linux/drivers/staging/rdma/hfi1/driver.c
<<
>>
Prefs
   1/*
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2015 Intel Corporation.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * BSD LICENSE
  20 *
  21 * Copyright(c) 2015 Intel Corporation.
  22 *
  23 * Redistribution and use in source and binary forms, with or without
  24 * modification, are permitted provided that the following conditions
  25 * are met:
  26 *
  27 *  - Redistributions of source code must retain the above copyright
  28 *    notice, this list of conditions and the following disclaimer.
  29 *  - Redistributions in binary form must reproduce the above copyright
  30 *    notice, this list of conditions and the following disclaimer in
  31 *    the documentation and/or other materials provided with the
  32 *    distribution.
  33 *  - Neither the name of Intel Corporation nor the names of its
  34 *    contributors may be used to endorse or promote products derived
  35 *    from this software without specific prior written permission.
  36 *
  37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  48 *
  49 */
  50
  51#include <linux/spinlock.h>
  52#include <linux/pci.h>
  53#include <linux/io.h>
  54#include <linux/delay.h>
  55#include <linux/netdevice.h>
  56#include <linux/vmalloc.h>
  57#include <linux/module.h>
  58#include <linux/prefetch.h>
  59
  60#include "hfi.h"
  61#include "trace.h"
  62#include "qp.h"
  63#include "sdma.h"
  64
  65#undef pr_fmt
  66#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  67
  68/*
  69 * The size has to be longer than this string, so we can append
  70 * board/chip information to it in the initialization code.
  71 */
  72const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
  73
  74DEFINE_SPINLOCK(hfi1_devs_lock);
  75LIST_HEAD(hfi1_dev_list);
  76DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
  77
  78unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
  79module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
  80MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is 8192");
  81
  82unsigned int hfi1_cu = 1;
  83module_param_named(cu, hfi1_cu, uint, S_IRUGO);
  84MODULE_PARM_DESC(cu, "Credit return units");
  85
  86unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
  87static int hfi1_caps_set(const char *, const struct kernel_param *);
  88static int hfi1_caps_get(char *, const struct kernel_param *);
  89static const struct kernel_param_ops cap_ops = {
  90        .set = hfi1_caps_set,
  91        .get = hfi1_caps_get
  92};
  93module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
  94MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
  95
  96MODULE_LICENSE("Dual BSD/GPL");
  97MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
  98MODULE_VERSION(HFI1_DRIVER_VERSION);
  99
 100/*
 101 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
 102 */
 103#define MAX_PKT_RECV 64
 104#define EGR_HEAD_UPDATE_THRESHOLD 16
 105
 106struct hfi1_ib_stats hfi1_stats;
 107
 108static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
 109{
 110        int ret = 0;
 111        unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
 112                cap_mask = *cap_mask_ptr, value, diff,
 113                write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
 114                              HFI1_CAP_WRITABLE_MASK);
 115
 116        ret = kstrtoul(val, 0, &value);
 117        if (ret) {
 118                pr_warn("Invalid module parameter value for 'cap_mask'\n");
 119                goto done;
 120        }
 121        /* Get the changed bits (except the locked bit) */
 122        diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
 123
 124        /* Remove any bits that are not allowed to change after driver load */
 125        if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
 126                pr_warn("Ignoring non-writable capability bits %#lx\n",
 127                        diff & ~write_mask);
 128                diff &= write_mask;
 129        }
 130
 131        /* Mask off any reserved bits */
 132        diff &= ~HFI1_CAP_RESERVED_MASK;
 133        /* Clear any previously set and changing bits */
 134        cap_mask &= ~diff;
 135        /* Update the bits with the new capability */
 136        cap_mask |= (value & diff);
 137        /* Check for any kernel/user restrictions */
 138        diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
 139                ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
 140        cap_mask &= ~diff;
 141        /* Set the bitmask to the final set */
 142        *cap_mask_ptr = cap_mask;
 143done:
 144        return ret;
 145}
 146
 147static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
 148{
 149        unsigned long cap_mask = *(unsigned long *)kp->arg;
 150
 151        cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
 152        cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
 153
 154        return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
 155}
 156
 157const char *get_unit_name(int unit)
 158{
 159        static char iname[16];
 160
 161        snprintf(iname, sizeof(iname), DRIVER_NAME"_%u", unit);
 162        return iname;
 163}
 164
 165/*
 166 * Return count of units with at least one port ACTIVE.
 167 */
 168int hfi1_count_active_units(void)
 169{
 170        struct hfi1_devdata *dd;
 171        struct hfi1_pportdata *ppd;
 172        unsigned long flags;
 173        int pidx, nunits_active = 0;
 174
 175        spin_lock_irqsave(&hfi1_devs_lock, flags);
 176        list_for_each_entry(dd, &hfi1_dev_list, list) {
 177                if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
 178                        continue;
 179                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 180                        ppd = dd->pport + pidx;
 181                        if (ppd->lid && ppd->linkup) {
 182                                nunits_active++;
 183                                break;
 184                        }
 185                }
 186        }
 187        spin_unlock_irqrestore(&hfi1_devs_lock, flags);
 188        return nunits_active;
 189}
 190
 191/*
 192 * Return count of all units, optionally return in arguments
 193 * the number of usable (present) units, and the number of
 194 * ports that are up.
 195 */
 196int hfi1_count_units(int *npresentp, int *nupp)
 197{
 198        int nunits = 0, npresent = 0, nup = 0;
 199        struct hfi1_devdata *dd;
 200        unsigned long flags;
 201        int pidx;
 202        struct hfi1_pportdata *ppd;
 203
 204        spin_lock_irqsave(&hfi1_devs_lock, flags);
 205
 206        list_for_each_entry(dd, &hfi1_dev_list, list) {
 207                nunits++;
 208                if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
 209                        npresent++;
 210                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 211                        ppd = dd->pport + pidx;
 212                        if (ppd->lid && ppd->linkup)
 213                                nup++;
 214                }
 215        }
 216
 217        spin_unlock_irqrestore(&hfi1_devs_lock, flags);
 218
 219        if (npresentp)
 220                *npresentp = npresent;
 221        if (nupp)
 222                *nupp = nup;
 223
 224        return nunits;
 225}
 226
 227/*
 228 * Get address of eager buffer from it's index (allocated in chunks, not
 229 * contiguous).
 230 */
 231static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
 232                               u8 *update)
 233{
 234        u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
 235
 236        *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
 237        return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
 238                        (offset * RCV_BUF_BLOCK_SIZE));
 239}
 240
 241/*
 242 * Validate and encode the a given RcvArray Buffer size.
 243 * The function will check whether the given size falls within
 244 * allowed size ranges for the respective type and, optionally,
 245 * return the proper encoding.
 246 */
 247inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
 248{
 249        if (unlikely(!IS_ALIGNED(size, PAGE_SIZE)))
 250                return 0;
 251        if (unlikely(size < MIN_EAGER_BUFFER))
 252                return 0;
 253        if (size >
 254            (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
 255                return 0;
 256        if (encoded)
 257                *encoded = ilog2(size / PAGE_SIZE) + 1;
 258        return 1;
 259}
 260
 261static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
 262                       struct hfi1_packet *packet)
 263{
 264        struct hfi1_message_header *rhdr = packet->hdr;
 265        u32 rte = rhf_rcv_type_err(packet->rhf);
 266        int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
 267        struct hfi1_ibport *ibp = &ppd->ibport_data;
 268
 269        if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
 270                return;
 271
 272        if (packet->rhf & RHF_TID_ERR) {
 273                /* For TIDERR and RC QPs preemptively schedule a NAK */
 274                struct hfi1_ib_header *hdr = (struct hfi1_ib_header *)rhdr;
 275                struct hfi1_other_headers *ohdr = NULL;
 276                u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 277                u16 lid  = be16_to_cpu(hdr->lrh[1]);
 278                u32 qp_num;
 279                u32 rcv_flags = 0;
 280
 281                /* Sanity check packet */
 282                if (tlen < 24)
 283                        goto drop;
 284
 285                /* Check for GRH */
 286                if (lnh == HFI1_LRH_BTH)
 287                        ohdr = &hdr->u.oth;
 288                else if (lnh == HFI1_LRH_GRH) {
 289                        u32 vtf;
 290
 291                        ohdr = &hdr->u.l.oth;
 292                        if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
 293                                goto drop;
 294                        vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
 295                        if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 296                                goto drop;
 297                        rcv_flags |= HFI1_HAS_GRH;
 298                } else
 299                        goto drop;
 300
 301                /* Get the destination QP number. */
 302                qp_num = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
 303                if (lid < HFI1_MULTICAST_LID_BASE) {
 304                        struct hfi1_qp *qp;
 305                        unsigned long flags;
 306
 307                        rcu_read_lock();
 308                        qp = hfi1_lookup_qpn(ibp, qp_num);
 309                        if (!qp) {
 310                                rcu_read_unlock();
 311                                goto drop;
 312                        }
 313
 314                        /*
 315                         * Handle only RC QPs - for other QP types drop error
 316                         * packet.
 317                         */
 318                        spin_lock_irqsave(&qp->r_lock, flags);
 319
 320                        /* Check for valid receive state. */
 321                        if (!(ib_hfi1_state_ops[qp->state] &
 322                              HFI1_PROCESS_RECV_OK)) {
 323                                ibp->n_pkt_drops++;
 324                        }
 325
 326                        switch (qp->ibqp.qp_type) {
 327                        case IB_QPT_RC:
 328                                hfi1_rc_hdrerr(
 329                                        rcd,
 330                                        hdr,
 331                                        rcv_flags,
 332                                        qp);
 333                                break;
 334                        default:
 335                                /* For now don't handle any other QP types */
 336                                break;
 337                        }
 338
 339                        spin_unlock_irqrestore(&qp->r_lock, flags);
 340                        rcu_read_unlock();
 341                } /* Unicast QP */
 342        } /* Valid packet with TIDErr */
 343
 344        /* handle "RcvTypeErr" flags */
 345        switch (rte) {
 346        case RHF_RTE_ERROR_OP_CODE_ERR:
 347        {
 348                u32 opcode;
 349                void *ebuf = NULL;
 350                __be32 *bth = NULL;
 351
 352                if (rhf_use_egr_bfr(packet->rhf))
 353                        ebuf = packet->ebuf;
 354
 355                if (ebuf == NULL)
 356                        goto drop; /* this should never happen */
 357
 358                if (lnh == HFI1_LRH_BTH)
 359                        bth = (__be32 *)ebuf;
 360                else if (lnh == HFI1_LRH_GRH)
 361                        bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
 362                else
 363                        goto drop;
 364
 365                opcode = be32_to_cpu(bth[0]) >> 24;
 366                opcode &= 0xff;
 367
 368                if (opcode == IB_OPCODE_CNP) {
 369                        /*
 370                         * Only in pre-B0 h/w is the CNP_OPCODE handled
 371                         * via this code path (errata 291394).
 372                         */
 373                        struct hfi1_qp *qp = NULL;
 374                        u32 lqpn, rqpn;
 375                        u16 rlid;
 376                        u8 svc_type, sl, sc5;
 377
 378                        sc5  = (be16_to_cpu(rhdr->lrh[0]) >> 12) & 0xf;
 379                        if (rhf_dc_info(packet->rhf))
 380                                sc5 |= 0x10;
 381                        sl = ibp->sc_to_sl[sc5];
 382
 383                        lqpn = be32_to_cpu(bth[1]) & HFI1_QPN_MASK;
 384                        rcu_read_lock();
 385                        qp = hfi1_lookup_qpn(ibp, lqpn);
 386                        if (qp == NULL) {
 387                                rcu_read_unlock();
 388                                goto drop;
 389                        }
 390
 391                        switch (qp->ibqp.qp_type) {
 392                        case IB_QPT_UD:
 393                                rlid = 0;
 394                                rqpn = 0;
 395                                svc_type = IB_CC_SVCTYPE_UD;
 396                                break;
 397                        case IB_QPT_UC:
 398                                rlid = be16_to_cpu(rhdr->lrh[3]);
 399                                rqpn = qp->remote_qpn;
 400                                svc_type = IB_CC_SVCTYPE_UC;
 401                                break;
 402                        default:
 403                                goto drop;
 404                        }
 405
 406                        process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
 407                        rcu_read_unlock();
 408                }
 409
 410                packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
 411                break;
 412        }
 413        default:
 414                break;
 415        }
 416
 417drop:
 418        return;
 419}
 420
 421static inline void init_packet(struct hfi1_ctxtdata *rcd,
 422                              struct hfi1_packet *packet)
 423{
 424
 425        packet->rsize = rcd->rcvhdrqentsize; /* words */
 426        packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
 427        packet->rcd = rcd;
 428        packet->updegr = 0;
 429        packet->etail = -1;
 430        packet->rhf_addr = get_rhf_addr(rcd);
 431        packet->rhf = rhf_to_cpu(packet->rhf_addr);
 432        packet->rhqoff = rcd->head;
 433        packet->numpkt = 0;
 434        packet->rcv_flags = 0;
 435}
 436
 437#ifndef CONFIG_PRESCAN_RXQ
 438static void prescan_rxq(struct hfi1_packet *packet) {}
 439#else /* CONFIG_PRESCAN_RXQ */
 440static int prescan_receive_queue;
 441
 442static void process_ecn(struct hfi1_qp *qp, struct hfi1_ib_header *hdr,
 443                        struct hfi1_other_headers *ohdr,
 444                        u64 rhf, struct ib_grh *grh)
 445{
 446        struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
 447        u32 bth1;
 448        u8 sc5, svc_type;
 449        int is_fecn, is_becn;
 450
 451        switch (qp->ibqp.qp_type) {
 452        case IB_QPT_UD:
 453                svc_type = IB_CC_SVCTYPE_UD;
 454                break;
 455        case IB_QPT_UC: /* LATER */
 456        case IB_QPT_RC: /* LATER */
 457        default:
 458                return;
 459        }
 460
 461        is_fecn = (be32_to_cpu(ohdr->bth[1]) >> HFI1_FECN_SHIFT) &
 462                        HFI1_FECN_MASK;
 463        is_becn = (be32_to_cpu(ohdr->bth[1]) >> HFI1_BECN_SHIFT) &
 464                        HFI1_BECN_MASK;
 465
 466        sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
 467        if (rhf_dc_info(rhf))
 468                sc5 |= 0x10;
 469
 470        if (is_fecn) {
 471                u32 src_qpn = be32_to_cpu(ohdr->u.ud.deth[1]) & HFI1_QPN_MASK;
 472                u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
 473                u16 dlid = be16_to_cpu(hdr->lrh[1]);
 474                u16 slid = be16_to_cpu(hdr->lrh[3]);
 475
 476                return_cnp(ibp, qp, src_qpn, pkey, dlid, slid, sc5, grh);
 477        }
 478
 479        if (is_becn) {
 480                struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
 481                u32 lqpn =  be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
 482                u8 sl = ibp->sc_to_sl[sc5];
 483
 484                process_becn(ppd, sl, 0, lqpn, 0, svc_type);
 485        }
 486
 487        /* turn off BECN, or FECN */
 488        bth1 = be32_to_cpu(ohdr->bth[1]);
 489        bth1 &= ~(HFI1_FECN_MASK << HFI1_FECN_SHIFT);
 490        bth1 &= ~(HFI1_BECN_MASK << HFI1_BECN_SHIFT);
 491        ohdr->bth[1] = cpu_to_be32(bth1);
 492}
 493
 494struct ps_mdata {
 495        struct hfi1_ctxtdata *rcd;
 496        u32 rsize;
 497        u32 maxcnt;
 498        u32 ps_head;
 499        u32 ps_tail;
 500        u32 ps_seq;
 501};
 502
 503static inline void init_ps_mdata(struct ps_mdata *mdata,
 504                                 struct hfi1_packet *packet)
 505{
 506        struct hfi1_ctxtdata *rcd = packet->rcd;
 507
 508        mdata->rcd = rcd;
 509        mdata->rsize = packet->rsize;
 510        mdata->maxcnt = packet->maxcnt;
 511
 512        if (rcd->ps_state.initialized == 0) {
 513                mdata->ps_head = packet->rhqoff;
 514                rcd->ps_state.initialized++;
 515        } else
 516                mdata->ps_head = rcd->ps_state.ps_head;
 517
 518        if (HFI1_CAP_IS_KSET(DMA_RTAIL)) {
 519                mdata->ps_tail = packet->hdrqtail;
 520                mdata->ps_seq = 0; /* not used with DMA_RTAIL */
 521        } else {
 522                mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
 523                mdata->ps_seq = rcd->seq_cnt;
 524        }
 525}
 526
 527static inline int ps_done(struct ps_mdata *mdata, u64 rhf)
 528{
 529        if (HFI1_CAP_IS_KSET(DMA_RTAIL))
 530                return mdata->ps_head == mdata->ps_tail;
 531        return mdata->ps_seq != rhf_rcv_seq(rhf);
 532}
 533
 534static inline void update_ps_mdata(struct ps_mdata *mdata)
 535{
 536        struct hfi1_ctxtdata *rcd = mdata->rcd;
 537
 538        mdata->ps_head += mdata->rsize;
 539        if (mdata->ps_head > mdata->maxcnt)
 540                mdata->ps_head = 0;
 541        rcd->ps_state.ps_head = mdata->ps_head;
 542        if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
 543                if (++mdata->ps_seq > 13)
 544                        mdata->ps_seq = 1;
 545        }
 546}
 547
 548/*
 549 * prescan_rxq - search through the receive queue looking for packets
 550 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
 551 * When an ECN is found, process the Congestion Notification, and toggle
 552 * it off.
 553 */
 554static void prescan_rxq(struct hfi1_packet *packet)
 555{
 556        struct hfi1_ctxtdata *rcd = packet->rcd;
 557        struct ps_mdata mdata;
 558
 559        if (!prescan_receive_queue)
 560                return;
 561
 562        init_ps_mdata(&mdata, packet);
 563
 564        while (1) {
 565                struct hfi1_devdata *dd = rcd->dd;
 566                struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
 567                __le32 *rhf_addr = (__le32 *) rcd->rcvhdrq + mdata.ps_head +
 568                                         dd->rhf_offset;
 569                struct hfi1_qp *qp;
 570                struct hfi1_ib_header *hdr;
 571                struct hfi1_other_headers *ohdr;
 572                struct ib_grh *grh = NULL;
 573                u64 rhf = rhf_to_cpu(rhf_addr);
 574                u32 etype = rhf_rcv_type(rhf), qpn;
 575                int is_ecn = 0;
 576                u8 lnh;
 577
 578                if (ps_done(&mdata, rhf))
 579                        break;
 580
 581                if (etype != RHF_RCV_TYPE_IB)
 582                        goto next;
 583
 584                hdr = (struct hfi1_ib_header *)
 585                        hfi1_get_msgheader(dd, rhf_addr);
 586                lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 587
 588                if (lnh == HFI1_LRH_BTH)
 589                        ohdr = &hdr->u.oth;
 590                else if (lnh == HFI1_LRH_GRH) {
 591                        ohdr = &hdr->u.l.oth;
 592                        grh = &hdr->u.l.grh;
 593                } else
 594                        goto next; /* just in case */
 595
 596                is_ecn |= be32_to_cpu(ohdr->bth[1]) &
 597                        (HFI1_FECN_MASK << HFI1_FECN_SHIFT);
 598                is_ecn |= be32_to_cpu(ohdr->bth[1]) &
 599                        (HFI1_BECN_MASK << HFI1_BECN_SHIFT);
 600
 601                if (!is_ecn)
 602                        goto next;
 603
 604                qpn = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
 605                rcu_read_lock();
 606                qp = hfi1_lookup_qpn(ibp, qpn);
 607
 608                if (qp == NULL) {
 609                        rcu_read_unlock();
 610                        goto next;
 611                }
 612
 613                process_ecn(qp, hdr, ohdr, rhf, grh);
 614                rcu_read_unlock();
 615next:
 616                update_ps_mdata(&mdata);
 617        }
 618}
 619#endif /* CONFIG_PRESCAN_RXQ */
 620
 621static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
 622{
 623        int ret = RCV_PKT_OK;
 624
 625        packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
 626                                         packet->rhf_addr);
 627        packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
 628        packet->etype = rhf_rcv_type(packet->rhf);
 629        /* total length */
 630        packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
 631        /* retrieve eager buffer details */
 632        packet->ebuf = NULL;
 633        if (rhf_use_egr_bfr(packet->rhf)) {
 634                packet->etail = rhf_egr_index(packet->rhf);
 635                packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
 636                                 &packet->updegr);
 637                /*
 638                 * Prefetch the contents of the eager buffer.  It is
 639                 * OK to send a negative length to prefetch_range().
 640                 * The +2 is the size of the RHF.
 641                 */
 642                prefetch_range(packet->ebuf,
 643                        packet->tlen - ((packet->rcd->rcvhdrqentsize -
 644                                  (rhf_hdrq_offset(packet->rhf)+2)) * 4));
 645        }
 646
 647        /*
 648         * Call a type specific handler for the packet. We
 649         * should be able to trust that etype won't be beyond
 650         * the range of valid indexes. If so something is really
 651         * wrong and we can probably just let things come
 652         * crashing down. There is no need to eat another
 653         * comparison in this performance critical code.
 654         */
 655        packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
 656        packet->numpkt++;
 657
 658        /* Set up for the next packet */
 659        packet->rhqoff += packet->rsize;
 660        if (packet->rhqoff >= packet->maxcnt)
 661                packet->rhqoff = 0;
 662
 663        if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
 664                if (thread) {
 665                        cond_resched();
 666                } else {
 667                        ret = RCV_PKT_LIMIT;
 668                        this_cpu_inc(*packet->rcd->dd->rcv_limit);
 669                }
 670        }
 671
 672        packet->rhf_addr = (__le32 *) packet->rcd->rcvhdrq + packet->rhqoff +
 673                                      packet->rcd->dd->rhf_offset;
 674        packet->rhf = rhf_to_cpu(packet->rhf_addr);
 675
 676        return ret;
 677}
 678
 679static inline void process_rcv_update(int last, struct hfi1_packet *packet)
 680{
 681        /*
 682         * Update head regs etc., every 16 packets, if not last pkt,
 683         * to help prevent rcvhdrq overflows, when many packets
 684         * are processed and queue is nearly full.
 685         * Don't request an interrupt for intermediate updates.
 686         */
 687        if (!last && !(packet->numpkt & 0xf)) {
 688                update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
 689                               packet->etail, 0, 0);
 690                packet->updegr = 0;
 691        }
 692        packet->rcv_flags = 0;
 693}
 694
 695static inline void finish_packet(struct hfi1_packet *packet)
 696{
 697
 698        /*
 699         * Nothing we need to free for the packet.
 700         *
 701         * The only thing we need to do is a final update and call for an
 702         * interrupt
 703         */
 704        update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
 705                       packet->etail, rcv_intr_dynamic, packet->numpkt);
 706
 707}
 708
 709static inline void process_rcv_qp_work(struct hfi1_packet *packet)
 710{
 711
 712        struct hfi1_ctxtdata *rcd;
 713        struct hfi1_qp *qp, *nqp;
 714
 715        rcd = packet->rcd;
 716        rcd->head = packet->rhqoff;
 717
 718        /*
 719         * Iterate over all QPs waiting to respond.
 720         * The list won't change since the IRQ is only run on one CPU.
 721         */
 722        list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
 723                list_del_init(&qp->rspwait);
 724                if (qp->r_flags & HFI1_R_RSP_NAK) {
 725                        qp->r_flags &= ~HFI1_R_RSP_NAK;
 726                        hfi1_send_rc_ack(rcd, qp, 0);
 727                }
 728                if (qp->r_flags & HFI1_R_RSP_SEND) {
 729                        unsigned long flags;
 730
 731                        qp->r_flags &= ~HFI1_R_RSP_SEND;
 732                        spin_lock_irqsave(&qp->s_lock, flags);
 733                        if (ib_hfi1_state_ops[qp->state] &
 734                                        HFI1_PROCESS_OR_FLUSH_SEND)
 735                                hfi1_schedule_send(qp);
 736                        spin_unlock_irqrestore(&qp->s_lock, flags);
 737                }
 738                if (atomic_dec_and_test(&qp->refcount))
 739                        wake_up(&qp->wait);
 740        }
 741}
 742
 743/*
 744 * Handle receive interrupts when using the no dma rtail option.
 745 */
 746int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 747{
 748        u32 seq;
 749        int last = RCV_PKT_OK;
 750        struct hfi1_packet packet;
 751
 752        init_packet(rcd, &packet);
 753        seq = rhf_rcv_seq(packet.rhf);
 754        if (seq != rcd->seq_cnt) {
 755                last = RCV_PKT_DONE;
 756                goto bail;
 757        }
 758
 759        prescan_rxq(&packet);
 760
 761        while (last == RCV_PKT_OK) {
 762                last = process_rcv_packet(&packet, thread);
 763                seq = rhf_rcv_seq(packet.rhf);
 764                if (++rcd->seq_cnt > 13)
 765                        rcd->seq_cnt = 1;
 766                if (seq != rcd->seq_cnt)
 767                        last = RCV_PKT_DONE;
 768                process_rcv_update(last, &packet);
 769        }
 770        process_rcv_qp_work(&packet);
 771bail:
 772        finish_packet(&packet);
 773        return last;
 774}
 775
 776int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
 777{
 778        u32 hdrqtail;
 779        int last = RCV_PKT_OK;
 780        struct hfi1_packet packet;
 781
 782        init_packet(rcd, &packet);
 783        hdrqtail = get_rcvhdrtail(rcd);
 784        if (packet.rhqoff == hdrqtail) {
 785                last = RCV_PKT_DONE;
 786                goto bail;
 787        }
 788        smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
 789
 790        prescan_rxq(&packet);
 791
 792        while (last == RCV_PKT_OK) {
 793                last = process_rcv_packet(&packet, thread);
 794                hdrqtail = get_rcvhdrtail(rcd);
 795                if (packet.rhqoff == hdrqtail)
 796                        last = RCV_PKT_DONE;
 797                process_rcv_update(last, &packet);
 798        }
 799        process_rcv_qp_work(&packet);
 800bail:
 801        finish_packet(&packet);
 802        return last;
 803}
 804
 805static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
 806{
 807        int i;
 808
 809        for (i = 0; i < dd->first_user_ctxt; i++)
 810                dd->rcd[i]->do_interrupt =
 811                        &handle_receive_interrupt_nodma_rtail;
 812}
 813
 814static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
 815{
 816        int i;
 817
 818        for (i = 0; i < dd->first_user_ctxt; i++)
 819                dd->rcd[i]->do_interrupt =
 820                        &handle_receive_interrupt_dma_rtail;
 821}
 822
 823/*
 824 * handle_receive_interrupt - receive a packet
 825 * @rcd: the context
 826 *
 827 * Called from interrupt handler for errors or receive interrupt.
 828 * This is the slow path interrupt handler.
 829 */
 830int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
 831{
 832        struct hfi1_devdata *dd = rcd->dd;
 833        u32 hdrqtail;
 834        int last = RCV_PKT_OK, needset = 1;
 835        struct hfi1_packet packet;
 836
 837        init_packet(rcd, &packet);
 838
 839        if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
 840                u32 seq = rhf_rcv_seq(packet.rhf);
 841
 842                if (seq != rcd->seq_cnt) {
 843                        last = RCV_PKT_DONE;
 844                        goto bail;
 845                }
 846                hdrqtail = 0;
 847        } else {
 848                hdrqtail = get_rcvhdrtail(rcd);
 849                if (packet.rhqoff == hdrqtail) {
 850                        last = RCV_PKT_DONE;
 851                        goto bail;
 852                }
 853                smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
 854        }
 855
 856        prescan_rxq(&packet);
 857
 858        while (last == RCV_PKT_OK) {
 859
 860                if (unlikely(dd->do_drop && atomic_xchg(&dd->drop_packet,
 861                        DROP_PACKET_OFF) == DROP_PACKET_ON)) {
 862                        dd->do_drop = 0;
 863
 864                        /* On to the next packet */
 865                        packet.rhqoff += packet.rsize;
 866                        packet.rhf_addr = (__le32 *) rcd->rcvhdrq +
 867                                          packet.rhqoff +
 868                                          dd->rhf_offset;
 869                        packet.rhf = rhf_to_cpu(packet.rhf_addr);
 870
 871                } else {
 872                        last = process_rcv_packet(&packet, thread);
 873                }
 874
 875                if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
 876                        u32 seq = rhf_rcv_seq(packet.rhf);
 877
 878                        if (++rcd->seq_cnt > 13)
 879                                rcd->seq_cnt = 1;
 880                        if (seq != rcd->seq_cnt)
 881                                last = RCV_PKT_DONE;
 882                        if (needset) {
 883                                dd_dev_info(dd,
 884                                        "Switching to NO_DMA_RTAIL\n");
 885                                set_all_nodma_rtail(dd);
 886                                needset = 0;
 887                        }
 888                } else {
 889                        if (packet.rhqoff == hdrqtail)
 890                                last = RCV_PKT_DONE;
 891                        if (needset) {
 892                                dd_dev_info(dd,
 893                                            "Switching to DMA_RTAIL\n");
 894                                set_all_dma_rtail(dd);
 895                                needset = 0;
 896                        }
 897                }
 898
 899                process_rcv_update(last, &packet);
 900        }
 901
 902        process_rcv_qp_work(&packet);
 903
 904bail:
 905        /*
 906         * Always write head at end, and setup rcv interrupt, even
 907         * if no packets were processed.
 908         */
 909        finish_packet(&packet);
 910        return last;
 911}
 912
 913/*
 914 * Convert a given MTU size to the on-wire MAD packet enumeration.
 915 * Return -1 if the size is invalid.
 916 */
 917int mtu_to_enum(u32 mtu, int default_if_bad)
 918{
 919        switch (mtu) {
 920        case     0: return OPA_MTU_0;
 921        case   256: return OPA_MTU_256;
 922        case   512: return OPA_MTU_512;
 923        case  1024: return OPA_MTU_1024;
 924        case  2048: return OPA_MTU_2048;
 925        case  4096: return OPA_MTU_4096;
 926        case  8192: return OPA_MTU_8192;
 927        case 10240: return OPA_MTU_10240;
 928        }
 929        return default_if_bad;
 930}
 931
 932u16 enum_to_mtu(int mtu)
 933{
 934        switch (mtu) {
 935        case OPA_MTU_0:     return 0;
 936        case OPA_MTU_256:   return 256;
 937        case OPA_MTU_512:   return 512;
 938        case OPA_MTU_1024:  return 1024;
 939        case OPA_MTU_2048:  return 2048;
 940        case OPA_MTU_4096:  return 4096;
 941        case OPA_MTU_8192:  return 8192;
 942        case OPA_MTU_10240: return 10240;
 943        default: return 0xffff;
 944        }
 945}
 946
 947/*
 948 * set_mtu - set the MTU
 949 * @ppd: the per port data
 950 *
 951 * We can handle "any" incoming size, the issue here is whether we
 952 * need to restrict our outgoing size.  We do not deal with what happens
 953 * to programs that are already running when the size changes.
 954 */
 955int set_mtu(struct hfi1_pportdata *ppd)
 956{
 957        struct hfi1_devdata *dd = ppd->dd;
 958        int i, drain, ret = 0, is_up = 0;
 959
 960        ppd->ibmtu = 0;
 961        for (i = 0; i < ppd->vls_supported; i++)
 962                if (ppd->ibmtu < dd->vld[i].mtu)
 963                        ppd->ibmtu = dd->vld[i].mtu;
 964        ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
 965
 966        mutex_lock(&ppd->hls_lock);
 967        if (ppd->host_link_state == HLS_UP_INIT
 968                        || ppd->host_link_state == HLS_UP_ARMED
 969                        || ppd->host_link_state == HLS_UP_ACTIVE)
 970                is_up = 1;
 971
 972        drain = !is_ax(dd) && is_up;
 973
 974        if (drain)
 975                /*
 976                 * MTU is specified per-VL. To ensure that no packet gets
 977                 * stuck (due, e.g., to the MTU for the packet's VL being
 978                 * reduced), empty the per-VL FIFOs before adjusting MTU.
 979                 */
 980                ret = stop_drain_data_vls(dd);
 981
 982        if (ret) {
 983                dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
 984                           __func__);
 985                goto err;
 986        }
 987
 988        hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
 989
 990        if (drain)
 991                open_fill_data_vls(dd); /* reopen all VLs */
 992
 993err:
 994        mutex_unlock(&ppd->hls_lock);
 995
 996        return ret;
 997}
 998
 999int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1000{
1001        struct hfi1_devdata *dd = ppd->dd;
1002
1003        ppd->lid = lid;
1004        ppd->lmc = lmc;
1005        hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1006
1007        dd_dev_info(dd, "IB%u:%u got a lid: 0x%x\n", dd->unit, ppd->port, lid);
1008
1009        return 0;
1010}
1011
1012/*
1013 * Following deal with the "obviously simple" task of overriding the state
1014 * of the LEDs, which normally indicate link physical and logical status.
1015 * The complications arise in dealing with different hardware mappings
1016 * and the board-dependent routine being called from interrupts.
1017 * and then there's the requirement to _flash_ them.
1018 */
1019#define LED_OVER_FREQ_SHIFT 8
1020#define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
1021/* Below is "non-zero" to force override, but both actual LEDs are off */
1022#define LED_OVER_BOTH_OFF (8)
1023
1024static void run_led_override(unsigned long opaque)
1025{
1026        struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1027        struct hfi1_devdata *dd = ppd->dd;
1028        int timeoff;
1029        int ph_idx;
1030
1031        if (!(dd->flags & HFI1_INITTED))
1032                return;
1033
1034        ph_idx = ppd->led_override_phase++ & 1;
1035        ppd->led_override = ppd->led_override_vals[ph_idx];
1036        timeoff = ppd->led_override_timeoff;
1037
1038        /*
1039         * don't re-fire the timer if user asked for it to be off; we let
1040         * it fire one more time after they turn it off to simplify
1041         */
1042        if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1043                mod_timer(&ppd->led_override_timer, jiffies + timeoff);
1044}
1045
1046void hfi1_set_led_override(struct hfi1_pportdata *ppd, unsigned int val)
1047{
1048        struct hfi1_devdata *dd = ppd->dd;
1049        int timeoff, freq;
1050
1051        if (!(dd->flags & HFI1_INITTED))
1052                return;
1053
1054        /* First check if we are blinking. If not, use 1HZ polling */
1055        timeoff = HZ;
1056        freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
1057
1058        if (freq) {
1059                /* For blink, set each phase from one nybble of val */
1060                ppd->led_override_vals[0] = val & 0xF;
1061                ppd->led_override_vals[1] = (val >> 4) & 0xF;
1062                timeoff = (HZ << 4)/freq;
1063        } else {
1064                /* Non-blink set both phases the same. */
1065                ppd->led_override_vals[0] = val & 0xF;
1066                ppd->led_override_vals[1] = val & 0xF;
1067        }
1068        ppd->led_override_timeoff = timeoff;
1069
1070        /*
1071         * If the timer has not already been started, do so. Use a "quick"
1072         * timeout so the function will be called soon, to look at our request.
1073         */
1074        if (atomic_inc_return(&ppd->led_override_timer_active) == 1) {
1075                /* Need to start timer */
1076                setup_timer(&ppd->led_override_timer, run_led_override,
1077                                (unsigned long)ppd);
1078
1079                ppd->led_override_timer.expires = jiffies + 1;
1080                add_timer(&ppd->led_override_timer);
1081        } else {
1082                if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1083                        mod_timer(&ppd->led_override_timer, jiffies + 1);
1084                atomic_dec(&ppd->led_override_timer_active);
1085        }
1086}
1087
1088/**
1089 * hfi1_reset_device - reset the chip if possible
1090 * @unit: the device to reset
1091 *
1092 * Whether or not reset is successful, we attempt to re-initialize the chip
1093 * (that is, much like a driver unload/reload).  We clear the INITTED flag
1094 * so that the various entry points will fail until we reinitialize.  For
1095 * now, we only allow this if no user contexts are open that use chip resources
1096 */
1097int hfi1_reset_device(int unit)
1098{
1099        int ret, i;
1100        struct hfi1_devdata *dd = hfi1_lookup(unit);
1101        struct hfi1_pportdata *ppd;
1102        unsigned long flags;
1103        int pidx;
1104
1105        if (!dd) {
1106                ret = -ENODEV;
1107                goto bail;
1108        }
1109
1110        dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1111
1112        if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1113                dd_dev_info(dd,
1114                        "Invalid unit number %u or not initialized or not present\n",
1115                        unit);
1116                ret = -ENXIO;
1117                goto bail;
1118        }
1119
1120        spin_lock_irqsave(&dd->uctxt_lock, flags);
1121        if (dd->rcd)
1122                for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1123                        if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1124                                continue;
1125                        spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1126                        ret = -EBUSY;
1127                        goto bail;
1128                }
1129        spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1130
1131        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1132                ppd = dd->pport + pidx;
1133                if (atomic_read(&ppd->led_override_timer_active)) {
1134                        /* Need to stop LED timer, _then_ shut off LEDs */
1135                        del_timer_sync(&ppd->led_override_timer);
1136                        atomic_set(&ppd->led_override_timer_active, 0);
1137                }
1138
1139                /* Shut off LEDs after we are sure timer is not running */
1140                ppd->led_override = LED_OVER_BOTH_OFF;
1141        }
1142        if (dd->flags & HFI1_HAS_SEND_DMA)
1143                sdma_exit(dd);
1144
1145        hfi1_reset_cpu_counters(dd);
1146
1147        ret = hfi1_init(dd, 1);
1148
1149        if (ret)
1150                dd_dev_err(dd,
1151                        "Reinitialize unit %u after reset failed with %d\n",
1152                        unit, ret);
1153        else
1154                dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1155                        unit);
1156
1157bail:
1158        return ret;
1159}
1160
1161void handle_eflags(struct hfi1_packet *packet)
1162{
1163        struct hfi1_ctxtdata *rcd = packet->rcd;
1164        u32 rte = rhf_rcv_type_err(packet->rhf);
1165
1166        dd_dev_err(rcd->dd,
1167                "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1168                rcd->ctxt, packet->rhf,
1169                packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1170                packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1171                packet->rhf & RHF_DC_ERR ? "dc " : "",
1172                packet->rhf & RHF_TID_ERR ? "tid " : "",
1173                packet->rhf & RHF_LEN_ERR ? "len " : "",
1174                packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1175                packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1176                packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1177                rte);
1178
1179        rcv_hdrerr(rcd, rcd->ppd, packet);
1180}
1181
1182/*
1183 * The following functions are called by the interrupt handler. They are type
1184 * specific handlers for each packet type.
1185 */
1186int process_receive_ib(struct hfi1_packet *packet)
1187{
1188        trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1189                          packet->rcd->ctxt,
1190                          rhf_err_flags(packet->rhf),
1191                          RHF_RCV_TYPE_IB,
1192                          packet->hlen,
1193                          packet->tlen,
1194                          packet->updegr,
1195                          rhf_egr_index(packet->rhf));
1196
1197        if (unlikely(rhf_err_flags(packet->rhf))) {
1198                handle_eflags(packet);
1199                return RHF_RCV_CONTINUE;
1200        }
1201
1202        hfi1_ib_rcv(packet);
1203        return RHF_RCV_CONTINUE;
1204}
1205
1206int process_receive_bypass(struct hfi1_packet *packet)
1207{
1208        if (unlikely(rhf_err_flags(packet->rhf)))
1209                handle_eflags(packet);
1210
1211        dd_dev_err(packet->rcd->dd,
1212           "Bypass packets are not supported in normal operation. Dropping\n");
1213        return RHF_RCV_CONTINUE;
1214}
1215
1216int process_receive_error(struct hfi1_packet *packet)
1217{
1218        handle_eflags(packet);
1219
1220        if (unlikely(rhf_err_flags(packet->rhf)))
1221                dd_dev_err(packet->rcd->dd,
1222                           "Unhandled error packet received. Dropping.\n");
1223
1224        return RHF_RCV_CONTINUE;
1225}
1226
1227int kdeth_process_expected(struct hfi1_packet *packet)
1228{
1229        if (unlikely(rhf_err_flags(packet->rhf)))
1230                handle_eflags(packet);
1231
1232        dd_dev_err(packet->rcd->dd,
1233                   "Unhandled expected packet received. Dropping.\n");
1234        return RHF_RCV_CONTINUE;
1235}
1236
1237int kdeth_process_eager(struct hfi1_packet *packet)
1238{
1239        if (unlikely(rhf_err_flags(packet->rhf)))
1240                handle_eflags(packet);
1241
1242        dd_dev_err(packet->rcd->dd,
1243                   "Unhandled eager packet received. Dropping.\n");
1244        return RHF_RCV_CONTINUE;
1245}
1246
1247int process_receive_invalid(struct hfi1_packet *packet)
1248{
1249        dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1250                rhf_rcv_type(packet->rhf));
1251        return RHF_RCV_CONTINUE;
1252}
1253