linux/drivers/rpmsg/virtio_rpmsg_bus.c
<<
>>
Prefs
   1/*
   2 * Virtio-based remote processor messaging bus
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 * Copyright (C) 2011 Google, Inc.
   6 *
   7 * Ohad Ben-Cohen <ohad@wizery.com>
   8 * Brian Swetland <swetland@google.com>
   9 *
  10 * This software is licensed under the terms of the GNU General Public
  11 * License version 2, as published by the Free Software Foundation, and
  12 * may be copied, distributed, and modified under those terms.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 */
  19
  20#define pr_fmt(fmt) "%s: " fmt, __func__
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/virtio.h>
  25#include <linux/virtio_ids.h>
  26#include <linux/virtio_config.h>
  27#include <linux/scatterlist.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/slab.h>
  30#include <linux/idr.h>
  31#include <linux/jiffies.h>
  32#include <linux/sched.h>
  33#include <linux/wait.h>
  34#include <linux/rpmsg.h>
  35#include <linux/mutex.h>
  36
  37/**
  38 * struct virtproc_info - virtual remote processor state
  39 * @vdev:       the virtio device
  40 * @rvq:        rx virtqueue
  41 * @svq:        tx virtqueue
  42 * @rbufs:      kernel address of rx buffers
  43 * @sbufs:      kernel address of tx buffers
  44 * @num_bufs:   total number of buffers for rx and tx
  45 * @last_sbuf:  index of last tx buffer used
  46 * @bufs_dma:   dma base addr of the buffers
  47 * @tx_lock:    protects svq, sbufs and sleepers, to allow concurrent senders.
  48 *              sending a message might require waking up a dozing remote
  49 *              processor, which involves sleeping, hence the mutex.
  50 * @endpoints:  idr of local endpoints, allows fast retrieval
  51 * @endpoints_lock: lock of the endpoints set
  52 * @sendq:      wait queue of sending contexts waiting for a tx buffers
  53 * @sleepers:   number of senders that are waiting for a tx buffer
  54 * @ns_ept:     the bus's name service endpoint
  55 *
  56 * This structure stores the rpmsg state of a given virtio remote processor
  57 * device (there might be several virtio proc devices for each physical
  58 * remote processor).
  59 */
  60struct virtproc_info {
  61        struct virtio_device *vdev;
  62        struct virtqueue *rvq, *svq;
  63        void *rbufs, *sbufs;
  64        unsigned int num_bufs;
  65        int last_sbuf;
  66        dma_addr_t bufs_dma;
  67        struct mutex tx_lock;
  68        struct idr endpoints;
  69        struct mutex endpoints_lock;
  70        wait_queue_head_t sendq;
  71        atomic_t sleepers;
  72        struct rpmsg_endpoint *ns_ept;
  73};
  74
  75/**
  76 * struct rpmsg_channel_info - internal channel info representation
  77 * @name: name of service
  78 * @src: local address
  79 * @dst: destination address
  80 */
  81struct rpmsg_channel_info {
  82        char name[RPMSG_NAME_SIZE];
  83        u32 src;
  84        u32 dst;
  85};
  86
  87#define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev)
  88#define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv)
  89
  90/*
  91 * We're allocating buffers of 512 bytes each for communications. The
  92 * number of buffers will be computed from the number of buffers supported
  93 * by the vring, upto a maximum of 512 buffers (256 in each direction).
  94 *
  95 * Each buffer will have 16 bytes for the msg header and 496 bytes for
  96 * the payload.
  97 *
  98 * This will utilize a maximum total space of 256KB for the buffers.
  99 *
 100 * We might also want to add support for user-provided buffers in time.
 101 * This will allow bigger buffer size flexibility, and can also be used
 102 * to achieve zero-copy messaging.
 103 *
 104 * Note that these numbers are purely a decision of this driver - we
 105 * can change this without changing anything in the firmware of the remote
 106 * processor.
 107 */
 108#define MAX_RPMSG_NUM_BUFS      (512)
 109#define RPMSG_BUF_SIZE          (512)
 110
 111/*
 112 * Local addresses are dynamically allocated on-demand.
 113 * We do not dynamically assign addresses from the low 1024 range,
 114 * in order to reserve that address range for predefined services.
 115 */
 116#define RPMSG_RESERVED_ADDRESSES        (1024)
 117
 118/* Address 53 is reserved for advertising remote services */
 119#define RPMSG_NS_ADDR                   (53)
 120
 121/* sysfs show configuration fields */
 122#define rpmsg_show_attr(field, path, format_string)                     \
 123static ssize_t                                                          \
 124field##_show(struct device *dev,                                        \
 125                        struct device_attribute *attr, char *buf)       \
 126{                                                                       \
 127        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);            \
 128                                                                        \
 129        return sprintf(buf, format_string, rpdev->path);                \
 130}
 131
 132/* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */
 133rpmsg_show_attr(name, id.name, "%s\n");
 134rpmsg_show_attr(src, src, "0x%x\n");
 135rpmsg_show_attr(dst, dst, "0x%x\n");
 136rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n");
 137
 138/*
 139 * Unique (and free running) index for rpmsg devices.
 140 *
 141 * Yeah, we're not recycling those numbers (yet?). will be easy
 142 * to change if/when we want to.
 143 */
 144static unsigned int rpmsg_dev_index;
 145
 146static ssize_t modalias_show(struct device *dev,
 147                             struct device_attribute *attr, char *buf)
 148{
 149        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
 150
 151        return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name);
 152}
 153
 154static struct device_attribute rpmsg_dev_attrs[] = {
 155        __ATTR_RO(name),
 156        __ATTR_RO(modalias),
 157        __ATTR_RO(dst),
 158        __ATTR_RO(src),
 159        __ATTR_RO(announce),
 160        __ATTR_NULL
 161};
 162
 163/* rpmsg devices and drivers are matched using the service name */
 164static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev,
 165                                  const struct rpmsg_device_id *id)
 166{
 167        return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0;
 168}
 169
 170/* match rpmsg channel and rpmsg driver */
 171static int rpmsg_dev_match(struct device *dev, struct device_driver *drv)
 172{
 173        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
 174        struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv);
 175        const struct rpmsg_device_id *ids = rpdrv->id_table;
 176        unsigned int i;
 177
 178        for (i = 0; ids[i].name[0]; i++)
 179                if (rpmsg_id_match(rpdev, &ids[i]))
 180                        return 1;
 181
 182        return 0;
 183}
 184
 185static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env)
 186{
 187        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
 188
 189        return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT,
 190                                        rpdev->id.name);
 191}
 192
 193/**
 194 * __ept_release() - deallocate an rpmsg endpoint
 195 * @kref: the ept's reference count
 196 *
 197 * This function deallocates an ept, and is invoked when its @kref refcount
 198 * drops to zero.
 199 *
 200 * Never invoke this function directly!
 201 */
 202static void __ept_release(struct kref *kref)
 203{
 204        struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint,
 205                                                  refcount);
 206        /*
 207         * At this point no one holds a reference to ept anymore,
 208         * so we can directly free it
 209         */
 210        kfree(ept);
 211}
 212
 213/* for more info, see below documentation of rpmsg_create_ept() */
 214static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
 215                struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb,
 216                void *priv, u32 addr)
 217{
 218        int id_min, id_max, id;
 219        struct rpmsg_endpoint *ept;
 220        struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
 221
 222        ept = kzalloc(sizeof(*ept), GFP_KERNEL);
 223        if (!ept) {
 224                dev_err(dev, "failed to kzalloc a new ept\n");
 225                return NULL;
 226        }
 227
 228        kref_init(&ept->refcount);
 229        mutex_init(&ept->cb_lock);
 230
 231        ept->rpdev = rpdev;
 232        ept->cb = cb;
 233        ept->priv = priv;
 234
 235        /* do we need to allocate a local address ? */
 236        if (addr == RPMSG_ADDR_ANY) {
 237                id_min = RPMSG_RESERVED_ADDRESSES;
 238                id_max = 0;
 239        } else {
 240                id_min = addr;
 241                id_max = addr + 1;
 242        }
 243
 244        mutex_lock(&vrp->endpoints_lock);
 245
 246        /* bind the endpoint to an rpmsg address (and allocate one if needed) */
 247        id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL);
 248        if (id < 0) {
 249                dev_err(dev, "idr_alloc failed: %d\n", id);
 250                goto free_ept;
 251        }
 252        ept->addr = id;
 253
 254        mutex_unlock(&vrp->endpoints_lock);
 255
 256        return ept;
 257
 258free_ept:
 259        mutex_unlock(&vrp->endpoints_lock);
 260        kref_put(&ept->refcount, __ept_release);
 261        return NULL;
 262}
 263
 264/**
 265 * rpmsg_create_ept() - create a new rpmsg_endpoint
 266 * @rpdev: rpmsg channel device
 267 * @cb: rx callback handler
 268 * @priv: private data for the driver's use
 269 * @addr: local rpmsg address to bind with @cb
 270 *
 271 * Every rpmsg address in the system is bound to an rx callback (so when
 272 * inbound messages arrive, they are dispatched by the rpmsg bus using the
 273 * appropriate callback handler) by means of an rpmsg_endpoint struct.
 274 *
 275 * This function allows drivers to create such an endpoint, and by that,
 276 * bind a callback, and possibly some private data too, to an rpmsg address
 277 * (either one that is known in advance, or one that will be dynamically
 278 * assigned for them).
 279 *
 280 * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint
 281 * is already created for them when they are probed by the rpmsg bus
 282 * (using the rx callback provided when they registered to the rpmsg bus).
 283 *
 284 * So things should just work for simple drivers: they already have an
 285 * endpoint, their rx callback is bound to their rpmsg address, and when
 286 * relevant inbound messages arrive (i.e. messages which their dst address
 287 * equals to the src address of their rpmsg channel), the driver's handler
 288 * is invoked to process it.
 289 *
 290 * That said, more complicated drivers might do need to allocate
 291 * additional rpmsg addresses, and bind them to different rx callbacks.
 292 * To accomplish that, those drivers need to call this function.
 293 *
 294 * Drivers should provide their @rpdev channel (so the new endpoint would belong
 295 * to the same remote processor their channel belongs to), an rx callback
 296 * function, an optional private data (which is provided back when the
 297 * rx callback is invoked), and an address they want to bind with the
 298 * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will
 299 * dynamically assign them an available rpmsg address (drivers should have
 300 * a very good reason why not to always use RPMSG_ADDR_ANY here).
 301 *
 302 * Returns a pointer to the endpoint on success, or NULL on error.
 303 */
 304struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev,
 305                                rpmsg_rx_cb_t cb, void *priv, u32 addr)
 306{
 307        return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr);
 308}
 309EXPORT_SYMBOL(rpmsg_create_ept);
 310
 311/**
 312 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
 313 * @vrp: virtproc which owns this ept
 314 * @ept: endpoing to destroy
 315 *
 316 * An internal function which destroy an ept without assuming it is
 317 * bound to an rpmsg channel. This is needed for handling the internal
 318 * name service endpoint, which isn't bound to an rpmsg channel.
 319 * See also __rpmsg_create_ept().
 320 */
 321static void
 322__rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept)
 323{
 324        /* make sure new inbound messages can't find this ept anymore */
 325        mutex_lock(&vrp->endpoints_lock);
 326        idr_remove(&vrp->endpoints, ept->addr);
 327        mutex_unlock(&vrp->endpoints_lock);
 328
 329        /* make sure in-flight inbound messages won't invoke cb anymore */
 330        mutex_lock(&ept->cb_lock);
 331        ept->cb = NULL;
 332        mutex_unlock(&ept->cb_lock);
 333
 334        kref_put(&ept->refcount, __ept_release);
 335}
 336
 337/**
 338 * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
 339 * @ept: endpoing to destroy
 340 *
 341 * Should be used by drivers to destroy an rpmsg endpoint previously
 342 * created with rpmsg_create_ept().
 343 */
 344void rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
 345{
 346        __rpmsg_destroy_ept(ept->rpdev->vrp, ept);
 347}
 348EXPORT_SYMBOL(rpmsg_destroy_ept);
 349
 350/*
 351 * when an rpmsg driver is probed with a channel, we seamlessly create
 352 * it an endpoint, binding its rx callback to a unique local rpmsg
 353 * address.
 354 *
 355 * if we need to, we also announce about this channel to the remote
 356 * processor (needed in case the driver is exposing an rpmsg service).
 357 */
 358static int rpmsg_dev_probe(struct device *dev)
 359{
 360        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
 361        struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
 362        struct virtproc_info *vrp = rpdev->vrp;
 363        struct rpmsg_endpoint *ept;
 364        int err;
 365
 366        ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src);
 367        if (!ept) {
 368                dev_err(dev, "failed to create endpoint\n");
 369                err = -ENOMEM;
 370                goto out;
 371        }
 372
 373        rpdev->ept = ept;
 374        rpdev->src = ept->addr;
 375
 376        err = rpdrv->probe(rpdev);
 377        if (err) {
 378                dev_err(dev, "%s: failed: %d\n", __func__, err);
 379                rpmsg_destroy_ept(ept);
 380                goto out;
 381        }
 382
 383        /* need to tell remote processor's name service about this channel ? */
 384        if (rpdev->announce &&
 385                        virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
 386                struct rpmsg_ns_msg nsm;
 387
 388                strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
 389                nsm.addr = rpdev->src;
 390                nsm.flags = RPMSG_NS_CREATE;
 391
 392                err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
 393                if (err)
 394                        dev_err(dev, "failed to announce service %d\n", err);
 395        }
 396
 397out:
 398        return err;
 399}
 400
 401static int rpmsg_dev_remove(struct device *dev)
 402{
 403        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
 404        struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
 405        struct virtproc_info *vrp = rpdev->vrp;
 406        int err = 0;
 407
 408        /* tell remote processor's name service we're removing this channel */
 409        if (rpdev->announce &&
 410                        virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
 411                struct rpmsg_ns_msg nsm;
 412
 413                strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
 414                nsm.addr = rpdev->src;
 415                nsm.flags = RPMSG_NS_DESTROY;
 416
 417                err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
 418                if (err)
 419                        dev_err(dev, "failed to announce service %d\n", err);
 420        }
 421
 422        rpdrv->remove(rpdev);
 423
 424        rpmsg_destroy_ept(rpdev->ept);
 425
 426        return err;
 427}
 428
 429static struct bus_type rpmsg_bus = {
 430        .name           = "rpmsg",
 431        .match          = rpmsg_dev_match,
 432        .dev_attrs      = rpmsg_dev_attrs,
 433        .uevent         = rpmsg_uevent,
 434        .probe          = rpmsg_dev_probe,
 435        .remove         = rpmsg_dev_remove,
 436};
 437
 438/**
 439 * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus
 440 * @rpdrv: pointer to a struct rpmsg_driver
 441 *
 442 * Returns 0 on success, and an appropriate error value on failure.
 443 */
 444int register_rpmsg_driver(struct rpmsg_driver *rpdrv)
 445{
 446        rpdrv->drv.bus = &rpmsg_bus;
 447        return driver_register(&rpdrv->drv);
 448}
 449EXPORT_SYMBOL(register_rpmsg_driver);
 450
 451/**
 452 * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus
 453 * @rpdrv: pointer to a struct rpmsg_driver
 454 *
 455 * Returns 0 on success, and an appropriate error value on failure.
 456 */
 457void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv)
 458{
 459        driver_unregister(&rpdrv->drv);
 460}
 461EXPORT_SYMBOL(unregister_rpmsg_driver);
 462
 463static void rpmsg_release_device(struct device *dev)
 464{
 465        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
 466
 467        kfree(rpdev);
 468}
 469
 470/*
 471 * match an rpmsg channel with a channel info struct.
 472 * this is used to make sure we're not creating rpmsg devices for channels
 473 * that already exist.
 474 */
 475static int rpmsg_channel_match(struct device *dev, void *data)
 476{
 477        struct rpmsg_channel_info *chinfo = data;
 478        struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
 479
 480        if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src)
 481                return 0;
 482
 483        if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst)
 484                return 0;
 485
 486        if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE))
 487                return 0;
 488
 489        /* found a match ! */
 490        return 1;
 491}
 492
 493/*
 494 * create an rpmsg channel using its name and address info.
 495 * this function will be used to create both static and dynamic
 496 * channels.
 497 */
 498static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp,
 499                                struct rpmsg_channel_info *chinfo)
 500{
 501        struct rpmsg_channel *rpdev;
 502        struct device *tmp, *dev = &vrp->vdev->dev;
 503        int ret;
 504
 505        /* make sure a similar channel doesn't already exist */
 506        tmp = device_find_child(dev, chinfo, rpmsg_channel_match);
 507        if (tmp) {
 508                /* decrement the matched device's refcount back */
 509                put_device(tmp);
 510                dev_err(dev, "channel %s:%x:%x already exist\n",
 511                                chinfo->name, chinfo->src, chinfo->dst);
 512                return NULL;
 513        }
 514
 515        rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL);
 516        if (!rpdev) {
 517                pr_err("kzalloc failed\n");
 518                return NULL;
 519        }
 520
 521        rpdev->vrp = vrp;
 522        rpdev->src = chinfo->src;
 523        rpdev->dst = chinfo->dst;
 524
 525        /*
 526         * rpmsg server channels has predefined local address (for now),
 527         * and their existence needs to be announced remotely
 528         */
 529        rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false;
 530
 531        strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE);
 532
 533        /* very simple device indexing plumbing which is enough for now */
 534        dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++);
 535
 536        rpdev->dev.parent = &vrp->vdev->dev;
 537        rpdev->dev.bus = &rpmsg_bus;
 538        rpdev->dev.release = rpmsg_release_device;
 539
 540        ret = device_register(&rpdev->dev);
 541        if (ret) {
 542                dev_err(dev, "device_register failed: %d\n", ret);
 543                put_device(&rpdev->dev);
 544                return NULL;
 545        }
 546
 547        return rpdev;
 548}
 549
 550/*
 551 * find an existing channel using its name + address properties,
 552 * and destroy it
 553 */
 554static int rpmsg_destroy_channel(struct virtproc_info *vrp,
 555                                        struct rpmsg_channel_info *chinfo)
 556{
 557        struct virtio_device *vdev = vrp->vdev;
 558        struct device *dev;
 559
 560        dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match);
 561        if (!dev)
 562                return -EINVAL;
 563
 564        device_unregister(dev);
 565
 566        put_device(dev);
 567
 568        return 0;
 569}
 570
 571/* super simple buffer "allocator" that is just enough for now */
 572static void *get_a_tx_buf(struct virtproc_info *vrp)
 573{
 574        unsigned int len;
 575        void *ret;
 576
 577        /* support multiple concurrent senders */
 578        mutex_lock(&vrp->tx_lock);
 579
 580        /*
 581         * either pick the next unused tx buffer
 582         * (half of our buffers are used for sending messages)
 583         */
 584        if (vrp->last_sbuf < vrp->num_bufs / 2)
 585                ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++;
 586        /* or recycle a used one */
 587        else
 588                ret = virtqueue_get_buf(vrp->svq, &len);
 589
 590        mutex_unlock(&vrp->tx_lock);
 591
 592        return ret;
 593}
 594
 595/**
 596 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed
 597 * @vrp: virtual remote processor state
 598 *
 599 * This function is called before a sender is blocked, waiting for
 600 * a tx buffer to become available.
 601 *
 602 * If we already have blocking senders, this function merely increases
 603 * the "sleepers" reference count, and exits.
 604 *
 605 * Otherwise, if this is the first sender to block, we also enable
 606 * virtio's tx callbacks, so we'd be immediately notified when a tx
 607 * buffer is consumed (we rely on virtio's tx callback in order
 608 * to wake up sleeping senders as soon as a tx buffer is used by the
 609 * remote processor).
 610 */
 611static void rpmsg_upref_sleepers(struct virtproc_info *vrp)
 612{
 613        /* support multiple concurrent senders */
 614        mutex_lock(&vrp->tx_lock);
 615
 616        /* are we the first sleeping context waiting for tx buffers ? */
 617        if (atomic_inc_return(&vrp->sleepers) == 1)
 618                /* enable "tx-complete" interrupts before dozing off */
 619                virtqueue_enable_cb(vrp->svq);
 620
 621        mutex_unlock(&vrp->tx_lock);
 622}
 623
 624/**
 625 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed
 626 * @vrp: virtual remote processor state
 627 *
 628 * This function is called after a sender, that waited for a tx buffer
 629 * to become available, is unblocked.
 630 *
 631 * If we still have blocking senders, this function merely decreases
 632 * the "sleepers" reference count, and exits.
 633 *
 634 * Otherwise, if there are no more blocking senders, we also disable
 635 * virtio's tx callbacks, to avoid the overhead incurred with handling
 636 * those (now redundant) interrupts.
 637 */
 638static void rpmsg_downref_sleepers(struct virtproc_info *vrp)
 639{
 640        /* support multiple concurrent senders */
 641        mutex_lock(&vrp->tx_lock);
 642
 643        /* are we the last sleeping context waiting for tx buffers ? */
 644        if (atomic_dec_and_test(&vrp->sleepers))
 645                /* disable "tx-complete" interrupts */
 646                virtqueue_disable_cb(vrp->svq);
 647
 648        mutex_unlock(&vrp->tx_lock);
 649}
 650
 651/**
 652 * rpmsg_send_offchannel_raw() - send a message across to the remote processor
 653 * @rpdev: the rpmsg channel
 654 * @src: source address
 655 * @dst: destination address
 656 * @data: payload of message
 657 * @len: length of payload
 658 * @wait: indicates whether caller should block in case no TX buffers available
 659 *
 660 * This function is the base implementation for all of the rpmsg sending API.
 661 *
 662 * It will send @data of length @len to @dst, and say it's from @src. The
 663 * message will be sent to the remote processor which the @rpdev channel
 664 * belongs to.
 665 *
 666 * The message is sent using one of the TX buffers that are available for
 667 * communication with this remote processor.
 668 *
 669 * If @wait is true, the caller will be blocked until either a TX buffer is
 670 * available, or 15 seconds elapses (we don't want callers to
 671 * sleep indefinitely due to misbehaving remote processors), and in that
 672 * case -ERESTARTSYS is returned. The number '15' itself was picked
 673 * arbitrarily; there's little point in asking drivers to provide a timeout
 674 * value themselves.
 675 *
 676 * Otherwise, if @wait is false, and there are no TX buffers available,
 677 * the function will immediately fail, and -ENOMEM will be returned.
 678 *
 679 * Normally drivers shouldn't use this function directly; instead, drivers
 680 * should use the appropriate rpmsg_{try}send{to, _offchannel} API
 681 * (see include/linux/rpmsg.h).
 682 *
 683 * Returns 0 on success and an appropriate error value on failure.
 684 */
 685int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst,
 686                                        void *data, int len, bool wait)
 687{
 688        struct virtproc_info *vrp = rpdev->vrp;
 689        struct device *dev = &rpdev->dev;
 690        struct scatterlist sg;
 691        struct rpmsg_hdr *msg;
 692        int err;
 693
 694        /* bcasting isn't allowed */
 695        if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) {
 696                dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst);
 697                return -EINVAL;
 698        }
 699
 700        /*
 701         * We currently use fixed-sized buffers, and therefore the payload
 702         * length is limited.
 703         *
 704         * One of the possible improvements here is either to support
 705         * user-provided buffers (and then we can also support zero-copy
 706         * messaging), or to improve the buffer allocator, to support
 707         * variable-length buffer sizes.
 708         */
 709        if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) {
 710                dev_err(dev, "message is too big (%d)\n", len);
 711                return -EMSGSIZE;
 712        }
 713
 714        /* grab a buffer */
 715        msg = get_a_tx_buf(vrp);
 716        if (!msg && !wait)
 717                return -ENOMEM;
 718
 719        /* no free buffer ? wait for one (but bail after 15 seconds) */
 720        while (!msg) {
 721                /* enable "tx-complete" interrupts, if not already enabled */
 722                rpmsg_upref_sleepers(vrp);
 723
 724                /*
 725                 * sleep until a free buffer is available or 15 secs elapse.
 726                 * the timeout period is not configurable because there's
 727                 * little point in asking drivers to specify that.
 728                 * if later this happens to be required, it'd be easy to add.
 729                 */
 730                err = wait_event_interruptible_timeout(vrp->sendq,
 731                                        (msg = get_a_tx_buf(vrp)),
 732                                        msecs_to_jiffies(15000));
 733
 734                /* disable "tx-complete" interrupts if we're the last sleeper */
 735                rpmsg_downref_sleepers(vrp);
 736
 737                /* timeout ? */
 738                if (!err) {
 739                        dev_err(dev, "timeout waiting for a tx buffer\n");
 740                        return -ERESTARTSYS;
 741                }
 742        }
 743
 744        msg->len = len;
 745        msg->flags = 0;
 746        msg->src = src;
 747        msg->dst = dst;
 748        msg->reserved = 0;
 749        memcpy(msg->data, data, len);
 750
 751        dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n",
 752                                        msg->src, msg->dst, msg->len,
 753                                        msg->flags, msg->reserved);
 754        print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1,
 755                                        msg, sizeof(*msg) + msg->len, true);
 756
 757        sg_init_one(&sg, msg, sizeof(*msg) + len);
 758
 759        mutex_lock(&vrp->tx_lock);
 760
 761        /* add message to the remote processor's virtqueue */
 762        err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL);
 763        if (err) {
 764                /*
 765                 * need to reclaim the buffer here, otherwise it's lost
 766                 * (memory won't leak, but rpmsg won't use it again for TX).
 767                 * this will wait for a buffer management overhaul.
 768                 */
 769                dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err);
 770                goto out;
 771        }
 772
 773        /* tell the remote processor it has a pending message to read */
 774        virtqueue_kick(vrp->svq);
 775out:
 776        mutex_unlock(&vrp->tx_lock);
 777        return err;
 778}
 779EXPORT_SYMBOL(rpmsg_send_offchannel_raw);
 780
 781static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev,
 782                             struct rpmsg_hdr *msg, unsigned int len)
 783{
 784        struct rpmsg_endpoint *ept;
 785        struct scatterlist sg;
 786        int err;
 787
 788        dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n",
 789                                        msg->src, msg->dst, msg->len,
 790                                        msg->flags, msg->reserved);
 791        print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1,
 792                                        msg, sizeof(*msg) + msg->len, true);
 793
 794        /*
 795         * We currently use fixed-sized buffers, so trivially sanitize
 796         * the reported payload length.
 797         */
 798        if (len > RPMSG_BUF_SIZE ||
 799                msg->len > (len - sizeof(struct rpmsg_hdr))) {
 800                dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len);
 801                return -EINVAL;
 802        }
 803
 804        /* use the dst addr to fetch the callback of the appropriate user */
 805        mutex_lock(&vrp->endpoints_lock);
 806
 807        ept = idr_find(&vrp->endpoints, msg->dst);
 808
 809        /* let's make sure no one deallocates ept while we use it */
 810        if (ept)
 811                kref_get(&ept->refcount);
 812
 813        mutex_unlock(&vrp->endpoints_lock);
 814
 815        if (ept) {
 816                /* make sure ept->cb doesn't go away while we use it */
 817                mutex_lock(&ept->cb_lock);
 818
 819                if (ept->cb)
 820                        ept->cb(ept->rpdev, msg->data, msg->len, ept->priv,
 821                                msg->src);
 822
 823                mutex_unlock(&ept->cb_lock);
 824
 825                /* farewell, ept, we don't need you anymore */
 826                kref_put(&ept->refcount, __ept_release);
 827        } else
 828                dev_warn(dev, "msg received with no recipient\n");
 829
 830        /* publish the real size of the buffer */
 831        sg_init_one(&sg, msg, RPMSG_BUF_SIZE);
 832
 833        /* add the buffer back to the remote processor's virtqueue */
 834        err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL);
 835        if (err < 0) {
 836                dev_err(dev, "failed to add a virtqueue buffer: %d\n", err);
 837                return err;
 838        }
 839
 840        return 0;
 841}
 842
 843/* called when an rx buffer is used, and it's time to digest a message */
 844static void rpmsg_recv_done(struct virtqueue *rvq)
 845{
 846        struct virtproc_info *vrp = rvq->vdev->priv;
 847        struct device *dev = &rvq->vdev->dev;
 848        struct rpmsg_hdr *msg;
 849        unsigned int len, msgs_received = 0;
 850        int err;
 851
 852        msg = virtqueue_get_buf(rvq, &len);
 853        if (!msg) {
 854                dev_err(dev, "uhm, incoming signal, but no used buffer ?\n");
 855                return;
 856        }
 857
 858        while (msg) {
 859                err = rpmsg_recv_single(vrp, dev, msg, len);
 860                if (err)
 861                        break;
 862
 863                msgs_received++;
 864
 865                msg = virtqueue_get_buf(rvq, &len);
 866        };
 867
 868        dev_dbg(dev, "Received %u messages\n", msgs_received);
 869
 870        /* tell the remote processor we added another available rx buffer */
 871        if (msgs_received)
 872                virtqueue_kick(vrp->rvq);
 873}
 874
 875/*
 876 * This is invoked whenever the remote processor completed processing
 877 * a TX msg we just sent it, and the buffer is put back to the used ring.
 878 *
 879 * Normally, though, we suppress this "tx complete" interrupt in order to
 880 * avoid the incurred overhead.
 881 */
 882static void rpmsg_xmit_done(struct virtqueue *svq)
 883{
 884        struct virtproc_info *vrp = svq->vdev->priv;
 885
 886        dev_dbg(&svq->vdev->dev, "%s\n", __func__);
 887
 888        /* wake up potential senders that are waiting for a tx buffer */
 889        wake_up_interruptible(&vrp->sendq);
 890}
 891
 892/* invoked when a name service announcement arrives */
 893static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len,
 894                                                        void *priv, u32 src)
 895{
 896        struct rpmsg_ns_msg *msg = data;
 897        struct rpmsg_channel *newch;
 898        struct rpmsg_channel_info chinfo;
 899        struct virtproc_info *vrp = priv;
 900        struct device *dev = &vrp->vdev->dev;
 901        int ret;
 902
 903        print_hex_dump(KERN_DEBUG, "NS announcement: ",
 904                        DUMP_PREFIX_NONE, 16, 1,
 905                        data, len, true);
 906
 907        if (len != sizeof(*msg)) {
 908                dev_err(dev, "malformed ns msg (%d)\n", len);
 909                return;
 910        }
 911
 912        /*
 913         * the name service ept does _not_ belong to a real rpmsg channel,
 914         * and is handled by the rpmsg bus itself.
 915         * for sanity reasons, make sure a valid rpdev has _not_ sneaked
 916         * in somehow.
 917         */
 918        if (rpdev) {
 919                dev_err(dev, "anomaly: ns ept has an rpdev handle\n");
 920                return;
 921        }
 922
 923        /* don't trust the remote processor for null terminating the name */
 924        msg->name[RPMSG_NAME_SIZE - 1] = '\0';
 925
 926        dev_info(dev, "%sing channel %s addr 0x%x\n",
 927                        msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat",
 928                        msg->name, msg->addr);
 929
 930        strncpy(chinfo.name, msg->name, sizeof(chinfo.name));
 931        chinfo.src = RPMSG_ADDR_ANY;
 932        chinfo.dst = msg->addr;
 933
 934        if (msg->flags & RPMSG_NS_DESTROY) {
 935                ret = rpmsg_destroy_channel(vrp, &chinfo);
 936                if (ret)
 937                        dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret);
 938        } else {
 939                newch = rpmsg_create_channel(vrp, &chinfo);
 940                if (!newch)
 941                        dev_err(dev, "rpmsg_create_channel failed\n");
 942        }
 943}
 944
 945static int rpmsg_probe(struct virtio_device *vdev)
 946{
 947        vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
 948        const char *names[] = { "input", "output" };
 949        struct virtqueue *vqs[2];
 950        struct virtproc_info *vrp;
 951        void *bufs_va;
 952        int err = 0, i;
 953        size_t total_buf_space;
 954        bool notify;
 955
 956        vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
 957        if (!vrp)
 958                return -ENOMEM;
 959
 960        vrp->vdev = vdev;
 961
 962        idr_init(&vrp->endpoints);
 963        mutex_init(&vrp->endpoints_lock);
 964        mutex_init(&vrp->tx_lock);
 965        init_waitqueue_head(&vrp->sendq);
 966
 967        /* We expect two virtqueues, rx and tx (and in this order) */
 968        err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names);
 969        if (err)
 970                goto free_vrp;
 971
 972        vrp->rvq = vqs[0];
 973        vrp->svq = vqs[1];
 974
 975        /* we expect symmetric tx/rx vrings */
 976        WARN_ON(virtqueue_get_vring_size(vrp->rvq) !=
 977                virtqueue_get_vring_size(vrp->svq));
 978
 979        /* we need less buffers if vrings are small */
 980        if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2)
 981                vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2;
 982        else
 983                vrp->num_bufs = MAX_RPMSG_NUM_BUFS;
 984
 985        total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
 986
 987        /* allocate coherent memory for the buffers */
 988        bufs_va = dma_alloc_coherent(vdev->dev.parent->parent,
 989                                     total_buf_space, &vrp->bufs_dma,
 990                                     GFP_KERNEL);
 991        if (!bufs_va) {
 992                err = -ENOMEM;
 993                goto vqs_del;
 994        }
 995
 996        dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%llx\n", bufs_va,
 997                                        (unsigned long long)vrp->bufs_dma);
 998
 999        /* half of the buffers is dedicated for RX */
1000        vrp->rbufs = bufs_va;
1001
1002        /* and half is dedicated for TX */
1003        vrp->sbufs = bufs_va + total_buf_space / 2;
1004
1005        /* set up the receive buffers */
1006        for (i = 0; i < vrp->num_bufs / 2; i++) {
1007                struct scatterlist sg;
1008                void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE;
1009
1010                sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE);
1011
1012                err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr,
1013                                                                GFP_KERNEL);
1014                WARN_ON(err); /* sanity check; this can't really happen */
1015        }
1016
1017        /* suppress "tx-complete" interrupts */
1018        virtqueue_disable_cb(vrp->svq);
1019
1020        vdev->priv = vrp;
1021
1022        /* if supported by the remote processor, enable the name service */
1023        if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
1024                /* a dedicated endpoint handles the name service msgs */
1025                vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb,
1026                                                vrp, RPMSG_NS_ADDR);
1027                if (!vrp->ns_ept) {
1028                        dev_err(&vdev->dev, "failed to create the ns ept\n");
1029                        err = -ENOMEM;
1030                        goto free_coherent;
1031                }
1032        }
1033
1034        /*
1035         * Prepare to kick but don't notify yet - we can't do this before
1036         * device is ready.
1037         */
1038        notify = virtqueue_kick_prepare(vrp->rvq);
1039
1040        /* From this point on, we can notify and get callbacks. */
1041        virtio_device_ready(vdev);
1042
1043        /* tell the remote processor it can start sending messages */
1044        /*
1045         * this might be concurrent with callbacks, but we are only
1046         * doing notify, not a full kick here, so that's ok.
1047         */
1048        if (notify)
1049                virtqueue_notify(vrp->rvq);
1050
1051        dev_info(&vdev->dev, "rpmsg host is online\n");
1052
1053        return 0;
1054
1055free_coherent:
1056        dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1057                          bufs_va, vrp->bufs_dma);
1058vqs_del:
1059        vdev->config->del_vqs(vrp->vdev);
1060free_vrp:
1061        kfree(vrp);
1062        return err;
1063}
1064
1065static int rpmsg_remove_device(struct device *dev, void *data)
1066{
1067        device_unregister(dev);
1068
1069        return 0;
1070}
1071
1072static void rpmsg_remove(struct virtio_device *vdev)
1073{
1074        struct virtproc_info *vrp = vdev->priv;
1075        size_t total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
1076        int ret;
1077
1078        vdev->config->reset(vdev);
1079
1080        ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device);
1081        if (ret)
1082                dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret);
1083
1084        if (vrp->ns_ept)
1085                __rpmsg_destroy_ept(vrp, vrp->ns_ept);
1086
1087        idr_destroy(&vrp->endpoints);
1088
1089        vdev->config->del_vqs(vrp->vdev);
1090
1091        dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1092                          vrp->rbufs, vrp->bufs_dma);
1093
1094        kfree(vrp);
1095}
1096
1097static struct virtio_device_id id_table[] = {
1098        { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
1099        { 0 },
1100};
1101
1102static unsigned int features[] = {
1103        VIRTIO_RPMSG_F_NS,
1104};
1105
1106static struct virtio_driver virtio_ipc_driver = {
1107        .feature_table  = features,
1108        .feature_table_size = ARRAY_SIZE(features),
1109        .driver.name    = KBUILD_MODNAME,
1110        .driver.owner   = THIS_MODULE,
1111        .id_table       = id_table,
1112        .probe          = rpmsg_probe,
1113        .remove         = rpmsg_remove,
1114};
1115
1116static int __init rpmsg_init(void)
1117{
1118        int ret;
1119
1120        ret = bus_register(&rpmsg_bus);
1121        if (ret) {
1122                pr_err("failed to register rpmsg bus: %d\n", ret);
1123                return ret;
1124        }
1125
1126        ret = register_virtio_driver(&virtio_ipc_driver);
1127        if (ret) {
1128                pr_err("failed to register virtio driver: %d\n", ret);
1129                bus_unregister(&rpmsg_bus);
1130        }
1131
1132        return ret;
1133}
1134subsys_initcall(rpmsg_init);
1135
1136static void __exit rpmsg_fini(void)
1137{
1138        unregister_virtio_driver(&virtio_ipc_driver);
1139        bus_unregister(&rpmsg_bus);
1140}
1141module_exit(rpmsg_fini);
1142
1143MODULE_DEVICE_TABLE(virtio, id_table);
1144MODULE_DESCRIPTION("Virtio-based remote processor messaging bus");
1145MODULE_LICENSE("GPL v2");
1146