linux/drivers/net/ethernet/sfc/rx.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/socket.h>
  12#include <linux/in.h>
  13#include <linux/slab.h>
  14#include <linux/ip.h>
  15#include <linux/ipv6.h>
  16#include <linux/tcp.h>
  17#include <linux/udp.h>
  18#include <linux/prefetch.h>
  19#include <linux/moduleparam.h>
  20#include <linux/iommu.h>
  21#include <net/ip.h>
  22#include <net/checksum.h>
  23#include "net_driver.h"
  24#include "efx.h"
  25#include "filter.h"
  26#include "nic.h"
  27#include "selftest.h"
  28#include "workarounds.h"
  29
  30/* Preferred number of descriptors to fill at once */
  31#define EFX_RX_PREFERRED_BATCH 8U
  32
  33/* Number of RX buffers to recycle pages for.  When creating the RX page recycle
  34 * ring, this number is divided by the number of buffers per page to calculate
  35 * the number of pages to store in the RX page recycle ring.
  36 */
  37#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
  38#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
  39
  40/* Size of buffer allocated for skb header area. */
  41#define EFX_SKB_HEADERS  128u
  42
  43/* This is the percentage fill level below which new RX descriptors
  44 * will be added to the RX descriptor ring.
  45 */
  46static unsigned int rx_refill_threshold;
  47
  48/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
  49#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
  50                                      EFX_RX_USR_BUF_SIZE)
  51
  52/*
  53 * RX maximum head room required.
  54 *
  55 * This must be at least 1 to prevent overflow, plus one packet-worth
  56 * to allow pipelined receives.
  57 */
  58#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  59
  60static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
  61{
  62        return page_address(buf->page) + buf->page_offset;
  63}
  64
  65static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
  66{
  67#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
  68        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
  69#else
  70        const u8 *data = eh + efx->rx_packet_hash_offset;
  71        return (u32)data[0]       |
  72               (u32)data[1] << 8  |
  73               (u32)data[2] << 16 |
  74               (u32)data[3] << 24;
  75#endif
  76}
  77
  78static inline struct efx_rx_buffer *
  79efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
  80{
  81        if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
  82                return efx_rx_buffer(rx_queue, 0);
  83        else
  84                return rx_buf + 1;
  85}
  86
  87static inline void efx_sync_rx_buffer(struct efx_nic *efx,
  88                                      struct efx_rx_buffer *rx_buf,
  89                                      unsigned int len)
  90{
  91        dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
  92                                DMA_FROM_DEVICE);
  93}
  94
  95void efx_rx_config_page_split(struct efx_nic *efx)
  96{
  97        efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
  98                                      EFX_RX_BUF_ALIGNMENT);
  99        efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
 100                ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
 101                 efx->rx_page_buf_step);
 102        efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
 103                efx->rx_bufs_per_page;
 104        efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
 105                                               efx->rx_bufs_per_page);
 106}
 107
 108/* Check the RX page recycle ring for a page that can be reused. */
 109static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
 110{
 111        struct efx_nic *efx = rx_queue->efx;
 112        struct page *page;
 113        struct efx_rx_page_state *state;
 114        unsigned index;
 115
 116        index = rx_queue->page_remove & rx_queue->page_ptr_mask;
 117        page = rx_queue->page_ring[index];
 118        if (page == NULL)
 119                return NULL;
 120
 121        rx_queue->page_ring[index] = NULL;
 122        /* page_remove cannot exceed page_add. */
 123        if (rx_queue->page_remove != rx_queue->page_add)
 124                ++rx_queue->page_remove;
 125
 126        /* If page_count is 1 then we hold the only reference to this page. */
 127        if (page_count(page) == 1) {
 128                ++rx_queue->page_recycle_count;
 129                return page;
 130        } else {
 131                state = page_address(page);
 132                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 133                               PAGE_SIZE << efx->rx_buffer_order,
 134                               DMA_FROM_DEVICE);
 135                put_page(page);
 136                ++rx_queue->page_recycle_failed;
 137        }
 138
 139        return NULL;
 140}
 141
 142/**
 143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
 144 *
 145 * @rx_queue:           Efx RX queue
 146 *
 147 * This allocates a batch of pages, maps them for DMA, and populates
 148 * struct efx_rx_buffers for each one. Return a negative error code or
 149 * 0 on success. If a single page can be used for multiple buffers,
 150 * then the page will either be inserted fully, or not at all.
 151 */
 152static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
 153{
 154        struct efx_nic *efx = rx_queue->efx;
 155        struct efx_rx_buffer *rx_buf;
 156        struct page *page;
 157        unsigned int page_offset;
 158        struct efx_rx_page_state *state;
 159        dma_addr_t dma_addr;
 160        unsigned index, count;
 161
 162        count = 0;
 163        do {
 164                page = efx_reuse_page(rx_queue);
 165                if (page == NULL) {
 166                        page = alloc_pages(__GFP_COLD | __GFP_COMP |
 167                                           (atomic ? GFP_ATOMIC : GFP_KERNEL),
 168                                           efx->rx_buffer_order);
 169                        if (unlikely(page == NULL))
 170                                return -ENOMEM;
 171                        dma_addr =
 172                                dma_map_page(&efx->pci_dev->dev, page, 0,
 173                                             PAGE_SIZE << efx->rx_buffer_order,
 174                                             DMA_FROM_DEVICE);
 175                        if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
 176                                                       dma_addr))) {
 177                                __free_pages(page, efx->rx_buffer_order);
 178                                return -EIO;
 179                        }
 180                        state = page_address(page);
 181                        state->dma_addr = dma_addr;
 182                } else {
 183                        state = page_address(page);
 184                        dma_addr = state->dma_addr;
 185                }
 186
 187                dma_addr += sizeof(struct efx_rx_page_state);
 188                page_offset = sizeof(struct efx_rx_page_state);
 189
 190                do {
 191                        index = rx_queue->added_count & rx_queue->ptr_mask;
 192                        rx_buf = efx_rx_buffer(rx_queue, index);
 193                        rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
 194                        rx_buf->page = page;
 195                        rx_buf->page_offset = page_offset + efx->rx_ip_align;
 196                        rx_buf->len = efx->rx_dma_len;
 197                        rx_buf->flags = 0;
 198                        ++rx_queue->added_count;
 199                        get_page(page);
 200                        dma_addr += efx->rx_page_buf_step;
 201                        page_offset += efx->rx_page_buf_step;
 202                } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
 203
 204                rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
 205        } while (++count < efx->rx_pages_per_batch);
 206
 207        return 0;
 208}
 209
 210/* Unmap a DMA-mapped page.  This function is only called for the final RX
 211 * buffer in a page.
 212 */
 213static void efx_unmap_rx_buffer(struct efx_nic *efx,
 214                                struct efx_rx_buffer *rx_buf)
 215{
 216        struct page *page = rx_buf->page;
 217
 218        if (page) {
 219                struct efx_rx_page_state *state = page_address(page);
 220                dma_unmap_page(&efx->pci_dev->dev,
 221                               state->dma_addr,
 222                               PAGE_SIZE << efx->rx_buffer_order,
 223                               DMA_FROM_DEVICE);
 224        }
 225}
 226
 227static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
 228                                struct efx_rx_buffer *rx_buf,
 229                                unsigned int num_bufs)
 230{
 231        do {
 232                if (rx_buf->page) {
 233                        put_page(rx_buf->page);
 234                        rx_buf->page = NULL;
 235                }
 236                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 237        } while (--num_bufs);
 238}
 239
 240/* Attempt to recycle the page if there is an RX recycle ring; the page can
 241 * only be added if this is the final RX buffer, to prevent pages being used in
 242 * the descriptor ring and appearing in the recycle ring simultaneously.
 243 */
 244static void efx_recycle_rx_page(struct efx_channel *channel,
 245                                struct efx_rx_buffer *rx_buf)
 246{
 247        struct page *page = rx_buf->page;
 248        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 249        struct efx_nic *efx = rx_queue->efx;
 250        unsigned index;
 251
 252        /* Only recycle the page after processing the final buffer. */
 253        if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
 254                return;
 255
 256        index = rx_queue->page_add & rx_queue->page_ptr_mask;
 257        if (rx_queue->page_ring[index] == NULL) {
 258                unsigned read_index = rx_queue->page_remove &
 259                        rx_queue->page_ptr_mask;
 260
 261                /* The next slot in the recycle ring is available, but
 262                 * increment page_remove if the read pointer currently
 263                 * points here.
 264                 */
 265                if (read_index == index)
 266                        ++rx_queue->page_remove;
 267                rx_queue->page_ring[index] = page;
 268                ++rx_queue->page_add;
 269                return;
 270        }
 271        ++rx_queue->page_recycle_full;
 272        efx_unmap_rx_buffer(efx, rx_buf);
 273        put_page(rx_buf->page);
 274}
 275
 276static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
 277                               struct efx_rx_buffer *rx_buf)
 278{
 279        /* Release the page reference we hold for the buffer. */
 280        if (rx_buf->page)
 281                put_page(rx_buf->page);
 282
 283        /* If this is the last buffer in a page, unmap and free it. */
 284        if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
 285                efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
 286                efx_free_rx_buffers(rx_queue, rx_buf, 1);
 287        }
 288        rx_buf->page = NULL;
 289}
 290
 291/* Recycle the pages that are used by buffers that have just been received. */
 292static void efx_recycle_rx_pages(struct efx_channel *channel,
 293                                 struct efx_rx_buffer *rx_buf,
 294                                 unsigned int n_frags)
 295{
 296        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 297
 298        do {
 299                efx_recycle_rx_page(channel, rx_buf);
 300                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 301        } while (--n_frags);
 302}
 303
 304static void efx_discard_rx_packet(struct efx_channel *channel,
 305                                  struct efx_rx_buffer *rx_buf,
 306                                  unsigned int n_frags)
 307{
 308        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 309
 310        efx_recycle_rx_pages(channel, rx_buf, n_frags);
 311
 312        efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 313}
 314
 315/**
 316 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 317 * @rx_queue:           RX descriptor queue
 318 *
 319 * This will aim to fill the RX descriptor queue up to
 320 * @rx_queue->@max_fill. If there is insufficient atomic
 321 * memory to do so, a slow fill will be scheduled.
 322 *
 323 * The caller must provide serialisation (none is used here). In practise,
 324 * this means this function must run from the NAPI handler, or be called
 325 * when NAPI is disabled.
 326 */
 327void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
 328{
 329        struct efx_nic *efx = rx_queue->efx;
 330        unsigned int fill_level, batch_size;
 331        int space, rc = 0;
 332
 333        if (!rx_queue->refill_enabled)
 334                return;
 335
 336        /* Calculate current fill level, and exit if we don't need to fill */
 337        fill_level = (rx_queue->added_count - rx_queue->removed_count);
 338        EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
 339        if (fill_level >= rx_queue->fast_fill_trigger)
 340                goto out;
 341
 342        /* Record minimum fill level */
 343        if (unlikely(fill_level < rx_queue->min_fill)) {
 344                if (fill_level)
 345                        rx_queue->min_fill = fill_level;
 346        }
 347
 348        batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 349        space = rx_queue->max_fill - fill_level;
 350        EFX_BUG_ON_PARANOID(space < batch_size);
 351
 352        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 353                   "RX queue %d fast-filling descriptor ring from"
 354                   " level %d to level %d\n",
 355                   efx_rx_queue_index(rx_queue), fill_level,
 356                   rx_queue->max_fill);
 357
 358
 359        do {
 360                rc = efx_init_rx_buffers(rx_queue, atomic);
 361                if (unlikely(rc)) {
 362                        /* Ensure that we don't leave the rx queue empty */
 363                        if (rx_queue->added_count == rx_queue->removed_count)
 364                                efx_schedule_slow_fill(rx_queue);
 365                        goto out;
 366                }
 367        } while ((space -= batch_size) >= batch_size);
 368
 369        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 370                   "RX queue %d fast-filled descriptor ring "
 371                   "to level %d\n", efx_rx_queue_index(rx_queue),
 372                   rx_queue->added_count - rx_queue->removed_count);
 373
 374 out:
 375        if (rx_queue->notified_count != rx_queue->added_count)
 376                efx_nic_notify_rx_desc(rx_queue);
 377}
 378
 379void efx_rx_slow_fill(unsigned long context)
 380{
 381        struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
 382
 383        /* Post an event to cause NAPI to run and refill the queue */
 384        efx_nic_generate_fill_event(rx_queue);
 385        ++rx_queue->slow_fill_count;
 386}
 387
 388static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
 389                                     struct efx_rx_buffer *rx_buf,
 390                                     int len)
 391{
 392        struct efx_nic *efx = rx_queue->efx;
 393        unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
 394
 395        if (likely(len <= max_len))
 396                return;
 397
 398        /* The packet must be discarded, but this is only a fatal error
 399         * if the caller indicated it was
 400         */
 401        rx_buf->flags |= EFX_RX_PKT_DISCARD;
 402
 403        if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
 404                if (net_ratelimit())
 405                        netif_err(efx, rx_err, efx->net_dev,
 406                                  " RX queue %d seriously overlength "
 407                                  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
 408                                  efx_rx_queue_index(rx_queue), len, max_len,
 409                                  efx->type->rx_buffer_padding);
 410                efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
 411        } else {
 412                if (net_ratelimit())
 413                        netif_err(efx, rx_err, efx->net_dev,
 414                                  " RX queue %d overlength RX event "
 415                                  "(0x%x > 0x%x)\n",
 416                                  efx_rx_queue_index(rx_queue), len, max_len);
 417        }
 418
 419        efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
 420}
 421
 422/* Pass a received packet up through GRO.  GRO can handle pages
 423 * regardless of checksum state and skbs with a good checksum.
 424 */
 425static void
 426efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
 427                  unsigned int n_frags, u8 *eh)
 428{
 429        struct napi_struct *napi = &channel->napi_str;
 430        gro_result_t gro_result;
 431        struct efx_nic *efx = channel->efx;
 432        struct sk_buff *skb;
 433
 434        skb = napi_get_frags(napi);
 435        if (unlikely(!skb)) {
 436                struct efx_rx_queue *rx_queue;
 437
 438                rx_queue = efx_channel_get_rx_queue(channel);
 439                efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 440                return;
 441        }
 442
 443        if (efx->net_dev->features & NETIF_F_RXHASH)
 444                skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
 445                             PKT_HASH_TYPE_L3);
 446        skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
 447                          CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
 448
 449        for (;;) {
 450                skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 451                                   rx_buf->page, rx_buf->page_offset,
 452                                   rx_buf->len);
 453                rx_buf->page = NULL;
 454                skb->len += rx_buf->len;
 455                if (skb_shinfo(skb)->nr_frags == n_frags)
 456                        break;
 457
 458                rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 459        }
 460
 461        skb->data_len = skb->len;
 462        skb->truesize += n_frags * efx->rx_buffer_truesize;
 463
 464        skb_record_rx_queue(skb, channel->rx_queue.core_index);
 465
 466        skb_mark_napi_id(skb, &channel->napi_str);
 467        gro_result = napi_gro_frags(napi);
 468        if (gro_result != GRO_DROP)
 469                channel->irq_mod_score += 2;
 470}
 471
 472/* Allocate and construct an SKB around page fragments */
 473static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
 474                                     struct efx_rx_buffer *rx_buf,
 475                                     unsigned int n_frags,
 476                                     u8 *eh, int hdr_len)
 477{
 478        struct efx_nic *efx = channel->efx;
 479        struct sk_buff *skb;
 480
 481        /* Allocate an SKB to store the headers */
 482        skb = netdev_alloc_skb(efx->net_dev,
 483                               efx->rx_ip_align + efx->rx_prefix_size +
 484                               hdr_len);
 485        if (unlikely(skb == NULL)) {
 486                atomic_inc(&efx->n_rx_noskb_drops);
 487                return NULL;
 488        }
 489
 490        EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
 491
 492        memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
 493               efx->rx_prefix_size + hdr_len);
 494        skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
 495        __skb_put(skb, hdr_len);
 496
 497        /* Append the remaining page(s) onto the frag list */
 498        if (rx_buf->len > hdr_len) {
 499                rx_buf->page_offset += hdr_len;
 500                rx_buf->len -= hdr_len;
 501
 502                for (;;) {
 503                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 504                                           rx_buf->page, rx_buf->page_offset,
 505                                           rx_buf->len);
 506                        rx_buf->page = NULL;
 507                        skb->len += rx_buf->len;
 508                        skb->data_len += rx_buf->len;
 509                        if (skb_shinfo(skb)->nr_frags == n_frags)
 510                                break;
 511
 512                        rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 513                }
 514        } else {
 515                __free_pages(rx_buf->page, efx->rx_buffer_order);
 516                rx_buf->page = NULL;
 517                n_frags = 0;
 518        }
 519
 520        skb->truesize += n_frags * efx->rx_buffer_truesize;
 521
 522        /* Move past the ethernet header */
 523        skb->protocol = eth_type_trans(skb, efx->net_dev);
 524
 525        skb_mark_napi_id(skb, &channel->napi_str);
 526
 527        return skb;
 528}
 529
 530void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
 531                   unsigned int n_frags, unsigned int len, u16 flags)
 532{
 533        struct efx_nic *efx = rx_queue->efx;
 534        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 535        struct efx_rx_buffer *rx_buf;
 536
 537        rx_queue->rx_packets++;
 538
 539        rx_buf = efx_rx_buffer(rx_queue, index);
 540        rx_buf->flags |= flags;
 541
 542        /* Validate the number of fragments and completed length */
 543        if (n_frags == 1) {
 544                if (!(flags & EFX_RX_PKT_PREFIX_LEN))
 545                        efx_rx_packet__check_len(rx_queue, rx_buf, len);
 546        } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
 547                   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
 548                   unlikely(len > n_frags * efx->rx_dma_len) ||
 549                   unlikely(!efx->rx_scatter)) {
 550                /* If this isn't an explicit discard request, either
 551                 * the hardware or the driver is broken.
 552                 */
 553                WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
 554                rx_buf->flags |= EFX_RX_PKT_DISCARD;
 555        }
 556
 557        netif_vdbg(efx, rx_status, efx->net_dev,
 558                   "RX queue %d received ids %x-%x len %d %s%s\n",
 559                   efx_rx_queue_index(rx_queue), index,
 560                   (index + n_frags - 1) & rx_queue->ptr_mask, len,
 561                   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
 562                   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
 563
 564        /* Discard packet, if instructed to do so.  Process the
 565         * previous receive first.
 566         */
 567        if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
 568                efx_rx_flush_packet(channel);
 569                efx_discard_rx_packet(channel, rx_buf, n_frags);
 570                return;
 571        }
 572
 573        if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
 574                rx_buf->len = len;
 575
 576        /* Release and/or sync the DMA mapping - assumes all RX buffers
 577         * consumed in-order per RX queue.
 578         */
 579        efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
 580
 581        /* Prefetch nice and early so data will (hopefully) be in cache by
 582         * the time we look at it.
 583         */
 584        prefetch(efx_rx_buf_va(rx_buf));
 585
 586        rx_buf->page_offset += efx->rx_prefix_size;
 587        rx_buf->len -= efx->rx_prefix_size;
 588
 589        if (n_frags > 1) {
 590                /* Release/sync DMA mapping for additional fragments.
 591                 * Fix length for last fragment.
 592                 */
 593                unsigned int tail_frags = n_frags - 1;
 594
 595                for (;;) {
 596                        rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 597                        if (--tail_frags == 0)
 598                                break;
 599                        efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
 600                }
 601                rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
 602                efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
 603        }
 604
 605        /* All fragments have been DMA-synced, so recycle pages. */
 606        rx_buf = efx_rx_buffer(rx_queue, index);
 607        efx_recycle_rx_pages(channel, rx_buf, n_frags);
 608
 609        /* Pipeline receives so that we give time for packet headers to be
 610         * prefetched into cache.
 611         */
 612        efx_rx_flush_packet(channel);
 613        channel->rx_pkt_n_frags = n_frags;
 614        channel->rx_pkt_index = index;
 615}
 616
 617static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
 618                           struct efx_rx_buffer *rx_buf,
 619                           unsigned int n_frags)
 620{
 621        struct sk_buff *skb;
 622        u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
 623
 624        skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
 625        if (unlikely(skb == NULL)) {
 626                struct efx_rx_queue *rx_queue;
 627
 628                rx_queue = efx_channel_get_rx_queue(channel);
 629                efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 630                return;
 631        }
 632        skb_record_rx_queue(skb, channel->rx_queue.core_index);
 633
 634        /* Set the SKB flags */
 635        skb_checksum_none_assert(skb);
 636        if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
 637                skb->ip_summed = CHECKSUM_UNNECESSARY;
 638
 639        efx_rx_skb_attach_timestamp(channel, skb);
 640
 641        if (channel->type->receive_skb)
 642                if (channel->type->receive_skb(channel, skb))
 643                        return;
 644
 645        /* Pass the packet up */
 646        netif_receive_skb(skb);
 647}
 648
 649/* Handle a received packet.  Second half: Touches packet payload. */
 650void __efx_rx_packet(struct efx_channel *channel)
 651{
 652        struct efx_nic *efx = channel->efx;
 653        struct efx_rx_buffer *rx_buf =
 654                efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
 655        u8 *eh = efx_rx_buf_va(rx_buf);
 656
 657        /* Read length from the prefix if necessary.  This already
 658         * excludes the length of the prefix itself.
 659         */
 660        if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
 661                rx_buf->len = le16_to_cpup((__le16 *)
 662                                           (eh + efx->rx_packet_len_offset));
 663
 664        /* If we're in loopback test, then pass the packet directly to the
 665         * loopback layer, and free the rx_buf here
 666         */
 667        if (unlikely(efx->loopback_selftest)) {
 668                struct efx_rx_queue *rx_queue;
 669
 670                efx_loopback_rx_packet(efx, eh, rx_buf->len);
 671                rx_queue = efx_channel_get_rx_queue(channel);
 672                efx_free_rx_buffers(rx_queue, rx_buf,
 673                                    channel->rx_pkt_n_frags);
 674                goto out;
 675        }
 676
 677        if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
 678                rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
 679
 680        if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb &&
 681            !efx_channel_busy_polling(channel))
 682                efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
 683        else
 684                efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
 685out:
 686        channel->rx_pkt_n_frags = 0;
 687}
 688
 689int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
 690{
 691        struct efx_nic *efx = rx_queue->efx;
 692        unsigned int entries;
 693        int rc;
 694
 695        /* Create the smallest power-of-two aligned ring */
 696        entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
 697        EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 698        rx_queue->ptr_mask = entries - 1;
 699
 700        netif_dbg(efx, probe, efx->net_dev,
 701                  "creating RX queue %d size %#x mask %#x\n",
 702                  efx_rx_queue_index(rx_queue), efx->rxq_entries,
 703                  rx_queue->ptr_mask);
 704
 705        /* Allocate RX buffers */
 706        rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
 707                                   GFP_KERNEL);
 708        if (!rx_queue->buffer)
 709                return -ENOMEM;
 710
 711        rc = efx_nic_probe_rx(rx_queue);
 712        if (rc) {
 713                kfree(rx_queue->buffer);
 714                rx_queue->buffer = NULL;
 715        }
 716
 717        return rc;
 718}
 719
 720static void efx_init_rx_recycle_ring(struct efx_nic *efx,
 721                                     struct efx_rx_queue *rx_queue)
 722{
 723        unsigned int bufs_in_recycle_ring, page_ring_size;
 724
 725        /* Set the RX recycle ring size */
 726#ifdef CONFIG_PPC64
 727        bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 728#else
 729        if (iommu_present(&pci_bus_type))
 730                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 731        else
 732                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
 733#endif /* CONFIG_PPC64 */
 734
 735        page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
 736                                            efx->rx_bufs_per_page);
 737        rx_queue->page_ring = kcalloc(page_ring_size,
 738                                      sizeof(*rx_queue->page_ring), GFP_KERNEL);
 739        rx_queue->page_ptr_mask = page_ring_size - 1;
 740}
 741
 742void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
 743{
 744        struct efx_nic *efx = rx_queue->efx;
 745        unsigned int max_fill, trigger, max_trigger;
 746
 747        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 748                  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
 749
 750        /* Initialise ptr fields */
 751        rx_queue->added_count = 0;
 752        rx_queue->notified_count = 0;
 753        rx_queue->removed_count = 0;
 754        rx_queue->min_fill = -1U;
 755        efx_init_rx_recycle_ring(efx, rx_queue);
 756
 757        rx_queue->page_remove = 0;
 758        rx_queue->page_add = rx_queue->page_ptr_mask + 1;
 759        rx_queue->page_recycle_count = 0;
 760        rx_queue->page_recycle_failed = 0;
 761        rx_queue->page_recycle_full = 0;
 762
 763        /* Initialise limit fields */
 764        max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
 765        max_trigger =
 766                max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 767        if (rx_refill_threshold != 0) {
 768                trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
 769                if (trigger > max_trigger)
 770                        trigger = max_trigger;
 771        } else {
 772                trigger = max_trigger;
 773        }
 774
 775        rx_queue->max_fill = max_fill;
 776        rx_queue->fast_fill_trigger = trigger;
 777        rx_queue->refill_enabled = true;
 778
 779        /* Set up RX descriptor ring */
 780        efx_nic_init_rx(rx_queue);
 781}
 782
 783void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
 784{
 785        int i;
 786        struct efx_nic *efx = rx_queue->efx;
 787        struct efx_rx_buffer *rx_buf;
 788
 789        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 790                  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
 791
 792        del_timer_sync(&rx_queue->slow_fill);
 793
 794        /* Release RX buffers from the current read ptr to the write ptr */
 795        if (rx_queue->buffer) {
 796                for (i = rx_queue->removed_count; i < rx_queue->added_count;
 797                     i++) {
 798                        unsigned index = i & rx_queue->ptr_mask;
 799                        rx_buf = efx_rx_buffer(rx_queue, index);
 800                        efx_fini_rx_buffer(rx_queue, rx_buf);
 801                }
 802        }
 803
 804        /* Unmap and release the pages in the recycle ring. Remove the ring. */
 805        for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
 806                struct page *page = rx_queue->page_ring[i];
 807                struct efx_rx_page_state *state;
 808
 809                if (page == NULL)
 810                        continue;
 811
 812                state = page_address(page);
 813                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 814                               PAGE_SIZE << efx->rx_buffer_order,
 815                               DMA_FROM_DEVICE);
 816                put_page(page);
 817        }
 818        kfree(rx_queue->page_ring);
 819        rx_queue->page_ring = NULL;
 820}
 821
 822void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
 823{
 824        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 825                  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
 826
 827        efx_nic_remove_rx(rx_queue);
 828
 829        kfree(rx_queue->buffer);
 830        rx_queue->buffer = NULL;
 831}
 832
 833
 834module_param(rx_refill_threshold, uint, 0444);
 835MODULE_PARM_DESC(rx_refill_threshold,
 836                 "RX descriptor ring refill threshold (%)");
 837
 838#ifdef CONFIG_RFS_ACCEL
 839
 840int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
 841                   u16 rxq_index, u32 flow_id)
 842{
 843        struct efx_nic *efx = netdev_priv(net_dev);
 844        struct efx_channel *channel;
 845        struct efx_filter_spec spec;
 846        const __be16 *ports;
 847        __be16 ether_type;
 848        int nhoff;
 849        int rc;
 850
 851        /* The core RPS/RFS code has already parsed and validated
 852         * VLAN, IP and transport headers.  We assume they are in the
 853         * header area.
 854         */
 855
 856        if (skb->protocol == htons(ETH_P_8021Q)) {
 857                const struct vlan_hdr *vh =
 858                        (const struct vlan_hdr *)skb->data;
 859
 860                /* We can't filter on the IP 5-tuple and the vlan
 861                 * together, so just strip the vlan header and filter
 862                 * on the IP part.
 863                 */
 864                EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh));
 865                ether_type = vh->h_vlan_encapsulated_proto;
 866                nhoff = sizeof(struct vlan_hdr);
 867        } else {
 868                ether_type = skb->protocol;
 869                nhoff = 0;
 870        }
 871
 872        if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6))
 873                return -EPROTONOSUPPORT;
 874
 875        efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
 876                           efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
 877                           rxq_index);
 878        spec.match_flags =
 879                EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
 880                EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
 881                EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
 882        spec.ether_type = ether_type;
 883
 884        if (ether_type == htons(ETH_P_IP)) {
 885                const struct iphdr *ip =
 886                        (const struct iphdr *)(skb->data + nhoff);
 887
 888                EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
 889                if (ip_is_fragment(ip))
 890                        return -EPROTONOSUPPORT;
 891                spec.ip_proto = ip->protocol;
 892                spec.rem_host[0] = ip->saddr;
 893                spec.loc_host[0] = ip->daddr;
 894                EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
 895                ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
 896        } else {
 897                const struct ipv6hdr *ip6 =
 898                        (const struct ipv6hdr *)(skb->data + nhoff);
 899
 900                EFX_BUG_ON_PARANOID(skb_headlen(skb) <
 901                                    nhoff + sizeof(*ip6) + 4);
 902                spec.ip_proto = ip6->nexthdr;
 903                memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr));
 904                memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr));
 905                ports = (const __be16 *)(ip6 + 1);
 906        }
 907
 908        spec.rem_port = ports[0];
 909        spec.loc_port = ports[1];
 910
 911        rc = efx->type->filter_rfs_insert(efx, &spec);
 912        if (rc < 0)
 913                return rc;
 914
 915        /* Remember this so we can check whether to expire the filter later */
 916        efx->rps_flow_id[rc] = flow_id;
 917        channel = efx_get_channel(efx, skb_get_rx_queue(skb));
 918        ++channel->rfs_filters_added;
 919
 920        if (ether_type == htons(ETH_P_IP))
 921                netif_info(efx, rx_status, efx->net_dev,
 922                           "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
 923                           (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 924                           spec.rem_host, ntohs(ports[0]), spec.loc_host,
 925                           ntohs(ports[1]), rxq_index, flow_id, rc);
 926        else
 927                netif_info(efx, rx_status, efx->net_dev,
 928                           "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
 929                           (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 930                           spec.rem_host, ntohs(ports[0]), spec.loc_host,
 931                           ntohs(ports[1]), rxq_index, flow_id, rc);
 932
 933        return rc;
 934}
 935
 936bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
 937{
 938        bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
 939        unsigned int index, size;
 940        u32 flow_id;
 941
 942        if (!spin_trylock_bh(&efx->filter_lock))
 943                return false;
 944
 945        expire_one = efx->type->filter_rfs_expire_one;
 946        index = efx->rps_expire_index;
 947        size = efx->type->max_rx_ip_filters;
 948        while (quota--) {
 949                flow_id = efx->rps_flow_id[index];
 950                if (expire_one(efx, flow_id, index))
 951                        netif_info(efx, rx_status, efx->net_dev,
 952                                   "expired filter %d [flow %u]\n",
 953                                   index, flow_id);
 954                if (++index == size)
 955                        index = 0;
 956        }
 957        efx->rps_expire_index = index;
 958
 959        spin_unlock_bh(&efx->filter_lock);
 960        return true;
 961}
 962
 963#endif /* CONFIG_RFS_ACCEL */
 964
 965/**
 966 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
 967 * @spec: Specification to test
 968 *
 969 * Return: %true if the specification is a non-drop RX filter that
 970 * matches a local MAC address I/G bit value of 1 or matches a local
 971 * IPv4 or IPv6 address value in the respective multicast address
 972 * range.  Otherwise %false.
 973 */
 974bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
 975{
 976        if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
 977            spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
 978                return false;
 979
 980        if (spec->match_flags &
 981            (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
 982            is_multicast_ether_addr(spec->loc_mac))
 983                return true;
 984
 985        if ((spec->match_flags &
 986             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
 987            (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
 988                if (spec->ether_type == htons(ETH_P_IP) &&
 989                    ipv4_is_multicast(spec->loc_host[0]))
 990                        return true;
 991                if (spec->ether_type == htons(ETH_P_IPV6) &&
 992                    ((const u8 *)spec->loc_host)[0] == 0xff)
 993                        return true;
 994        }
 995
 996        return false;
 997}
 998