556{
3557        u32 max_frame_size = adapter->max_frame_size;
3558        struct e1000_hw *hw = &adapter->hw;
3559        u16 pf_id = adapter->vfs_allocated_count;
3560
3561        if (pf_id) {
3562                igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3563                /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3564                 * to our max jumbo frame size, in case we need to enable
3565                 * jumbo frames on one of the rings later.
3566                 * This will not pass over-length frames into the default
3567                 * queue because it's gated by the VMOLR.RLPML.
3568                 */
3569                max_frame_size = MAX_JUMBO_FRAME_SIZE;
3570        }
3571
3572        wr32(E1000_RLPML, max_frame_size);
3573}
3574
3575static inline void igb_set_vmolr(struct igb_adapter *adapter,
3576                                 int vfn, bool aupe)
3577{
3578        struct e1000_hw *hw = &adapter->hw;
3579        u32 vmolr;
3580
3581        /* This register exists only on 82576 and newer so if we are older then
3582         * we should exit and do nothing
3583         */
3584        if (hw->mac.type < e1000_82576)
3585                return;
3586
3587        vmolr = rd32(E1000_VMOLR(vfn));
3588        vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3589        if (hw->mac.type == e1000_i350) {
3590                u32 dvmolr;
3591
3592                dvmolr = rd32(E1000_DVMOLR(vfn));
3593                dvmolr |= E1000_DVMOLR_STRVLAN;
3594                wr32(E1000_DVMOLR(vfn), dvmolr);
3595        }
3596        if (aupe)
3597                vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3598        else
3599                vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3600
3601        /* clear all bits that might not be set */
3602        vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3603
3604        if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3605                vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3606        /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3607         * multicast packets
3608         */
3609        if (vfn <= adapter->vfs_allocated_count)
3610                vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3611
3612        wr32(E1000_VMOLR(vfn), vmolr);
3613}
3614
3615/**
3616 *  igb_configure_rx_ring - Configure a receive ring after Reset
3617 *  @adapter: board private structure
3618 *  @ring: receive ring to be configured
3619 *
3620 *  Configure the Rx unit of the MAC after a reset.
3621 **/
3622void igb_configure_rx_ring(struct igb_adapter *adapter,
3623                           struct igb_ring *ring)
3624{
3625        struct e1000_hw *hw = &adapter->hw;
3626        u64 rdba = ring->dma;
3627        int reg_idx = ring->reg_idx;
3628        u32 srrctl = 0, rxdctl = 0;
3629
3630        /* disable the queue */
3631        wr32(E1000_RXDCTL(reg_idx), 0);
3632
3633        /* Set DMA base address registers */
3634        wr32(E1000_RDBAL(reg_idx),
3635             rdba & 0x00000000ffffffffULL);
3636        wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3637        wr32(E1000_RDLEN(reg_idx),
3638             ring->count * sizeof(union e1000_adv_rx_desc));
3639
3640        /* initialize head and tail */
3641        ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3642        wr32(E1000_RDH(reg_idx), 0);
3643        writel(0, ring->tail);
3644
3645        /* set descriptor configuration */
3646        srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3647        srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3648        srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3649        if (hw->mac.type >= e1000_82580)
3650                srrctl |= E1000_SRRCTL_TIMESTAMP;
3651        /* Only set Drop Enable if we are supporting multiple queues */
3652        if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3653                srrctl |= E1000_SRRCTL_DROP_EN;
3654
3655        wr32(E1000_SRRCTL(reg_idx), srrctl);
3656
3657        /* set filtering for VMDQ pools */
3658        igb_set_vmolr(adapter, reg_idx & 0x7, true);
3659
3660        rxdctl |= IGB_RX_PTHRESH;
3661        rxdctl |= IGB_RX_HTHRESH << 8;
3662        rxdctl |= IGB_RX_WTHRESH << 16;
3663
3664        /* enable receive descriptor fetching */
3665        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3666        wr32(E1000_RXDCTL(reg_idx), rxdctl);
3667}
3668
3669/**
3670 *  igb_configure_rx - Configure receive Unit after Reset
3671 *  @adapter: board private structure
3672 *
3673 *  Configure the Rx unit of the MAC after a reset.
3674 **/
3675static void igb_configure_rx(struct igb_adapter *adapter)
3676{
3677        int i;
3678
3679        /* set UTA to appropriate mode */
3680        igb_set_uta(adapter);
3681
3682        /* set the correct pool for the PF default MAC address in entry 0 */
3683        igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3684                         adapter->vfs_allocated_count);
3685
3686        /* Setup the HW Rx Head and Tail Descriptor Pointers and
3687         * the Base and Length of the Rx Descriptor Ring
3688         */
3689        for (i = 0; i < adapter->num_rx_queues; i++)
3690                igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3691}
3692
3693/**
3694 *  igb_free_tx_resources - Free Tx Resources per Queue
3695 *  @tx_ring: Tx descriptor ring for a specific queue
3696 *
3697 *  Free all transmit software resources
3698 **/
3699void igb_free_tx_resources(struct igb_ring *tx_ring)
3700{
3701        igb_clean_tx_ring(tx_ring);
3702
3703        vfree(tx_ring->tx_buffer_info);
3704        tx_ring->tx_buffer_info = NULL;
3705
3706        /* if not set, then don't free */
3707        if (!tx_ring->desc)
3708                return;
3709
3710        dma_free_coherent(tx_ring->dev, tx_ring->size,
3711                          tx_ring->desc, tx_ring->dma);
3712
3713        tx_ring->desc = NULL;
3714}
3715
3716/**
3717 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3718 *  @adapter: board private structure
3719 *
3720 *  Free all transmit software resources
3721 **/
3722static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3723{
3724        int i;
3725
3726        for (i = 0; i < adapter->num_tx_queues; i++)
3727                if (adapter->tx_ring[i])
3728                        igb_free_tx_resources(adapter->tx_ring[i]);
3729}
3730
3731void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3732                                    struct igb_tx_buffer *tx_buffer)
3733{
3734        if (tx_buffer->skb) {
3735                dev_kfree_skb_any(tx_buffer->skb);
3736                if (dma_unmap_len(tx_buffer, len))
3737                        dma_unmap_single(ring->dev,
3738                                         dma_unmap_addr(tx_buffer, dma),
3739                                         dma_unmap_len(tx_buffer, len),
3740                                         DMA_TO_DEVICE);
3741        } else if (dma_unmap_len(tx_buffer, len)) {
3742                dma_unmap_page(ring->dev,
3743                               dma_unmap_addr(tx_buffer, dma),
3744                               dma_unmap_len(tx_buffer, len),
3745                               DMA_TO_DEVICE);
3746        }
3747        tx_buffer->next_to_watch = NULL;
3748        tx_buffer->skb = NULL;
3749        dma_unmap_len_set(tx_buffer, len, 0);
3750        /* buffer_info must be completely set up in the transmit path */
3751}
3752
3753/**
3754 *  igb_clean_tx_ring - Free Tx Buffers
3755 *  @tx_ring: ring to be cleaned
3756 **/
3757static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3758{
3759        struct igb_tx_buffer *buffer_info;
3760        unsigned long size;
3761        u16 i;
3762
3763        if (!tx_ring->tx_buffer_info)
3764                return;
3765        /* Free all the Tx ring sk_buffs */
3766
3767        for (i = 0; i < tx_ring->count; i++) {
3768                buffer_info = &tx_ring->tx_buffer_info[i];
3769                igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3770        }
3771
3772        netdev_tx_reset_queue(txring_txq(tx_ring));
3773
3774        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3775        memset(tx_ring->tx_buffer_info, 0, size);
3776
3777        /* Zero out the descriptor ring */
3778        memset(tx_ring->desc, 0, tx_ring->size);
3779
3780        tx_ring->next_to_use = 0;
3781        tx_ring->next_to_clean = 0;
3782}
3783
3784/**
3785 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3786 *  @adapter: board private structure
3787 **/
3788static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3789{
3790        int i;
3791
3792        for (i = 0; i < adapter->num_tx_queues; i++)
3793                if (adapter->tx_ring[i])
3794                        igb_clean_tx_ring(adapter->tx_ring[i]);
3795}
3796
3797/**
3798 *  igb_free_rx_resources - Free Rx Resources
3799 *  @rx_ring: ring to clean the resources from
3800 *
3801 *  Free all receive software resources
3802 **/
3803void igb_free_rx_resources(struct igb_ring *rx_ring)
3804{
3805        igb_clean_rx_ring(rx_ring);
3806
3807        vfree(rx_ring->rx_buffer_info);
3808        rx_ring->rx_buffer_info = NULL;
3809
3810        /* if not set, then don't free */
3811        if (!rx_ring->desc)
3812                return;
3813
3814        dma_free_coherent(rx_ring->dev, rx_ring->size,
3815                          rx_ring->desc, rx_ring->dma);
3816
3817        rx_ring->desc = NULL;
3818}
3819
3820/**
3821 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3822 *  @adapter: board private structure
3823 *
3824 *  Free all receive software resources
3825 **/
3826static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3827{
3828        int i;
3829
3830        for (i = 0; i < adapter->num_rx_queues; i++)
3831                if (adapter->rx_ring[i])
3832                        igb_free_rx_resources(adapter->rx_ring[i]);
3833}
3834
3835/**
3836 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3837 *  @rx_ring: ring to free buffers from
3838 **/
3839static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3840{
3841        unsigned long size;
3842        u16 i;
3843
3844        if (rx_ring->skb)
3845                dev_kfree_skb(rx_ring->skb);
3846        rx_ring->skb = NULL;
3847
3848        if (!rx_ring->rx_buffer_info)
3849                return;
3850
3851        /* Free all the Rx ring sk_buffs */
3852        for (i = 0; i < rx_ring->count; i++) {
3853                struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3854
3855                if (!buffer_info->page)
3856                        continue;
3857
3858                dma_unmap_page(rx_ring->dev,
3859                               buffer_info->dma,
3860                               PAGE_SIZE,
3861                               DMA_FROM_DEVICE);
3862                __free_page(buffer_info->page);
3863
3864                buffer_info->page = NULL;
3865        }
3866
3867        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3868        memset(rx_ring->rx_buffer_info, 0, size);
3869
3870        /* Zero out the descriptor ring */
3871        memset(rx_ring->desc, 0, rx_ring->size);
3872
3873        rx_ring->next_to_alloc = 0;
3874        rx_ring->next_to_clean = 0;
3875        rx_ring->next_to_use = 0;
3876}
3877
3878/**
3879 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3880 *  @adapter: board private structure
3881 **/
3882static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3883{
3884        int i;
3885
3886        for (i = 0; i < adapter->num_rx_queues; i++)
3887                if (adapter->rx_ring[i])
3888                        igb_clean_rx_ring(adapter->rx_ring[i]);
3889}
3890
3891/**
3892 *  igb_set_mac - Change the Ethernet Address of the NIC
3893 *  @netdev: network interface device structure
3894 *  @p: pointer to an address structure
3895 *
3896 *  Returns 0 on success, negative on failure
3897 **/
3898static int igb_set_mac(struct net_device *netdev, void *p)
3899{
3900        struct igb_adapter *adapter = netdev_priv(netdev);
3901        struct e1000_hw *hw = &adapter->hw;
3902        struct sockaddr *addr = p;
3903
3904        if (!is_valid_ether_addr(addr->sa_data))
3905                return -EADDRNOTAVAIL;
3906
3907        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3908        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3909
3910        /* set the correct pool for the new PF MAC address in entry 0 */
3911        igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3912                         adapter->vfs_allocated_count);
3913
3914        return 0;
3915}
3916
3917/**
3918 *  igb_write_mc_addr_list - write multicast addresses to MTA
3919 *  @netdev: network interface device structure
3920 *
3921 *  Writes multicast address list to the MTA hash table.
3922 *  Returns: -ENOMEM on failure
3923 *           0 on no addresses written
3924 *           X on writing X addresses to MTA
3925 **/
3926static int igb_write_mc_addr_list(struct net_device *netdev)
3927{
3928        struct igb_adapter *adapter = netdev_priv(netdev);
3929        struct e1000_hw *hw = &adapter->hw;
3930        struct netdev_hw_addr *ha;
3931        u8  *mta_list;
3932        int i;
3933
3934        if (netdev_mc_empty(netdev)) {
3935                /* nothing to program, so clear mc list */
3936                igb_update_mc_addr_list(hw, NULL, 0);
3937                igb_restore_vf_multicasts(adapter);
3938                return 0;
3939        }
3940
3941        mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3942        if (!mta_list)
3943                return -ENOMEM;
3944
3945        /* The shared function expects a packed array of only addresses. */
3946        i = 0;
3947        netdev_for_each_mc_addr(ha, netdev)
3948                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3949
3950        igb_update_mc_addr_list(hw, mta_list, i);
3951        kfree(mta_list);
3952
3953        return netdev_mc_count(netdev);
3954}
3955
3956/**
3957 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3958 *  @netdev: network interface device structure
3959 *
3960 *  Writes unicast address list to the RAR table.
3961 *  Returns: -ENOMEM on failure/insufficient address space
3962 *           0 on no addresses written
3963 *           X on writing X addresses to the RAR table
3964 **/
3965static int igb_write_uc_addr_list(struct net_device *netdev)
3966{
3967        struct igb_adapter *adapter = netdev_priv(netdev);
3968        struct e1000_hw *hw = &adapter->hw;
3969        unsigned int vfn = adapter->vfs_allocated_count;
3970        unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3971        int count = 0;
3972
3973        /* return ENOMEM indicating insufficient memory for addresses */
3974        if (netdev_uc_count(netdev) > rar_entries)
3975                return -ENOMEM;
3976
3977        if (!netdev_uc_empty(netdev) && rar_entries) {
3978                struct netdev_hw_addr *ha;
3979
3980                netdev_for_each_uc_addr(ha, netdev) {
3981                        if (!rar_entries)
3982                                break;
3983                        igb_rar_set_qsel(adapter, ha->addr,
3984                                         rar_entries--,
3985                                         vfn);
3986                        count++;
3987                }
3988        }
3989        /* write the addresses in reverse order to avoid write combining */
3990        for (; rar_entries > 0 ; rar_entries--) {
3991                wr32(E1000_RAH(rar_entries), 0);
3992                wr32(E1000_RAL(rar_entries), 0);
3993        }
3994        wrfl();
3995
3996        return count;
3997}
3998
3999/**
4000 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4001 *  @netdev: network interface device structure
4002 *
4003 *  The set_rx_mode entry point is called whenever the unicast or multicast
4004 *  address lists or the network interface flags are updated.  This routine is
4005 *  responsible for configuring the hardware for proper unicast, multicast,
4006 *  promiscuous mode, and all-multi behavior.
4007 **/
4008static void igb_set_rx_mode(struct net_device *netdev)
4009{
4010        struct igb_adapter *adapter = netdev_priv(netdev);
4011        struct e1000_hw *hw = &adapter->hw;
4012        unsigned int vfn = adapter->vfs_allocated_count;
4013        u32 rctl, vmolr = 0;
4014        int count;
4015
4016        /* Check for Promiscuous and All Multicast modes */
4017        rctl = rd32(E1000_RCTL);
4018
4019        /* clear the effected bits */
4020        rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4021
4022        if (netdev->flags & IFF_PROMISC) {
4023                /* retain VLAN HW filtering if in VT mode */
4024                if (adapter->vfs_allocated_count)
4025                        rctl |= E1000_RCTL_VFE;
4026                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4027                vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4028        } else {
4029                if (netdev->flags & IFF_ALLMULTI) {
4030                        rctl |= E1000_RCTL_MPE;
4031                        vmolr |= E1000_VMOLR_MPME;
4032                } else {
4033                        /* Write addresses to the MTA, if the attempt fails
4034                         * then we should just turn on promiscuous mode so
4035                         * that we can at least receive multicast traffic
4036                         */
4037                        count = igb_write_mc_addr_list(netdev);
4038                        if (count < 0) {
4039                                rctl |= E1000_RCTL_MPE;
4040                                vmolr |= E1000_VMOLR_MPME;
4041                        } else if (count) {
4042                                vmolr |= E1000_VMOLR_ROMPE;
4043                        }
4044                }
4045                /* Write addresses to available RAR registers, if there is not
4046                 * sufficient space to store all the addresses then enable
4047                 * unicast promiscuous mode
4048                 */
4049                count = igb_write_uc_addr_list(netdev);
4050                if (count < 0) {
4051                        rctl |= E1000_RCTL_UPE;
4052                        vmolr |= E1000_VMOLR_ROPE;
4053                }
4054                rctl |= E1000_RCTL_VFE;
4055        }
4056        wr32(E1000_RCTL, rctl);
4057
4058        /* In order to support SR-IOV and eventually VMDq it is necessary to set
4059         * the VMOLR to enable the appropriate modes.  Without this workaround
4060         * we will have issues with VLAN tag stripping not being done for frames
4061         * that are only arriving because we are the default pool
4062         */
4063        if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4064                return;
4065
4066        vmolr |= rd32(E1000_VMOLR(vfn)) &
4067                 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4068        wr32(E1000_VMOLR(vfn), vmolr);
4069        igb_restore_vf_multicasts(adapter);
4070}
4071
4072static void igb_check_wvbr(struct igb_adapter *adapter)
4073{
4074        struct e1000_hw *hw = &adapter->hw;
4075        u32 wvbr = 0;
4076
4077        switch (hw->mac.type) {
4078        case e1000_82576:
4079        case e1000_i350:
4080                wvbr = rd32(E1000_WVBR);
4081                if (!wvbr)
4082                        return;
4083                break;
4084        default:
4085                break;
4086        }
4087
4088        adapter->wvbr |= wvbr;
4089}
4090
4091#define IGB_STAGGERED_QUEUE_OFFSET 8
4092
4093static void igb_spoof_check(struct igb_adapter *adapter)
4094{
4095        int j;
4096
4097        if (!adapter->wvbr)
4098                return;
4099
4100        for (j = 0; j < adapter->vfs_allocated_count; j++) {
4101                if (adapter->wvbr & (1 << j) ||
4102                    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4103                        dev_warn(&adapter->pdev->dev,
4104                                "Spoof event(s) detected on VF %d\n", j);
4105                        adapter->wvbr &=
4106                                ~((1 << j) |
4107                                  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4108                }
4109        }
4110}
4111
4112/* Need to wait a few seconds after link up to get diagnostic information from
4113 * the phy
4114 */
4115static void igb_update_phy_info(unsigned long data)
4116{
4117        struct igb_adapter *adapter = (struct igb_adapter *) data;
4118        igb_get_phy_info(&adapter->hw);
4119}
4120
4121/**
4122 *  igb_has_link - check shared code for link and determine up/down
4123 *  @adapter: pointer to driver private info
4124 **/
4125bool igb_has_link(struct igb_adapter *adapter)
4126{
4127        struct e1000_hw *hw = &adapter->hw;
4128        bool link_active = false;
4129
4130        /* get_link_status is set on LSC (link status) interrupt or
4131         * rx sequence error interrupt.  get_link_status will stay
4132         * false until the e1000_check_for_link establishes link
4133         * for copper adapters ONLY
4134         */
4135        switch (hw->phy.media_type) {
4136        case e1000_media_type_copper:
4137                if (!hw->mac.get_link_status)
4138                        return true;
4139        case e1000_media_type_internal_serdes:
4140                hw->mac.ops.check_for_link(hw);
4141                link_active = !hw->mac.get_link_status;
4142                break;
4143        default:
4144        case e1000_media_type_unknown:
4145                break;
4146        }
4147
4148        if (((hw->mac.type == e1000_i210) ||
4149             (hw->mac.type == e1000_i211)) &&
4150             (hw->phy.id == I210_I_PHY_ID)) {
4151                if (!netif_carrier_ok(adapter->netdev)) {
4152                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4153                } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4154                        adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4155                        adapter->link_check_timeout = jiffies;
4156                }
4157        }
4158
4159        return link_active;
4160}
4161
4162static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4163{
4164        bool ret = false;
4165        u32 ctrl_ext, thstat;
4166
4167        /* check for thermal sensor event on i350 copper only */
4168        if (hw->mac.type == e1000_i350) {
4169                thstat = rd32(E1000_THSTAT);
4170                ctrl_ext = rd32(E1000_CTRL_EXT);
4171
4172                if ((hw->phy.media_type == e1000_media_type_copper) &&
4173                    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4174                        ret = !!(thstat & event);
4175        }
4176
4177        return ret;
4178}
4179
4180/**
4181 *  igb_check_lvmmc - check for malformed packets received
4182 *  and indicated in LVMMC register
4183 *  @adapter: pointer to adapter
4184 **/
4185static void igb_check_lvmmc(struct igb_adapter *adapter)
4186{
4187        struct e1000_hw *hw = &adapter->hw;
4188        u32 lvmmc;
4189
4190        lvmmc = rd32(E1000_LVMMC);
4191        if (lvmmc) {
4192                if (unlikely(net_ratelimit())) {
4193                        netdev_warn(adapter->netdev,
4194                                    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4195                                    lvmmc);
4196                }
4197        }
4198}
4199
4200/**
4201 *  igb_watchdog - Timer Call-back
4202 *  @data: pointer to adapter cast into an unsigned long
4203 **/
4204static void igb_watchdog(unsigned long data)
4205{
4206        struct igb_adapter *adapter = (struct igb_adapter *)data;
4207        /* Do the rest outside of interrupt context */
4208        schedule_work(&adapter->watchdog_task);
4209}
4210
4211static void igb_watchdog_task(struct work_struct *work)
4212{
4213        struct igb_adapter *adapter = container_of(work,
4214                                                   struct igb_adapter,
4215                                                   watchdog_task);
4216        struct e1000_hw *hw = &adapter->hw;
4217        struct e1000_phy_info *phy = &hw->phy;
4218        struct net_device *netdev = adapter->netdev;
4219        u32 link;
4220        int i;
4221        u32 connsw;
4222
4223        link = igb_has_link(adapter);
4224
4225        if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4226                if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4227                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4228                else
4229                        link = false;
4230        }
4231
4232        /* Force link down if we have fiber to swap to */
4233        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4234                if (hw->phy.media_type == e1000_media_type_copper) {
4235                        connsw = rd32(E1000_CONNSW);
4236                        if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4237                                link = 0;
4238                }
4239        }
4240        if (link) {
4241                /* Perform a reset if the media type changed. */
4242                if (hw->dev_spec._82575.media_changed) {
4243                        hw->dev_spec._82575.media_changed = false;
4244                        adapter->flags |= IGB_FLAG_MEDIA_RESET;
4245                        igb_reset(adapter);
4246                }
4247                /* Cancel scheduled suspend requests. */
4248                pm_runtime_resume(netdev->dev.parent);
4249
4250                if (!netif_carrier_ok(netdev)) {
4251                        u32 ctrl;
4252
4253                        hw->mac.ops.get_speed_and_duplex(hw,
4254                                                         &adapter->link_speed,
4255                                                         &adapter->link_duplex);
4256
4257                        ctrl = rd32(E1000_CTRL);
4258                        /* Links status message must follow this format */
4259                        netdev_info(netdev,
4260                               "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4261                               netdev->name,
4262                               adapter->link_speed,
4263                               adapter->link_duplex == FULL_DUPLEX ?
4264                               "Full" : "Half",
4265                               (ctrl & E1000_CTRL_TFCE) &&
4266                               (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4267                               (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4268                               (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4269
4270                        /* disable EEE if enabled */
4271                        if ((adapter->flags & IGB_FLAG_EEE) &&
4272                                (adapter->link_duplex == HALF_DUPLEX)) {
4273                                dev_info(&adapter->pdev->dev,
4274                                "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4275                                adapter->hw.dev_spec._82575.eee_disable = true;
4276                                adapter->flags &= ~IGB_FLAG_EEE;
4277                        }
4278
4279                        /* check if SmartSpeed worked */
4280                        igb_check_downshift(hw);
4281                        if (phy->speed_downgraded)
4282                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4283
4284                        /* check for thermal sensor event */
4285                        if (igb_thermal_sensor_event(hw,
4286                            E1000_THSTAT_LINK_THROTTLE))
4287                                netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4288
4289                        /* adjust timeout factor according to speed/duplex */
4290                        adapter->tx_timeout_factor = 1;
4291                        switch (adapter->link_speed) {
4292                        case SPEED_10:
4293                                adapter->tx_timeout_factor = 14;
4294                                break;
4295                        case SPEED_100:
4296                                /* maybe add some timeout factor ? */
4297                                break;
4298                        }
4299
4300                        netif_carrier_on(netdev);
4301
4302                        igb_ping_all_vfs(adapter);
4303                        igb_check_vf_rate_limit(adapter);
4304
4305                        /* link state has changed, schedule phy info update */
4306                        if (!test_bit(__IGB_DOWN, &adapter->state))
4307                                mod_timer(&adapter->phy_info_timer,
4308                                          round_jiffies(jiffies + 2 * HZ));
4309                }
4310        } else {
4311                if (netif_carrier_ok(netdev)) {
4312                        adapter->link_speed = 0;
4313                        adapter->link_duplex = 0;
4314
4315                        /* check for thermal sensor event */
4316                        if (igb_thermal_sensor_event(hw,
4317                            E1000_THSTAT_PWR_DOWN)) {
4318                                netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4319                        }
4320
4321                        /* Links status message must follow this format */
4322                        netdev_info(netdev, "igb: %s NIC Link is Down\n",
4323                               netdev->name);
4324                        netif_carrier_off(netdev);
4325
4326                        igb_ping_all_vfs(adapter);
4327
4328                        /* link state has changed, schedule phy info update */
4329                        if (!test_bit(__IGB_DOWN, &adapter->state))
4330                                mod_timer(&adapter->phy_info_timer,
4331                                          round_jiffies(jiffies + 2 * HZ));
4332
4333                        /* link is down, time to check for alternate media */
4334                        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4335                                igb_check_swap_media(adapter);
4336                                if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4337                                        schedule_work(&adapter->reset_task);
4338                                        /* return immediately */
4339                                        return;
4340                                }
4341                        }
4342                        pm_schedule_suspend(netdev->dev.parent,
4343                                            MSEC_PER_SEC * 5);
4344
4345                /* also check for alternate media here */
4346                } else if (!netif_carrier_ok(netdev) &&
4347                           (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4348                        igb_check_swap_media(adapter);
4349                        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4350                                schedule_work(&adapter->reset_task);
4351                                /* return immediately */
4352                                return;
4353                        }
4354                }
4355        }
4356
4357        spin_lock(&adapter->stats64_lock);
4358        igb_update_stats(adapter, &adapter->stats64);
4359        spin_unlock(&adapter->stats64_lock);
4360
4361        for (i = 0; i < adapter->num_tx_queues; i++) {
4362                struct igb_ring *tx_ring = adapter->tx_ring[i];
4363                if (!netif_carrier_ok(netdev)) {
4364                        /* We've lost link, so the controller stops DMA,
4365                         * but we've got queued Tx work that's never going
4366                         * to get done, so reset controller to flush Tx.
4367                         * (Do the reset outside of interrupt context).
4368                         */
4369                        if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4370                                adapter->tx_timeout_count++;
4371                                schedule_work(&adapter->reset_task);
4372                                /* return immediately since reset is imminent */
4373                                return;
4374                        }
4375                }
4376
4377                /* Force detection of hung controller every watchdog period */
4378                set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4379        }
4380
4381        /* Cause software interrupt to ensure Rx ring is cleaned */
4382        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4383                u32 eics = 0;
4384
4385                for (i = 0; i < adapter->num_q_vectors; i++)
4386                        eics |= adapter->q_vector[i]->eims_value;
4387                wr32(E1000_EICS, eics);
4388        } else {
4389                wr32(E1000_ICS, E1000_ICS_RXDMT0);
4390        }
4391
4392        igb_spoof_check(adapter);
4393        igb_ptp_rx_hang(adapter);
4394
4395        /* Check LVMMC register on i350/i354 only */
4396        if ((adapter->hw.mac.type == e1000_i350) ||
4397            (adapter->hw.mac.type == e1000_i354))
4398                igb_check_lvmmc(adapter);
4399
4400        /* Reset the timer */
4401        if (!test_bit(__IGB_DOWN, &adapter->state)) {
4402                if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4403                        mod_timer(&adapter->watchdog_timer,
4404                                  round_jiffies(jiffies +  HZ));
4405                else
4406                        mod_timer(&adapter->watchdog_timer,
4407                                  round_jiffies(jiffies + 2 * HZ));
4408        }
4409}
4410
4411enum latency_range {
4412        lowest_latency = 0,
4413        low_latency = 1,
4414        bulk_latency = 2,
4415        latency_invalid = 255
4416};
4417
4418/**
4419 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4420 *  @q_vector: pointer to q_vector
4421 *
4422 *  Stores a new ITR value based on strictly on packet size.  This
4423 *  algorithm is less sophisticated than that used in igb_update_itr,
4424 *  due to the difficulty of synchronizing statistics across multiple
4425 *  receive rings.  The divisors and thresholds used by this function
4426 *  were determined based on theoretical maximum wire speed and testing
4427 *  data, in order to minimize response time while increasing bulk
4428 *  throughput.
4429 *  This functionality is controlled by ethtool's coalescing settings.
4430 *  NOTE:  This function is called only when operating in a multiqueue
4431 *         receive environment.
4432 **/
4433static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4434{
4435        int new_val = q_vector->itr_val;
4436        int avg_wire_size = 0;
4437        struct igb_adapter *adapter = q_vector->adapter;
4438        unsigned int packets;
4439
4440        /* For non-gigabit speeds, just fix the interrupt rate at 4000
4441         * ints/sec - ITR timer value of 120 ticks.
4442         */
4443        if (adapter->link_speed != SPEED_1000) {
4444                new_val = IGB_4K_ITR;
4445                goto set_itr_val;
4446        }
4447
4448        packets = q_vector->rx.total_packets;
4449        if (packets)
4450                avg_wire_size = q_vector->rx.total_bytes / packets;
4451
4452        packets = q_vector->tx.total_packets;
4453        if (packets)
4454                avg_wire_size = max_t(u32, avg_wire_size,
4455                                      q_vector->tx.total_bytes / packets);
4456
4457        /* if avg_wire_size isn't set no work was done */
4458        if (!avg_wire_size)
4459                goto clear_counts;
4460
4461        /* Add 24 bytes to size to account for CRC, preamble, and gap */
4462        avg_wire_size += 24;
4463
4464        /* Don't starve jumbo frames */
4465        avg_wire_size = min(avg_wire_size, 3000);
4466
4467        /* Give a little boost to mid-size frames */
4468        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4469                new_val = avg_wire_size / 3;
4470        else
4471                new_val = avg_wire_size / 2;
4472
4473        /* conservative mode (itr 3) eliminates the lowest_latency setting */
4474        if (new_val < IGB_20K_ITR &&
4475            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4476             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4477                new_val = IGB_20K_ITR;
4478
4479set_itr_val:
4480        if (new_val != q_vector->itr_val) {
4481                q_vector->itr_val = new_val;
4482                q_vector->set_itr = 1;
4483        }
4484clear_counts:
4485        q_vector->rx.total_bytes = 0;
4486        q_vector->rx.total_packets = 0;
4487        q_vector->tx.total_bytes = 0;
4488        q_vector->tx.total_packets = 0;
4489}
4490
4491/**
4492 *  igb_update_itr - update the dynamic ITR value based on statistics
4493 *  @q_vector: pointer to q_vector
4494 *  @ring_container: ring info to update the itr for
4495 *
4496 *  Stores a new ITR value based on packets and byte
4497 *  counts during the last interrupt.  The advantage of per interrupt
4498 *  computation is faster updates and more accurate ITR for the current
4499 *  traffic pattern.  Constants in this function were computed
4500 *  based on theoretical maximum wire speed and thresholds were set based
4501 *  on testing data as well as attempting to minimize response time
4502 *  while increasing bulk throughput.
4503 *  This functionality is controlled by ethtool's coalescing settings.
4504 *  NOTE:  These calculations are only valid when operating in a single-
4505 *         queue environment.
4506 **/
4507static void igb_update_itr(struct igb_q_vector *q_vector,
4508                           struct igb_ring_container *ring_container)
4509{
4510        unsigned int packets = ring_container->total_packets;
4511        unsigned int bytes = ring_container->total_bytes;
4512        u8 itrval = ring_container->itr;
4513
4514        /* no packets, exit with status unchanged */
4515        if (packets == 0)
4516                return;
4517
4518        switch (itrval) {
4519        case lowest_latency:
4520                /* handle TSO and jumbo frames */
4521                if (bytes/packets > 8000)
4522                        itrval = bulk_latency;
4523                else if ((packets < 5) && (bytes > 512))
4524                        itrval = low_latency;
4525                break;
4526        case low_latency:  /* 50 usec aka 20000 ints/s */
4527                if (bytes > 10000) {
4528                        /* this if handles the TSO accounting */
4529                        if (bytes/packets > 8000)
4530                                itrval = bulk_latency;
4531                        else if ((packets < 10) || ((bytes/packets) > 1200))
4532                                itrval = bulk_latency;
4533                        else if ((packets > 35))
4534                                itrval = lowest_latency;
4535                } else if (bytes/packets > 2000) {
4536                        itrval = bulk_latency;
4537                } else if (packets <= 2 && bytes < 512) {
4538                        itrval = lowest_latency;
4539                }
4540                break;
4541        case bulk_latency: /* 250 usec aka 4000 ints/s */
4542                if (bytes > 25000) {
4543                        if (packets > 35)
4544                                itrval = low_latency;
4545                } else if (bytes < 1500) {
4546                        itrval = low_latency;
4547                }
4548                break;
4549        }
4550
4551        /* clear work counters since we have the values we need */
4552        ring_container->total_bytes = 0;
4553        ring_container->total_packets = 0;
4554
4555        /* write updated itr to ring container */
4556        ring_container->itr = itrval;
4557}
4558
4559static void igb_set_itr(struct igb_q_vector *q_vector)
4560{
4561        struct igb_adapter *adapter = q_vector->adapter;
4562        u32 new_itr = q_vector->itr_val;
4563        u8 current_itr = 0;
4564
4565        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4566        if (adapter->link_speed != SPEED_1000) {
4567                current_itr = 0;
4568                new_itr = IGB_4K_ITR;
4569                goto set_itr_now;
4570        }
4571
4572        igb_update_itr(q_vector, &q_vector->tx);
4573        igb_update_itr(q_vector, &q_vector->rx);
4574
4575        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4576
4577        /* conservative mode (itr 3) eliminates the lowest_latency setting */
4578        if (current_itr == lowest_latency &&
4579            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4580             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4581                current_itr = low_latency;
4582
4583        switch (current_itr) {
4584        /* counts and packets in update_itr are dependent on these numbers */
4585        case lowest_latency:
4586                new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4587                break;
4588        case low_latency:
4589                new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4590                break;
4591        case bulk_latency:
4592                new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4593                break;
4594        default:
4595                break;
4596        }
4597
4598set_itr_now:
4599        if (new_itr != q_vector->itr_val) {
4600                /* this attempts to bias the interrupt rate towards Bulk
4601                 * by adding intermediate steps when interrupt rate is
4602                 * increasing
4603                 */
4604                new_itr = new_itr > q_vector->itr_val ?
4605                          max((new_itr * q_vector->itr_val) /
4606                          (new_itr + (q_vector->itr_val >> 2)),
4607                          new_itr) : new_itr;
4608                /* Don't write the value here; it resets the adapter's
4609                 * internal timer, and causes us to delay far longer than
4610                 * we should between interrupts.  Instead, we write the ITR
4611                 * value at the beginning of the next interrupt so the timing
4612                 * ends up being correct.
4613                 */
4614                q_vector->itr_val = new_itr;
4615                q_vector->set_itr = 1;
4616        }
4617}
4618
4619static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4620                            u32 type_tucmd, u32 mss_l4len_idx)
4621{
4622        struct e1000_adv_tx_context_desc *context_desc;
4623        u16 i = tx_ring->next_to_use;
4624
4625        context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4626
4627        i++;
4628        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4629
4630        /* set bits to identify this as an advanced context descriptor */
4631        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4632
4633        /* For 82575, context index must be unique per ring. */
4634        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4635                mss_l4len_idx |= tx_ring->reg_idx << 4;
4636
4637        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4638        context_desc->seqnum_seed       = 0;
4639        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4640        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4641}
4642
4643static int igb_tso(struct igb_ring *tx_ring,
4644                   struct igb_tx_buffer *first,
4645                   u8 *hdr_len)
4646{
4647        struct sk_buff *skb = first->skb;
4648        u32 vlan_macip_lens, type_tucmd;
4649        u32 mss_l4len_idx, l4len;
4650        int err;
4651
4652        if (skb->ip_summed != CHECKSUM_PARTIAL)
4653                return 0;
4654
4655        if (!skb_is_gso(skb))
4656                return 0;
4657
4658        err = skb_cow_head(skb, 0);
4659        if (err < 0)
4660                return err;
4661
4662        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4663        type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4664
4665        if (first->protocol == htons(ETH_P_IP)) {
4666                struct iphdr *iph = ip_hdr(skb);
4667                iph->tot_len = 0;
4668                iph->check = 0;
4669                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4670                                                         iph->daddr, 0,
4671                                                         IPPROTO_TCP,
4672                                                         0);
4673                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4674                first->tx_flags |= IGB_TX_FLAGS_TSO |
4675                                   IGB_TX_FLAGS_CSUM |
4676                                   IGB_TX_FLAGS_IPV4;
4677        } else if (skb_is_gso_v6(skb)) {
4678                ipv6_hdr(skb)->payload_len = 0;
4679                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4680                                                       &ipv6_hdr(skb)->daddr,
4681                                                       0, IPPROTO_TCP, 0);
4682                first->tx_flags |= IGB_TX_FLAGS_TSO |
4683                                   IGB_TX_FLAGS_CSUM;
4684        }
4685
4686        /* compute header lengths */
4687        l4len = tcp_hdrlen(skb);
4688        *hdr_len = skb_transport_offset(skb) + l4len;
4689
4690        /* update gso size and bytecount with header size */
4691        first->gso_segs = skb_shinfo(skb)->gso_segs;
4692        first->bytecount += (first->gso_segs - 1) * *hdr_len;
4693
4694        /* MSS L4LEN IDX */
4695        mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4696        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4697
4698        /* VLAN MACLEN IPLEN */
4699        vlan_macip_lens = skb_network_header_len(skb);
4700        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4701        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4702
4703        igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4704
4705        return 1;
4706}
4707
4708static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4709{
4710        struct sk_buff *skb = first->skb;
4711        u32 vlan_macip_lens = 0;
4712        u32 mss_l4len_idx = 0;
4713        u32 type_tucmd = 0;
4714
4715        if (skb->ip_summed != CHECKSUM_PARTIAL) {
4716                if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4717                        return;
4718        } else {
4719                u8 l4_hdr = 0;
4720
4721                switch (first->protocol) {
4722                case htons(ETH_P_IP):
4723                        vlan_macip_lens |= skb_network_header_len(skb);
4724                        type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4725                        l4_hdr = ip_hdr(skb)->protocol;
4726                        break;
4727                case htons(ETH_P_IPV6):
4728                        vlan_macip_lens |= skb_network_header_len(skb);
4729                        l4_hdr = ipv6_hdr(skb)->nexthdr;
4730                        break;
4731                default:
4732                        if (unlikely(net_ratelimit())) {
4733                                dev_warn(tx_ring->dev,
4734                                         "partial checksum but proto=%x!\n",
4735                                         first->protocol);
4736                        }
4737                        break;
4738                }
4739
4740                switch (l4_hdr) {
4741                case IPPROTO_TCP:
4742                        type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4743                        mss_l4len_idx = tcp_hdrlen(skb) <<
4744                                        E1000_ADVTXD_L4LEN_SHIFT;
4745                        break;
4746                case IPPROTO_SCTP:
4747                        type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4748                        mss_l4len_idx = sizeof(struct sctphdr) <<
4749                                        E1000_ADVTXD_L4LEN_SHIFT;
4750                        break;
4751                case IPPROTO_UDP:
4752                        mss_l4len_idx = sizeof(struct udphdr) <<
4753                                        E1000_ADVTXD_L4LEN_SHIFT;
4754                        break;
4755                default:
4756                        if (unlikely(net_ratelimit())) {
4757                                dev_warn(tx_ring->dev,
4758                                         "partial checksum but l4 proto=%x!\n",
4759                                         l4_hdr);
4760                        }
4761                        break;
4762                }
4763
4764                /* update TX checksum flag */
4765                first->tx_flags |= IGB_TX_FLAGS_CSUM;
4766        }
4767
4768        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4769        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4770
4771        igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4772}
4773
4774#define IGB_SET_FLAG(_input, _flag, _result) \
4775        ((_flag <= _result) ? \
4776         ((u32)(_input & _flag) * (_result / _flag)) : \
4777         ((u32)(_input & _flag) / (_flag / _result)))
4778
4779static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4780{
4781        /* set type for advanced descriptor with frame checksum insertion */
4782        u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4783                       E1000_ADVTXD_DCMD_DEXT |
4784                       E1000_ADVTXD_DCMD_IFCS;
4785
4786        /* set HW vlan bit if vlan is present */
4787        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4788                                 (E1000_ADVTXD_DCMD_VLE));
4789
4790        /* set segmentation bits for TSO */
4791        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4792                                 (E1000_ADVTXD_DCMD_TSE));
4793
4794        /* set timestamp bit if present */
4795        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4796                                 (E1000_ADVTXD_MAC_TSTAMP));
4797
4798        /* insert frame checksum */
4799        cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4800
4801        return cmd_type;
4802}
4803
4804static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4805                                 union e1000_adv_tx_desc *tx_desc,
4806                                 u32 tx_flags, unsigned int paylen)
4807{
4808        u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4809
4810        /* 82575 requires a unique index per ring */
4811        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4812                olinfo_status |= tx_ring->reg_idx << 4;
4813
4814        /* insert L4 checksum */
4815        olinfo_status |= IGB_SET_FLAG(tx_flags,
4816                                      IGB_TX_FLAGS_CSUM,
4817                                      (E1000_TXD_POPTS_TXSM << 8));
4818
4819        /* insert IPv4 checksum */
4820        olinfo_status |= IGB_SET_FLAG(tx_flags,
4821                                      IGB_TX_FLAGS_IPV4,
4822                                      (E1000_TXD_POPTS_IXSM << 8));
4823
4824        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4825}
4826
4827static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4828{
4829        struct net_device *netdev = tx_ring->netdev;
4830
4831        netif_stop_subqueue(netdev, tx_ring->queue_index);
4832
4833        /* Herbert's original patch had:
4834         *  smp_mb__after_netif_stop_queue();
4835         * but since that doesn't exist yet, just open code it.
4836         */
4837        smp_mb();
4838
4839        /* We need to check again in a case another CPU has just
4840         * made room available.
4841         */
4842        if (igb_desc_unused(tx_ring) < size)
4843                return -EBUSY;
4844
4845        /* A reprieve! */
4846        netif_wake_subqueue(netdev, tx_ring->queue_index);
4847
4848        u64_stats_update_begin(&tx_ring->tx_syncp2);
4849        tx_ring->tx_stats.restart_queue2++;
4850        u64_stats_update_end(&tx_ring->tx_syncp2);
4851
4852        return 0;
4853}
4854
4855static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4856{
4857        if (igb_desc_unused(tx_ring) >= size)
4858                return 0;
4859        return __igb_maybe_stop_tx(tx_ring, size);
4860}
4861
4862static void igb_tx_map(struct igb_ring *tx_ring,
4863                       struct igb_tx_buffer *first,
4864                       const u8 hdr_len)
4865{
4866        struct sk_buff *skb = first->skb;
4867        struct igb_tx_buffer *tx_buffer;
4868        union e1000_adv_tx_desc *tx_desc;
4869        struct skb_frag_struct *frag;
4870        dma_addr_t dma;
4871        unsigned int data_len, size;
4872        u32 tx_flags = first->tx_flags;
4873        u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4874        u16 i = tx_ring->next_to_use;
4875
4876        tx_desc = IGB_TX_DESC(tx_ring, i);
4877
4878        igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4879
4880        size = skb_headlen(skb);
4881        data_len = skb->data_len;
4882
4883        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4884
4885        tx_buffer = first;
4886
4887        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4888                if (dma_mapping_error(tx_ring->dev, dma))
4889                        goto dma_error;
4890
4891                /* record length, and DMA address */
4892                dma_unmap_len_set(tx_buffer, len, size);
4893                dma_unmap_addr_set(tx_buffer, dma, dma);
4894
4895                tx_desc->read.buffer_addr = cpu_to_le64(dma);
4896
4897                while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4898                        tx_desc->read.cmd_type_len =
4899                                cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4900
4901                        i++;
4902                        tx_desc++;
4903                        if (i == tx_ring->count) {
4904                                tx_desc = IGB_TX_DESC(tx_ring, 0);
4905                                i = 0;
4906                        }
4907                        tx_desc->read.olinfo_status = 0;
4908
4909                        dma += IGB_MAX_DATA_PER_TXD;
4910                        size -= IGB_MAX_DATA_PER_TXD;
4911
4912                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
4913                }
4914
4915                if (likely(!data_len))
4916                        break;
4917
4918                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4919
4920                i++;
4921                tx_desc++;
4922                if (i == tx_ring->count) {
4923                        tx_desc = IGB_TX_DESC(tx_ring, 0);
4924                        i = 0;
4925                }
4926                tx_desc->read.olinfo_status = 0;
4927
4928                size = skb_frag_size(frag);
4929                data_len -= size;
4930
4931                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4932                                       size, DMA_TO_DEVICE);
4933
4934                tx_buffer = &tx_ring->tx_buffer_info[i];
4935        }
4936
4937        /* write last descriptor with RS and EOP bits */
4938        cmd_type |= size | IGB_TXD_DCMD;
4939        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4940
4941        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4942
4943        /* set the timestamp */
4944        first->time_stamp = jiffies;
4945
4946        /* Force memory writes to complete before letting h/w know there
4947         * are new descriptors to fetch.  (Only applicable for weak-ordered
4948         * memory model archs, such as IA-64).
4949         *
4950         * We also need this memory barrier to make certain all of the
4951         * status bits have been updated before next_to_watch is written.
4952         */
4953        wmb();
4954
4955        /* set next_to_watch value indicating a packet is present */
4956        first->next_to_watch = tx_desc;
4957
4958        i++;
4959        if (i == tx_ring->count)
4960                i = 0;
4961
4962        tx_ring->next_to_use = i;
4963
4964        /* Make sure there is space in the ring for the next send. */
4965        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4966
4967        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4968                writel(i, tx_ring->tail);
4969
4970                /* we need this if more than one processor can write to our tail
4971                 * at a time, it synchronizes IO on IA64/Altix systems
4972                 */
4973                mmiowb();
4974        }
4975        return;
4976
4977dma_error:
4978        dev_err(tx_ring->dev, "TX DMA map failed\n");
4979
4980        /* clear dma mappings for failed tx_buffer_info map */
4981        for (;;) {
4982                tx_buffer = &tx_ring->tx_buffer_info[i];
4983                igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4984                if (tx_buffer == first)
4985                        break;
4986                if (i == 0)
4987                        i = tx_ring->count;
4988                i--;
4989        }
4990
4991        tx_ring->next_to_use = i;
4992}
4993
4994netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4995                                struct igb_ring *tx_ring)
4996{
4997        struct igb_tx_buffer *first;
4998        int tso;
4999        u32 tx_flags = 0;
5000        unsigned short f;
5001        u16 count = TXD_USE_COUNT(skb_headlen(skb));
5002        __be16 protocol = vlan_get_protocol(skb);
5003        u8 hdr_len = 0;
5004
5005        /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5006         *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5007         *       + 2 desc gap to keep tail from touching head,
5008         *       + 1 desc for context descriptor,
5009         * otherwise try next time
5010         */
5011        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5012                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5013
5014        if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5015                /* this is a hard error */
5016                return NETDEV_TX_BUSY;
5017        }
5018
5019        /* record the location of the first descriptor for this packet */
5020        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5021        first->skb = skb;
5022        first->bytecount = skb->len;
5023        first->gso_segs = 1;
5024
5025        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5026                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5027
5028                if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5029                                           &adapter->state)) {
5030                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5031                        tx_flags |= IGB_TX_FLAGS_TSTAMP;
5032
5033                        adapter->ptp_tx_skb = skb_get(skb);
5034                        adapter->ptp_tx_start = jiffies;
5035                        if (adapter->hw.mac.type == e1000_82576)
5036                                schedule_work(&adapter->ptp_tx_work);
5037                }
5038        }
5039
5040        skb_tx_timestamp(skb);
5041
5042        if (skb_vlan_tag_present(skb)) {
5043                tx_flags |= IGB_TX_FLAGS_VLAN;
5044                tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5045        }
5046
5047        /* record initial flags and protocol */
5048        first->tx_flags = tx_flags;
5049        first->protocol = protocol;
5050
5051        tso = igb_tso(tx_ring, first, &hdr_len);
5052        if (tso < 0)
5053                goto out_drop;
5054        else if (!tso)
5055                igb_tx_csum(tx_ring, first);
5056
5057        igb_tx_map(tx_ring, first, hdr_len);
5058
5059        return NETDEV_TX_OK;
5060
5061out_drop:
5062        igb_unmap_and_free_tx_resource(tx_ring, first);
5063
5064        return NETDEV_TX_OK;
5065}
5066
5067static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5068                                                    struct sk_buff *skb)
5069{
5070        unsigned int r_idx = skb->queue_mapping;
5071
5072        if (r_idx >= adapter->num_tx_queues)
5073                r_idx = r_idx % adapter->num_tx_queues;
5074
5075        return adapter->tx_ring[r_idx];
5076}
5077
5078static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5079                                  struct net_device *netdev)
5080{
5081        struct igb_adapter *adapter = netdev_priv(netdev);
5082
5083        if (test_bit(__IGB_DOWN, &adapter->state)) {
5084                dev_kfree_skb_any(skb);
5085                return NETDEV_TX_OK;
5086        }
5087
5088        if (skb->len <= 0) {
5089                dev_kfree_skb_any(skb);
5090                return NETDEV_TX_OK;
5091        }
5092
5093        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5094         * in order to meet this minimum size requirement.
5095         */
5096        if (skb_put_padto(skb, 17))
5097                return NETDEV_TX_OK;
5098
5099        return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5100}
5101
5102/**
5103 *  igb_tx_timeout - Respond to a Tx Hang
5104 *  @netdev: network interface device structure
5105 **/
5106static void igb_tx_timeout(struct net_device *netdev)
5107{
5108        struct igb_adapter *adapter = netdev_priv(netdev);
5109        struct e1000_hw *hw = &adapter->hw;
5110
5111        /* Do the reset outside of interrupt context */
5112        adapter->tx_timeout_count++;
5113
5114        if (hw->mac.type >= e1000_82580)
5115                hw->dev_spec._82575.global_device_reset = true;
5116
5117        schedule_work(&adapter->reset_task);
5118        wr32(E1000_EICS,
5119             (adapter->eims_enable_mask & ~adapter->eims_other));
5120}
5121
5122static void igb_reset_task(struct work_struct *work)
5123{
5124        struct igb_adapter *adapter;
5125        adapter = container_of(work, struct igb_adapter, reset_task);
5126
5127        igb_dump(adapter);
5128        netdev_err(adapter->netdev, "Reset adapter\n");
5129        igb_reinit_locked(adapter);
5130}
5131
5132/**
5133 *  igb_get_stats64 - Get System Network Statistics
5134 *  @netdev: network interface device structure
5135 *  @stats: rtnl_link_stats64 pointer
5136 **/
5137static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5138                                                struct rtnl_link_stats64 *stats)
5139{
5140        struct igb_adapter *adapter = netdev_priv(netdev);
5141
5142        spin_lock(&adapter->stats64_lock);
5143        igb_update_stats(adapter, &adapter->stats64);
5144        memcpy(stats, &adapter->stats64, sizeof(*stats));
5145        spin_unlock(&adapter->stats64_lock);
5146
5147        return stats;
5148}
5149
5150/**
5151 *  igb_change_mtu - Change the Maximum Transfer Unit
5152 *  @netdev: network interface device structure
5153 *  @new_mtu: new value for maximum frame size
5154 *
5155 *  Returns 0 on success, negative on failure
5156 **/
5157static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5158{
5159        struct igb_adapter *adapter = netdev_priv(netdev);
5160        struct pci_dev *pdev = adapter->pdev;
5161        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5162
5163        if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5164                dev_err(&pdev->dev, "Invalid MTU setting\n");
5165                return -EINVAL;
5166        }
5167
5168#define MAX_STD_JUMBO_FRAME_SIZE 9238
5169        if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5170                dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5171                return -EINVAL;
5172        }
5173
5174        /* adjust max frame to be at least the size of a standard frame */
5175        if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5176                max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5177
5178        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5179                usleep_range(1000, 2000);
5180
5181        /* igb_down has a dependency on max_frame_size */
5182        adapter->max_frame_size = max_frame;
5183
5184        if (netif_running(netdev))
5185                igb_down(adapter);
5186
5187        dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5188                 netdev->mtu, new_mtu);
5189        netdev->mtu = new_mtu;
5190
5191        if (netif_running(netdev))
5192                igb_up(adapter);
5193        else
5194                igb_reset(adapter);
5195
5196        clear_bit(__IGB_RESETTING, &adapter->state);
5197
5198        return 0;
5199}
5200
5201/**
5202 *  igb_update_stats - Update the board statistics counters
5203 *  @adapter: board private structure
5204 **/
5205void igb_update_stats(struct igb_adapter *adapter,
5206                      struct rtnl_link_stats64 *net_stats)
5207{
5208        struct e1000_hw *hw = &adapter->hw;
5209        struct pci_dev *pdev = adapter->pdev;
5210        u32 reg, mpc;
5211        int i;
5212        u64 bytes, packets;
5213        unsigned int start;
5214        u64 _bytes, _packets;
5215
5216        /* Prevent stats update while adapter is being reset, or if the pci
5217         * connection is down.
5218         */
5219        if (adapter->link_speed == 0)
5220                return;
5221        if (pci_channel_offline(pdev))
5222                return;
5223
5224        bytes = 0;
5225        packets = 0;
5226
5227        rcu_read_lock();
5228        for (i = 0; i < adapter->num_rx_queues; i++) {
5229                struct igb_ring *ring = adapter->rx_ring[i];
5230                u32 rqdpc = rd32(E1000_RQDPC(i));
5231                if (hw->mac.type >= e1000_i210)
5232                        wr32(E1000_RQDPC(i), 0);
5233
5234                if (rqdpc) {
5235                        ring->rx_stats.drops += rqdpc;
5236                        net_stats->rx_fifo_errors += rqdpc;
5237                }
5238
5239                do {
5240                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5241                        _bytes = ring->rx_stats.bytes;
5242                        _packets = ring->rx_stats.packets;
5243                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5244                bytes += _bytes;
5245                packets += _packets;
5246        }
5247
5248        net_stats->rx_bytes = bytes;
5249        net_stats->rx_packets = packets;
5250
5251        bytes = 0;
5252        packets = 0;
5253        for (i = 0; i < adapter->num_tx_queues; i++) {
5254                struct igb_ring *ring = adapter->tx_ring[i];
5255                do {
5256                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5257                        _bytes = ring->tx_stats.bytes;
5258                        _packets = ring->tx_stats.packets;
5259                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5260                bytes += _bytes;
5261                packets += _packets;
5262        }
5263        net_stats->tx_bytes = bytes;
5264        net_stats->tx_packets = packets;
5265        rcu_read_unlock();
5266
5267        /* read stats registers */
5268        adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5269        adapter->stats.gprc += rd32(E1000_GPRC);
5270        adapter->stats.gorc += rd32(E1000_GORCL);
5271        rd32(E1000_GORCH); /* clear GORCL */
5272        adapter->stats.bprc += rd32(E1000_BPRC);
5273        adapter->stats.mprc += rd32(E1000_MPRC);
5274        adapter->stats.roc += rd32(E1000_ROC);
5275
5276        adapter->stats.prc64 += rd32(E1000_PRC64);
5277        adapter->stats.prc127 += rd32(E1000_PRC127);
5278        adapter->stats.prc255 += rd32(E1000_PRC255);
5279        adapter->stats.prc511 += rd32(E1000_PRC511);
5280        adapter->stats.prc1023 += rd32(E1000_PRC1023);
5281        adapter->stats.prc1522 += rd32(E1000_PRC1522);
5282        adapter->stats.symerrs += rd32(E1000_SYMERRS);
5283        adapter->stats.sec += rd32(E1000_SEC);
5284
5285        mpc = rd32(E1000_MPC);
5286        adapter->stats.mpc += mpc;
5287        net_stats->rx_fifo_errors += mpc;
5288        adapter->stats.scc += rd32(E1000_SCC);
5289        adapter->stats.ecol += rd32(E1000_ECOL);
5290        adapter->stats.mcc += rd32(E1000_MCC);
5291        adapter->stats.latecol += rd32(E1000_LATECOL);
5292        adapter->stats.dc += rd32(E1000_DC);
5293        adapter->stats.rlec += rd32(E1000_RLEC);
5294        adapter->stats.xonrxc += rd32(E1000_XONRXC);
5295        adapter->stats.xontxc += rd32(E1000_XONTXC);
5296        adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5297        adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5298        adapter->stats.fcruc += rd32(E1000_FCRUC);
5299        adapter->stats.gptc += rd32(E1000_GPTC);
5300        adapter->stats.gotc += rd32(E1000_GOTCL);
5301        rd32(E1000_GOTCH); /* clear GOTCL */
5302        adapter->stats.rnbc += rd32(E1000_RNBC);
5303        adapter->stats.ruc += rd32(E1000_RUC);
5304        adapter->stats.rfc += rd32(E1000_RFC);
5305        adapter->stats.rjc += rd32(E1000_RJC);
5306        adapter->stats.tor += rd32(E1000_TORH);
5307        adapter->stats.tot += rd32(E1000_TOTH);
5308        adapter->stats.tpr += rd32(E1000_TPR);
5309
5310        adapter->stats.ptc64 += rd32(E1000_PTC64);
5311        adapter->stats.ptc127 += rd32(E1000_PTC127);
5312        adapter->stats.ptc255 += rd32(E1000_PTC255);
5313        adapter->stats.ptc511 += rd32(E1000_PTC511);
5314        adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5315        adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5316
5317        adapter->stats.mptc += rd32(E1000_MPTC);
5318        adapter->stats.bptc += rd32(E1000_BPTC);
5319
5320        adapter->stats.tpt += rd32(E1000_TPT);
5321        adapter->stats.colc += rd32(E1000_COLC);
5322
5323        adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5324        /* read internal phy specific stats */
5325        reg = rd32(E1000_CTRL_EXT);
5326        if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5327                adapter->stats.rxerrc += rd32(E1000_RXERRC);
5328
5329                /* this stat has invalid values on i210/i211 */
5330                if ((hw->mac.type != e1000_i210) &&
5331                    (hw->mac.type != e1000_i211))
5332                        adapter->stats.tncrs += rd32(E1000_TNCRS);
5333        }
5334
5335        adapter->stats.tsctc += rd32(E1000_TSCTC);
5336        adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5337
5338        adapter->stats.iac += rd32(E1000_IAC);
5339        adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5340        adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5341        adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5342        adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5343        adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5344        adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5345        adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5346        adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5347
5348        /* Fill out the OS statistics structure */
5349        net_stats->multicast = adapter->stats.mprc;
5350        net_stats->collisions = adapter->stats.colc;
5351
5352        /* Rx Errors */
5353
5354        /* RLEC on some newer hardware can be incorrect so build
5355         * our own version based on RUC and ROC
5356         */
5357        net_stats->rx_errors = adapter->stats.rxerrc +
5358                adapter->stats.crcerrs + adapter->stats.algnerrc +
5359                adapter->stats.ruc + adapter->stats.roc +
5360                adapter->stats.cexterr;
5361        net_stats->rx_length_errors = adapter->stats.ruc +
5362                                      adapter->stats.roc;
5363        net_stats->rx_crc_errors = adapter->stats.crcerrs;
5364        net_stats->rx_frame_errors = adapter->stats.algnerrc;
5365        net_stats->rx_missed_errors = adapter->stats.mpc;
5366
5367        /* Tx Errors */
5368        net_stats->tx_errors = adapter->stats.ecol +
5369                               adapter->stats.latecol;
5370        net_stats->tx_aborted_errors = adapter->stats.ecol;
5371        net_stats->tx_window_errors = adapter->stats.latecol;
5372        net_stats->tx_carrier_errors = adapter->stats.tncrs;
5373
5374        /* Tx Dropped needs to be maintained elsewhere */
5375
5376        /* Management Stats */
5377        adapter->stats.mgptc += rd32(E1000_MGTPTC);
5378        adapter->stats.mgprc += rd32(E1000_MGTPRC);
5379        adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5380
5381        /* OS2BMC Stats */
5382        reg = rd32(E1000_MANC);
5383        if (reg & E1000_MANC_EN_BMC2OS) {
5384                adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5385                adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5386                adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5387                adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5388        }
5389}
5390
5391static void igb_tsync_interrupt(struct igb_adapter *adapter)
5392{
5393        struct e1000_hw *hw = &adapter->hw;
5394        struct ptp_clock_event event;
5395        struct timespec64 ts;
5396        u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5397
5398        if (tsicr & TSINTR_SYS_WRAP) {
5399                event.type = PTP_CLOCK_PPS;
5400                if (adapter->ptp_caps.pps)
5401                        ptp_clock_event(adapter->ptp_clock, &event);
5402                else
5403                        dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5404                ack |= TSINTR_SYS_WRAP;
5405        }
5406
5407        if (tsicr & E1000_TSICR_TXTS) {
5408                /* retrieve hardware timestamp */
5409                schedule_work(&adapter->ptp_tx_work);
5410                ack |= E1000_TSICR_TXTS;
5411        }
5412
5413        if (tsicr & TSINTR_TT0) {
5414                spin_lock(&adapter->tmreg_lock);
5415                ts = timespec64_add(adapter->perout[0].start,
5416                                    adapter->perout[0].period);
5417                /* u32 conversion of tv_sec is safe until y2106 */
5418                wr32(E1000_TRGTTIML0, ts.tv_nsec);
5419                wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5420                tsauxc = rd32(E1000_TSAUXC);
5421                tsauxc |= TSAUXC_EN_TT0;
5422                wr32(E1000_TSAUXC, tsauxc);
5423                adapter->perout[0].start = ts;
5424                spin_unlock(&adapter->tmreg_lock);
5425                ack |= TSINTR_TT0;
5426        }
5427
5428        if (tsicr & TSINTR_TT1) {
5429                spin_lock(&adapter->tmreg_lock);
5430                ts = timespec64_add(adapter->perout[1].start,
5431                                    adapter->perout[1].period);
5432                wr32(E1000_TRGTTIML1, ts.tv_nsec);
5433                wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5434                tsauxc = rd32(E1000_TSAUXC);
5435                tsauxc |= TSAUXC_EN_TT1;
5436                wr32(E1000_TSAUXC, tsauxc);
5437                adapter->perout[1].start = ts;
5438                spin_unlock(&adapter->tmreg_lock);
5439                ack |= TSINTR_TT1;
5440        }
5441
5442        if (tsicr & TSINTR_AUTT0) {
5443                nsec = rd32(E1000_AUXSTMPL0);
5444                sec  = rd32(E1000_AUXSTMPH0);
5445                event.type = PTP_CLOCK_EXTTS;
5446                event.index = 0;
5447                event.timestamp = sec * 1000000000ULL + nsec;
5448                ptp_clock_event(adapter->ptp_clock, &event);
5449                ack |= TSINTR_AUTT0;
5450        }
5451
5452        if (tsicr & TSINTR_AUTT1) {
5453                nsec = rd32(E1000_AUXSTMPL1);
5454                sec  = rd32(E1000_AUXSTMPH1);
5455                event.type = PTP_CLOCK_EXTTS;
5456                event.index = 1;
5457                event.timestamp = sec * 1000000000ULL + nsec;
5458                ptp_clock_event(adapter->ptp_clock, &event);
5459                ack |= TSINTR_AUTT1;
5460        }
5461
5462        /* acknowledge the interrupts */
5463        wr32(E1000_TSICR, ack);
5464}
5465
5466static irqreturn_t igb_msix_other(int irq, void *data)
5467{
5468        struct igb_adapter *adapter = data;
5469        struct e1000_hw *hw = &adapter->hw;
5470        u32 icr = rd32(E1000_ICR);
5471        /* reading ICR causes bit 31 of EICR to be cleared */
5472
5473        if (icr & E1000_ICR_DRSTA)
5474                schedule_work(&adapter->reset_task);
5475
5476        if (icr & E1000_ICR_DOUTSYNC) {
5477                /* HW is reporting DMA is out of sync */
5478                adapter->stats.doosync++;
5479                /* The DMA Out of Sync is also indication of a spoof event
5480                 * in IOV mode. Check the Wrong VM Behavior register to
5481                 * see if it is really a spoof event.
5482                 */
5483                igb_check_wvbr(adapter);
5484        }
5485
5486        /* Check for a mailbox event */
5487        if (icr & E1000_ICR_VMMB)
5488                igb_msg_task(adapter);
5489
5490        if (icr & E1000_ICR_LSC) {
5491                hw->mac.get_link_status = 1;
5492                /* guard against interrupt when we're going down */
5493                if (!test_bit(__IGB_DOWN, &adapter->state))
5494                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
5495        }
5496
5497        if (icr & E1000_ICR_TS)
5498                igb_tsync_interrupt(adapter);
5499
5500        wr32(E1000_EIMS, adapter->eims_other);
5501
5502        return IRQ_HANDLED;
5503}
5504
5505static void igb_write_itr(struct igb_q_vector *q_vector)
5506{
5507        struct igb_adapter *adapter = q_vector->adapter;
5508        u32 itr_val = q_vector->itr_val & 0x7FFC;
5509
5510        if (!q_vector->set_itr)
5511                return;
5512
5513        if (!itr_val)
5514                itr_val = 0x4;
5515
5516        if (adapter->hw.mac.type == e1000_82575)
5517                itr_val |= itr_val << 16;
5518        else
5519                itr_val |= E1000_EITR_CNT_IGNR;
5520
5521        writel(itr_val, q_vector->itr_register);
5522        q_vector->set_itr = 0;
5523}
5524
5525static irqreturn_t igb_msix_ring(int irq, void *data)
5526{
5527        struct igb_q_vector *q_vector = data;
5528
5529        /* Write the ITR value calculated from the previous interrupt. */
5530        igb_write_itr(q_vector);
5531
5532        napi_schedule(&q_vector->napi);
5533
5534        return IRQ_HANDLED;
5535}
5536
5537#ifdef CONFIG_IGB_DCA
5538static void igb_update_tx_dca(struct igb_adapter *adapter,
5539                              struct igb_ring *tx_ring,
5540                              int cpu)
5541{
5542        struct e1000_hw *hw = &adapter->hw;
5543        u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5544
5545        if (hw->mac.type != e1000_82575)
5546                txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5547
5548        /* We can enable relaxed ordering for reads, but not writes when
5549         * DCA is enabled.  This is due to a known issue in some chipsets
5550         * which will cause the DCA tag to be cleared.
5551         */
5552        txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5553                  E1000_DCA_TXCTRL_DATA_RRO_EN |
5554                  E1000_DCA_TXCTRL_DESC_DCA_EN;
5555
5556        wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5557}
5558
5559static void igb_update_rx_dca(struct igb_adapter *adapter,
5560                              struct igb_ring *rx_ring,
5561                              int cpu)
5562{
5563        struct e1000_hw *hw = &adapter->hw;
5564        u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5565
5566        if (hw->mac.type != e1000_82575)
5567                rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5568
5569        /* We can enable relaxed ordering for reads, but not writes when
5570         * DCA is enabled.  This is due to a known issue in some chipsets
5571         * which will cause the DCA tag to be cleared.
5572         */
5573        rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5574                  E1000_DCA_RXCTRL_DESC_DCA_EN;
5575
5576        wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5577}
5578
5579static void igb_update_dca(struct igb_q_vector *q_vector)
5580{
5581        struct igb_adapter *adapter = q_vector->adapter;
5582        int cpu = get_cpu();
5583
5584        if (q_vector->cpu == cpu)
5585                goto out_no_update;
5586
5587        if (q_vector->tx.ring)
5588                igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5589
5590        if (q_vector->rx.ring)
5591                igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5592
5593        q_vector->cpu = cpu;
5594out_no_update:
5595        put_cpu();
5596}
5597
5598static void igb_setup_dca(struct igb_adapter *adapter)
5599{
5600        struct e1000_hw *hw = &adapter->hw;
5601        int i;
5602
5603        if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5604                return;
5605
5606        /* Always use CB2 mode, difference is masked in the CB driver. */
5607        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5608
5609        for (i = 0; i < adapter->num_q_vectors; i++) {
5610                adapter->q_vector[i]->cpu = -1;
5611                igb_update_dca(adapter->q_vector[i]);
5612        }
5613}
5614
5615static int __igb_notify_dca(struct device *dev, void *data)
5616{
5617        struct net_device *netdev = dev_get_drvdata(dev);
5618        struct igb_adapter *adapter = netdev_priv(netdev);
5619        struct pci_dev *pdev = adapter->pdev;
5620        struct e1000_hw *hw = &adapter->hw;
5621        unsigned long event = *(unsigned long *)data;
5622
5623        switch (event) {
5624        case DCA_PROVIDER_ADD:
5625                /* if already enabled, don't do it again */
5626                if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5627                        break;
5628                if (dca_add_requester(dev) == 0) {
5629                        adapter->flags |= IGB_FLAG_DCA_ENABLED;
5630                        dev_info(&pdev->dev, "DCA enabled\n");
5631                        igb_setup_dca(adapter);
5632                        break;
5633                }
5634                /* Fall Through since DCA is disabled. */
5635        case DCA_PROVIDER_REMOVE:
5636                if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5637                        /* without this a class_device is left
5638                         * hanging around in the sysfs model
5639                         */
5640                        dca_remove_requester(dev);
5641                        dev_info(&pdev->dev, "DCA disabled\n");
5642                        adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5643                        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5644                }
5645                break;
5646        }
5647
5648        return 0;
5649}
5650
5651static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5652                          void *p)
5653{
5654        int ret_val;
5655
5656        ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5657                                         __igb_notify_dca);
5658
5659        return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5660}
5661#endif /* CONFIG_IGB_DCA */
5662
5663#ifdef CONFIG_PCI_IOV
5664static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5665{
5666        unsigned char mac_addr[ETH_ALEN];
5667
5668        eth_zero_addr(mac_addr);
5669        igb_set_vf_mac(adapter, vf, mac_addr);
5670
5671        /* By default spoof check is enabled for all VFs */
5672        adapter->vf_data[vf].spoofchk_enabled = true;
5673
5674        return 0;
5675}
5676
5677#endif
5678static void igb_ping_all_vfs(struct igb_adapter *adapter)
5679{
5680        struct e1000_hw *hw = &adapter->hw;
5681        u32 ping;
5682        int i;
5683
5684        for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5685                ping = E1000_PF_CONTROL_MSG;
5686                if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5687                        ping |= E1000_VT_MSGTYPE_CTS;
5688                igb_write_mbx(hw, &ping, 1, i);
5689        }
5690}
5691
5692static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5693{
5694        struct e1000_hw *hw = &adapter->hw;
5695        u32 vmolr = rd32(E1000_VMOLR(vf));
5696        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5697
5698        vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5699                            IGB_VF_FLAG_MULTI_PROMISC);
5700        vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5701
5702        if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5703                vmolr |= E1000_VMOLR_MPME;
5704                vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5705                *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5706        } else {
5707                /* if we have hashes and we are clearing a multicast promisc
5708                 * flag we need to write the hashes to the MTA as this step
5709                 * was previously skipped
5710                 */
5711                if (vf_data->num_vf_mc_hashes > 30) {
5712                        vmolr |= E1000_VMOLR_MPME;
5713                } else if (vf_data->num_vf_mc_hashes) {
5714                        int j;
5715
5716                        vmolr |= E1000_VMOLR_ROMPE;
5717                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5718                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5719                }
5720        }
5721
5722        wr32(E1000_VMOLR(vf), vmolr);
5723
5724        /* there are flags left unprocessed, likely not supported */
5725        if (*msgbuf & E1000_VT_MSGINFO_MASK)
5726                return -EINVAL;
5727
5728        return 0;
5729}
5730
5731static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5732                                  u32 *msgbuf, u32 vf)
5733{
5734        int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5735        u16 *hash_list = (u16 *)&msgbuf[1];
5736        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5737        int i;
5738
5739        /* salt away the number of multicast addresses assigned
5740         * to this VF for later use to restore when the PF multi cast
5741         * list changes
5742         */
5743        vf_data->num_vf_mc_hashes = n;
5744
5745        /* only up to 30 hash values supported */
5746        if (n > 30)
5747                n = 30;
5748
5749        /* store the hashes for later use */
5750        for (i = 0; i < n; i++)
5751                vf_data->vf_mc_hashes[i] = hash_list[i];
5752
5753        /* Flush and reset the mta with the new values */
5754        igb_set_rx_mode(adapter->netdev);
5755
5756        return 0;
5757}
5758
5759static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5760{
5761        struct e1000_hw *hw = &adapter->hw;
5762        struct vf_data_storage *vf_data;
5763        int i, j;
5764
5765        for (i = 0; i < adapter->vfs_allocated_count; i++) {
5766                u32 vmolr = rd32(E1000_VMOLR(i));
5767
5768                vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5769
5770                vf_data = &adapter->vf_data[i];
5771
5772                if ((vf_data->num_vf_mc_hashes > 30) ||
5773                    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5774                        vmolr |= E1000_VMOLR_MPME;
5775                } else if (vf_data->num_vf_mc_hashes) {
5776                        vmolr |= E1000_VMOLR_ROMPE;
5777                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5778                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5779                }
5780                wr32(E1000_VMOLR(i), vmolr);
5781        }
5782}
5783
5784static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5785{
5786        struct e1000_hw *hw = &adapter->hw;
5787        u32 pool_mask, reg, vid;
5788        int i;
5789
5790        pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5791
5792        /* Find the vlan filter for this id */
5793        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5794                reg = rd32(E1000_VLVF(i));
5795
5796                /* remove the vf from the pool */
5797                reg &= ~pool_mask;
5798
5799                /* if pool is empty then remove entry from vfta */
5800                if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5801                    (reg & E1000_VLVF_VLANID_ENABLE)) {
5802                        reg = 0;
5803                        vid = reg & E1000_VLVF_VLANID_MASK;
5804                        igb_vfta_set(hw, vid, false);
5805                }
5806
5807                wr32(E1000_VLVF(i), reg);
5808        }
5809
5810        adapter->vf_data[vf].vlans_enabled = 0;
5811}
5812
5813static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5814{
5815        struct e1000_hw *hw = &adapter->hw;
5816        u32 reg, i;
5817
5818        /* The vlvf table only exists on 82576 hardware and newer */
5819        if (hw->mac.type < e1000_82576)
5820                return -1;
5821
5822        /* we only need to do this if VMDq is enabled */
5823        if (!adapter->vfs_allocated_count)
5824                return -1;
5825
5826        /* Find the vlan filter for this id */
5827        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5828                reg = rd32(E1000_VLVF(i));
5829                if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5830                    vid == (reg & E1000_VLVF_VLANID_MASK))
5831                        break;
5832        }
5833
5834        if (add) {
5835                if (i == E1000_VLVF_ARRAY_SIZE) {
5836                        /* Did not find a matching VLAN ID entry that was
5837                         * enabled.  Search for a free filter entry, i.e.
5838                         * one without the enable bit set
5839                         */
5840                        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5841                                reg = rd32(E1000_VLVF(i));
5842                                if (!(reg & E1000_VLVF_VLANID_ENABLE))
5843                                        break;
5844                        }
5845                }
5846                if (i < E1000_VLVF_ARRAY_SIZE) {
5847                        /* Found an enabled/available entry */
5848                        reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5849
5850                        /* if !enabled we need to set this up in vfta */
5851                        if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5852                                /* add VID to filter table */
5853                                igb_vfta_set(hw, vid, true);
5854                                reg |= E1000_VLVF_VLANID_ENABLE;
5855                        }
5856                        reg &= ~E1000_VLVF_VLANID_MASK;
5857                        reg |= vid;
5858                        wr32(E1000_VLVF(i), reg);
5859
5860                        /* do not modify RLPML for PF devices */
5861                        if (vf >= adapter->vfs_allocated_count)
5862                                return 0;
5863
5864                        if (!adapter->vf_data[vf].vlans_enabled) {
5865                                u32 size;
5866
5867                                reg = rd32(E1000_VMOLR(vf));
5868                                size = reg & E1000_VMOLR_RLPML_MASK;
5869                                size += 4;
5870                                reg &= ~E1000_VMOLR_RLPML_MASK;
5871                                reg |= size;
5872                                wr32(E1000_VMOLR(vf), reg);
5873                        }
5874
5875                        adapter->vf_data[vf].vlans_enabled++;
5876                }
5877        } else {
5878                if (i < E1000_VLVF_ARRAY_SIZE) {
5879                        /* remove vf from the pool */
5880                        reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5881                        /* if pool is empty then remove entry from vfta */
5882                        if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5883                                reg = 0;
5884                                igb_vfta_set(hw, vid, false);
5885                        }
5886                        wr32(E1000_VLVF(i), reg);
5887
5888                        /* do not modify RLPML for PF devices */
5889                        if (vf >= adapter->vfs_allocated_count)
5890                                return 0;
5891
5892                        adapter->vf_data[vf].vlans_enabled--;
5893                        if (!adapter->vf_data[vf].vlans_enabled) {
5894                                u32 size;
5895
5896                                reg = rd32(E1000_VMOLR(vf));
5897                                size = reg & E1000_VMOLR_RLPML_MASK;
5898                                size -= 4;
5899                                reg &= ~E1000_VMOLR_RLPML_MASK;
5900                                reg |= size;
5901                                wr32(E1000_VMOLR(vf), reg);
5902                        }
5903                }
5904        }
5905        return 0;
5906}
5907
5908static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5909{
5910        struct e1000_hw *hw = &adapter->hw;
5911
5912        if (vid)
5913                wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5914        else
5915                wr32(E1000_VMVIR(vf), 0);
5916}
5917
5918static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5919                               int vf, u16 vlan, u8 qos)
5920{
5921        int err = 0;
5922        struct igb_adapter *adapter = netdev_priv(netdev);
5923
5924        if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5925                return -EINVAL;
5926        if (vlan || qos) {
5927                err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5928                if (err)
5929                        goto out;
5930                igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5931                igb_set_vmolr(adapter, vf, !vlan);
5932                adapter->vf_data[vf].pf_vlan = vlan;
5933                adapter->vf_data[vf].pf_qos = qos;
5934                dev_info(&adapter->pdev->dev,
5935                         "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5936                if (test_bit(__IGB_DOWN, &adapter->state)) {
5937                        dev_warn(&adapter->pdev->dev,
5938                                 "The VF VLAN has been set, but the PF device is not up.\n");
5939                        dev_warn(&adapter->pdev->dev,
5940                                 "Bring the PF device up before attempting to use the VF device.\n");
5941                }
5942        } else {
5943                igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5944                             false, vf);
5945                igb_set_vmvir(adapter, vlan, vf);
5946                igb_set_vmolr(adapter, vf, true);
5947                adapter->vf_data[vf].pf_vlan = 0;
5948                adapter->vf_data[vf].pf_qos = 0;
5949        }
5950out:
5951        return err;
5952}
5953
5954static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5955{
5956        struct e1000_hw *hw = &adapter->hw;
5957        int i;
5958        u32 reg;
5959
5960        /* Find the vlan filter for this id */
5961        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5962                reg = rd32(E1000_VLVF(i));
5963                if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5964                    vid == (reg & E1000_VLVF_VLANID_MASK))
5965                        break;
5966        }
5967
5968        if (i >= E1000_VLVF_ARRAY_SIZE)
5969                i = -1;
5970
5971        return i;
5972}
5973
5974static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5975{
5976        struct e1000_hw *hw = &adapter->hw;
5977        int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5978        int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5979        int err = 0;
5980
5981        /* If in promiscuous mode we need to make sure the PF also has
5982         * the VLAN filter set.
5983         */
5984        if (add && (adapter->netdev->flags & IFF_PROMISC))
5985                err = igb_vlvf_set(adapter, vid, add,
5986                                   adapter->vfs_allocated_count);
5987        if (err)
5988                goto out;
5989
5990        err = igb_vlvf_set(adapter, vid, add, vf);
5991
5992        if (err)
5993                goto out;
5994
5995        /* Go through all the checks to see if the VLAN filter should
5996         * be wiped completely.
5997         */
5998        if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5999                u32 vlvf, bits;
6000                int regndx = igb_find_vlvf_entry(adapter, vid);
6001
6002                if (regndx < 0)
6003                        goto out;
6004                /* See if any other pools are set for this VLAN filter
6005                 * entry other than the PF.
6006                 */
6007                vlvf = bits = rd32(E1000_VLVF(regndx));
6008                bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6009                              adapter->vfs_allocated_count);
6010                /* If the filter was removed then ensure PF pool bit
6011                 * is cleared if the PF only added itself to the pool
6012                 * because the PF is in promiscuous mode.
6013                 */
6014                if ((vlvf & VLAN_VID_MASK) == vid &&
6015                    !test_bit(vid, adapter->active_vlans) &&
6016                    !bits)
6017                        igb_vlvf_set(adapter, vid, add,
6018                                     adapter->vfs_allocated_count);
6019        }
6020
6021out:
6022        return err;
6023}
6024
6025static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6026{
6027        /* clear flags - except flag that indicates PF has set the MAC */
6028        adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6029        adapter->vf_data[vf].last_nack = jiffies;
6030
6031        /* reset offloads to defaults */
6032        igb_set_vmolr(adapter, vf, true);
6033
6034        /* reset vlans for device */
6035        igb_clear_vf_vfta(adapter, vf);
6036        if (adapter->vf_data[vf].pf_vlan)
6037                igb_ndo_set_vf_vlan(adapter->netdev, vf,
6038                                    adapter->vf_data[vf].pf_vlan,
6039                                    adapter->vf_data[vf].pf_qos);
6040        else
6041                igb_clear_vf_vfta(adapter, vf);
6042
6043        /* reset multicast table array for vf */
6044        adapter->vf_data[vf].num_vf_mc_hashes = 0;
6045
6046        /* Flush and reset the mta with the new values */
6047        igb_set_rx_mode(adapter->netdev);
6048}
6049
6050static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6051{
6052        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6053
6054        /* clear mac address as we were hotplug removed/added */
6055        if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6056                eth_zero_addr(vf_mac);
6057
6058        /* process remaining reset events */
6059        igb_vf_reset(adapter, vf);
6060}
6061
6062static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6063{
6064        struct e1000_hw *hw = &adapter->hw;
6065        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6066        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6067        u32 reg, msgbuf[3];
6068        u8 *addr = (u8 *)(&msgbuf[1]);
6069
6070        /* process all the same items cleared in a function level reset */
6071        igb_vf_reset(adapter, vf);
6072
6073        /* set vf mac address */
6074        igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6075
6076        /* enable transmit and receive for vf */
6077        reg = rd32(E1000_VFTE);
6078        wr32(E1000_VFTE, reg | (1 << vf));
6079        reg = rd32(E1000_VFRE);
6080        wr32(E1000_VFRE, reg | (1 << vf));
6081
6082        adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6083
6084        /* reply to reset with ack and vf mac address */
6085        if (!is_zero_ether_addr(vf_mac)) {
6086                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6087                memcpy(addr, vf_mac, ETH_ALEN);
6088        } else {
6089                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6090        }
6091        igb_write_mbx(hw, msgbuf, 3, vf);
6092}
6093
6094static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6095{
6096        /* The VF MAC Address is stored in a packed array of bytes
6097         * starting at the second 32 bit word of the msg array
6098         */
6099        unsigned char *addr = (char *)&msg[1];
6100        int err = -1;
6101
6102        if (is_valid_ether_addr(addr))
6103                err = igb_set_vf_mac(adapter, vf, addr);
6104
6105        return err;
6106}
6107
6108static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6109{
6110        struct e1000_hw *hw = &adapter->hw;
6111        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6112        u32 msg = E1000_VT_MSGTYPE_NACK;
6113
6114        /* if device isn't clear to send it shouldn't be reading either */
6115        if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6116            time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6117                igb_write_mbx(hw, &msg, 1, vf);
6118                vf_data->last_nack = jiffies;
6119        }
6120}
6121
6122static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6123{
6124        struct pci_dev *pdev = adapter->pdev;
6125        u32 msgbuf[E1000_VFMAILBOX_SIZE];
6126        struct e1000_hw *hw = &adapter->hw;
6127        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6128        s32 retval;
6129
6130        retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6131
6132        if (retval) {
6133                /* if receive failed revoke VF CTS stats and restart init */
6134                dev_err(&pdev->dev, "Error receiving message from VF\n");
6135                vf_data->flags &= ~IGB_VF_FLAG_CTS;
6136                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6137                        return;
6138                goto out;
6139        }
6140
6141        /* this is a message we already processed, do nothing */
6142        if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6143                return;
6144
6145        /* until the vf completes a reset it should not be
6146         * allowed to start any configuration.
6147         */
6148        if (msgbuf[0] == E1000_VF_RESET) {
6149                igb_vf_reset_msg(adapter, vf);
6150                return;
6151        }
6152
6153        if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6154                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6155                        return;
6156                retval = -1;
6157                goto out;
6158        }
6159
6160        switch ((msgbuf[0] & 0xFFFF)) {
6161        case E1000_VF_SET_MAC_ADDR:
6162                retval = -EINVAL;
6163                if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6164                        retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6165                else
6166                        dev_warn(&pdev->dev,
6167                                 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6168                                 vf);
6169                break;
6170        case E1000_VF_SET_PROMISC:
6171                retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6172                break;
6173        case E1000_VF_SET_MULTICAST:
6174                retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6175                break;
6176        case E1000_VF_SET_LPE:
6177                retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6178                break;
6179        case E1000_VF_SET_VLAN:
6180                retval = -1;
6181                if (vf_data->pf_vlan)
6182                        dev_warn(&pdev->dev,
6183                                 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6184                                 vf);
6185                else
6186                        retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6187                break;
6188        default:
6189                dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6190                retval = -1;
6191                break;
6192        }
6193
6194        msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6195out:
6196        /* notify the VF of the results of what it sent us */
6197        if (retval)
6198                msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6199        else
6200                msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6201
6202        igb_write_mbx(hw, msgbuf, 1, vf);
6203}
6204
6205static void igb_msg_task(struct igb_adapter *adapter)
6206{
6207        struct e1000_hw *hw = &adapter->hw;
6208        u32 vf;
6209
6210        for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6211                /* process any reset requests */
6212                if (!igb_check_for_rst(hw, vf))
6213                        igb_vf_reset_event(adapter, vf);
6214
6215                /* process any messages pending */
6216                if (!igb_check_for_msg(hw, vf))
6217                        igb_rcv_msg_from_vf(adapter, vf);
6218
6219                /* process any acks */
6220                if (!igb_check_for_ack(hw, vf))
6221                        igb_rcv_ack_from_vf(adapter, vf);
6222        }
6223}
6224
6225/**
6226 *  igb_set_uta - Set unicast filter table address
6227 *  @adapter: board private structure
6228 *
6229 *  The unicast table address is a register array of 32-bit registers.
6230 *  The table is meant to be used in a way similar to how the MTA is used
6231 *  however due to certain limitations in the hardware it is necessary to
6232 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6233 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6234 **/
6235static void igb_set_uta(struct igb_adapter *adapter)
6236{
6237        struct e1000_hw *hw = &adapter->hw;
6238        int i;
6239
6240        /* The UTA table only exists on 82576 hardware and newer */
6241        if (hw->mac.type < e1000_82576)
6242                return;
6243
6244        /* we only need to do this if VMDq is enabled */
6245        if (!adapter->vfs_allocated_count)
6246                return;
6247
6248        for (i = 0; i < hw->mac.uta_reg_count; i++)
6249                array_wr32(E1000_UTA, i, ~0);
6250}
6251
6252/**
6253 *  igb_intr_msi - Interrupt Handler
6254 *  @irq: interrupt number
6255 *  @data: pointer to a network interface device structure
6256 **/
6257static irqreturn_t igb_intr_msi(int irq, void *data)
6258{
6259        struct igb_adapter *adapter = data;
6260        struct igb_q_vector *q_vector = adapter->q_vector[0];
6261        struct e1000_hw *hw = &adapter->hw;
6262        /* read ICR disables interrupts using IAM */
6263        u32 icr = rd32(E1000_ICR);
6264
6265        igb_write_itr(q_vector);
6266
6267        if (icr & E1000_ICR_DRSTA)
6268                schedule_work(&adapter->reset_task);
6269
6270        if (icr & E1000_ICR_DOUTSYNC) {
6271                /* HW is reporting DMA is out of sync */
6272                adapter->stats.doosync++;
6273        }
6274
6275        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6276                hw->mac.get_link_status = 1;
6277                if (!test_bit(__IGB_DOWN, &adapter->state))
6278                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6279        }
6280
6281        if (icr & E1000_ICR_TS)
6282                igb_tsync_interrupt(adapter);
6283
6284        napi_schedule(&q_vector->napi);
6285
6286        return IRQ_HANDLED;
6287}
6288
6289/**
6290 *  igb_intr - Legacy Interrupt Handler
6291 *  @irq: interrupt number
6292 *  @data: pointer to a network interface device structure
6293 **/
6294static irqreturn_t igb_intr(int irq, void *data)
6295{
6296        struct igb_adapter *adapter = data;
6297        struct igb_q_vector *q_vector = adapter->q_vector[0];
6298        struct e1000_hw *hw = &adapter->hw;
6299        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6300         * need for the IMC write
6301         */
6302        u32 icr = rd32(E1000_ICR);
6303
6304        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6305         * not set, then the adapter didn't send an interrupt
6306         */
6307        if (!(icr & E1000_ICR_INT_ASSERTED))
6308                return IRQ_NONE;
6309
6310        igb_write_itr(q_vector);
6311
6312        if (icr & E1000_ICR_DRSTA)
6313                schedule_work(&adapter->reset_task);
6314
6315        if (icr & E1000_ICR_DOUTSYNC) {
6316                /* HW is reporting DMA is out of sync */
6317                adapter->stats.doosync++;
6318        }
6319
6320        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6321                hw->mac.get_link_status = 1;
6322                /* guard against interrupt when we're going down */
6323                if (!test_bit(__IGB_DOWN, &adapter->state))
6324                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6325        }
6326
6327        if (icr & E1000_ICR_TS)
6328                igb_tsync_interrupt(adapter);
6329
6330        napi_schedule(&q_vector->napi);
6331
6332        return IRQ_HANDLED;
6333}
6334
6335static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6336{
6337        struct igb_adapter *adapter = q_vector->adapter;
6338        struct e1000_hw *hw = &adapter->hw;
6339
6340        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6341            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6342                if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6343                        igb_set_itr(q_vector);
6344                else
6345                        igb_update_ring_itr(q_vector);
6346        }
6347
6348        if (!test_bit(__IGB_DOWN, &adapter->state)) {
6349                if (adapter->flags & IGB_FLAG_HAS_MSIX)
6350                        wr32(E1000_EIMS, q_vector->eims_value);
6351                else
6352                        igb_irq_enable(adapter);
6353        }
6354}
6355
6356/**
6357 *  igb_poll - NAPI Rx polling callback
6358 *  @napi: napi polling structure
6359 *  @budget: count of how many packets we should handle
6360 **/
6361static int igb_poll(struct napi_struct *napi, int budget)
6362{
6363        struct igb_q_vector *q_vector = container_of(napi,
6364                                                     struct igb_q_vector,
6365                                                     napi);
6366        bool clean_complete = true;
6367        int work_done = 0;
6368
6369#ifdef CONFIG_IGB_DCA
6370        if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6371                igb_update_dca(q_vector);
6372#endif
6373        if (q_vector->tx.ring)
6374                clean_complete = igb_clean_tx_irq(q_vector);
6375
6376        if (q_vector->rx.ring) {
6377                int cleaned = igb_clean_rx_irq(q_vector, budget);
6378
6379                work_done += cleaned;
6380                clean_complete &= (cleaned < budget);
6381        }
6382
6383        /* If all work not completed, return budget and keep polling */
6384        if (!clean_complete)
6385                return budget;
6386
6387        /* If not enough Rx work done, exit the polling mode */
6388        napi_complete_done(napi, work_done);
6389        igb_ring_irq_enable(q_vector);
6390
6391        return 0;
6392}
6393
6394/**
6395 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6396 *  @q_vector: pointer to q_vector containing needed info
6397 *
6398 *  returns true if ring is completely cleaned
6399 **/
6400static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6401{
6402        struct igb_adapter *adapter = q_vector->adapter;
6403        struct igb_ring *tx_ring = q_vector->tx.ring;
6404        struct igb_tx_buffer *tx_buffer;
6405        union e1000_adv_tx_desc *tx_desc;
6406        unsigned int total_bytes = 0, total_packets = 0;
6407        unsigned int budget = q_vector->tx.work_limit;
6408        unsigned int i = tx_ring->next_to_clean;
6409
6410        if (test_bit(__IGB_DOWN, &adapter->state))
6411                return true;
6412
6413        tx_buffer = &tx_ring->tx_buffer_info[i];
6414        tx_desc = IGB_TX_DESC(tx_ring, i);
6415        i -= tx_ring->count;
6416
6417        do {
6418                union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6419
6420                /* if next_to_watch is not set then there is no work pending */
6421                if (!eop_desc)
6422                        break;
6423
6424                /* prevent any other reads prior to eop_desc */
6425                read_barrier_depends();
6426
6427                /* if DD is not set pending work has not been completed */
6428                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6429                        break;
6430
6431                /* clear next_to_watch to prevent false hangs */
6432                tx_buffer->next_to_watch = NULL;
6433
6434                /* update the statistics for this packet */
6435                total_bytes += tx_buffer->bytecount;
6436                total_packets += tx_buffer->gso_segs;
6437
6438                /* free the skb */
6439                dev_consume_skb_any(tx_buffer->skb);
6440
6441                /* unmap skb header data */
6442                dma_unmap_single(tx_ring->dev,
6443                                 dma_unmap_addr(tx_buffer, dma),
6444                                 dma_unmap_len(tx_buffer, len),
6445                                 DMA_TO_DEVICE);
6446
6447                /* clear tx_buffer data */
6448                tx_buffer->skb = NULL;
6449                dma_unmap_len_set(tx_buffer, len, 0);
6450
6451                /* clear last DMA location and unmap remaining buffers */
6452                while (tx_desc != eop_desc) {
6453                        tx_buffer++;
6454                        tx_desc++;
6455                        i++;
6456                        if (unlikely(!i)) {
6457                                i -= tx_ring->count;
6458                                tx_buffer = tx_ring->tx_buffer_info;
6459                                tx_desc = IGB_TX_DESC(tx_ring, 0);
6460                        }
6461
6462                        /* unmap any remaining paged data */
6463                        if (dma_unmap_len(tx_buffer, len)) {
6464                                dma_unmap_page(tx_ring->dev,
6465                                               dma_unmap_addr(tx_buffer, dma),
6466                                               dma_unmap_len(tx_buffer, len),
6467                                               DMA_TO_DEVICE);
6468                                dma_unmap_len_set(tx_buffer, len, 0);
6469                        }
6470                }
6471
6472                /* move us one more past the eop_desc for start of next pkt */
6473                tx_buffer++;
6474                tx_desc++;
6475                i++;
6476                if (unlikely(!i)) {
6477                        i -= tx_ring->count;
6478                        tx_buffer = tx_ring->tx_buffer_info;
6479                        tx_desc = IGB_TX_DESC(tx_ring, 0);
6480                }
6481
6482                /* issue prefetch for next Tx descriptor */
6483                prefetch(tx_desc);
6484
6485                /* update budget accounting */
6486                budget--;
6487        } while (likely(budget));
6488
6489        netdev_tx_completed_queue(txring_txq(tx_ring),
6490                                  total_packets, total_bytes);
6491        i += tx_ring->count;
6492        tx_ring->next_to_clean = i;
6493        u64_stats_update_begin(&tx_ring->tx_syncp);
6494        tx_ring->tx_stats.bytes += total_bytes;
6495        tx_ring->tx_stats.packets += total_packets;
6496        u64_stats_update_end(&tx_ring->tx_syncp);
6497        q_vector->tx.total_bytes += total_bytes;
6498        q_vector->tx.total_packets += total_packets;
6499
6500        if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6501                struct e1000_hw *hw = &adapter->hw;
6502
6503                /* Detect a transmit hang in hardware, this serializes the
6504                 * check with the clearing of time_stamp and movement of i
6505                 */
6506                clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6507                if (tx_buffer->next_to_watch &&
6508                    time_after(jiffies, tx_buffer->time_stamp +
6509                               (adapter->tx_timeout_factor * HZ)) &&
6510                    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6511
6512                        /* detected Tx unit hang */
6513                        dev_err(tx_ring->dev,
6514                                "Detected Tx Unit Hang\n"
6515                                "  Tx Queue             <%d>\n"
6516                                "  TDH                  <%x>\n"
6517                                "  TDT                  <%x>\n"
6518                                "  next_to_use          <%x>\n"
6519                                "  next_to_clean        <%x>\n"
6520                                "buffer_info[next_to_clean]\n"
6521                                "  time_stamp           <%lx>\n"
6522                                "  next_to_watch        <%p>\n"
6523                                "  jiffies              <%lx>\n"
6524                                "  desc.status          <%x>\n",
6525                                tx_ring->queue_index,
6526                                rd32(E1000_TDH(tx_ring->reg_idx)),
6527                                readl(tx_ring->tail),
6528                                tx_ring->next_to_use,
6529                                tx_ring->next_to_clean,
6530                                tx_buffer->time_stamp,
6531                                tx_buffer->next_to_watch,
6532                                jiffies,
6533                                tx_buffer->next_to_watch->wb.status);
6534                        netif_stop_subqueue(tx_ring->netdev,
6535                                            tx_ring->queue_index);
6536
6537                        /* we are about to reset, no point in enabling stuff */
6538                        return true;
6539                }
6540        }
6541
6542#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6543        if (unlikely(total_packets &&
6544            netif_carrier_ok(tx_ring->netdev) &&
6545            igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6546                /* Make sure that anybody stopping the queue after this
6547                 * sees the new next_to_clean.
6548                 */
6549                smp_mb();
6550                if (__netif_subqueue_stopped(tx_ring->netdev,
6551                                             tx_ring->queue_index) &&
6552                    !(test_bit(__IGB_DOWN, &adapter->state))) {
6553                        netif_wake_subqueue(tx_ring->netdev,
6554                                            tx_ring->queue_index);
6555
6556                        u64_stats_update_begin(&tx_ring->tx_syncp);
6557                        tx_ring->tx_stats.restart_queue++;
6558                        u64_stats_update_end(&tx_ring->tx_syncp);
6559                }
6560        }
6561
6562        return !!budget;
6563}
6564
6565/**
6566 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6567 *  @rx_ring: rx descriptor ring to store buffers on
6568 *  @old_buff: donor buffer to have page reused
6569 *
6570 *  Synchronizes page for reuse by the adapter
6571 **/
6572static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6573                              struct igb_rx_buffer *old_buff)
6574{
6575        struct igb_rx_buffer *new_buff;
6576        u16 nta = rx_ring->next_to_alloc;
6577
6578        new_buff = &rx_ring->rx_buffer_info[nta];
6579
6580        /* update, and store next to alloc */
6581        nta++;
6582        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6583
6584        /* transfer page from old buffer to new buffer */
6585        *new_buff = *old_buff;
6586
6587        /* sync the buffer for use by the device */
6588        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6589                                         old_buff->page_offset,
6590                                         IGB_RX_BUFSZ,
6591                                         DMA_FROM_DEVICE);
6592}
6593
6594static inline bool igb_page_is_reserved(struct page *page)
6595{
6596        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6597}
6598
6599static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6600                                  struct page *page,
6601                                  unsigned int truesize)
6602{
6603        /* avoid re-using remote pages */
6604        if (unlikely(igb_page_is_reserved(page)))
6605                return false;
6606
6607#if (PAGE_SIZE < 8192)
6608        /* if we are only owner of page we can reuse it */
6609        if (unlikely(page_count(page) != 1))
6610                return false;
6611
6612        /* flip page offset to other buffer */
6613        rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6614#else
6615        /* move offset up to the next cache line */
6616        rx_buffer->page_offset += truesize;
6617
6618        if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6619                return false;
6620#endif
6621
6622        /* Even if we own the page, we are not allowed to use atomic_set()
6623         * This would break get_page_unless_zero() users.
6624         */
6625        atomic_inc(&page->_count);
6626
6627        return true;
6628}
6629
6630/**
6631 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6632 *  @rx_ring: rx descriptor ring to transact packets on
6633 *  @rx_buffer: buffer containing page to add
6634 *  @rx_desc: descriptor containing length of buffer written by hardware
6635 *  @skb: sk_buff to place the data into
6636 *
6637 *  This function will add the data contained in rx_buffer->page to the skb.
6638 *  This is done either through a direct copy if the data in the buffer is
6639 *  less than the skb header size, otherwise it will just attach the page as
6640 *  a frag to the skb.
6641 *
6642 *  The function will then update the page offset if necessary and return
6643 *  true if the buffer can be reused by the adapter.
6644 **/
6645static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6646                            struct igb_rx_buffer *rx_buffer,
6647                            union e1000_adv_rx_desc *rx_desc,
6648                            struct sk_buff *skb)
6649{
6650        struct page *page = rx_buffer->page;
6651        unsigned char *va = page_address(page) + rx_buffer->page_offset;
6652        unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6653#if (PAGE_SIZE < 8192)
6654        unsigned int truesize = IGB_RX_BUFSZ;
6655#else
6656        unsigned int truesize = SKB_DATA_ALIGN(size);
6657#endif
6658        unsigned int pull_len;
6659
6660        if (unlikely(skb_is_nonlinear(skb)))
6661                goto add_tail_frag;
6662
6663        if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6664                igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6665                va += IGB_TS_HDR_LEN;
6666                size -= IGB_TS_HDR_LEN;
6667        }
6668
6669        if (likely(size <= IGB_RX_HDR_LEN)) {
6670                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6671
6672                /* page is not reserved, we can reuse buffer as-is */
6673                if (likely(!igb_page_is_reserved(page)))
6674                        return true;
6675
6676                /* this page cannot be reused so discard it */
6677                __free_page(page);
6678                return false;
6679        }
6680
6681        /* we need the header to contain the greater of either ETH_HLEN or
6682         * 60 bytes if the skb->len is less than 60 for skb_pad.
6683         */
6684        pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6685
6686        /* align pull length to size of long to optimize memcpy performance */
6687        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6688
6689        /* update all of the pointers */
6690        va += pull_len;
6691        size -= pull_len;
6692
6693add_tail_frag:
6694        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6695                        (unsigned long)va & ~PAGE_MASK, size, truesize);
6696
6697        return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6698}
6699
6700static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6701                                           union e1000_adv_rx_desc *rx_desc,
6702                                           struct sk_buff *skb)
6703{
6704        struct igb_rx_buffer *rx_buffer;
6705        struct page *page;
6706
6707        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6708        page = rx_buffer->page;
6709        prefetchw(page);
6710
6711        if (likely(!skb)) {
6712                void *page_addr = page_address(page) +
6713                                  rx_buffer->page_offset;
6714
6715                /* prefetch first cache line of first page */
6716                prefetch(page_addr);
6717#if L1_CACHE_BYTES < 128
6718                prefetch(page_addr + L1_CACHE_BYTES);
6719#endif
6720
6721                /* allocate a skb to store the frags */
6722                skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6723                if (unlikely(!skb)) {
6724                        rx_ring->rx_stats.alloc_failed++;
6725                        return NULL;
6726                }
6727
6728                /* we will be copying header into skb->data in
6729                 * pskb_may_pull so it is in our interest to prefetch
6730                 * it now to avoid a possible cache miss
6731                 */
6732                prefetchw(skb->data);
6733        }
6734
6735        /* we are reusing so sync this buffer for CPU use */
6736        dma_sync_single_range_for_cpu(rx_ring->dev,
6737                                      rx_buffer->dma,
6738                                      rx_buffer->page_offset,
6739                                      IGB_RX_BUFSZ,
6740                                      DMA_FROM_DEVICE);
6741
6742        /* pull page into skb */
6743        if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6744                /* hand second half of page back to the ring */
6745                igb_reuse_rx_page(rx_ring, rx_buffer);
6746        } else {
6747                /* we are not reusing the buffer so unmap it */
6748                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6749                               PAGE_SIZE, DMA_FROM_DEVICE);
6750        }
6751
6752        /* clear contents of rx_buffer */
6753        rx_buffer->page = NULL;
6754
6755        return skb;
6756}
6757
6758static inline void igb_rx_checksum(struct igb_ring *ring,
6759                                   union e1000_adv_rx_desc *rx_desc,
6760                                   struct sk_buff *skb)
6761{
6762        skb_checksum_none_assert(skb);
6763
6764        /* Ignore Checksum bit is set */
6765        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6766                return;
6767
6768        /* Rx checksum disabled via ethtool */
6769        if (!(ring->netdev->features & NETIF_F_RXCSUM))
6770                return;
6771
6772        /* TCP/UDP checksum error bit is set */
6773        if (igb_test_staterr(rx_desc,
6774                             E1000_RXDEXT_STATERR_TCPE |
6775                             E1000_RXDEXT_STATERR_IPE)) {
6776                /* work around errata with sctp packets where the TCPE aka
6777                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6778                 * packets, (aka let the stack check the crc32c)
6779                 */
6780                if (!((skb->len == 60) &&
6781                      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6782                        u64_stats_update_begin(&ring->rx_syncp);
6783                        ring->rx_stats.csum_err++;
6784                        u64_stats_update_end(&ring->rx_syncp);
6785                }
6786                /* let the stack verify checksum errors */
6787                return;
6788        }
6789        /* It must be a TCP or UDP packet with a valid checksum */
6790        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6791                                      E1000_RXD_STAT_UDPCS))
6792                skb->ip_summed = CHECKSUM_UNNECESSARY;
6793
6794        dev_dbg(ring->dev, "cksum success: bits %08X\n",
6795                le32_to_cpu(rx_desc->wb.upper.status_error));
6796}
6797
6798static inline void igb_rx_hash(struct igb_ring *ring,
6799                               union e1000_adv_rx_desc *rx_desc,
6800                               struct sk_buff *skb)
6801{
6802        if (ring->netdev->features & NETIF_F_RXHASH)
6803                skb_set_hash(skb,
6804                             le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6805                             PKT_HASH_TYPE_L3);
6806}
6807
6808/**
6809 *  igb_is_non_eop - process handling of non-EOP buffers
6810 *  @rx_ring: Rx ring being processed
6811 *  @rx_desc: Rx descriptor for current buffer
6812 *  @skb: current socket buffer containing buffer in progress
6813 *
6814 *  This function updates next to clean.  If the buffer is an EOP buffer
6815 *  this function exits returning false, otherwise it will place the
6816 *  sk_buff in the next buffer to be chained and return true indicating
6817 *  that this is in fact a non-EOP buffer.
6818 **/
6819static bool igb_is_non_eop(struct igb_ring *rx_ring,
6820                           union e1000_adv_rx_desc *rx_desc)
6821{
6822        u32 ntc = rx_ring->next_to_clean + 1;
6823
6824        /* fetch, update, and store next to clean */
6825        ntc = (ntc < rx_ring->count) ? ntc : 0;
6826        rx_ring->next_to_clean = ntc;
6827
6828        prefetch(IGB_RX_DESC(rx_ring, ntc));
6829
6830        if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6831                return false;
6832
6833        return true;
6834}
6835
6836/**
6837 *  igb_cleanup_headers - Correct corrupted or empty headers
6838 *  @rx_ring: rx descriptor ring packet is being transacted on
6839 *  @rx_desc: pointer to the EOP Rx descriptor
6840 *  @skb: pointer to current skb being fixed
6841 *
6842 *  Address the case where we are pulling data in on pages only
6843 *  and as such no data is present in the skb header.
6844 *
6845 *  In addition if skb is not at least 60 bytes we need to pad it so that
6846 *  it is large enough to qualify as a valid Ethernet frame.
6847 *
6848 *  Returns true if an error was encountered and skb was freed.
6849 **/
6850static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6851                                union e1000_adv_rx_desc *rx_desc,
6852                                struct sk_buff *skb)
6853{
6854        if (unlikely((igb_test_staterr(rx_desc,
6855                                       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6856                struct net_device *netdev = rx_ring->netdev;
6857                if (!(netdev->features & NETIF_F_RXALL)) {
6858                        dev_kfree_skb_any(skb);
6859                        return true;
6860                }
6861        }
6862
6863        /* if eth_skb_pad returns an error the skb was freed */
6864        if (eth_skb_pad(skb))
6865                return true;
6866
6867        return false;
6868}
6869
6870/**
6871 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6872 *  @rx_ring: rx descriptor ring packet is being transacted on
6873 *  @rx_desc: pointer to the EOP Rx descriptor
6874 *  @skb: pointer to current skb being populated
6875 *
6876 *  This function checks the ring, descriptor, and packet information in
6877 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6878 *  other fields within the skb.
6879 **/
6880static void igb_process_skb_fields(struct igb_ring *rx_ring,
6881                                   union e1000_adv_rx_desc *rx_desc,
6882                                   struct sk_buff *skb)
6883{
6884        struct net_device *dev = rx_ring->netdev;
6885
6886        igb_rx_hash(rx_ring, rx_desc, skb);
6887
6888        igb_rx_checksum(rx_ring, rx_desc, skb);
6889
6890        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6891            !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6892                igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6893
6894        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6895            igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6896                u16 vid;
6897
6898                if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6899                    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6900                        vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6901                else
6902                        vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6903
6904                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6905        }
6906
6907        skb_record_rx_queue(skb, rx_ring->queue_index);
6908
6909        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6910}
6911
6912static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6913{
6914        struct igb_ring *rx_ring = q_vector->rx.ring;
6915        struct sk_buff *skb = rx_ring->skb;
6916        unsigned int total_bytes = 0, total_packets = 0;
6917        u16 cleaned_count = igb_desc_unused(rx_ring);
6918
6919        while (likely(total_packets < budget)) {
6920                union e1000_adv_rx_desc *rx_desc;
6921
6922                /* return some buffers to hardware, one at a time is too slow */
6923                if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6924                        igb_alloc_rx_buffers(rx_ring, cleaned_count);
6925                        cleaned_count = 0;
6926                }
6927
6928                rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6929
6930                if (!rx_desc->wb.upper.status_error)
6931                        break;
6932
6933                /* This memory barrier is needed to keep us from reading
6934                 * any other fields out of the rx_desc until we know the
6935                 * descriptor has been written back
6936                 */
6937                dma_rmb();
6938
6939                /* retrieve a buffer from the ring */
6940                skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6941
6942                /* exit if we failed to retrieve a buffer */
6943                if (!skb)
6944                        break;
6945
6946                cleaned_count++;
6947
6948                /* fetch next buffer in frame if non-eop */
6949                if (igb_is_non_eop(rx_ring, rx_desc))
6950                        continue;
6951
6952                /* verify the packet layout is correct */
6953                if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6954                        skb = NULL;
6955                        continue;
6956                }
6957
6958                /* probably a little skewed due to removing CRC */
6959                total_bytes += skb->len;
6960
6961                /* populate checksum, timestamp, VLAN, and protocol */
6962                igb_process_skb_fields(rx_ring, rx_desc, skb);
6963
6964                napi_gro_receive(&q_vector->napi, skb);
6965
6966                /* reset skb pointer */
6967                skb = NULL;
6968
6969                /* update budget accounting */
6970                total_packets++;
6971        }
6972
6973        /* place incomplete frames back on ring for completion */
6974        rx_ring->skb = skb;
6975
6976        u64_stats_update_begin(&rx_ring->rx_syncp);
6977        rx_ring->rx_stats.packets += total_packets;
6978        rx_ring->rx_stats.bytes += total_bytes;
6979        u64_stats_update_end(&rx_ring->rx_syncp);
6980        q_vector->rx.total_packets += total_packets;
6981        q_vector->rx.total_bytes += total_bytes;
6982
6983        if (cleaned_count)
6984                igb_alloc_rx_buffers(rx_ring, cleaned_count);
6985
6986        return total_packets;
6987}
6988
6989static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6990                                  struct igb_rx_buffer *bi)
6991{
6992        struct page *page = bi->page;
6993        dma_addr_t dma;
6994
6995        /* since we are recycling buffers we should seldom need to alloc */
6996        if (likely(page))
6997                return true;
6998
6999        /* alloc new page for storage */
7000        page = dev_alloc_page();
7001        if (unlikely(!page)) {
7002                rx_ring->rx_stats.alloc_failed++;
7003                return false;
7004        }
7005
7006        /* map page for use */
7007        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7008
7009        /* if mapping failed free memory back to system since
7010         * there isn't much point in holding memory we can't use
7011         */
7012        if (dma_mapping_error(rx_ring->dev, dma)) {
7013                __free_page(page);
7014
7015                rx_ring->rx_stats.alloc_failed++;
7016                return false;
7017        }
7018
7019        bi->dma = dma;
7020        bi->page = page;
7021        bi->page_offset = 0;
7022
7023        return true;
7024}
7025
7026/**
7027 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7028 *  @adapter: address of board private structure
7029 **/
7030void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7031{
7032        union e1000_adv_rx_desc *rx_desc;
7033        struct igb_rx_buffer *bi;
7034        u16 i = rx_ring->next_to_use;
7035
7036        /* nothing to do */
7037        if (!cleaned_count)
7038                return;
7039
7040        rx_desc = IGB_RX_DESC(rx_ring, i);
7041        bi = &rx_ring->rx_buffer_info[i];
7042        i -= rx_ring->count;
7043
7044        do {
7045                if (!igb_alloc_mapped_page(rx_ring, bi))
7046                        break;
7047
7048                /* Refresh the desc even if buffer_addrs didn't change
7049                 * because each write-back erases this info.
7050                 */
7051                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7052
7053                rx_desc++;
7054                bi++;
7055                i++;
7056                if (unlikely(!i)) {
7057                        rx_desc = IGB_RX_DESC(rx_ring, 0);
7058                        bi = rx_ring->rx_buffer_info;
7059                        i -= rx_ring->count;
7060                }
7061
7062                /* clear the status bits for the next_to_use descriptor */
7063                rx_desc->wb.upper.status_error = 0;
7064
7065                cleaned_count--;
7066        } while (cleaned_count);
7067
7068        i += rx_ring->count;
7069
7070        if (rx_ring->next_to_use != i) {
7071                /* record the next descriptor to use */
7072                rx_ring->next_to_use = i;
7073
7074                /* update next to alloc since we have filled the ring */
7075                rx_ring->next_to_alloc = i;
7076
7077                /* Force memory writes to complete before letting h/w
7078                 * know there are new descriptors to fetch.  (Only
7079                 * applicable for weak-ordered memory model archs,
7080                 * such as IA-64).
7081                 */
7082                wmb();
7083                writel(i, rx_ring->tail);
7084        }
7085}
7086
7087/**
7088 * igb_mii_ioctl -
7089 * @netdev:
7090 * @ifreq:
7091 * @cmd:
7092 **/
7093static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7094{
7095        struct igb_adapter *adapter = netdev_priv(netdev);
7096        struct mii_ioctl_data *data = if_mii(ifr);
7097
7098        if (adapter->hw.phy.media_type != e1000_media_type_copper)
7099                return -EOPNOTSUPP;
7100
7101        switch (cmd) {
7102        case SIOCGMIIPHY:
7103                data->phy_id = adapter->hw.phy.addr;
7104                break;
7105        case SIOCGMIIREG:
7106                if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7107                                     &data->val_out))
7108                        return -EIO;
7109                break;
7110        case SIOCSMIIREG:
7111        default:
7112                return -EOPNOTSUPP;
7113        }
7114        return 0;
7115}
7116
7117/**
7118 * igb_ioctl -
7119 * @netdev:
7120 * @ifreq:
7121 * @cmd:
7122 **/
7123static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7124{
7125        switch (cmd) {
7126        case SIOCGMIIPHY:
7127        case SIOCGMIIREG:
7128        case SIOCSMIIREG:
7129                return igb_mii_ioctl(netdev, ifr, cmd);
7130        case SIOCGHWTSTAMP:
7131                return igb_ptp_get_ts_config(netdev, ifr);
7132        case SIOCSHWTSTAMP:
7133                return igb_ptp_set_ts_config(netdev, ifr);
7134        default:
7135                return -EOPNOTSUPP;
7136        }
7137}
7138
7139void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7140{
7141        struct igb_adapter *adapter = hw->back;
7142
7143        pci_read_config_word(adapter->pdev, reg, value);
7144}
7145
7146void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7147{
7148        struct igb_adapter *adapter = hw->back;
7149
7150        pci_write_config_word(adapter->pdev, reg, *value);
7151}
7152
7153s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7154{
7155        struct igb_adapter *adapter = hw->back;
7156
7157        if (pcie_capability_read_word(adapter->pdev, reg, value))
7158                return -E1000_ERR_CONFIG;
7159
7160        return 0;
7161}
7162
7163s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7164{
7165        struct igb_adapter *adapter = hw->back;
7166
7167        if (pcie_capability_write_word(adapter->pdev, reg, *value))
7168                return -E1000_ERR_CONFIG;
7169
7170        return 0;
7171}
7172
7173static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7174{
7175        struct igb_adapter *adapter = netdev_priv(netdev);
7176        struct e1000_hw *hw = &adapter->hw;
7177        u32 ctrl, rctl;
7178        bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7179
7180        if (enable) {
7181                /* enable VLAN tag insert/strip */
7182                ctrl = rd32(E1000_CTRL);
7183                ctrl |= E1000_CTRL_VME;
7184                wr32(E1000_CTRL, ctrl);
7185
7186                /* Disable CFI check */
7187                rctl = rd32(E1000_RCTL);
7188                rctl &= ~E1000_RCTL_CFIEN;
7189                wr32(E1000_RCTL, rctl);
7190        } else {
7191                /* disable VLAN tag insert/strip */
7192                ctrl = rd32(E1000_CTRL);
7193                ctrl &= ~E1000_CTRL_VME;
7194                wr32(E1000_CTRL, ctrl);
7195        }
7196
7197        igb_rlpml_set(adapter);
7198}
7199
7200static int igb_vlan_rx_add_vid(struct net_device *netdev,
7201                               __be16 proto, u16 vid)
7202{
7203        struct igb_adapter *adapter = netdev_priv(netdev);
7204        struct e1000_hw *hw = &adapter->hw;
7205        int pf_id = adapter->vfs_allocated_count;
7206
7207        /* attempt to add filter to vlvf array */
7208        igb_vlvf_set(adapter, vid, true, pf_id);
7209
7210        /* add the filter since PF can receive vlans w/o entry in vlvf */
7211        igb_vfta_set(hw, vid, true);
7212
7213        set_bit(vid, adapter->active_vlans);
7214
7215        return 0;
7216}
7217
7218static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7219                                __be16 proto, u16 vid)
7220{
7221        struct igb_adapter *adapter = netdev_priv(netdev);
7222        struct e1000_hw *hw = &adapter->hw;
7223        int pf_id = adapter->vfs_allocated_count;
7224        s32 err;
7225
7226        /* remove vlan from VLVF table array */
7227        err = igb_vlvf_set(adapter, vid, false, pf_id);
7228
7229        /* if vid was not present in VLVF just remove it from table */
7230        if (err)
7231                igb_vfta_set(hw, vid, false);
7232
7233        clear_bit(vid, adapter->active_vlans);
7234
7235        return 0;
7236}
7237
7238static void igb_restore_vlan(struct igb_adapter *adapter)
7239{
7240        u16 vid;
7241
7242        igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7243
7244        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7245                igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7246}
7247
7248int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7249{
7250        struct pci_dev *pdev = adapter->pdev;
7251        struct e1000_mac_info *mac = &adapter->hw.mac;
7252
7253        mac->autoneg = 0;
7254
7255        /* Make sure dplx is at most 1 bit and lsb of speed is not set
7256         * for the switch() below to work
7257         */
7258        if ((spd & 1) || (dplx & ~1))
7259                goto err_inval;
7260
7261        /* Fiber NIC's only allow 1000 gbps Full duplex
7262         * and 100Mbps Full duplex for 100baseFx sfp
7263         */
7264        if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7265                switch (spd + dplx) {
7266                case SPEED_10 + DUPLEX_HALF:
7267                case SPEED_10 + DUPLEX_FULL:
7268                case SPEED_100 + DUPLEX_HALF:
7269                        goto err_inval;
7270                default:
7271                        break;
7272                }
7273        }
7274
7275        switch (spd + dplx) {
7276        case SPEED_10 + DUPLEX_HALF:
7277                mac->forced_speed_duplex = ADVERTISE_10_HALF;
7278                break;
7279        case SPEED_10 + DUPLEX_FULL:
7280                mac->forced_speed_duplex = ADVERTISE_10_FULL;
7281                break;
7282        case SPEED_100 + DUPLEX_HALF:
7283                mac->forced_speed_duplex = ADVERTISE_100_HALF;
7284                break;
7285        case SPEED_100 + DUPLEX_FULL:
7286                mac->forced_speed_duplex = ADVERTISE_100_FULL;
7287                break;
7288        case SPEED_1000 + DUPLEX_FULL:
7289                mac->autoneg = 1;
7290                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7291                break;
7292        case SPEED_1000 + DUPLEX_HALF: /* not supported */
7293        default:
7294                goto err_inval;
7295        }
7296
7297        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7298        adapter->hw.phy.mdix = AUTO_ALL_MODES;
7299
7300        return 0;
7301
7302err_inval:
7303        dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7304        return -EINVAL;
7305}
7306
7307static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7308                          bool runtime)
7309{
7310        struct net_device *netdev = pci_get_drvdata(pdev);
7311        struct igb_adapter *adapter = netdev_priv(netdev);
7312        struct e1000_hw *hw = &adapter->hw;
7313        u32 ctrl, rctl, status;
7314        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7315#ifdef CONFIG_PM
7316        int retval = 0;
7317#endif
7318
7319        netif_device_detach(netdev);
7320
7321        if (netif_running(netdev))
7322                __igb_close(netdev, true);
7323
7324        igb_clear_interrupt_scheme(adapter);
7325
7326#ifdef CONFIG_PM
7327        retval = pci_save_state(pdev);
7328        if (retval)
7329                return retval;
7330#endif
7331
7332        status = rd32(E1000_STATUS);
7333        if (status & E1000_STATUS_LU)
7334                wufc &= ~E1000_WUFC_LNKC;
7335
7336        if (wufc) {
7337                igb_setup_rctl(adapter);
7338                igb_set_rx_mode(netdev);
7339
7340                /* turn on all-multi mode if wake on multicast is enabled */
7341                if (wufc & E1000_WUFC_MC) {
7342                        rctl = rd32(E1000_RCTL);
7343                        rctl |= E1000_RCTL_MPE;
7344                        wr32(E1000_RCTL, rctl);
7345                }
7346
7347                ctrl = rd32(E1000_CTRL);
7348                /* advertise wake from D3Cold */
7349                #define E1000_CTRL_ADVD3WUC 0x00100000
7350                /* phy power management enable */
7351                #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7352                ctrl |= E1000_CTRL_ADVD3WUC;
7353                wr32(E1000_CTRL, ctrl);
7354
7355                /* Allow time for pending master requests to run */
7356                igb_disable_pcie_master(hw);
7357
7358                wr32(E1000_WUC, E1000_WUC_PME_EN);
7359                wr32(E1000_WUFC, wufc);
7360        } else {
7361                wr32(E1000_WUC, 0);
7362                wr32(E1000_WUFC, 0);
7363        }
7364
7365        *enable_wake = wufc || adapter->en_mng_pt;
7366        if (!*enable_wake)
7367                igb_power_down_link(adapter);
7368        else
7369                igb_power_up_link(adapter);
7370
7371        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7372         * would have already happened in close and is redundant.
7373         */
7374        igb_release_hw_control(adapter);
7375
7376        pci_disable_device(pdev);
7377
7378        return 0;
7379}
7380
7381#ifdef CONFIG_PM
7382#ifdef CONFIG_PM_SLEEP
7383static int igb_suspend(struct device *dev)
7384{
7385        int retval;
7386        bool wake;
7387        struct pci_dev *pdev = to_pci_dev(dev);
7388
7389        retval = __igb_shutdown(pdev, &wake, 0);
7390        if (retval)
7391                return retval;
7392
7393        if (wake) {
7394                pci_prepare_to_sleep(pdev);
7395        } else {
7396                pci_wake_from_d3(pdev, false);
7397                pci_set_power_state(pdev, PCI_D3hot);
7398        }
7399
7400        return 0;
7401}
7402#endif /* CONFIG_PM_SLEEP */
7403
7404static int igb_resume(struct device *dev)
7405{
7406        struct pci_dev *pdev = to_pci_dev(dev);
7407        struct net_device *netdev = pci_get_drvdata(pdev);
7408        struct igb_adapter *adapter = netdev_priv(netdev);
7409        struct e1000_hw *hw = &adapter->hw;
7410        u32 err;
7411
7412        pci_set_power_state(pdev, PCI_D0);
7413        pci_restore_state(pdev);
7414        pci_save_state(pdev);
7415
7416        if (!pci_device_is_present(pdev))
7417                return -ENODEV;
7418        err = pci_enable_device_mem(pdev);
7419        if (err) {
7420                dev_err(&pdev->dev,
7421                        "igb: Cannot enable PCI device from suspend\n");
7422                return err;
7423        }
7424        pci_set_master(pdev);
7425
7426        pci_enable_wake(pdev, PCI_D3hot, 0);
7427        pci_enable_wake(pdev, PCI_D3cold, 0);
7428
7429        if (igb_init_interrupt_scheme(adapter, true)) {
7430                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7431                rtnl_unlock();
7432                return -ENOMEM;
7433        }
7434
7435        igb_reset(adapter);
7436
7437        /* let the f/w know that the h/w is now under the control of the
7438         * driver.
7439         */
7440        igb_get_hw_control(adapter);
7441
7442        wr32(E1000_WUS, ~0);
7443
7444        if (netdev->flags & IFF_UP) {
7445                rtnl_lock();
7446                err = __igb_open(netdev, true);
7447                rtnl_unlock();
7448                if (err)
7449                        return err;
7450        }
7451
7452        netif_device_attach(netdev);
7453        return 0;
7454}
7455
7456static int igb_runtime_idle(struct device *dev)
7457{
7458        struct pci_dev *pdev = to_pci_dev(dev);
7459        struct net_device *netdev = pci_get_drvdata(pdev);
7460        struct igb_adapter *adapter = netdev_priv(netdev);
7461
7462        if (!igb_has_link(adapter))
7463                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7464
7465        return -EBUSY;
7466}
7467
7468static int igb_runtime_suspend(struct device *dev)
7469{
7470        struct pci_dev *pdev = to_pci_dev(dev);
7471        int retval;
7472        bool wake;
7473
7474        retval = __igb_shutdown(pdev, &wake, 1);
7475        if (retval)
7476                return retval;
7477
7478        if (wake) {
7479                pci_prepare_to_sleep(pdev);
7480        } else {
7481                pci_wake_from_d3(pdev, false);
7482                pci_set_power_state(pdev, PCI_D3hot);
7483        }
7484
7485        return 0;
7486}
7487
7488static int igb_runtime_resume(struct device *dev)
7489{
7490        return igb_resume(dev);
7491}
7492#endif /* CONFIG_PM */
7493
7494static void igb_shutdown(struct pci_dev *pdev)
7495{
7496        bool wake;
7497
7498        __igb_shutdown(pdev, &wake, 0);
7499
7500        if (system_state == SYSTEM_POWER_OFF) {
7501                pci_wake_from_d3(pdev, wake);
7502                pci_set_power_state(pdev, PCI_D3hot);
7503        }
7504}
7505
7506#ifdef CONFIG_PCI_IOV
7507static int igb_sriov_reinit(struct pci_dev *dev)
7508{
7509        struct net_device *netdev = pci_get_drvdata(dev);
7510        struct igb_adapter *adapter = netdev_priv(netdev);
7511        struct pci_dev *pdev = adapter->pdev;
7512
7513        rtnl_lock();
7514
7515        if (netif_running(netdev))
7516                igb_close(netdev);
7517        else
7518                igb_reset(adapter);
7519
7520        igb_clear_interrupt_scheme(adapter);
7521
7522        igb_init_queue_configuration(adapter);
7523
7524        if (igb_init_interrupt_scheme(adapter, true)) {
7525                rtnl_unlock();
7526                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7527                return -ENOMEM;
7528        }
7529
7530        if (netif_running(netdev))
7531                igb_open(netdev);
7532
7533        rtnl_unlock();
7534
7535        return 0;
7536}
7537
7538static int igb_pci_disable_sriov(struct pci_dev *dev)
7539{
7540        int err = igb_disable_sriov(dev);
7541
7542        if (!err)
7543                err = igb_sriov_reinit(dev);
7544
7545        return err;
7546}
7547
7548static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7549{
7550        int err = igb_enable_sriov(dev, num_vfs);
7551
7552        if (err)
7553                goto out;
7554
7555        err = igb_sriov_reinit(dev);
7556        if (!err)
7557                return num_vfs;
7558
7559out:
7560        return err;
7561}
7562
7563#endif
7564static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7565{
7566#ifdef CONFIG_PCI_IOV
7567        if (num_vfs == 0)
7568                return igb_pci_disable_sriov(dev);
7569        else
7570                return igb_pci_enable_sriov(dev, num_vfs);
7571#endif
7572        return 0;
7573}
7574
7575#ifdef CONFIG_NET_POLL_CONTROLLER
7576/* Polling 'interrupt' - used by things like netconsole to send skbs
7577 * without having to re-enable interrupts. It's not called while
7578 * the interrupt routine is executing.
7579 */
7580static void igb_netpoll(struct net_device *netdev)
7581{
7582        struct igb_adapter *adapter = netdev_priv(netdev);
7583        struct e1000_hw *hw = &adapter->hw;
7584        struct igb_q_vector *q_vector;
7585        int i;
7586
7587        for (i = 0; i < adapter->num_q_vectors; i++) {
7588                q_vector = adapter->q_vector[i];
7589                if (adapter->flags & IGB_FLAG_HAS_MSIX)
7590                        wr32(E1000_EIMC, q_vector->eims_value);
7591                else
7592                        igb_irq_disable(adapter);
7593                napi_schedule(&q_vector->napi);
7594        }
7595}
7596#endif /* CONFIG_NET_POLL_CONTROLLER */
7597
7598/**
7599 *  igb_io_error_detected - called when PCI error is detected
7600 *  @pdev: Pointer to PCI device
7601 *  @state: The current pci connection state
7602 *
7603 *  This function is called after a PCI bus error affecting
7604 *  this device has been detected.
7605 **/
7606static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7607                                              pci_channel_state_t state)
7608{
7609        struct net_device *netdev = pci_get_drvdata(pdev);
7610        struct igb_adapter *adapter = netdev_priv(netdev);
7611
7612        netif_device_detach(netdev);
7613
7614        if (state == pci_channel_io_perm_failure)
7615                return PCI_ERS_RESULT_DISCONNECT;
7616
7617        if (netif_running(netdev))
7618                igb_down(adapter);
7619        pci_disable_device(pdev);
7620
7621        /* Request a slot slot reset. */
7622        return PCI_ERS_RESULT_NEED_RESET;
7623}
7624
7625/**
7626 *  igb_io_slot_reset - called after the pci bus has been reset.
7627 *  @pdev: Pointer to PCI device
7628 *
7629 *  Restart the card from scratch, as if from a cold-boot. Implementation
7630 *  resembles the first-half of the igb_resume routine.
7631 **/
7632static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7633{
7634        struct net_device *netdev = pci_get_drvdata(pdev);
7635        struct igb_adapter *adapter = netdev_priv(netdev);
7636        struct e1000_hw *hw = &adapter->hw;
7637        pci_ers_result_t result;
7638        int err;
7639
7640        if (pci_enable_device_mem(pdev)) {
7641                dev_err(&pdev->dev,
7642                        "Cannot re-enable PCI device after reset.\n");
7643                result = PCI_ERS_RESULT_DISCONNECT;
7644        } else {
7645                pci_set_master(pdev);
7646                pci_restore_state(pdev);
7647                pci_save_state(pdev);
7648
7649                pci_enable_wake(pdev, PCI_D3hot, 0);
7650                pci_enable_wake(pdev, PCI_D3cold, 0);
7651
7652                igb_reset(adapter);
7653                wr32(E1000_WUS, ~0);
7654                result = PCI_ERS_RESULT_RECOVERED;
7655        }
7656
7657        err = pci_cleanup_aer_uncorrect_error_status(pdev);
7658        if (err) {
7659                dev_err(&pdev->dev,
7660                        "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7661                        err);
7662                /* non-fatal, continue */
7663        }
7664
7665        return result;
7666}
7667
7668/**
7669 *  igb_io_resume - called when traffic can start flowing again.
7670 *  @pdev: Pointer to PCI device
7671 *
7672 *  This callback is called when the error recovery driver tells us that
7673 *  its OK to resume normal operation. Implementation resembles the
7674 *  second-half of the igb_resume routine.
7675 */
7676static void igb_io_resume(struct pci_dev *pdev)
7677{
7678        struct net_device *netdev = pci_get_drvdata(pdev);
7679        struct igb_adapter *adapter = netdev_priv(netdev);
7680
7681        if (netif_running(netdev)) {
7682                if (igb_up(adapter)) {
7683                        dev_err(&pdev->dev, "igb_up failed after reset\n");
7684                        return;
7685                }
7686        }
7687
7688        netif_device_attach(netdev);
7689
7690        /* let the f/w know that the h/w is now under the control of the
7691         * driver.
7692         */
7693        igb_get_hw_control(adapter);
7694}
7695
7696static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7697                             u8 qsel)
7698{
7699        u32 rar_low, rar_high;
7700        struct e1000_hw *hw = &adapter->hw;
7701
7702        /* HW expects these in little endian so we reverse the byte order
7703         * from network order (big endian) to little endian
7704         */
7705        rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7706                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7707        rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7708
7709        /* Indicate to hardware the Address is Valid. */
7710        rar_high |= E1000_RAH_AV;
7711
7712        if (hw->mac.type == e1000_82575)
7713                rar_high |= E1000_RAH_POOL_1 * qsel;
7714        else
7715                rar_high |= E1000_RAH_POOL_1 << qsel;
7716
7717        wr32(E1000_RAL(index), rar_low);
7718        wrfl();
7719        wr32(E1000_RAH(index), rar_high);
7720        wrfl();
7721}
7722
7723static int igb_set_vf_mac(struct igb_adapter *adapter,
7724                          int vf, unsigned char *mac_addr)
7725{
7726        struct e1000_hw *hw = &adapter->hw;
7727        /* VF MAC addresses start at end of receive addresses and moves
7728         * towards the first, as a result a collision should not be possible
7729         */
7730        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7731
7732        memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7733
7734        igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7735
7736        return 0;
7737}
7738
7739static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7740{
7741        struct igb_adapter *adapter = netdev_priv(netdev);
7742        if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7743                return -EINVAL;
7744        adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7745        dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7746        dev_info(&adapter->pdev->dev,
7747                 "Reload the VF driver to make this change effective.");
7748        if (test_bit(__IGB_DOWN, &adapter->state)) {
7749                dev_warn(&adapter->pdev->dev,
7750                         "The VF MAC address has been set, but the PF device is not up.\n");
7751                dev_warn(&adapter->pdev->dev,
7752                         "Bring the PF device up before attempting to use the VF device.\n");
7753        }
7754        return igb_set_vf_mac(adapter, vf, mac);
7755}
7756
7757static int igb_link_mbps(int internal_link_speed)
7758{
7759        switch (internal_link_speed) {
7760        case SPEED_100:
7761                return 100;
7762        case SPEED_1000:
7763                return 1000;
7764        default:
7765                return 0;
7766        }
7767}
7768
7769static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7770                                  int link_speed)
7771{
7772        int rf_dec, rf_int;
7773        u32 bcnrc_val;
7774
7775        if (tx_rate != 0) {
7776                /* Calculate the rate factor values to set */
7777                rf_int = link_speed / tx_rate;
7778                rf_dec = (link_speed - (rf_int * tx_rate));
7779                rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7780                         tx_rate;
7781
7782                bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7783                bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7784                              E1000_RTTBCNRC_RF_INT_MASK);
7785                bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7786        } else {
7787                bcnrc_val = 0;
7788        }
7789
7790        wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7791        /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7792         * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7793         */
7794        wr32(E1000_RTTBCNRM, 0x14);
7795        wr32(E1000_RTTBCNRC, bcnrc_val);
7796}
7797
7798static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7799{
7800        int actual_link_speed, i;
7801        bool reset_rate = false;
7802
7803        /* VF TX rate limit was not set or not supported */
7804        if ((adapter->vf_rate_link_speed == 0) ||
7805            (adapter->hw.mac.type != e1000_82576))
7806                return;
7807
7808        actual_link_speed = igb_link_mbps(adapter->link_speed);
7809        if (actual_link_speed != adapter->vf_rate_link_speed) {
7810                reset_rate = true;
7811                adapter->vf_rate_link_speed = 0;
7812                dev_info(&adapter->pdev->dev,
7813                         "Link speed has been changed. VF Transmit rate is disabled\n");
7814        }
7815
7816        for (i = 0; i < adapter->vfs_allocated_count; i++) {
7817                if (reset_rate)
7818                        adapter->vf_data[i].tx_rate = 0;
7819
7820                igb_set_vf_rate_limit(&adapter->hw, i,
7821                                      adapter->vf_data[i].tx_rate,
7822                                      actual_link_speed);
7823        }
7824}
7825
7826static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7827                             int min_tx_rate, int max_tx_rate)
7828{
7829        struct igb_adapter *adapter = netdev_priv(netdev);
7830        struct e1000_hw *hw = &adapter->hw;
7831        int actual_link_speed;
7832
7833        if (hw->mac.type != e1000_82576)
7834                return -EOPNOTSUPP;
7835
7836        if (min_tx_rate)
7837                return -EINVAL;
7838
7839        actual_link_speed = igb_link_mbps(adapter->link_speed);
7840        if ((vf >= adapter->vfs_allocated_count) ||
7841            (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7842            (max_tx_rate < 0) ||
7843            (max_tx_rate > actual_link_speed))
7844                return -EINVAL;
7845
7846        adapter->vf_rate_link_speed = actual_link_speed;
7847        adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7848        igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7849
7850        return 0;
7851}
7852
7853static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7854                                   bool setting)
7855{
7856        struct igb_adapter *adapter = netdev_priv(netdev);
7857        struct e1000_hw *hw = &adapter->hw;
7858        u32 reg_val, reg_offset;
7859
7860        if (!adapter->vfs_allocated_count)
7861                return -EOPNOTSUPP;
7862
7863        if (vf >= adapter->vfs_allocated_count)
7864                return -EINVAL;
7865
7866        reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7867        reg_val = rd32(reg_offset);
7868        if (setting)
7869                reg_val |= ((1 << vf) |
7870                            (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7871        else
7872                reg_val &= ~((1 << vf) |
7873                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7874        wr32(reg_offset, reg_val);
7875
7876        adapter->vf_data[vf].spoofchk_enabled = setting;
7877        return 0;
7878}
7879
7880static int igb_ndo_get_vf_config(struct net_device *netdev,
7881                                 int vf, struct ifla_vf_info *ivi)
7882{
7883        struct igb_adapter *adapter = netdev_priv(netdev);
7884        if (vf >= adapter->vfs_allocated_count)
7885                return -EINVAL;
7886        ivi->vf = vf;
7887        memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7888        ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7889        ivi->min_tx_rate = 0;
7890        ivi->vlan = adapter->vf_data[vf].pf_vlan;
7891        ivi->qos = adapter->vf_data[vf].pf_qos;
7892        ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7893        return 0;
7894}
7895
7896static void igb_vmm_control(struct igb_adapter *adapter)
7897{
7898        struct e1000_hw *hw = &adapter->hw;
7899        u32 reg;
7900
7901        switch (hw->mac.type) {
7902        case e1000_82575:
7903        case e1000_i210:
7904        case e1000_i211:
7905        case e1000_i354:
7906        default:
7907                /* replication is not supported for 82575 */
7908                return;
7909        case e1000_82576:
7910                /* notify HW that the MAC is adding vlan tags */
7911                reg = rd32(E1000_DTXCTL);
7912                reg |= E1000_DTXCTL_VLAN_ADDED;
7913                wr32(E1000_DTXCTL, reg);
7914                /* Fall through */
7915        case e1000_82580:
7916                /* enable replication vlan tag stripping */
7917                reg = rd32(E1000_RPLOLR);
7918                reg |= E1000_RPLOLR_STRVLAN;
7919                wr32(E1000_RPLOLR, reg);
7920                /* Fall through */
7921        case e1000_i350:
7922                /* none of the above registers are supported by i350 */
7923                break;
7924        }
7925
7926        if (adapter->vfs_allocated_count) {
7927                igb_vmdq_set_loopback_pf(hw, true);
7928                igb_vmdq_set_replication_pf(hw, true);
7929                igb_vmdq_set_anti_spoofing_pf(hw, true,
7930                                              adapter->vfs_allocated_count);
7931        } else {
7932                igb_vmdq_set_loopback_pf(hw, false);
7933                igb_vmdq_set_replication_pf(hw, false);
7934        }
7935}
7936
7937static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7938{
7939        struct e1000_hw *hw = &adapter->hw;
7940        u32 dmac_thr;
7941        u16 hwm;
7942
7943        if (hw->mac.type > e1000_82580) {
7944                if (adapter->flags & IGB_FLAG_DMAC) {
7945                        u32 reg;
7946
7947                        /* force threshold to 0. */
7948                        wr32(E1000_DMCTXTH, 0);
7949
7950                        /* DMA Coalescing high water mark needs to be greater
7951                         * than the Rx threshold. Set hwm to PBA - max frame
7952                         * size in 16B units, capping it at PBA - 6KB.
7953                         */
7954                        hwm = 64 * pba - adapter->max_frame_size / 16;
7955                        if (hwm < 64 * (pba - 6))
7956                                hwm = 64 * (pba - 6);
7957                        reg = rd32(E1000_FCRTC);
7958                        reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7959                        reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7960                                & E1000_FCRTC_RTH_COAL_MASK);
7961                        wr32(E1000_FCRTC, reg);
7962
7963                        /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7964                         * frame size, capping it at PBA - 10KB.
7965                         */
7966                        dmac_thr = pba - adapter->max_frame_size / 512;
7967                        if (dmac_thr < pba - 10)
7968                                dmac_thr = pba - 10;
7969                        reg = rd32(E1000_DMACR);
7970                        reg &= ~E1000_DMACR_DMACTHR_MASK;
7971                        reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7972                                & E1000_DMACR_DMACTHR_MASK);
7973
7974                        /* transition to L0x or L1 if available..*/
7975                        reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7976
7977                        /* watchdog timer= +-1000 usec in 32usec intervals */
7978                        reg |= (1000 >> 5);
7979
7980                        /* Disable BMC-to-OS Watchdog Enable */
7981                        if (hw->mac.type != e1000_i354)
7982                                reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7983
7984                        wr32(E1000_DMACR, reg);
7985
7986                        /* no lower threshold to disable
7987                         * coalescing(smart fifb)-UTRESH=0
7988                         */
7989                        wr32(E1000_DMCRTRH, 0);
7990
7991                        reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7992
7993                        wr32(E1000_DMCTLX, reg);
7994
7995                        /* free space in tx packet buffer to wake from
7996                         * DMA coal
7997                         */
7998                        wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7999                             (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8000
8001                        /* make low power state decision controlled
8002                         * by DMA coal
8003                         */
8004                        reg = rd32(E1000_PCIEMISC);
8005                        reg &= ~E1000_PCIEMISC_LX_DECISION;
8006                        wr32(E1000_PCIEMISC, reg);
8007                } /* endif adapter->dmac is not disabled */
8008        } else if (hw->mac.type == e1000_82580) {
8009                u32 reg = rd32(E1000_PCIEMISC);
8010
8011                wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8012                wr32(E1000_DMACR, 0);
8013        }
8014}
8015
8016/**
8017 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8018 *  @hw: pointer to hardware structure
8019 *  @byte_offset: byte offset to read
8020 *  @dev_addr: device address
8021 *  @data: value read
8022 *
8023 *  Performs byte read operation over I2C interface at
8024 *  a specified device address.
8025 **/
8026s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8027                      u8 dev_addr, u8 *data)
8028{
8029        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8030        struct i2c_client *this_client = adapter->i2c_client;
8031        s32 status;
8032        u16 swfw_mask = 0;
8033
8034        if (!this_client)
8035                return E1000_ERR_I2C;
8036
8037        swfw_mask = E1000_SWFW_PHY0_SM;
8038
8039        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8040                return E1000_ERR_SWFW_SYNC;
8041
8042        status = i2c_smbus_read_byte_data(this_client, byte_offset);
8043        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8044
8045        if (status < 0)
8046                return E1000_ERR_I2C;
8047        else {
8048                *data = status;
8049                return 0;
8050        }
8051}
8052
8053/**
8054 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8055 *  @hw: pointer to hardware structure
8056 *  @byte_offset: byte offset to write
8057 *  @dev_addr: device address
8058 *  @data: value to write
8059 *
8060 *  Performs byte write operation over I2C interface at
8061 *  a specified device address.
8062 **/
8063s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8064                       u8 dev_addr, u8 data)
8065{
8066        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8067        struct i2c_client *this_client = adapter->i2c_client;
8068        s32 status;
8069        u16 swfw_mask = E1000_SWFW_PHY0_SM;
8070
8071        if (!this_client)
8072                return E1000_ERR_I2C;
8073
8074        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8075                return E1000_ERR_SWFW_SYNC;
8076        status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8077        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8078
8079        if (status)
8080                return E1000_ERR_I2C;
8081        else
8082                return 0;
8083
8084}
8085
8086int igb_reinit_queues(struct igb_adapter *adapter)
8087{
8088        struct net_device *netdev = adapter->netdev;
8089        struct pci_dev *pdev = adapter->pdev;
8090        int err = 0;
8091
8092        if (netif_running(netdev))
8093                igb_close(netdev);
8094
8095        igb_reset_interrupt_capability(adapter);
8096
8097        if (igb_init_interrupt_scheme(adapter, true)) {
8098                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8099                return -ENOMEM;
8100        }
8101
8102        if (netif_running(netdev))
8103                err = igb_open(netdev);
8104
8105        return err;
8106}
8107/* igb_main.c */
8108