linux/drivers/net/ethernet/qlogic/qede/qede_main.c
<<
>>
Prefs
   1/* QLogic qede NIC Driver
   2* Copyright (c) 2015 QLogic Corporation
   3*
   4* This software is available under the terms of the GNU General Public License
   5* (GPL) Version 2, available from the file COPYING in the main directory of
   6* this source tree.
   7*/
   8
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/version.h>
  12#include <linux/device.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/skbuff.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/string.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/interrupt.h>
  21#include <asm/byteorder.h>
  22#include <asm/param.h>
  23#include <linux/io.h>
  24#include <linux/netdev_features.h>
  25#include <linux/udp.h>
  26#include <linux/tcp.h>
  27#include <net/vxlan.h>
  28#include <linux/ip.h>
  29#include <net/ipv6.h>
  30#include <net/tcp.h>
  31#include <linux/if_ether.h>
  32#include <linux/if_vlan.h>
  33#include <linux/pkt_sched.h>
  34#include <linux/ethtool.h>
  35#include <linux/in.h>
  36#include <linux/random.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/bitops.h>
  39
  40#include "qede.h"
  41
  42static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede "
  43                              DRV_MODULE_VERSION "\n";
  44
  45MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver");
  46MODULE_LICENSE("GPL");
  47MODULE_VERSION(DRV_MODULE_VERSION);
  48
  49static uint debug;
  50module_param(debug, uint, 0);
  51MODULE_PARM_DESC(debug, " Default debug msglevel");
  52
  53static const struct qed_eth_ops *qed_ops;
  54
  55#define CHIP_NUM_57980S_40              0x1634
  56#define CHIP_NUM_57980S_10              0x1635
  57#define CHIP_NUM_57980S_MF              0x1636
  58#define CHIP_NUM_57980S_100             0x1644
  59#define CHIP_NUM_57980S_50              0x1654
  60#define CHIP_NUM_57980S_25              0x1656
  61
  62#ifndef PCI_DEVICE_ID_NX2_57980E
  63#define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
  64#define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
  65#define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
  66#define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
  67#define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
  68#define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
  69#endif
  70
  71static const struct pci_device_id qede_pci_tbl[] = {
  72        { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
  73        { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
  74        { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
  75        { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
  76        { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
  77        { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
  78        { 0 }
  79};
  80
  81MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
  82
  83static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  84
  85#define TX_TIMEOUT              (5 * HZ)
  86
  87static void qede_remove(struct pci_dev *pdev);
  88static int qede_alloc_rx_buffer(struct qede_dev *edev,
  89                                struct qede_rx_queue *rxq);
  90static void qede_link_update(void *dev, struct qed_link_output *link);
  91
  92static struct pci_driver qede_pci_driver = {
  93        .name = "qede",
  94        .id_table = qede_pci_tbl,
  95        .probe = qede_probe,
  96        .remove = qede_remove,
  97};
  98
  99static struct qed_eth_cb_ops qede_ll_ops = {
 100        {
 101                .link_update = qede_link_update,
 102        },
 103};
 104
 105static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 106                             void *ptr)
 107{
 108        struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 109        struct ethtool_drvinfo drvinfo;
 110        struct qede_dev *edev;
 111
 112        /* Currently only support name change */
 113        if (event != NETDEV_CHANGENAME)
 114                goto done;
 115
 116        /* Check whether this is a qede device */
 117        if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 118                goto done;
 119
 120        memset(&drvinfo, 0, sizeof(drvinfo));
 121        ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 122        if (strcmp(drvinfo.driver, "qede"))
 123                goto done;
 124        edev = netdev_priv(ndev);
 125
 126        /* Notify qed of the name change */
 127        if (!edev->ops || !edev->ops->common)
 128                goto done;
 129        edev->ops->common->set_id(edev->cdev, edev->ndev->name,
 130                                  "qede");
 131
 132done:
 133        return NOTIFY_DONE;
 134}
 135
 136static struct notifier_block qede_netdev_notifier = {
 137        .notifier_call = qede_netdev_event,
 138};
 139
 140static
 141int __init qede_init(void)
 142{
 143        int ret;
 144        u32 qed_ver;
 145
 146        pr_notice("qede_init: %s\n", version);
 147
 148        qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
 149        if (qed_ver !=  QEDE_ETH_INTERFACE_VERSION) {
 150                pr_notice("Version mismatch [%08x != %08x]\n",
 151                          qed_ver,
 152                          QEDE_ETH_INTERFACE_VERSION);
 153                return -EINVAL;
 154        }
 155
 156        qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
 157        if (!qed_ops) {
 158                pr_notice("Failed to get qed ethtool operations\n");
 159                return -EINVAL;
 160        }
 161
 162        /* Must register notifier before pci ops, since we might miss
 163         * interface rename after pci probe and netdev registeration.
 164         */
 165        ret = register_netdevice_notifier(&qede_netdev_notifier);
 166        if (ret) {
 167                pr_notice("Failed to register netdevice_notifier\n");
 168                qed_put_eth_ops();
 169                return -EINVAL;
 170        }
 171
 172        ret = pci_register_driver(&qede_pci_driver);
 173        if (ret) {
 174                pr_notice("Failed to register driver\n");
 175                unregister_netdevice_notifier(&qede_netdev_notifier);
 176                qed_put_eth_ops();
 177                return -EINVAL;
 178        }
 179
 180        return 0;
 181}
 182
 183static void __exit qede_cleanup(void)
 184{
 185        pr_notice("qede_cleanup called\n");
 186
 187        unregister_netdevice_notifier(&qede_netdev_notifier);
 188        pci_unregister_driver(&qede_pci_driver);
 189        qed_put_eth_ops();
 190}
 191
 192module_init(qede_init);
 193module_exit(qede_cleanup);
 194
 195/* -------------------------------------------------------------------------
 196 * START OF FAST-PATH
 197 * -------------------------------------------------------------------------
 198 */
 199
 200/* Unmap the data and free skb */
 201static int qede_free_tx_pkt(struct qede_dev *edev,
 202                            struct qede_tx_queue *txq,
 203                            int *len)
 204{
 205        u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
 206        struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 207        struct eth_tx_1st_bd *first_bd;
 208        struct eth_tx_bd *tx_data_bd;
 209        int bds_consumed = 0;
 210        int nbds;
 211        bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
 212        int i, split_bd_len = 0;
 213
 214        if (unlikely(!skb)) {
 215                DP_ERR(edev,
 216                       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 217                       idx, txq->sw_tx_cons, txq->sw_tx_prod);
 218                return -1;
 219        }
 220
 221        *len = skb->len;
 222
 223        first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 224
 225        bds_consumed++;
 226
 227        nbds = first_bd->data.nbds;
 228
 229        if (data_split) {
 230                struct eth_tx_bd *split = (struct eth_tx_bd *)
 231                        qed_chain_consume(&txq->tx_pbl);
 232                split_bd_len = BD_UNMAP_LEN(split);
 233                bds_consumed++;
 234        }
 235        dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 236                       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 237
 238        /* Unmap the data of the skb frags */
 239        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 240                tx_data_bd = (struct eth_tx_bd *)
 241                        qed_chain_consume(&txq->tx_pbl);
 242                dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 243                               BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 244        }
 245
 246        while (bds_consumed++ < nbds)
 247                qed_chain_consume(&txq->tx_pbl);
 248
 249        /* Free skb */
 250        dev_kfree_skb_any(skb);
 251        txq->sw_tx_ring[idx].skb = NULL;
 252        txq->sw_tx_ring[idx].flags = 0;
 253
 254        return 0;
 255}
 256
 257/* Unmap the data and free skb when mapping failed during start_xmit */
 258static void qede_free_failed_tx_pkt(struct qede_dev *edev,
 259                                    struct qede_tx_queue *txq,
 260                                    struct eth_tx_1st_bd *first_bd,
 261                                    int nbd,
 262                                    bool data_split)
 263{
 264        u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 265        struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 266        struct eth_tx_bd *tx_data_bd;
 267        int i, split_bd_len = 0;
 268
 269        /* Return prod to its position before this skb was handled */
 270        qed_chain_set_prod(&txq->tx_pbl,
 271                           le16_to_cpu(txq->tx_db.data.bd_prod),
 272                           first_bd);
 273
 274        first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 275
 276        if (data_split) {
 277                struct eth_tx_bd *split = (struct eth_tx_bd *)
 278                                          qed_chain_produce(&txq->tx_pbl);
 279                split_bd_len = BD_UNMAP_LEN(split);
 280                nbd--;
 281        }
 282
 283        dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 284                       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 285
 286        /* Unmap the data of the skb frags */
 287        for (i = 0; i < nbd; i++) {
 288                tx_data_bd = (struct eth_tx_bd *)
 289                        qed_chain_produce(&txq->tx_pbl);
 290                if (tx_data_bd->nbytes)
 291                        dma_unmap_page(&edev->pdev->dev,
 292                                       BD_UNMAP_ADDR(tx_data_bd),
 293                                       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 294        }
 295
 296        /* Return again prod to its position before this skb was handled */
 297        qed_chain_set_prod(&txq->tx_pbl,
 298                           le16_to_cpu(txq->tx_db.data.bd_prod),
 299                           first_bd);
 300
 301        /* Free skb */
 302        dev_kfree_skb_any(skb);
 303        txq->sw_tx_ring[idx].skb = NULL;
 304        txq->sw_tx_ring[idx].flags = 0;
 305}
 306
 307static u32 qede_xmit_type(struct qede_dev *edev,
 308                          struct sk_buff *skb,
 309                          int *ipv6_ext)
 310{
 311        u32 rc = XMIT_L4_CSUM;
 312        __be16 l3_proto;
 313
 314        if (skb->ip_summed != CHECKSUM_PARTIAL)
 315                return XMIT_PLAIN;
 316
 317        l3_proto = vlan_get_protocol(skb);
 318        if (l3_proto == htons(ETH_P_IPV6) &&
 319            (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 320                *ipv6_ext = 1;
 321
 322        if (skb_is_gso(skb))
 323                rc |= XMIT_LSO;
 324
 325        return rc;
 326}
 327
 328static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 329                                         struct eth_tx_2nd_bd *second_bd,
 330                                         struct eth_tx_3rd_bd *third_bd)
 331{
 332        u8 l4_proto;
 333        u16 bd2_bits = 0, bd2_bits2 = 0;
 334
 335        bd2_bits2 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 336
 337        bd2_bits |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 338                     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 339                    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 340
 341        bd2_bits2 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 342                      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 343
 344        if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 345                l4_proto = ipv6_hdr(skb)->nexthdr;
 346        else
 347                l4_proto = ip_hdr(skb)->protocol;
 348
 349        if (l4_proto == IPPROTO_UDP)
 350                bd2_bits2 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 351
 352        if (third_bd) {
 353                third_bd->data.bitfields |=
 354                        ((tcp_hdrlen(skb) / 4) &
 355                         ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 356                        ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT;
 357        }
 358
 359        second_bd->data.bitfields = cpu_to_le16(bd2_bits);
 360        second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 361}
 362
 363static int map_frag_to_bd(struct qede_dev *edev,
 364                          skb_frag_t *frag,
 365                          struct eth_tx_bd *bd)
 366{
 367        dma_addr_t mapping;
 368
 369        /* Map skb non-linear frag data for DMA */
 370        mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
 371                                   skb_frag_size(frag),
 372                                   DMA_TO_DEVICE);
 373        if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 374                DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
 375                return -ENOMEM;
 376        }
 377
 378        /* Setup the data pointer of the frag data */
 379        BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 380
 381        return 0;
 382}
 383
 384/* Main transmit function */
 385static
 386netdev_tx_t qede_start_xmit(struct sk_buff *skb,
 387                            struct net_device *ndev)
 388{
 389        struct qede_dev *edev = netdev_priv(ndev);
 390        struct netdev_queue *netdev_txq;
 391        struct qede_tx_queue *txq;
 392        struct eth_tx_1st_bd *first_bd;
 393        struct eth_tx_2nd_bd *second_bd = NULL;
 394        struct eth_tx_3rd_bd *third_bd = NULL;
 395        struct eth_tx_bd *tx_data_bd = NULL;
 396        u16 txq_index;
 397        u8 nbd = 0;
 398        dma_addr_t mapping;
 399        int rc, frag_idx = 0, ipv6_ext = 0;
 400        u8 xmit_type;
 401        u16 idx;
 402        u16 hlen;
 403        bool data_split;
 404
 405        /* Get tx-queue context and netdev index */
 406        txq_index = skb_get_queue_mapping(skb);
 407        WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
 408        txq = QEDE_TX_QUEUE(edev, txq_index);
 409        netdev_txq = netdev_get_tx_queue(ndev, txq_index);
 410
 411        /* Current code doesn't support SKB linearization, since the max number
 412         * of skb frags can be passed in the FW HSI.
 413         */
 414        BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET);
 415
 416        WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
 417                               (MAX_SKB_FRAGS + 1));
 418
 419        xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
 420
 421        /* Fill the entry in the SW ring and the BDs in the FW ring */
 422        idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 423        txq->sw_tx_ring[idx].skb = skb;
 424        first_bd = (struct eth_tx_1st_bd *)
 425                   qed_chain_produce(&txq->tx_pbl);
 426        memset(first_bd, 0, sizeof(*first_bd));
 427        first_bd->data.bd_flags.bitfields =
 428                1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
 429
 430        /* Map skb linear data for DMA and set in the first BD */
 431        mapping = dma_map_single(&edev->pdev->dev, skb->data,
 432                                 skb_headlen(skb), DMA_TO_DEVICE);
 433        if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 434                DP_NOTICE(edev, "SKB mapping failed\n");
 435                qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
 436                return NETDEV_TX_OK;
 437        }
 438        nbd++;
 439        BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
 440
 441        /* In case there is IPv6 with extension headers or LSO we need 2nd and
 442         * 3rd BDs.
 443         */
 444        if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
 445                second_bd = (struct eth_tx_2nd_bd *)
 446                        qed_chain_produce(&txq->tx_pbl);
 447                memset(second_bd, 0, sizeof(*second_bd));
 448
 449                nbd++;
 450                third_bd = (struct eth_tx_3rd_bd *)
 451                        qed_chain_produce(&txq->tx_pbl);
 452                memset(third_bd, 0, sizeof(*third_bd));
 453
 454                nbd++;
 455                /* We need to fill in additional data in second_bd... */
 456                tx_data_bd = (struct eth_tx_bd *)second_bd;
 457        }
 458
 459        if (skb_vlan_tag_present(skb)) {
 460                first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 461                first_bd->data.bd_flags.bitfields |=
 462                        1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
 463        }
 464
 465        /* Fill the parsing flags & params according to the requested offload */
 466        if (xmit_type & XMIT_L4_CSUM) {
 467                /* We don't re-calculate IP checksum as it is already done by
 468                 * the upper stack
 469                 */
 470                first_bd->data.bd_flags.bitfields |=
 471                        1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
 472
 473                /* If the packet is IPv6 with extension header, indicate that
 474                 * to FW and pass few params, since the device cracker doesn't
 475                 * support parsing IPv6 with extension header/s.
 476                 */
 477                if (unlikely(ipv6_ext))
 478                        qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
 479        }
 480
 481        if (xmit_type & XMIT_LSO) {
 482                first_bd->data.bd_flags.bitfields |=
 483                        (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
 484                third_bd->data.lso_mss =
 485                        cpu_to_le16(skb_shinfo(skb)->gso_size);
 486
 487                first_bd->data.bd_flags.bitfields |=
 488                1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 489                hlen = skb_transport_header(skb) +
 490                       tcp_hdrlen(skb) - skb->data;
 491
 492                /* @@@TBD - if will not be removed need to check */
 493                third_bd->data.bitfields |=
 494                        (1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
 495
 496                /* Make life easier for FW guys who can't deal with header and
 497                 * data on same BD. If we need to split, use the second bd...
 498                 */
 499                if (unlikely(skb_headlen(skb) > hlen)) {
 500                        DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 501                                   "TSO split header size is %d (%x:%x)\n",
 502                                   first_bd->nbytes, first_bd->addr.hi,
 503                                   first_bd->addr.lo);
 504
 505                        mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
 506                                           le32_to_cpu(first_bd->addr.lo)) +
 507                                           hlen;
 508
 509                        BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
 510                                              le16_to_cpu(first_bd->nbytes) -
 511                                              hlen);
 512
 513                        /* this marks the BD as one that has no
 514                         * individual mapping
 515                         */
 516                        txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
 517
 518                        first_bd->nbytes = cpu_to_le16(hlen);
 519
 520                        tx_data_bd = (struct eth_tx_bd *)third_bd;
 521                        data_split = true;
 522                }
 523        }
 524
 525        /* Handle fragmented skb */
 526        /* special handle for frags inside 2nd and 3rd bds.. */
 527        while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
 528                rc = map_frag_to_bd(edev,
 529                                    &skb_shinfo(skb)->frags[frag_idx],
 530                                    tx_data_bd);
 531                if (rc) {
 532                        qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 533                                                data_split);
 534                        return NETDEV_TX_OK;
 535                }
 536
 537                if (tx_data_bd == (struct eth_tx_bd *)second_bd)
 538                        tx_data_bd = (struct eth_tx_bd *)third_bd;
 539                else
 540                        tx_data_bd = NULL;
 541
 542                frag_idx++;
 543        }
 544
 545        /* map last frags into 4th, 5th .... */
 546        for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
 547                tx_data_bd = (struct eth_tx_bd *)
 548                             qed_chain_produce(&txq->tx_pbl);
 549
 550                memset(tx_data_bd, 0, sizeof(*tx_data_bd));
 551
 552                rc = map_frag_to_bd(edev,
 553                                    &skb_shinfo(skb)->frags[frag_idx],
 554                                    tx_data_bd);
 555                if (rc) {
 556                        qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 557                                                data_split);
 558                        return NETDEV_TX_OK;
 559                }
 560        }
 561
 562        /* update the first BD with the actual num BDs */
 563        first_bd->data.nbds = nbd;
 564
 565        netdev_tx_sent_queue(netdev_txq, skb->len);
 566
 567        skb_tx_timestamp(skb);
 568
 569        /* Advance packet producer only before sending the packet since mapping
 570         * of pages may fail.
 571         */
 572        txq->sw_tx_prod++;
 573
 574        /* 'next page' entries are counted in the producer value */
 575        txq->tx_db.data.bd_prod =
 576                cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
 577
 578        /* wmb makes sure that the BDs data is updated before updating the
 579         * producer, otherwise FW may read old data from the BDs.
 580         */
 581        wmb();
 582        barrier();
 583        writel(txq->tx_db.raw, txq->doorbell_addr);
 584
 585        /* mmiowb is needed to synchronize doorbell writes from more than one
 586         * processor. It guarantees that the write arrives to the device before
 587         * the queue lock is released and another start_xmit is called (possibly
 588         * on another CPU). Without this barrier, the next doorbell can bypass
 589         * this doorbell. This is applicable to IA64/Altix systems.
 590         */
 591        mmiowb();
 592
 593        if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
 594                      < (MAX_SKB_FRAGS + 1))) {
 595                netif_tx_stop_queue(netdev_txq);
 596                DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 597                           "Stop queue was called\n");
 598                /* paired memory barrier is in qede_tx_int(), we have to keep
 599                 * ordering of set_bit() in netif_tx_stop_queue() and read of
 600                 * fp->bd_tx_cons
 601                 */
 602                smp_mb();
 603
 604                if (qed_chain_get_elem_left(&txq->tx_pbl)
 605                     >= (MAX_SKB_FRAGS + 1) &&
 606                    (edev->state == QEDE_STATE_OPEN)) {
 607                        netif_tx_wake_queue(netdev_txq);
 608                        DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 609                                   "Wake queue was called\n");
 610                }
 611        }
 612
 613        return NETDEV_TX_OK;
 614}
 615
 616static int qede_txq_has_work(struct qede_tx_queue *txq)
 617{
 618        u16 hw_bd_cons;
 619
 620        /* Tell compiler that consumer and producer can change */
 621        barrier();
 622        hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 623        if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 624                return 0;
 625
 626        return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 627}
 628
 629static int qede_tx_int(struct qede_dev *edev,
 630                       struct qede_tx_queue *txq)
 631{
 632        struct netdev_queue *netdev_txq;
 633        u16 hw_bd_cons;
 634        unsigned int pkts_compl = 0, bytes_compl = 0;
 635        int rc;
 636
 637        netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
 638
 639        hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 640        barrier();
 641
 642        while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 643                int len = 0;
 644
 645                rc = qede_free_tx_pkt(edev, txq, &len);
 646                if (rc) {
 647                        DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 648                                  hw_bd_cons,
 649                                  qed_chain_get_cons_idx(&txq->tx_pbl));
 650                        break;
 651                }
 652
 653                bytes_compl += len;
 654                pkts_compl++;
 655                txq->sw_tx_cons++;
 656        }
 657
 658        netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 659
 660        /* Need to make the tx_bd_cons update visible to start_xmit()
 661         * before checking for netif_tx_queue_stopped().  Without the
 662         * memory barrier, there is a small possibility that
 663         * start_xmit() will miss it and cause the queue to be stopped
 664         * forever.
 665         * On the other hand we need an rmb() here to ensure the proper
 666         * ordering of bit testing in the following
 667         * netif_tx_queue_stopped(txq) call.
 668         */
 669        smp_mb();
 670
 671        if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 672                /* Taking tx_lock is needed to prevent reenabling the queue
 673                 * while it's empty. This could have happen if rx_action() gets
 674                 * suspended in qede_tx_int() after the condition before
 675                 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 676                 *
 677                 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 678                 * sends some packets consuming the whole queue again->
 679                 * stops the queue
 680                 */
 681
 682                __netif_tx_lock(netdev_txq, smp_processor_id());
 683
 684                if ((netif_tx_queue_stopped(netdev_txq)) &&
 685                    (edev->state == QEDE_STATE_OPEN) &&
 686                    (qed_chain_get_elem_left(&txq->tx_pbl)
 687                      >= (MAX_SKB_FRAGS + 1))) {
 688                        netif_tx_wake_queue(netdev_txq);
 689                        DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 690                                   "Wake queue was called\n");
 691                }
 692
 693                __netif_tx_unlock(netdev_txq);
 694        }
 695
 696        return 0;
 697}
 698
 699static bool qede_has_rx_work(struct qede_rx_queue *rxq)
 700{
 701        u16 hw_comp_cons, sw_comp_cons;
 702
 703        /* Tell compiler that status block fields can change */
 704        barrier();
 705
 706        hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 707        sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 708
 709        return hw_comp_cons != sw_comp_cons;
 710}
 711
 712static bool qede_has_tx_work(struct qede_fastpath *fp)
 713{
 714        u8 tc;
 715
 716        for (tc = 0; tc < fp->edev->num_tc; tc++)
 717                if (qede_txq_has_work(&fp->txqs[tc]))
 718                        return true;
 719        return false;
 720}
 721
 722/* This function copies the Rx buffer from the CONS position to the PROD
 723 * position, since we failed to allocate a new Rx buffer.
 724 */
 725static void qede_reuse_rx_data(struct qede_rx_queue *rxq)
 726{
 727        struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
 728        struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 729        struct sw_rx_data *sw_rx_data_cons =
 730                &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 731        struct sw_rx_data *sw_rx_data_prod =
 732                &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 733
 734        dma_unmap_addr_set(sw_rx_data_prod, mapping,
 735                           dma_unmap_addr(sw_rx_data_cons, mapping));
 736
 737        sw_rx_data_prod->data = sw_rx_data_cons->data;
 738        memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd));
 739
 740        rxq->sw_rx_cons++;
 741        rxq->sw_rx_prod++;
 742}
 743
 744static inline void qede_update_rx_prod(struct qede_dev *edev,
 745                                       struct qede_rx_queue *rxq)
 746{
 747        u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 748        u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 749        struct eth_rx_prod_data rx_prods = {0};
 750
 751        /* Update producers */
 752        rx_prods.bd_prod = cpu_to_le16(bd_prod);
 753        rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 754
 755        /* Make sure that the BD and SGE data is updated before updating the
 756         * producers since FW might read the BD/SGE right after the producer
 757         * is updated.
 758         */
 759        wmb();
 760
 761        internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 762                        (u32 *)&rx_prods);
 763
 764        /* mmiowb is needed to synchronize doorbell writes from more than one
 765         * processor. It guarantees that the write arrives to the device before
 766         * the napi lock is released and another qede_poll is called (possibly
 767         * on another CPU). Without this barrier, the next doorbell can bypass
 768         * this doorbell. This is applicable to IA64/Altix systems.
 769         */
 770        mmiowb();
 771}
 772
 773static u32 qede_get_rxhash(struct qede_dev *edev,
 774                           u8 bitfields,
 775                           __le32 rss_hash,
 776                           enum pkt_hash_types *rxhash_type)
 777{
 778        enum rss_hash_type htype;
 779
 780        htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 781
 782        if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
 783                *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 784                                (htype == RSS_HASH_TYPE_IPV6)) ?
 785                                PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 786                return le32_to_cpu(rss_hash);
 787        }
 788        *rxhash_type = PKT_HASH_TYPE_NONE;
 789        return 0;
 790}
 791
 792static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 793{
 794        skb_checksum_none_assert(skb);
 795
 796        if (csum_flag & QEDE_CSUM_UNNECESSARY)
 797                skb->ip_summed = CHECKSUM_UNNECESSARY;
 798}
 799
 800static inline void qede_skb_receive(struct qede_dev *edev,
 801                                    struct qede_fastpath *fp,
 802                                    struct sk_buff *skb,
 803                                    u16 vlan_tag)
 804{
 805        if (vlan_tag)
 806                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 807                                       vlan_tag);
 808
 809        napi_gro_receive(&fp->napi, skb);
 810}
 811
 812static u8 qede_check_csum(u16 flag)
 813{
 814        u16 csum_flag = 0;
 815        u8 csum = 0;
 816
 817        if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
 818             PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
 819                csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
 820                             PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
 821                csum = QEDE_CSUM_UNNECESSARY;
 822        }
 823
 824        csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
 825                     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
 826
 827        if (csum_flag & flag)
 828                return QEDE_CSUM_ERROR;
 829
 830        return csum;
 831}
 832
 833static int qede_rx_int(struct qede_fastpath *fp, int budget)
 834{
 835        struct qede_dev *edev = fp->edev;
 836        struct qede_rx_queue *rxq = fp->rxq;
 837
 838        u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
 839        int rx_pkt = 0;
 840        u8 csum_flag;
 841
 842        hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 843        sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 844
 845        /* Memory barrier to prevent the CPU from doing speculative reads of CQE
 846         * / BD in the while-loop before reading hw_comp_cons. If the CQE is
 847         * read before it is written by FW, then FW writes CQE and SB, and then
 848         * the CPU reads the hw_comp_cons, it will use an old CQE.
 849         */
 850        rmb();
 851
 852        /* Loop to complete all indicated BDs */
 853        while (sw_comp_cons != hw_comp_cons) {
 854                struct eth_fast_path_rx_reg_cqe *fp_cqe;
 855                enum pkt_hash_types rxhash_type;
 856                enum eth_rx_cqe_type cqe_type;
 857                struct sw_rx_data *sw_rx_data;
 858                union eth_rx_cqe *cqe;
 859                struct sk_buff *skb;
 860                u16 len, pad;
 861                u32 rx_hash;
 862                u8 *data;
 863
 864                /* Get the CQE from the completion ring */
 865                cqe = (union eth_rx_cqe *)
 866                        qed_chain_consume(&rxq->rx_comp_ring);
 867                cqe_type = cqe->fast_path_regular.type;
 868
 869                if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
 870                        edev->ops->eth_cqe_completion(
 871                                        edev->cdev, fp->rss_id,
 872                                        (struct eth_slow_path_rx_cqe *)cqe);
 873                        goto next_cqe;
 874                }
 875
 876                /* Get the data from the SW ring */
 877                sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
 878                sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
 879                data = sw_rx_data->data;
 880
 881                fp_cqe = &cqe->fast_path_regular;
 882                len =  le16_to_cpu(fp_cqe->pkt_len);
 883                pad = fp_cqe->placement_offset;
 884
 885                /* For every Rx BD consumed, we allocate a new BD so the BD ring
 886                 * is always with a fixed size. If allocation fails, we take the
 887                 * consumed BD and return it to the ring in the PROD position.
 888                 * The packet that was received on that BD will be dropped (and
 889                 * not passed to the upper stack).
 890                 */
 891                if (likely(qede_alloc_rx_buffer(edev, rxq) == 0)) {
 892                        dma_unmap_single(&edev->pdev->dev,
 893                                         dma_unmap_addr(sw_rx_data, mapping),
 894                                         rxq->rx_buf_size, DMA_FROM_DEVICE);
 895
 896                        /* If this is an error packet then drop it */
 897                        parse_flag =
 898                        le16_to_cpu(cqe->fast_path_regular.pars_flags.flags);
 899                        csum_flag = qede_check_csum(parse_flag);
 900                        if (csum_flag == QEDE_CSUM_ERROR) {
 901                                DP_NOTICE(edev,
 902                                          "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
 903                                          sw_comp_cons, parse_flag);
 904                                rxq->rx_hw_errors++;
 905                                kfree(data);
 906                                goto next_rx;
 907                        }
 908
 909                        skb = build_skb(data, 0);
 910
 911                        if (unlikely(!skb)) {
 912                                DP_NOTICE(edev,
 913                                          "Build_skb failed, dropping incoming packet\n");
 914                                kfree(data);
 915                                rxq->rx_alloc_errors++;
 916                                goto next_rx;
 917                        }
 918
 919                        skb_reserve(skb, pad);
 920
 921                } else {
 922                        DP_NOTICE(edev,
 923                                  "New buffer allocation failed, dropping incoming packet and reusing its buffer\n");
 924                        qede_reuse_rx_data(rxq);
 925                        rxq->rx_alloc_errors++;
 926                        goto next_cqe;
 927                }
 928
 929                sw_rx_data->data = NULL;
 930
 931                skb_put(skb, len);
 932
 933                skb->protocol = eth_type_trans(skb, edev->ndev);
 934
 935                rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
 936                                          fp_cqe->rss_hash,
 937                                          &rxhash_type);
 938
 939                skb_set_hash(skb, rx_hash, rxhash_type);
 940
 941                qede_set_skb_csum(skb, csum_flag);
 942
 943                skb_record_rx_queue(skb, fp->rss_id);
 944
 945                qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
 946
 947                qed_chain_consume(&rxq->rx_bd_ring);
 948
 949next_rx:
 950                rxq->sw_rx_cons++;
 951                rx_pkt++;
 952
 953next_cqe: /* don't consume bd rx buffer */
 954                qed_chain_recycle_consumed(&rxq->rx_comp_ring);
 955                sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 956                /* CR TPA - revisit how to handle budget in TPA perhaps
 957                 * increase on "end"
 958                 */
 959                if (rx_pkt == budget)
 960                        break;
 961        } /* repeat while sw_comp_cons != hw_comp_cons... */
 962
 963        /* Update producers */
 964        qede_update_rx_prod(edev, rxq);
 965
 966        return rx_pkt;
 967}
 968
 969static int qede_poll(struct napi_struct *napi, int budget)
 970{
 971        int work_done = 0;
 972        struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
 973                                                 napi);
 974        struct qede_dev *edev = fp->edev;
 975
 976        while (1) {
 977                u8 tc;
 978
 979                for (tc = 0; tc < edev->num_tc; tc++)
 980                        if (qede_txq_has_work(&fp->txqs[tc]))
 981                                qede_tx_int(edev, &fp->txqs[tc]);
 982
 983                if (qede_has_rx_work(fp->rxq)) {
 984                        work_done += qede_rx_int(fp, budget - work_done);
 985
 986                        /* must not complete if we consumed full budget */
 987                        if (work_done >= budget)
 988                                break;
 989                }
 990
 991                /* Fall out from the NAPI loop if needed */
 992                if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
 993                        qed_sb_update_sb_idx(fp->sb_info);
 994                        /* *_has_*_work() reads the status block,
 995                         * thus we need to ensure that status block indices
 996                         * have been actually read (qed_sb_update_sb_idx)
 997                         * prior to this check (*_has_*_work) so that
 998                         * we won't write the "newer" value of the status block
 999                         * to HW (if there was a DMA right after
1000                         * qede_has_rx_work and if there is no rmb, the memory
1001                         * reading (qed_sb_update_sb_idx) may be postponed
1002                         * to right before *_ack_sb). In this case there
1003                         * will never be another interrupt until there is
1004                         * another update of the status block, while there
1005                         * is still unhandled work.
1006                         */
1007                        rmb();
1008
1009                        if (!(qede_has_rx_work(fp->rxq) ||
1010                              qede_has_tx_work(fp))) {
1011                                napi_complete(napi);
1012                                /* Update and reenable interrupts */
1013                                qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1014                                           1 /*update*/);
1015                                break;
1016                        }
1017                }
1018        }
1019
1020        return work_done;
1021}
1022
1023static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1024{
1025        struct qede_fastpath *fp = fp_cookie;
1026
1027        qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1028
1029        napi_schedule_irqoff(&fp->napi);
1030        return IRQ_HANDLED;
1031}
1032
1033/* -------------------------------------------------------------------------
1034 * END OF FAST-PATH
1035 * -------------------------------------------------------------------------
1036 */
1037
1038static int qede_open(struct net_device *ndev);
1039static int qede_close(struct net_device *ndev);
1040static int qede_set_mac_addr(struct net_device *ndev, void *p);
1041static void qede_set_rx_mode(struct net_device *ndev);
1042static void qede_config_rx_mode(struct net_device *ndev);
1043
1044static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1045                                 enum qed_filter_xcast_params_type opcode,
1046                                 unsigned char mac[ETH_ALEN])
1047{
1048        struct qed_filter_params filter_cmd;
1049
1050        memset(&filter_cmd, 0, sizeof(filter_cmd));
1051        filter_cmd.type = QED_FILTER_TYPE_UCAST;
1052        filter_cmd.filter.ucast.type = opcode;
1053        filter_cmd.filter.ucast.mac_valid = 1;
1054        ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1055
1056        return edev->ops->filter_config(edev->cdev, &filter_cmd);
1057}
1058
1059void qede_fill_by_demand_stats(struct qede_dev *edev)
1060{
1061        struct qed_eth_stats stats;
1062
1063        edev->ops->get_vport_stats(edev->cdev, &stats);
1064        edev->stats.no_buff_discards = stats.no_buff_discards;
1065        edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1066        edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1067        edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1068        edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1069        edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1070        edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1071        edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1072        edev->stats.mac_filter_discards = stats.mac_filter_discards;
1073
1074        edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1075        edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1076        edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1077        edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1078        edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1079        edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1080        edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1081        edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1082        edev->stats.coalesced_events = stats.tpa_coalesced_events;
1083        edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1084        edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1085        edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1086
1087        edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1088        edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1089        edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1090        edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1091        edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1092        edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1093        edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1094        edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1095        edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1096        edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1097        edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1098        edev->stats.rx_crc_errors = stats.rx_crc_errors;
1099        edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1100        edev->stats.rx_pause_frames = stats.rx_pause_frames;
1101        edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1102        edev->stats.rx_align_errors = stats.rx_align_errors;
1103        edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1104        edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1105        edev->stats.rx_jabbers = stats.rx_jabbers;
1106        edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1107        edev->stats.rx_fragments = stats.rx_fragments;
1108        edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1109        edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1110        edev->stats.tx_128_to_255_byte_packets =
1111                                stats.tx_128_to_255_byte_packets;
1112        edev->stats.tx_256_to_511_byte_packets =
1113                                stats.tx_256_to_511_byte_packets;
1114        edev->stats.tx_512_to_1023_byte_packets =
1115                                stats.tx_512_to_1023_byte_packets;
1116        edev->stats.tx_1024_to_1518_byte_packets =
1117                                stats.tx_1024_to_1518_byte_packets;
1118        edev->stats.tx_1519_to_2047_byte_packets =
1119                                stats.tx_1519_to_2047_byte_packets;
1120        edev->stats.tx_2048_to_4095_byte_packets =
1121                                stats.tx_2048_to_4095_byte_packets;
1122        edev->stats.tx_4096_to_9216_byte_packets =
1123                                stats.tx_4096_to_9216_byte_packets;
1124        edev->stats.tx_9217_to_16383_byte_packets =
1125                                stats.tx_9217_to_16383_byte_packets;
1126        edev->stats.tx_pause_frames = stats.tx_pause_frames;
1127        edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1128        edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1129        edev->stats.tx_total_collisions = stats.tx_total_collisions;
1130        edev->stats.brb_truncates = stats.brb_truncates;
1131        edev->stats.brb_discards = stats.brb_discards;
1132        edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1133}
1134
1135static struct rtnl_link_stats64 *qede_get_stats64(
1136                            struct net_device *dev,
1137                            struct rtnl_link_stats64 *stats)
1138{
1139        struct qede_dev *edev = netdev_priv(dev);
1140
1141        qede_fill_by_demand_stats(edev);
1142
1143        stats->rx_packets = edev->stats.rx_ucast_pkts +
1144                            edev->stats.rx_mcast_pkts +
1145                            edev->stats.rx_bcast_pkts;
1146        stats->tx_packets = edev->stats.tx_ucast_pkts +
1147                            edev->stats.tx_mcast_pkts +
1148                            edev->stats.tx_bcast_pkts;
1149
1150        stats->rx_bytes = edev->stats.rx_ucast_bytes +
1151                          edev->stats.rx_mcast_bytes +
1152                          edev->stats.rx_bcast_bytes;
1153
1154        stats->tx_bytes = edev->stats.tx_ucast_bytes +
1155                          edev->stats.tx_mcast_bytes +
1156                          edev->stats.tx_bcast_bytes;
1157
1158        stats->tx_errors = edev->stats.tx_err_drop_pkts;
1159        stats->multicast = edev->stats.rx_mcast_pkts +
1160                           edev->stats.rx_bcast_pkts;
1161
1162        stats->rx_fifo_errors = edev->stats.no_buff_discards;
1163
1164        stats->collisions = edev->stats.tx_total_collisions;
1165        stats->rx_crc_errors = edev->stats.rx_crc_errors;
1166        stats->rx_frame_errors = edev->stats.rx_align_errors;
1167
1168        return stats;
1169}
1170
1171static const struct net_device_ops qede_netdev_ops = {
1172        .ndo_open = qede_open,
1173        .ndo_stop = qede_close,
1174        .ndo_start_xmit = qede_start_xmit,
1175        .ndo_set_rx_mode = qede_set_rx_mode,
1176        .ndo_set_mac_address = qede_set_mac_addr,
1177        .ndo_validate_addr = eth_validate_addr,
1178        .ndo_change_mtu = qede_change_mtu,
1179        .ndo_get_stats64 = qede_get_stats64,
1180};
1181
1182/* -------------------------------------------------------------------------
1183 * START OF PROBE / REMOVE
1184 * -------------------------------------------------------------------------
1185 */
1186
1187static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1188                                            struct pci_dev *pdev,
1189                                            struct qed_dev_eth_info *info,
1190                                            u32 dp_module,
1191                                            u8 dp_level)
1192{
1193        struct net_device *ndev;
1194        struct qede_dev *edev;
1195
1196        ndev = alloc_etherdev_mqs(sizeof(*edev),
1197                                  info->num_queues,
1198                                  info->num_queues);
1199        if (!ndev) {
1200                pr_err("etherdev allocation failed\n");
1201                return NULL;
1202        }
1203
1204        edev = netdev_priv(ndev);
1205        edev->ndev = ndev;
1206        edev->cdev = cdev;
1207        edev->pdev = pdev;
1208        edev->dp_module = dp_module;
1209        edev->dp_level = dp_level;
1210        edev->ops = qed_ops;
1211        edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1212        edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
1213
1214        DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
1215
1216        SET_NETDEV_DEV(ndev, &pdev->dev);
1217
1218        memset(&edev->stats, 0, sizeof(edev->stats));
1219        memcpy(&edev->dev_info, info, sizeof(*info));
1220
1221        edev->num_tc = edev->dev_info.num_tc;
1222
1223        return edev;
1224}
1225
1226static void qede_init_ndev(struct qede_dev *edev)
1227{
1228        struct net_device *ndev = edev->ndev;
1229        struct pci_dev *pdev = edev->pdev;
1230        u32 hw_features;
1231
1232        pci_set_drvdata(pdev, ndev);
1233
1234        ndev->mem_start = edev->dev_info.common.pci_mem_start;
1235        ndev->base_addr = ndev->mem_start;
1236        ndev->mem_end = edev->dev_info.common.pci_mem_end;
1237        ndev->irq = edev->dev_info.common.pci_irq;
1238
1239        ndev->watchdog_timeo = TX_TIMEOUT;
1240
1241        ndev->netdev_ops = &qede_netdev_ops;
1242
1243        qede_set_ethtool_ops(ndev);
1244
1245        /* user-changeble features */
1246        hw_features = NETIF_F_GRO | NETIF_F_SG |
1247                      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1248                      NETIF_F_TSO | NETIF_F_TSO6;
1249
1250        ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1251                              NETIF_F_HIGHDMA;
1252        ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1253                         NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1254                         NETIF_F_HW_VLAN_CTAG_TX;
1255
1256        ndev->hw_features = hw_features;
1257
1258        /* Set network device HW mac */
1259        ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
1260}
1261
1262/* This function converts from 32b param to two params of level and module
1263 * Input 32b decoding:
1264 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1265 * 'happy' flow, e.g. memory allocation failed.
1266 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1267 * and provide important parameters.
1268 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1269 * module. VERBOSE prints are for tracking the specific flow in low level.
1270 *
1271 * Notice that the level should be that of the lowest required logs.
1272 */
1273void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
1274{
1275        *p_dp_level = QED_LEVEL_NOTICE;
1276        *p_dp_module = 0;
1277
1278        if (debug & QED_LOG_VERBOSE_MASK) {
1279                *p_dp_level = QED_LEVEL_VERBOSE;
1280                *p_dp_module = (debug & 0x3FFFFFFF);
1281        } else if (debug & QED_LOG_INFO_MASK) {
1282                *p_dp_level = QED_LEVEL_INFO;
1283        } else if (debug & QED_LOG_NOTICE_MASK) {
1284                *p_dp_level = QED_LEVEL_NOTICE;
1285        }
1286}
1287
1288static void qede_free_fp_array(struct qede_dev *edev)
1289{
1290        if (edev->fp_array) {
1291                struct qede_fastpath *fp;
1292                int i;
1293
1294                for_each_rss(i) {
1295                        fp = &edev->fp_array[i];
1296
1297                        kfree(fp->sb_info);
1298                        kfree(fp->rxq);
1299                        kfree(fp->txqs);
1300                }
1301                kfree(edev->fp_array);
1302        }
1303        edev->num_rss = 0;
1304}
1305
1306static int qede_alloc_fp_array(struct qede_dev *edev)
1307{
1308        struct qede_fastpath *fp;
1309        int i;
1310
1311        edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
1312                                 sizeof(*edev->fp_array), GFP_KERNEL);
1313        if (!edev->fp_array) {
1314                DP_NOTICE(edev, "fp array allocation failed\n");
1315                goto err;
1316        }
1317
1318        for_each_rss(i) {
1319                fp = &edev->fp_array[i];
1320
1321                fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
1322                if (!fp->sb_info) {
1323                        DP_NOTICE(edev, "sb info struct allocation failed\n");
1324                        goto err;
1325                }
1326
1327                fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
1328                if (!fp->rxq) {
1329                        DP_NOTICE(edev, "RXQ struct allocation failed\n");
1330                        goto err;
1331                }
1332
1333                fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
1334                if (!fp->txqs) {
1335                        DP_NOTICE(edev, "TXQ array allocation failed\n");
1336                        goto err;
1337                }
1338        }
1339
1340        return 0;
1341err:
1342        qede_free_fp_array(edev);
1343        return -ENOMEM;
1344}
1345
1346static void qede_sp_task(struct work_struct *work)
1347{
1348        struct qede_dev *edev = container_of(work, struct qede_dev,
1349                                             sp_task.work);
1350        mutex_lock(&edev->qede_lock);
1351
1352        if (edev->state == QEDE_STATE_OPEN) {
1353                if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1354                        qede_config_rx_mode(edev->ndev);
1355        }
1356
1357        mutex_unlock(&edev->qede_lock);
1358}
1359
1360static void qede_update_pf_params(struct qed_dev *cdev)
1361{
1362        struct qed_pf_params pf_params;
1363
1364        /* 16 rx + 16 tx */
1365        memset(&pf_params, 0, sizeof(struct qed_pf_params));
1366        pf_params.eth_pf_params.num_cons = 32;
1367        qed_ops->common->update_pf_params(cdev, &pf_params);
1368}
1369
1370enum qede_probe_mode {
1371        QEDE_PROBE_NORMAL,
1372};
1373
1374static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1375                        enum qede_probe_mode mode)
1376{
1377        struct qed_slowpath_params params;
1378        struct qed_dev_eth_info dev_info;
1379        struct qede_dev *edev;
1380        struct qed_dev *cdev;
1381        int rc;
1382
1383        if (unlikely(dp_level & QED_LEVEL_INFO))
1384                pr_notice("Starting qede probe\n");
1385
1386        cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
1387                                      dp_module, dp_level);
1388        if (!cdev) {
1389                rc = -ENODEV;
1390                goto err0;
1391        }
1392
1393        qede_update_pf_params(cdev);
1394
1395        /* Start the Slowpath-process */
1396        memset(&params, 0, sizeof(struct qed_slowpath_params));
1397        params.int_mode = QED_INT_MODE_MSIX;
1398        params.drv_major = QEDE_MAJOR_VERSION;
1399        params.drv_minor = QEDE_MINOR_VERSION;
1400        params.drv_rev = QEDE_REVISION_VERSION;
1401        params.drv_eng = QEDE_ENGINEERING_VERSION;
1402        strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1403        rc = qed_ops->common->slowpath_start(cdev, &params);
1404        if (rc) {
1405                pr_notice("Cannot start slowpath\n");
1406                goto err1;
1407        }
1408
1409        /* Learn information crucial for qede to progress */
1410        rc = qed_ops->fill_dev_info(cdev, &dev_info);
1411        if (rc)
1412                goto err2;
1413
1414        edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1415                                   dp_level);
1416        if (!edev) {
1417                rc = -ENOMEM;
1418                goto err2;
1419        }
1420
1421        qede_init_ndev(edev);
1422
1423        rc = register_netdev(edev->ndev);
1424        if (rc) {
1425                DP_NOTICE(edev, "Cannot register net-device\n");
1426                goto err3;
1427        }
1428
1429        edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
1430
1431        edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1432
1433        INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1434        mutex_init(&edev->qede_lock);
1435
1436        DP_INFO(edev, "Ending successfully qede probe\n");
1437
1438        return 0;
1439
1440err3:
1441        free_netdev(edev->ndev);
1442err2:
1443        qed_ops->common->slowpath_stop(cdev);
1444err1:
1445        qed_ops->common->remove(cdev);
1446err0:
1447        return rc;
1448}
1449
1450static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1451{
1452        u32 dp_module = 0;
1453        u8 dp_level = 0;
1454
1455        qede_config_debug(debug, &dp_module, &dp_level);
1456
1457        return __qede_probe(pdev, dp_module, dp_level,
1458                            QEDE_PROBE_NORMAL);
1459}
1460
1461enum qede_remove_mode {
1462        QEDE_REMOVE_NORMAL,
1463};
1464
1465static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1466{
1467        struct net_device *ndev = pci_get_drvdata(pdev);
1468        struct qede_dev *edev = netdev_priv(ndev);
1469        struct qed_dev *cdev = edev->cdev;
1470
1471        DP_INFO(edev, "Starting qede_remove\n");
1472
1473        cancel_delayed_work_sync(&edev->sp_task);
1474        unregister_netdev(ndev);
1475
1476        edev->ops->common->set_power_state(cdev, PCI_D0);
1477
1478        pci_set_drvdata(pdev, NULL);
1479
1480        free_netdev(ndev);
1481
1482        /* Use global ops since we've freed edev */
1483        qed_ops->common->slowpath_stop(cdev);
1484        qed_ops->common->remove(cdev);
1485
1486        pr_notice("Ending successfully qede_remove\n");
1487}
1488
1489static void qede_remove(struct pci_dev *pdev)
1490{
1491        __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1492}
1493
1494/* -------------------------------------------------------------------------
1495 * START OF LOAD / UNLOAD
1496 * -------------------------------------------------------------------------
1497 */
1498
1499static int qede_set_num_queues(struct qede_dev *edev)
1500{
1501        int rc;
1502        u16 rss_num;
1503
1504        /* Setup queues according to possible resources*/
1505        rss_num = netif_get_num_default_rss_queues() *
1506                  edev->dev_info.common.num_hwfns;
1507
1508        rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1509
1510        rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1511        if (rc > 0) {
1512                /* Managed to request interrupts for our queues */
1513                edev->num_rss = rc;
1514                DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1515                        QEDE_RSS_CNT(edev), rss_num);
1516                rc = 0;
1517        }
1518        return rc;
1519}
1520
1521static void qede_free_mem_sb(struct qede_dev *edev,
1522                             struct qed_sb_info *sb_info)
1523{
1524        if (sb_info->sb_virt)
1525                dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1526                                  (void *)sb_info->sb_virt, sb_info->sb_phys);
1527}
1528
1529/* This function allocates fast-path status block memory */
1530static int qede_alloc_mem_sb(struct qede_dev *edev,
1531                             struct qed_sb_info *sb_info,
1532                             u16 sb_id)
1533{
1534        struct status_block *sb_virt;
1535        dma_addr_t sb_phys;
1536        int rc;
1537
1538        sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1539                                     sizeof(*sb_virt),
1540                                     &sb_phys, GFP_KERNEL);
1541        if (!sb_virt) {
1542                DP_ERR(edev, "Status block allocation failed\n");
1543                return -ENOMEM;
1544        }
1545
1546        rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1547                                        sb_virt, sb_phys, sb_id,
1548                                        QED_SB_TYPE_L2_QUEUE);
1549        if (rc) {
1550                DP_ERR(edev, "Status block initialization failed\n");
1551                dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1552                                  sb_virt, sb_phys);
1553                return rc;
1554        }
1555
1556        return 0;
1557}
1558
1559static void qede_free_rx_buffers(struct qede_dev *edev,
1560                                 struct qede_rx_queue *rxq)
1561{
1562        u16 i;
1563
1564        for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1565                struct sw_rx_data *rx_buf;
1566                u8 *data;
1567
1568                rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1569                data = rx_buf->data;
1570
1571                dma_unmap_single(&edev->pdev->dev,
1572                                 dma_unmap_addr(rx_buf, mapping),
1573                                 rxq->rx_buf_size, DMA_FROM_DEVICE);
1574
1575                rx_buf->data = NULL;
1576                kfree(data);
1577        }
1578}
1579
1580static void qede_free_mem_rxq(struct qede_dev *edev,
1581                              struct qede_rx_queue *rxq)
1582{
1583        /* Free rx buffers */
1584        qede_free_rx_buffers(edev, rxq);
1585
1586        /* Free the parallel SW ring */
1587        kfree(rxq->sw_rx_ring);
1588
1589        /* Free the real RQ ring used by FW */
1590        edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1591        edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1592}
1593
1594static int qede_alloc_rx_buffer(struct qede_dev *edev,
1595                                struct qede_rx_queue *rxq)
1596{
1597        struct sw_rx_data *sw_rx_data;
1598        struct eth_rx_bd *rx_bd;
1599        dma_addr_t mapping;
1600        u16 rx_buf_size;
1601        u8 *data;
1602
1603        rx_buf_size = rxq->rx_buf_size;
1604
1605        data = kmalloc(rx_buf_size, GFP_ATOMIC);
1606        if (unlikely(!data)) {
1607                DP_NOTICE(edev, "Failed to allocate Rx data\n");
1608                return -ENOMEM;
1609        }
1610
1611        mapping = dma_map_single(&edev->pdev->dev, data,
1612                                 rx_buf_size, DMA_FROM_DEVICE);
1613        if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1614                kfree(data);
1615                DP_NOTICE(edev, "Failed to map Rx buffer\n");
1616                return -ENOMEM;
1617        }
1618
1619        sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1620        sw_rx_data->data = data;
1621
1622        dma_unmap_addr_set(sw_rx_data, mapping, mapping);
1623
1624        /* Advance PROD and get BD pointer */
1625        rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
1626        WARN_ON(!rx_bd);
1627        rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1628        rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1629
1630        rxq->sw_rx_prod++;
1631
1632        return 0;
1633}
1634
1635/* This function allocates all memory needed per Rx queue */
1636static int qede_alloc_mem_rxq(struct qede_dev *edev,
1637                              struct qede_rx_queue *rxq)
1638{
1639        int i, rc, size, num_allocated;
1640
1641        rxq->num_rx_buffers = edev->q_num_rx_buffers;
1642
1643        rxq->rx_buf_size = NET_IP_ALIGN +
1644                           ETH_OVERHEAD +
1645                           edev->ndev->mtu +
1646                           QEDE_FW_RX_ALIGN_END;
1647
1648        /* Allocate the parallel driver ring for Rx buffers */
1649        size = sizeof(*rxq->sw_rx_ring) * NUM_RX_BDS_MAX;
1650        rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1651        if (!rxq->sw_rx_ring) {
1652                DP_ERR(edev, "Rx buffers ring allocation failed\n");
1653                goto err;
1654        }
1655
1656        /* Allocate FW Rx ring  */
1657        rc = edev->ops->common->chain_alloc(edev->cdev,
1658                                            QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1659                                            QED_CHAIN_MODE_NEXT_PTR,
1660                                            NUM_RX_BDS_MAX,
1661                                            sizeof(struct eth_rx_bd),
1662                                            &rxq->rx_bd_ring);
1663
1664        if (rc)
1665                goto err;
1666
1667        /* Allocate FW completion ring */
1668        rc = edev->ops->common->chain_alloc(edev->cdev,
1669                                            QED_CHAIN_USE_TO_CONSUME,
1670                                            QED_CHAIN_MODE_PBL,
1671                                            NUM_RX_BDS_MAX,
1672                                            sizeof(union eth_rx_cqe),
1673                                            &rxq->rx_comp_ring);
1674        if (rc)
1675                goto err;
1676
1677        /* Allocate buffers for the Rx ring */
1678        for (i = 0; i < rxq->num_rx_buffers; i++) {
1679                rc = qede_alloc_rx_buffer(edev, rxq);
1680                if (rc)
1681                        break;
1682        }
1683        num_allocated = i;
1684        if (!num_allocated) {
1685                DP_ERR(edev, "Rx buffers allocation failed\n");
1686                goto err;
1687        } else if (num_allocated < rxq->num_rx_buffers) {
1688                DP_NOTICE(edev,
1689                          "Allocated less buffers than desired (%d allocated)\n",
1690                          num_allocated);
1691        }
1692
1693        return 0;
1694
1695err:
1696        qede_free_mem_rxq(edev, rxq);
1697        return -ENOMEM;
1698}
1699
1700static void qede_free_mem_txq(struct qede_dev *edev,
1701                              struct qede_tx_queue *txq)
1702{
1703        /* Free the parallel SW ring */
1704        kfree(txq->sw_tx_ring);
1705
1706        /* Free the real RQ ring used by FW */
1707        edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1708}
1709
1710/* This function allocates all memory needed per Tx queue */
1711static int qede_alloc_mem_txq(struct qede_dev *edev,
1712                              struct qede_tx_queue *txq)
1713{
1714        int size, rc;
1715        union eth_tx_bd_types *p_virt;
1716
1717        txq->num_tx_buffers = edev->q_num_tx_buffers;
1718
1719        /* Allocate the parallel driver ring for Tx buffers */
1720        size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
1721        txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
1722        if (!txq->sw_tx_ring) {
1723                DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
1724                goto err;
1725        }
1726
1727        rc = edev->ops->common->chain_alloc(edev->cdev,
1728                                            QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1729                                            QED_CHAIN_MODE_PBL,
1730                                            NUM_TX_BDS_MAX,
1731                                            sizeof(*p_virt),
1732                                            &txq->tx_pbl);
1733        if (rc)
1734                goto err;
1735
1736        return 0;
1737
1738err:
1739        qede_free_mem_txq(edev, txq);
1740        return -ENOMEM;
1741}
1742
1743/* This function frees all memory of a single fp */
1744static void qede_free_mem_fp(struct qede_dev *edev,
1745                             struct qede_fastpath *fp)
1746{
1747        int tc;
1748
1749        qede_free_mem_sb(edev, fp->sb_info);
1750
1751        qede_free_mem_rxq(edev, fp->rxq);
1752
1753        for (tc = 0; tc < edev->num_tc; tc++)
1754                qede_free_mem_txq(edev, &fp->txqs[tc]);
1755}
1756
1757/* This function allocates all memory needed for a single fp (i.e. an entity
1758 * which contains status block, one rx queue and multiple per-TC tx queues.
1759 */
1760static int qede_alloc_mem_fp(struct qede_dev *edev,
1761                             struct qede_fastpath *fp)
1762{
1763        int rc, tc;
1764
1765        rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
1766        if (rc)
1767                goto err;
1768
1769        rc = qede_alloc_mem_rxq(edev, fp->rxq);
1770        if (rc)
1771                goto err;
1772
1773        for (tc = 0; tc < edev->num_tc; tc++) {
1774                rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
1775                if (rc)
1776                        goto err;
1777        }
1778
1779        return 0;
1780
1781err:
1782        qede_free_mem_fp(edev, fp);
1783        return -ENOMEM;
1784}
1785
1786static void qede_free_mem_load(struct qede_dev *edev)
1787{
1788        int i;
1789
1790        for_each_rss(i) {
1791                struct qede_fastpath *fp = &edev->fp_array[i];
1792
1793                qede_free_mem_fp(edev, fp);
1794        }
1795}
1796
1797/* This function allocates all qede memory at NIC load. */
1798static int qede_alloc_mem_load(struct qede_dev *edev)
1799{
1800        int rc = 0, rss_id;
1801
1802        for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
1803                struct qede_fastpath *fp = &edev->fp_array[rss_id];
1804
1805                rc = qede_alloc_mem_fp(edev, fp);
1806                if (rc)
1807                        break;
1808        }
1809
1810        if (rss_id != QEDE_RSS_CNT(edev)) {
1811                /* Failed allocating memory for all the queues */
1812                if (!rss_id) {
1813                        DP_ERR(edev,
1814                               "Failed to allocate memory for the leading queue\n");
1815                        rc = -ENOMEM;
1816                } else {
1817                        DP_NOTICE(edev,
1818                                  "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
1819                                  QEDE_RSS_CNT(edev), rss_id);
1820                }
1821                edev->num_rss = rss_id;
1822        }
1823
1824        return 0;
1825}
1826
1827/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1828static void qede_init_fp(struct qede_dev *edev)
1829{
1830        int rss_id, txq_index, tc;
1831        struct qede_fastpath *fp;
1832
1833        for_each_rss(rss_id) {
1834                fp = &edev->fp_array[rss_id];
1835
1836                fp->edev = edev;
1837                fp->rss_id = rss_id;
1838
1839                memset((void *)&fp->napi, 0, sizeof(fp->napi));
1840
1841                memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
1842
1843                memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
1844                fp->rxq->rxq_id = rss_id;
1845
1846                memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
1847                for (tc = 0; tc < edev->num_tc; tc++) {
1848                        txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
1849                        fp->txqs[tc].index = txq_index;
1850                }
1851
1852                snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1853                         edev->ndev->name, rss_id);
1854        }
1855}
1856
1857static int qede_set_real_num_queues(struct qede_dev *edev)
1858{
1859        int rc = 0;
1860
1861        rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
1862        if (rc) {
1863                DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1864                return rc;
1865        }
1866        rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
1867        if (rc) {
1868                DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1869                return rc;
1870        }
1871
1872        return 0;
1873}
1874
1875static void qede_napi_disable_remove(struct qede_dev *edev)
1876{
1877        int i;
1878
1879        for_each_rss(i) {
1880                napi_disable(&edev->fp_array[i].napi);
1881
1882                netif_napi_del(&edev->fp_array[i].napi);
1883        }
1884}
1885
1886static void qede_napi_add_enable(struct qede_dev *edev)
1887{
1888        int i;
1889
1890        /* Add NAPI objects */
1891        for_each_rss(i) {
1892                netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1893                               qede_poll, NAPI_POLL_WEIGHT);
1894                napi_enable(&edev->fp_array[i].napi);
1895        }
1896}
1897
1898static void qede_sync_free_irqs(struct qede_dev *edev)
1899{
1900        int i;
1901
1902        for (i = 0; i < edev->int_info.used_cnt; i++) {
1903                if (edev->int_info.msix_cnt) {
1904                        synchronize_irq(edev->int_info.msix[i].vector);
1905                        free_irq(edev->int_info.msix[i].vector,
1906                                 &edev->fp_array[i]);
1907                } else {
1908                        edev->ops->common->simd_handler_clean(edev->cdev, i);
1909                }
1910        }
1911
1912        edev->int_info.used_cnt = 0;
1913}
1914
1915static int qede_req_msix_irqs(struct qede_dev *edev)
1916{
1917        int i, rc;
1918
1919        /* Sanitize number of interrupts == number of prepared RSS queues */
1920        if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
1921                DP_ERR(edev,
1922                       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1923                       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
1924                return -EINVAL;
1925        }
1926
1927        for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
1928                rc = request_irq(edev->int_info.msix[i].vector,
1929                                 qede_msix_fp_int, 0, edev->fp_array[i].name,
1930                                 &edev->fp_array[i]);
1931                if (rc) {
1932                        DP_ERR(edev, "Request fp %d irq failed\n", i);
1933                        qede_sync_free_irqs(edev);
1934                        return rc;
1935                }
1936                DP_VERBOSE(edev, NETIF_MSG_INTR,
1937                           "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1938                           edev->fp_array[i].name, i,
1939                           &edev->fp_array[i]);
1940                edev->int_info.used_cnt++;
1941        }
1942
1943        return 0;
1944}
1945
1946static void qede_simd_fp_handler(void *cookie)
1947{
1948        struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1949
1950        napi_schedule_irqoff(&fp->napi);
1951}
1952
1953static int qede_setup_irqs(struct qede_dev *edev)
1954{
1955        int i, rc = 0;
1956
1957        /* Learn Interrupt configuration */
1958        rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1959        if (rc)
1960                return rc;
1961
1962        if (edev->int_info.msix_cnt) {
1963                rc = qede_req_msix_irqs(edev);
1964                if (rc)
1965                        return rc;
1966                edev->ndev->irq = edev->int_info.msix[0].vector;
1967        } else {
1968                const struct qed_common_ops *ops;
1969
1970                /* qed should learn receive the RSS ids and callbacks */
1971                ops = edev->ops->common;
1972                for (i = 0; i < QEDE_RSS_CNT(edev); i++)
1973                        ops->simd_handler_config(edev->cdev,
1974                                                 &edev->fp_array[i], i,
1975                                                 qede_simd_fp_handler);
1976                edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
1977        }
1978        return 0;
1979}
1980
1981static int qede_drain_txq(struct qede_dev *edev,
1982                          struct qede_tx_queue *txq,
1983                          bool allow_drain)
1984{
1985        int rc, cnt = 1000;
1986
1987        while (txq->sw_tx_cons != txq->sw_tx_prod) {
1988                if (!cnt) {
1989                        if (allow_drain) {
1990                                DP_NOTICE(edev,
1991                                          "Tx queue[%d] is stuck, requesting MCP to drain\n",
1992                                          txq->index);
1993                                rc = edev->ops->common->drain(edev->cdev);
1994                                if (rc)
1995                                        return rc;
1996                                return qede_drain_txq(edev, txq, false);
1997                        }
1998                        DP_NOTICE(edev,
1999                                  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2000                                  txq->index, txq->sw_tx_prod,
2001                                  txq->sw_tx_cons);
2002                        return -ENODEV;
2003                }
2004                cnt--;
2005                usleep_range(1000, 2000);
2006                barrier();
2007        }
2008
2009        /* FW finished processing, wait for HW to transmit all tx packets */
2010        usleep_range(1000, 2000);
2011
2012        return 0;
2013}
2014
2015static int qede_stop_queues(struct qede_dev *edev)
2016{
2017        struct qed_update_vport_params vport_update_params;
2018        struct qed_dev *cdev = edev->cdev;
2019        int rc, tc, i;
2020
2021        /* Disable the vport */
2022        memset(&vport_update_params, 0, sizeof(vport_update_params));
2023        vport_update_params.vport_id = 0;
2024        vport_update_params.update_vport_active_flg = 1;
2025        vport_update_params.vport_active_flg = 0;
2026        vport_update_params.update_rss_flg = 0;
2027
2028        rc = edev->ops->vport_update(cdev, &vport_update_params);
2029        if (rc) {
2030                DP_ERR(edev, "Failed to update vport\n");
2031                return rc;
2032        }
2033
2034        /* Flush Tx queues. If needed, request drain from MCP */
2035        for_each_rss(i) {
2036                struct qede_fastpath *fp = &edev->fp_array[i];
2037
2038                for (tc = 0; tc < edev->num_tc; tc++) {
2039                        struct qede_tx_queue *txq = &fp->txqs[tc];
2040
2041                        rc = qede_drain_txq(edev, txq, true);
2042                        if (rc)
2043                                return rc;
2044                }
2045        }
2046
2047        /* Stop all Queues in reverse order*/
2048        for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2049                struct qed_stop_rxq_params rx_params;
2050
2051                /* Stop the Tx Queue(s)*/
2052                for (tc = 0; tc < edev->num_tc; tc++) {
2053                        struct qed_stop_txq_params tx_params;
2054
2055                        tx_params.rss_id = i;
2056                        tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2057                        rc = edev->ops->q_tx_stop(cdev, &tx_params);
2058                        if (rc) {
2059                                DP_ERR(edev, "Failed to stop TXQ #%d\n",
2060                                       tx_params.tx_queue_id);
2061                                return rc;
2062                        }
2063                }
2064
2065                /* Stop the Rx Queue*/
2066                memset(&rx_params, 0, sizeof(rx_params));
2067                rx_params.rss_id = i;
2068                rx_params.rx_queue_id = i;
2069
2070                rc = edev->ops->q_rx_stop(cdev, &rx_params);
2071                if (rc) {
2072                        DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2073                        return rc;
2074                }
2075        }
2076
2077        /* Stop the vport */
2078        rc = edev->ops->vport_stop(cdev, 0);
2079        if (rc)
2080                DP_ERR(edev, "Failed to stop VPORT\n");
2081
2082        return rc;
2083}
2084
2085static int qede_start_queues(struct qede_dev *edev)
2086{
2087        int rc, tc, i;
2088        int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1;
2089        struct qed_dev *cdev = edev->cdev;
2090        struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2091        struct qed_update_vport_params vport_update_params;
2092        struct qed_queue_start_common_params q_params;
2093
2094        if (!edev->num_rss) {
2095                DP_ERR(edev,
2096                       "Cannot update V-VPORT as active as there are no Rx queues\n");
2097                return -EINVAL;
2098        }
2099
2100        rc = edev->ops->vport_start(cdev, vport_id,
2101                                    edev->ndev->mtu,
2102                                    drop_ttl0_flg,
2103                                    vlan_removal_en);
2104
2105        if (rc) {
2106                DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2107                return rc;
2108        }
2109
2110        DP_VERBOSE(edev, NETIF_MSG_IFUP,
2111                   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2112                   vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2113
2114        for_each_rss(i) {
2115                struct qede_fastpath *fp = &edev->fp_array[i];
2116                dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2117
2118                memset(&q_params, 0, sizeof(q_params));
2119                q_params.rss_id = i;
2120                q_params.queue_id = i;
2121                q_params.vport_id = 0;
2122                q_params.sb = fp->sb_info->igu_sb_id;
2123                q_params.sb_idx = RX_PI;
2124
2125                rc = edev->ops->q_rx_start(cdev, &q_params,
2126                                           fp->rxq->rx_buf_size,
2127                                           fp->rxq->rx_bd_ring.p_phys_addr,
2128                                           phys_table,
2129                                           fp->rxq->rx_comp_ring.page_cnt,
2130                                           &fp->rxq->hw_rxq_prod_addr);
2131                if (rc) {
2132                        DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2133                        return rc;
2134                }
2135
2136                fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2137
2138                qede_update_rx_prod(edev, fp->rxq);
2139
2140                for (tc = 0; tc < edev->num_tc; tc++) {
2141                        struct qede_tx_queue *txq = &fp->txqs[tc];
2142                        int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2143
2144                        memset(&q_params, 0, sizeof(q_params));
2145                        q_params.rss_id = i;
2146                        q_params.queue_id = txq_index;
2147                        q_params.vport_id = 0;
2148                        q_params.sb = fp->sb_info->igu_sb_id;
2149                        q_params.sb_idx = TX_PI(tc);
2150
2151                        rc = edev->ops->q_tx_start(cdev, &q_params,
2152                                                   txq->tx_pbl.pbl.p_phys_table,
2153                                                   txq->tx_pbl.page_cnt,
2154                                                   &txq->doorbell_addr);
2155                        if (rc) {
2156                                DP_ERR(edev, "Start TXQ #%d failed %d\n",
2157                                       txq_index, rc);
2158                                return rc;
2159                        }
2160
2161                        txq->hw_cons_ptr =
2162                                &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2163                        SET_FIELD(txq->tx_db.data.params,
2164                                  ETH_DB_DATA_DEST, DB_DEST_XCM);
2165                        SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2166                                  DB_AGG_CMD_SET);
2167                        SET_FIELD(txq->tx_db.data.params,
2168                                  ETH_DB_DATA_AGG_VAL_SEL,
2169                                  DQ_XCM_ETH_TX_BD_PROD_CMD);
2170
2171                        txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2172                }
2173        }
2174
2175        /* Prepare and send the vport enable */
2176        memset(&vport_update_params, 0, sizeof(vport_update_params));
2177        vport_update_params.vport_id = vport_id;
2178        vport_update_params.update_vport_active_flg = 1;
2179        vport_update_params.vport_active_flg = 1;
2180
2181        /* Fill struct with RSS params */
2182        if (QEDE_RSS_CNT(edev) > 1) {
2183                vport_update_params.update_rss_flg = 1;
2184                for (i = 0; i < 128; i++)
2185                        rss_params->rss_ind_table[i] =
2186                        ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2187                netdev_rss_key_fill(rss_params->rss_key,
2188                                    sizeof(rss_params->rss_key));
2189        } else {
2190                memset(rss_params, 0, sizeof(*rss_params));
2191        }
2192        memcpy(&vport_update_params.rss_params, rss_params,
2193               sizeof(*rss_params));
2194
2195        rc = edev->ops->vport_update(cdev, &vport_update_params);
2196        if (rc) {
2197                DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2198                return rc;
2199        }
2200
2201        return 0;
2202}
2203
2204static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2205                                 enum qed_filter_xcast_params_type opcode,
2206                                 unsigned char *mac, int num_macs)
2207{
2208        struct qed_filter_params filter_cmd;
2209        int i;
2210
2211        memset(&filter_cmd, 0, sizeof(filter_cmd));
2212        filter_cmd.type = QED_FILTER_TYPE_MCAST;
2213        filter_cmd.filter.mcast.type = opcode;
2214        filter_cmd.filter.mcast.num = num_macs;
2215
2216        for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
2217                ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
2218
2219        return edev->ops->filter_config(edev->cdev, &filter_cmd);
2220}
2221
2222enum qede_unload_mode {
2223        QEDE_UNLOAD_NORMAL,
2224};
2225
2226static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
2227{
2228        struct qed_link_params link_params;
2229        int rc;
2230
2231        DP_INFO(edev, "Starting qede unload\n");
2232
2233        mutex_lock(&edev->qede_lock);
2234        edev->state = QEDE_STATE_CLOSED;
2235
2236        /* Close OS Tx */
2237        netif_tx_disable(edev->ndev);
2238        netif_carrier_off(edev->ndev);
2239
2240        /* Reset the link */
2241        memset(&link_params, 0, sizeof(link_params));
2242        link_params.link_up = false;
2243        edev->ops->common->set_link(edev->cdev, &link_params);
2244        rc = qede_stop_queues(edev);
2245        if (rc) {
2246                qede_sync_free_irqs(edev);
2247                goto out;
2248        }
2249
2250        DP_INFO(edev, "Stopped Queues\n");
2251
2252        edev->ops->fastpath_stop(edev->cdev);
2253
2254        /* Release the interrupts */
2255        qede_sync_free_irqs(edev);
2256        edev->ops->common->set_fp_int(edev->cdev, 0);
2257
2258        qede_napi_disable_remove(edev);
2259
2260        qede_free_mem_load(edev);
2261        qede_free_fp_array(edev);
2262
2263out:
2264        mutex_unlock(&edev->qede_lock);
2265        DP_INFO(edev, "Ending qede unload\n");
2266}
2267
2268enum qede_load_mode {
2269        QEDE_LOAD_NORMAL,
2270};
2271
2272static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
2273{
2274        struct qed_link_params link_params;
2275        struct qed_link_output link_output;
2276        int rc;
2277
2278        DP_INFO(edev, "Starting qede load\n");
2279
2280        rc = qede_set_num_queues(edev);
2281        if (rc)
2282                goto err0;
2283
2284        rc = qede_alloc_fp_array(edev);
2285        if (rc)
2286                goto err0;
2287
2288        qede_init_fp(edev);
2289
2290        rc = qede_alloc_mem_load(edev);
2291        if (rc)
2292                goto err1;
2293        DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
2294                QEDE_RSS_CNT(edev), edev->num_tc);
2295
2296        rc = qede_set_real_num_queues(edev);
2297        if (rc)
2298                goto err2;
2299
2300        qede_napi_add_enable(edev);
2301        DP_INFO(edev, "Napi added and enabled\n");
2302
2303        rc = qede_setup_irqs(edev);
2304        if (rc)
2305                goto err3;
2306        DP_INFO(edev, "Setup IRQs succeeded\n");
2307
2308        rc = qede_start_queues(edev);
2309        if (rc)
2310                goto err4;
2311        DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2312
2313        /* Add primary mac and set Rx filters */
2314        ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
2315
2316        mutex_lock(&edev->qede_lock);
2317        edev->state = QEDE_STATE_OPEN;
2318        mutex_unlock(&edev->qede_lock);
2319
2320        /* Ask for link-up using current configuration */
2321        memset(&link_params, 0, sizeof(link_params));
2322        link_params.link_up = true;
2323        edev->ops->common->set_link(edev->cdev, &link_params);
2324
2325        /* Query whether link is already-up */
2326        memset(&link_output, 0, sizeof(link_output));
2327        edev->ops->common->get_link(edev->cdev, &link_output);
2328        qede_link_update(edev, &link_output);
2329
2330        DP_INFO(edev, "Ending successfully qede load\n");
2331
2332        return 0;
2333
2334err4:
2335        qede_sync_free_irqs(edev);
2336        memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2337err3:
2338        qede_napi_disable_remove(edev);
2339err2:
2340        qede_free_mem_load(edev);
2341err1:
2342        edev->ops->common->set_fp_int(edev->cdev, 0);
2343        qede_free_fp_array(edev);
2344        edev->num_rss = 0;
2345err0:
2346        return rc;
2347}
2348
2349void qede_reload(struct qede_dev *edev,
2350                 void (*func)(struct qede_dev *, union qede_reload_args *),
2351                 union qede_reload_args *args)
2352{
2353        qede_unload(edev, QEDE_UNLOAD_NORMAL);
2354        /* Call function handler to update parameters
2355         * needed for function load.
2356         */
2357        if (func)
2358                func(edev, args);
2359
2360        qede_load(edev, QEDE_LOAD_NORMAL);
2361
2362        mutex_lock(&edev->qede_lock);
2363        qede_config_rx_mode(edev->ndev);
2364        mutex_unlock(&edev->qede_lock);
2365}
2366
2367/* called with rtnl_lock */
2368static int qede_open(struct net_device *ndev)
2369{
2370        struct qede_dev *edev = netdev_priv(ndev);
2371
2372        netif_carrier_off(ndev);
2373
2374        edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2375
2376        return qede_load(edev, QEDE_LOAD_NORMAL);
2377}
2378
2379static int qede_close(struct net_device *ndev)
2380{
2381        struct qede_dev *edev = netdev_priv(ndev);
2382
2383        qede_unload(edev, QEDE_UNLOAD_NORMAL);
2384
2385        return 0;
2386}
2387
2388static void qede_link_update(void *dev, struct qed_link_output *link)
2389{
2390        struct qede_dev *edev = dev;
2391
2392        if (!netif_running(edev->ndev)) {
2393                DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2394                return;
2395        }
2396
2397        if (link->link_up) {
2398                DP_NOTICE(edev, "Link is up\n");
2399                netif_tx_start_all_queues(edev->ndev);
2400                netif_carrier_on(edev->ndev);
2401        } else {
2402                DP_NOTICE(edev, "Link is down\n");
2403                netif_tx_disable(edev->ndev);
2404                netif_carrier_off(edev->ndev);
2405        }
2406}
2407
2408static int qede_set_mac_addr(struct net_device *ndev, void *p)
2409{
2410        struct qede_dev *edev = netdev_priv(ndev);
2411        struct sockaddr *addr = p;
2412        int rc;
2413
2414        ASSERT_RTNL(); /* @@@TBD To be removed */
2415
2416        DP_INFO(edev, "Set_mac_addr called\n");
2417
2418        if (!is_valid_ether_addr(addr->sa_data)) {
2419                DP_NOTICE(edev, "The MAC address is not valid\n");
2420                return -EFAULT;
2421        }
2422
2423        ether_addr_copy(ndev->dev_addr, addr->sa_data);
2424
2425        if (!netif_running(ndev))  {
2426                DP_NOTICE(edev, "The device is currently down\n");
2427                return 0;
2428        }
2429
2430        /* Remove the previous primary mac */
2431        rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2432                                   edev->primary_mac);
2433        if (rc)
2434                return rc;
2435
2436        /* Add MAC filter according to the new unicast HW MAC address */
2437        ether_addr_copy(edev->primary_mac, ndev->dev_addr);
2438        return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2439                                      edev->primary_mac);
2440}
2441
2442static int
2443qede_configure_mcast_filtering(struct net_device *ndev,
2444                               enum qed_filter_rx_mode_type *accept_flags)
2445{
2446        struct qede_dev *edev = netdev_priv(ndev);
2447        unsigned char *mc_macs, *temp;
2448        struct netdev_hw_addr *ha;
2449        int rc = 0, mc_count;
2450        size_t size;
2451
2452        size = 64 * ETH_ALEN;
2453
2454        mc_macs = kzalloc(size, GFP_KERNEL);
2455        if (!mc_macs) {
2456                DP_NOTICE(edev,
2457                          "Failed to allocate memory for multicast MACs\n");
2458                rc = -ENOMEM;
2459                goto exit;
2460        }
2461
2462        temp = mc_macs;
2463
2464        /* Remove all previously configured MAC filters */
2465        rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2466                                   mc_macs, 1);
2467        if (rc)
2468                goto exit;
2469
2470        netif_addr_lock_bh(ndev);
2471
2472        mc_count = netdev_mc_count(ndev);
2473        if (mc_count < 64) {
2474                netdev_for_each_mc_addr(ha, ndev) {
2475                        ether_addr_copy(temp, ha->addr);
2476                        temp += ETH_ALEN;
2477                }
2478        }
2479
2480        netif_addr_unlock_bh(ndev);
2481
2482        /* Check for all multicast @@@TBD resource allocation */
2483        if ((ndev->flags & IFF_ALLMULTI) ||
2484            (mc_count > 64)) {
2485                if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
2486                        *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
2487        } else {
2488                /* Add all multicast MAC filters */
2489                rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2490                                           mc_macs, mc_count);
2491        }
2492
2493exit:
2494        kfree(mc_macs);
2495        return rc;
2496}
2497
2498static void qede_set_rx_mode(struct net_device *ndev)
2499{
2500        struct qede_dev *edev = netdev_priv(ndev);
2501
2502        DP_INFO(edev, "qede_set_rx_mode called\n");
2503
2504        if (edev->state != QEDE_STATE_OPEN) {
2505                DP_INFO(edev,
2506                        "qede_set_rx_mode called while interface is down\n");
2507        } else {
2508                set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
2509                schedule_delayed_work(&edev->sp_task, 0);
2510        }
2511}
2512
2513/* Must be called with qede_lock held */
2514static void qede_config_rx_mode(struct net_device *ndev)
2515{
2516        enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
2517        struct qede_dev *edev = netdev_priv(ndev);
2518        struct qed_filter_params rx_mode;
2519        unsigned char *uc_macs, *temp;
2520        struct netdev_hw_addr *ha;
2521        int rc, uc_count;
2522        size_t size;
2523
2524        netif_addr_lock_bh(ndev);
2525
2526        uc_count = netdev_uc_count(ndev);
2527        size = uc_count * ETH_ALEN;
2528
2529        uc_macs = kzalloc(size, GFP_ATOMIC);
2530        if (!uc_macs) {
2531                DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
2532                netif_addr_unlock_bh(ndev);
2533                return;
2534        }
2535
2536        temp = uc_macs;
2537        netdev_for_each_uc_addr(ha, ndev) {
2538                ether_addr_copy(temp, ha->addr);
2539                temp += ETH_ALEN;
2540        }
2541
2542        netif_addr_unlock_bh(ndev);
2543
2544        /* Configure the struct for the Rx mode */
2545        memset(&rx_mode, 0, sizeof(struct qed_filter_params));
2546        rx_mode.type = QED_FILTER_TYPE_RX_MODE;
2547
2548        /* Remove all previous unicast secondary macs and multicast macs
2549         * (configrue / leave the primary mac)
2550         */
2551        rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
2552                                   edev->primary_mac);
2553        if (rc)
2554                goto out;
2555
2556        /* Check for promiscuous */
2557        if ((ndev->flags & IFF_PROMISC) ||
2558            (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
2559                accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
2560        } else {
2561                /* Add MAC filters according to the unicast secondary macs */
2562                int i;
2563
2564                temp = uc_macs;
2565                for (i = 0; i < uc_count; i++) {
2566                        rc = qede_set_ucast_rx_mac(edev,
2567                                                   QED_FILTER_XCAST_TYPE_ADD,
2568                                                   temp);
2569                        if (rc)
2570                                goto out;
2571
2572                        temp += ETH_ALEN;
2573                }
2574
2575                rc = qede_configure_mcast_filtering(ndev, &accept_flags);
2576                if (rc)
2577                        goto out;
2578        }
2579
2580        rx_mode.filter.accept_flags = accept_flags;
2581        edev->ops->filter_config(edev->cdev, &rx_mode);
2582out:
2583        kfree(uc_macs);
2584}
2585