linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
  44
  45struct compressed_bio {
  46        /* number of bios pending for this compressed extent */
  47        atomic_t pending_bios;
  48
  49        /* the pages with the compressed data on them */
  50        struct page **compressed_pages;
  51
  52        /* inode that owns this data */
  53        struct inode *inode;
  54
  55        /* starting offset in the inode for our pages */
  56        u64 start;
  57
  58        /* number of bytes in the inode we're working on */
  59        unsigned long len;
  60
  61        /* number of bytes on disk */
  62        unsigned long compressed_len;
  63
  64        /* the compression algorithm for this bio */
  65        int compress_type;
  66
  67        /* number of compressed pages in the array */
  68        unsigned long nr_pages;
  69
  70        /* IO errors */
  71        int errors;
  72        int mirror_num;
  73
  74        /* for reads, this is the bio we are copying the data into */
  75        struct bio *orig_bio;
  76
  77        /*
  78         * the start of a variable length array of checksums only
  79         * used by reads
  80         */
  81        u32 sums;
  82};
  83
  84static int btrfs_decompress_biovec(int type, struct page **pages_in,
  85                                   u64 disk_start, struct bio_vec *bvec,
  86                                   int vcnt, size_t srclen);
  87
  88static inline int compressed_bio_size(struct btrfs_root *root,
  89                                      unsigned long disk_size)
  90{
  91        u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  92
  93        return sizeof(struct compressed_bio) +
  94                (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
  95}
  96
  97static struct bio *compressed_bio_alloc(struct block_device *bdev,
  98                                        u64 first_byte, gfp_t gfp_flags)
  99{
 100        return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
 101}
 102
 103static int check_compressed_csum(struct inode *inode,
 104                                 struct compressed_bio *cb,
 105                                 u64 disk_start)
 106{
 107        int ret;
 108        struct page *page;
 109        unsigned long i;
 110        char *kaddr;
 111        u32 csum;
 112        u32 *cb_sum = &cb->sums;
 113
 114        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 115                return 0;
 116
 117        for (i = 0; i < cb->nr_pages; i++) {
 118                page = cb->compressed_pages[i];
 119                csum = ~(u32)0;
 120
 121                kaddr = kmap_atomic(page);
 122                csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
 123                btrfs_csum_final(csum, (char *)&csum);
 124                kunmap_atomic(kaddr);
 125
 126                if (csum != *cb_sum) {
 127                        btrfs_info(BTRFS_I(inode)->root->fs_info,
 128                           "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
 129                           btrfs_ino(inode), disk_start, csum, *cb_sum,
 130                           cb->mirror_num);
 131                        ret = -EIO;
 132                        goto fail;
 133                }
 134                cb_sum++;
 135
 136        }
 137        ret = 0;
 138fail:
 139        return ret;
 140}
 141
 142/* when we finish reading compressed pages from the disk, we
 143 * decompress them and then run the bio end_io routines on the
 144 * decompressed pages (in the inode address space).
 145 *
 146 * This allows the checksumming and other IO error handling routines
 147 * to work normally
 148 *
 149 * The compressed pages are freed here, and it must be run
 150 * in process context
 151 */
 152static void end_compressed_bio_read(struct bio *bio)
 153{
 154        struct compressed_bio *cb = bio->bi_private;
 155        struct inode *inode;
 156        struct page *page;
 157        unsigned long index;
 158        int ret;
 159
 160        if (bio->bi_error)
 161                cb->errors = 1;
 162
 163        /* if there are more bios still pending for this compressed
 164         * extent, just exit
 165         */
 166        if (!atomic_dec_and_test(&cb->pending_bios))
 167                goto out;
 168
 169        inode = cb->inode;
 170        ret = check_compressed_csum(inode, cb,
 171                                    (u64)bio->bi_iter.bi_sector << 9);
 172        if (ret)
 173                goto csum_failed;
 174
 175        /* ok, we're the last bio for this extent, lets start
 176         * the decompression.
 177         */
 178        ret = btrfs_decompress_biovec(cb->compress_type,
 179                                      cb->compressed_pages,
 180                                      cb->start,
 181                                      cb->orig_bio->bi_io_vec,
 182                                      cb->orig_bio->bi_vcnt,
 183                                      cb->compressed_len);
 184csum_failed:
 185        if (ret)
 186                cb->errors = 1;
 187
 188        /* release the compressed pages */
 189        index = 0;
 190        for (index = 0; index < cb->nr_pages; index++) {
 191                page = cb->compressed_pages[index];
 192                page->mapping = NULL;
 193                page_cache_release(page);
 194        }
 195
 196        /* do io completion on the original bio */
 197        if (cb->errors) {
 198                bio_io_error(cb->orig_bio);
 199        } else {
 200                int i;
 201                struct bio_vec *bvec;
 202
 203                /*
 204                 * we have verified the checksum already, set page
 205                 * checked so the end_io handlers know about it
 206                 */
 207                bio_for_each_segment_all(bvec, cb->orig_bio, i)
 208                        SetPageChecked(bvec->bv_page);
 209
 210                bio_endio(cb->orig_bio);
 211        }
 212
 213        /* finally free the cb struct */
 214        kfree(cb->compressed_pages);
 215        kfree(cb);
 216out:
 217        bio_put(bio);
 218}
 219
 220/*
 221 * Clear the writeback bits on all of the file
 222 * pages for a compressed write
 223 */
 224static noinline void end_compressed_writeback(struct inode *inode,
 225                                              const struct compressed_bio *cb)
 226{
 227        unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
 228        unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
 229        struct page *pages[16];
 230        unsigned long nr_pages = end_index - index + 1;
 231        int i;
 232        int ret;
 233
 234        if (cb->errors)
 235                mapping_set_error(inode->i_mapping, -EIO);
 236
 237        while (nr_pages > 0) {
 238                ret = find_get_pages_contig(inode->i_mapping, index,
 239                                     min_t(unsigned long,
 240                                     nr_pages, ARRAY_SIZE(pages)), pages);
 241                if (ret == 0) {
 242                        nr_pages -= 1;
 243                        index += 1;
 244                        continue;
 245                }
 246                for (i = 0; i < ret; i++) {
 247                        if (cb->errors)
 248                                SetPageError(pages[i]);
 249                        end_page_writeback(pages[i]);
 250                        page_cache_release(pages[i]);
 251                }
 252                nr_pages -= ret;
 253                index += ret;
 254        }
 255        /* the inode may be gone now */
 256}
 257
 258/*
 259 * do the cleanup once all the compressed pages hit the disk.
 260 * This will clear writeback on the file pages and free the compressed
 261 * pages.
 262 *
 263 * This also calls the writeback end hooks for the file pages so that
 264 * metadata and checksums can be updated in the file.
 265 */
 266static void end_compressed_bio_write(struct bio *bio)
 267{
 268        struct extent_io_tree *tree;
 269        struct compressed_bio *cb = bio->bi_private;
 270        struct inode *inode;
 271        struct page *page;
 272        unsigned long index;
 273
 274        if (bio->bi_error)
 275                cb->errors = 1;
 276
 277        /* if there are more bios still pending for this compressed
 278         * extent, just exit
 279         */
 280        if (!atomic_dec_and_test(&cb->pending_bios))
 281                goto out;
 282
 283        /* ok, we're the last bio for this extent, step one is to
 284         * call back into the FS and do all the end_io operations
 285         */
 286        inode = cb->inode;
 287        tree = &BTRFS_I(inode)->io_tree;
 288        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 289        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 290                                         cb->start,
 291                                         cb->start + cb->len - 1,
 292                                         NULL,
 293                                         bio->bi_error ? 0 : 1);
 294        cb->compressed_pages[0]->mapping = NULL;
 295
 296        end_compressed_writeback(inode, cb);
 297        /* note, our inode could be gone now */
 298
 299        /*
 300         * release the compressed pages, these came from alloc_page and
 301         * are not attached to the inode at all
 302         */
 303        index = 0;
 304        for (index = 0; index < cb->nr_pages; index++) {
 305                page = cb->compressed_pages[index];
 306                page->mapping = NULL;
 307                page_cache_release(page);
 308        }
 309
 310        /* finally free the cb struct */
 311        kfree(cb->compressed_pages);
 312        kfree(cb);
 313out:
 314        bio_put(bio);
 315}
 316
 317/*
 318 * worker function to build and submit bios for previously compressed pages.
 319 * The corresponding pages in the inode should be marked for writeback
 320 * and the compressed pages should have a reference on them for dropping
 321 * when the IO is complete.
 322 *
 323 * This also checksums the file bytes and gets things ready for
 324 * the end io hooks.
 325 */
 326int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 327                                 unsigned long len, u64 disk_start,
 328                                 unsigned long compressed_len,
 329                                 struct page **compressed_pages,
 330                                 unsigned long nr_pages)
 331{
 332        struct bio *bio = NULL;
 333        struct btrfs_root *root = BTRFS_I(inode)->root;
 334        struct compressed_bio *cb;
 335        unsigned long bytes_left;
 336        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 337        int pg_index = 0;
 338        struct page *page;
 339        u64 first_byte = disk_start;
 340        struct block_device *bdev;
 341        int ret;
 342        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 343
 344        WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 345        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 346        if (!cb)
 347                return -ENOMEM;
 348        atomic_set(&cb->pending_bios, 0);
 349        cb->errors = 0;
 350        cb->inode = inode;
 351        cb->start = start;
 352        cb->len = len;
 353        cb->mirror_num = 0;
 354        cb->compressed_pages = compressed_pages;
 355        cb->compressed_len = compressed_len;
 356        cb->orig_bio = NULL;
 357        cb->nr_pages = nr_pages;
 358
 359        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 360
 361        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 362        if (!bio) {
 363                kfree(cb);
 364                return -ENOMEM;
 365        }
 366        bio->bi_private = cb;
 367        bio->bi_end_io = end_compressed_bio_write;
 368        atomic_inc(&cb->pending_bios);
 369
 370        /* create and submit bios for the compressed pages */
 371        bytes_left = compressed_len;
 372        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 373                page = compressed_pages[pg_index];
 374                page->mapping = inode->i_mapping;
 375                if (bio->bi_iter.bi_size)
 376                        ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
 377                                                           PAGE_CACHE_SIZE,
 378                                                           bio, 0);
 379                else
 380                        ret = 0;
 381
 382                page->mapping = NULL;
 383                if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 384                    PAGE_CACHE_SIZE) {
 385                        bio_get(bio);
 386
 387                        /*
 388                         * inc the count before we submit the bio so
 389                         * we know the end IO handler won't happen before
 390                         * we inc the count.  Otherwise, the cb might get
 391                         * freed before we're done setting it up
 392                         */
 393                        atomic_inc(&cb->pending_bios);
 394                        ret = btrfs_bio_wq_end_io(root->fs_info, bio,
 395                                        BTRFS_WQ_ENDIO_DATA);
 396                        BUG_ON(ret); /* -ENOMEM */
 397
 398                        if (!skip_sum) {
 399                                ret = btrfs_csum_one_bio(root, inode, bio,
 400                                                         start, 1);
 401                                BUG_ON(ret); /* -ENOMEM */
 402                        }
 403
 404                        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 405                        BUG_ON(ret); /* -ENOMEM */
 406
 407                        bio_put(bio);
 408
 409                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 410                        BUG_ON(!bio);
 411                        bio->bi_private = cb;
 412                        bio->bi_end_io = end_compressed_bio_write;
 413                        bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 414                }
 415                if (bytes_left < PAGE_CACHE_SIZE) {
 416                        btrfs_info(BTRFS_I(inode)->root->fs_info,
 417                                        "bytes left %lu compress len %lu nr %lu",
 418                               bytes_left, cb->compressed_len, cb->nr_pages);
 419                }
 420                bytes_left -= PAGE_CACHE_SIZE;
 421                first_byte += PAGE_CACHE_SIZE;
 422                cond_resched();
 423        }
 424        bio_get(bio);
 425
 426        ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 427        BUG_ON(ret); /* -ENOMEM */
 428
 429        if (!skip_sum) {
 430                ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 431                BUG_ON(ret); /* -ENOMEM */
 432        }
 433
 434        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 435        BUG_ON(ret); /* -ENOMEM */
 436
 437        bio_put(bio);
 438        return 0;
 439}
 440
 441static noinline int add_ra_bio_pages(struct inode *inode,
 442                                     u64 compressed_end,
 443                                     struct compressed_bio *cb)
 444{
 445        unsigned long end_index;
 446        unsigned long pg_index;
 447        u64 last_offset;
 448        u64 isize = i_size_read(inode);
 449        int ret;
 450        struct page *page;
 451        unsigned long nr_pages = 0;
 452        struct extent_map *em;
 453        struct address_space *mapping = inode->i_mapping;
 454        struct extent_map_tree *em_tree;
 455        struct extent_io_tree *tree;
 456        u64 end;
 457        int misses = 0;
 458
 459        page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 460        last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 461        em_tree = &BTRFS_I(inode)->extent_tree;
 462        tree = &BTRFS_I(inode)->io_tree;
 463
 464        if (isize == 0)
 465                return 0;
 466
 467        end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 468
 469        while (last_offset < compressed_end) {
 470                pg_index = last_offset >> PAGE_CACHE_SHIFT;
 471
 472                if (pg_index > end_index)
 473                        break;
 474
 475                rcu_read_lock();
 476                page = radix_tree_lookup(&mapping->page_tree, pg_index);
 477                rcu_read_unlock();
 478                if (page && !radix_tree_exceptional_entry(page)) {
 479                        misses++;
 480                        if (misses > 4)
 481                                break;
 482                        goto next;
 483                }
 484
 485                page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 486                                                                 ~__GFP_FS));
 487                if (!page)
 488                        break;
 489
 490                if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 491                        page_cache_release(page);
 492                        goto next;
 493                }
 494
 495                end = last_offset + PAGE_CACHE_SIZE - 1;
 496                /*
 497                 * at this point, we have a locked page in the page cache
 498                 * for these bytes in the file.  But, we have to make
 499                 * sure they map to this compressed extent on disk.
 500                 */
 501                set_page_extent_mapped(page);
 502                lock_extent(tree, last_offset, end);
 503                read_lock(&em_tree->lock);
 504                em = lookup_extent_mapping(em_tree, last_offset,
 505                                           PAGE_CACHE_SIZE);
 506                read_unlock(&em_tree->lock);
 507
 508                if (!em || last_offset < em->start ||
 509                    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 510                    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 511                        free_extent_map(em);
 512                        unlock_extent(tree, last_offset, end);
 513                        unlock_page(page);
 514                        page_cache_release(page);
 515                        break;
 516                }
 517                free_extent_map(em);
 518
 519                if (page->index == end_index) {
 520                        char *userpage;
 521                        size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 522
 523                        if (zero_offset) {
 524                                int zeros;
 525                                zeros = PAGE_CACHE_SIZE - zero_offset;
 526                                userpage = kmap_atomic(page);
 527                                memset(userpage + zero_offset, 0, zeros);
 528                                flush_dcache_page(page);
 529                                kunmap_atomic(userpage);
 530                        }
 531                }
 532
 533                ret = bio_add_page(cb->orig_bio, page,
 534                                   PAGE_CACHE_SIZE, 0);
 535
 536                if (ret == PAGE_CACHE_SIZE) {
 537                        nr_pages++;
 538                        page_cache_release(page);
 539                } else {
 540                        unlock_extent(tree, last_offset, end);
 541                        unlock_page(page);
 542                        page_cache_release(page);
 543                        break;
 544                }
 545next:
 546                last_offset += PAGE_CACHE_SIZE;
 547        }
 548        return 0;
 549}
 550
 551/*
 552 * for a compressed read, the bio we get passed has all the inode pages
 553 * in it.  We don't actually do IO on those pages but allocate new ones
 554 * to hold the compressed pages on disk.
 555 *
 556 * bio->bi_iter.bi_sector points to the compressed extent on disk
 557 * bio->bi_io_vec points to all of the inode pages
 558 * bio->bi_vcnt is a count of pages
 559 *
 560 * After the compressed pages are read, we copy the bytes into the
 561 * bio we were passed and then call the bio end_io calls
 562 */
 563int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 564                                 int mirror_num, unsigned long bio_flags)
 565{
 566        struct extent_io_tree *tree;
 567        struct extent_map_tree *em_tree;
 568        struct compressed_bio *cb;
 569        struct btrfs_root *root = BTRFS_I(inode)->root;
 570        unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 571        unsigned long compressed_len;
 572        unsigned long nr_pages;
 573        unsigned long pg_index;
 574        struct page *page;
 575        struct block_device *bdev;
 576        struct bio *comp_bio;
 577        u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 578        u64 em_len;
 579        u64 em_start;
 580        struct extent_map *em;
 581        int ret = -ENOMEM;
 582        int faili = 0;
 583        u32 *sums;
 584
 585        tree = &BTRFS_I(inode)->io_tree;
 586        em_tree = &BTRFS_I(inode)->extent_tree;
 587
 588        /* we need the actual starting offset of this extent in the file */
 589        read_lock(&em_tree->lock);
 590        em = lookup_extent_mapping(em_tree,
 591                                   page_offset(bio->bi_io_vec->bv_page),
 592                                   PAGE_CACHE_SIZE);
 593        read_unlock(&em_tree->lock);
 594        if (!em)
 595                return -EIO;
 596
 597        compressed_len = em->block_len;
 598        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 599        if (!cb)
 600                goto out;
 601
 602        atomic_set(&cb->pending_bios, 0);
 603        cb->errors = 0;
 604        cb->inode = inode;
 605        cb->mirror_num = mirror_num;
 606        sums = &cb->sums;
 607
 608        cb->start = em->orig_start;
 609        em_len = em->len;
 610        em_start = em->start;
 611
 612        free_extent_map(em);
 613        em = NULL;
 614
 615        cb->len = uncompressed_len;
 616        cb->compressed_len = compressed_len;
 617        cb->compress_type = extent_compress_type(bio_flags);
 618        cb->orig_bio = bio;
 619
 620        nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
 621        cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 622                                       GFP_NOFS);
 623        if (!cb->compressed_pages)
 624                goto fail1;
 625
 626        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 627
 628        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 629                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 630                                                              __GFP_HIGHMEM);
 631                if (!cb->compressed_pages[pg_index]) {
 632                        faili = pg_index - 1;
 633                        ret = -ENOMEM;
 634                        goto fail2;
 635                }
 636        }
 637        faili = nr_pages - 1;
 638        cb->nr_pages = nr_pages;
 639
 640        /* In the parent-locked case, we only locked the range we are
 641         * interested in.  In all other cases, we can opportunistically
 642         * cache decompressed data that goes beyond the requested range. */
 643        if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
 644                add_ra_bio_pages(inode, em_start + em_len, cb);
 645
 646        /* include any pages we added in add_ra-bio_pages */
 647        uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 648        cb->len = uncompressed_len;
 649
 650        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 651        if (!comp_bio)
 652                goto fail2;
 653        comp_bio->bi_private = cb;
 654        comp_bio->bi_end_io = end_compressed_bio_read;
 655        atomic_inc(&cb->pending_bios);
 656
 657        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 658                page = cb->compressed_pages[pg_index];
 659                page->mapping = inode->i_mapping;
 660                page->index = em_start >> PAGE_CACHE_SHIFT;
 661
 662                if (comp_bio->bi_iter.bi_size)
 663                        ret = tree->ops->merge_bio_hook(READ, page, 0,
 664                                                        PAGE_CACHE_SIZE,
 665                                                        comp_bio, 0);
 666                else
 667                        ret = 0;
 668
 669                page->mapping = NULL;
 670                if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 671                    PAGE_CACHE_SIZE) {
 672                        bio_get(comp_bio);
 673
 674                        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
 675                                        BTRFS_WQ_ENDIO_DATA);
 676                        BUG_ON(ret); /* -ENOMEM */
 677
 678                        /*
 679                         * inc the count before we submit the bio so
 680                         * we know the end IO handler won't happen before
 681                         * we inc the count.  Otherwise, the cb might get
 682                         * freed before we're done setting it up
 683                         */
 684                        atomic_inc(&cb->pending_bios);
 685
 686                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 687                                ret = btrfs_lookup_bio_sums(root, inode,
 688                                                        comp_bio, sums);
 689                                BUG_ON(ret); /* -ENOMEM */
 690                        }
 691                        sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 692                                             root->sectorsize);
 693
 694                        ret = btrfs_map_bio(root, READ, comp_bio,
 695                                            mirror_num, 0);
 696                        if (ret) {
 697                                bio->bi_error = ret;
 698                                bio_endio(comp_bio);
 699                        }
 700
 701                        bio_put(comp_bio);
 702
 703                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 704                                                        GFP_NOFS);
 705                        BUG_ON(!comp_bio);
 706                        comp_bio->bi_private = cb;
 707                        comp_bio->bi_end_io = end_compressed_bio_read;
 708
 709                        bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 710                }
 711                cur_disk_byte += PAGE_CACHE_SIZE;
 712        }
 713        bio_get(comp_bio);
 714
 715        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
 716                        BTRFS_WQ_ENDIO_DATA);
 717        BUG_ON(ret); /* -ENOMEM */
 718
 719        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 720                ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 721                BUG_ON(ret); /* -ENOMEM */
 722        }
 723
 724        ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 725        if (ret) {
 726                bio->bi_error = ret;
 727                bio_endio(comp_bio);
 728        }
 729
 730        bio_put(comp_bio);
 731        return 0;
 732
 733fail2:
 734        while (faili >= 0) {
 735                __free_page(cb->compressed_pages[faili]);
 736                faili--;
 737        }
 738
 739        kfree(cb->compressed_pages);
 740fail1:
 741        kfree(cb);
 742out:
 743        free_extent_map(em);
 744        return ret;
 745}
 746
 747static struct {
 748        struct list_head idle_ws;
 749        spinlock_t ws_lock;
 750        int num_ws;
 751        atomic_t alloc_ws;
 752        wait_queue_head_t ws_wait;
 753} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 754
 755static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 756        &btrfs_zlib_compress,
 757        &btrfs_lzo_compress,
 758};
 759
 760void __init btrfs_init_compress(void)
 761{
 762        int i;
 763
 764        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 765                INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 766                spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 767                atomic_set(&btrfs_comp_ws[i].alloc_ws, 0);
 768                init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 769        }
 770}
 771
 772/*
 773 * this finds an available workspace or allocates a new one
 774 * ERR_PTR is returned if things go bad.
 775 */
 776static struct list_head *find_workspace(int type)
 777{
 778        struct list_head *workspace;
 779        int cpus = num_online_cpus();
 780        int idx = type - 1;
 781
 782        struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
 783        spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
 784        atomic_t *alloc_ws              = &btrfs_comp_ws[idx].alloc_ws;
 785        wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
 786        int *num_ws                     = &btrfs_comp_ws[idx].num_ws;
 787again:
 788        spin_lock(ws_lock);
 789        if (!list_empty(idle_ws)) {
 790                workspace = idle_ws->next;
 791                list_del(workspace);
 792                (*num_ws)--;
 793                spin_unlock(ws_lock);
 794                return workspace;
 795
 796        }
 797        if (atomic_read(alloc_ws) > cpus) {
 798                DEFINE_WAIT(wait);
 799
 800                spin_unlock(ws_lock);
 801                prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 802                if (atomic_read(alloc_ws) > cpus && !*num_ws)
 803                        schedule();
 804                finish_wait(ws_wait, &wait);
 805                goto again;
 806        }
 807        atomic_inc(alloc_ws);
 808        spin_unlock(ws_lock);
 809
 810        workspace = btrfs_compress_op[idx]->alloc_workspace();
 811        if (IS_ERR(workspace)) {
 812                atomic_dec(alloc_ws);
 813                wake_up(ws_wait);
 814        }
 815        return workspace;
 816}
 817
 818/*
 819 * put a workspace struct back on the list or free it if we have enough
 820 * idle ones sitting around
 821 */
 822static void free_workspace(int type, struct list_head *workspace)
 823{
 824        int idx = type - 1;
 825        struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
 826        spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
 827        atomic_t *alloc_ws              = &btrfs_comp_ws[idx].alloc_ws;
 828        wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
 829        int *num_ws                     = &btrfs_comp_ws[idx].num_ws;
 830
 831        spin_lock(ws_lock);
 832        if (*num_ws < num_online_cpus()) {
 833                list_add(workspace, idle_ws);
 834                (*num_ws)++;
 835                spin_unlock(ws_lock);
 836                goto wake;
 837        }
 838        spin_unlock(ws_lock);
 839
 840        btrfs_compress_op[idx]->free_workspace(workspace);
 841        atomic_dec(alloc_ws);
 842wake:
 843        /*
 844         * Make sure counter is updated before we wake up waiters.
 845         */
 846        smp_mb();
 847        if (waitqueue_active(ws_wait))
 848                wake_up(ws_wait);
 849}
 850
 851/*
 852 * cleanup function for module exit
 853 */
 854static void free_workspaces(void)
 855{
 856        struct list_head *workspace;
 857        int i;
 858
 859        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 860                while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
 861                        workspace = btrfs_comp_ws[i].idle_ws.next;
 862                        list_del(workspace);
 863                        btrfs_compress_op[i]->free_workspace(workspace);
 864                        atomic_dec(&btrfs_comp_ws[i].alloc_ws);
 865                }
 866        }
 867}
 868
 869/*
 870 * given an address space and start/len, compress the bytes.
 871 *
 872 * pages are allocated to hold the compressed result and stored
 873 * in 'pages'
 874 *
 875 * out_pages is used to return the number of pages allocated.  There
 876 * may be pages allocated even if we return an error
 877 *
 878 * total_in is used to return the number of bytes actually read.  It
 879 * may be smaller then len if we had to exit early because we
 880 * ran out of room in the pages array or because we cross the
 881 * max_out threshold.
 882 *
 883 * total_out is used to return the total number of compressed bytes
 884 *
 885 * max_out tells us the max number of bytes that we're allowed to
 886 * stuff into pages
 887 */
 888int btrfs_compress_pages(int type, struct address_space *mapping,
 889                         u64 start, unsigned long len,
 890                         struct page **pages,
 891                         unsigned long nr_dest_pages,
 892                         unsigned long *out_pages,
 893                         unsigned long *total_in,
 894                         unsigned long *total_out,
 895                         unsigned long max_out)
 896{
 897        struct list_head *workspace;
 898        int ret;
 899
 900        workspace = find_workspace(type);
 901        if (IS_ERR(workspace))
 902                return PTR_ERR(workspace);
 903
 904        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 905                                                      start, len, pages,
 906                                                      nr_dest_pages, out_pages,
 907                                                      total_in, total_out,
 908                                                      max_out);
 909        free_workspace(type, workspace);
 910        return ret;
 911}
 912
 913/*
 914 * pages_in is an array of pages with compressed data.
 915 *
 916 * disk_start is the starting logical offset of this array in the file
 917 *
 918 * bvec is a bio_vec of pages from the file that we want to decompress into
 919 *
 920 * vcnt is the count of pages in the biovec
 921 *
 922 * srclen is the number of bytes in pages_in
 923 *
 924 * The basic idea is that we have a bio that was created by readpages.
 925 * The pages in the bio are for the uncompressed data, and they may not
 926 * be contiguous.  They all correspond to the range of bytes covered by
 927 * the compressed extent.
 928 */
 929static int btrfs_decompress_biovec(int type, struct page **pages_in,
 930                                   u64 disk_start, struct bio_vec *bvec,
 931                                   int vcnt, size_t srclen)
 932{
 933        struct list_head *workspace;
 934        int ret;
 935
 936        workspace = find_workspace(type);
 937        if (IS_ERR(workspace))
 938                return PTR_ERR(workspace);
 939
 940        ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 941                                                         disk_start,
 942                                                         bvec, vcnt, srclen);
 943        free_workspace(type, workspace);
 944        return ret;
 945}
 946
 947/*
 948 * a less complex decompression routine.  Our compressed data fits in a
 949 * single page, and we want to read a single page out of it.
 950 * start_byte tells us the offset into the compressed data we're interested in
 951 */
 952int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 953                     unsigned long start_byte, size_t srclen, size_t destlen)
 954{
 955        struct list_head *workspace;
 956        int ret;
 957
 958        workspace = find_workspace(type);
 959        if (IS_ERR(workspace))
 960                return PTR_ERR(workspace);
 961
 962        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 963                                                  dest_page, start_byte,
 964                                                  srclen, destlen);
 965
 966        free_workspace(type, workspace);
 967        return ret;
 968}
 969
 970void btrfs_exit_compress(void)
 971{
 972        free_workspaces();
 973}
 974
 975/*
 976 * Copy uncompressed data from working buffer to pages.
 977 *
 978 * buf_start is the byte offset we're of the start of our workspace buffer.
 979 *
 980 * total_out is the last byte of the buffer
 981 */
 982int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 983                              unsigned long total_out, u64 disk_start,
 984                              struct bio_vec *bvec, int vcnt,
 985                              unsigned long *pg_index,
 986                              unsigned long *pg_offset)
 987{
 988        unsigned long buf_offset;
 989        unsigned long current_buf_start;
 990        unsigned long start_byte;
 991        unsigned long working_bytes = total_out - buf_start;
 992        unsigned long bytes;
 993        char *kaddr;
 994        struct page *page_out = bvec[*pg_index].bv_page;
 995
 996        /*
 997         * start byte is the first byte of the page we're currently
 998         * copying into relative to the start of the compressed data.
 999         */
1000        start_byte = page_offset(page_out) - disk_start;
1001
1002        /* we haven't yet hit data corresponding to this page */
1003        if (total_out <= start_byte)
1004                return 1;
1005
1006        /*
1007         * the start of the data we care about is offset into
1008         * the middle of our working buffer
1009         */
1010        if (total_out > start_byte && buf_start < start_byte) {
1011                buf_offset = start_byte - buf_start;
1012                working_bytes -= buf_offset;
1013        } else {
1014                buf_offset = 0;
1015        }
1016        current_buf_start = buf_start;
1017
1018        /* copy bytes from the working buffer into the pages */
1019        while (working_bytes > 0) {
1020                bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1021                            PAGE_CACHE_SIZE - buf_offset);
1022                bytes = min(bytes, working_bytes);
1023                kaddr = kmap_atomic(page_out);
1024                memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1025                kunmap_atomic(kaddr);
1026                flush_dcache_page(page_out);
1027
1028                *pg_offset += bytes;
1029                buf_offset += bytes;
1030                working_bytes -= bytes;
1031                current_buf_start += bytes;
1032
1033                /* check if we need to pick another page */
1034                if (*pg_offset == PAGE_CACHE_SIZE) {
1035                        (*pg_index)++;
1036                        if (*pg_index >= vcnt)
1037                                return 0;
1038
1039                        page_out = bvec[*pg_index].bv_page;
1040                        *pg_offset = 0;
1041                        start_byte = page_offset(page_out) - disk_start;
1042
1043                        /*
1044                         * make sure our new page is covered by this
1045                         * working buffer
1046                         */
1047                        if (total_out <= start_byte)
1048                                return 1;
1049
1050                        /*
1051                         * the next page in the biovec might not be adjacent
1052                         * to the last page, but it might still be found
1053                         * inside this working buffer. bump our offset pointer
1054                         */
1055                        if (total_out > start_byte &&
1056                            current_buf_start < start_byte) {
1057                                buf_offset = start_byte - buf_start;
1058                                working_bytes = total_out - start_byte;
1059                                current_buf_start = buf_start + buf_offset;
1060                        }
1061                }
1062        }
1063
1064        return 1;
1065}
1066
1067/*
1068 * When uncompressing data, we need to make sure and zero any parts of
1069 * the biovec that were not filled in by the decompression code.  pg_index
1070 * and pg_offset indicate the last page and the last offset of that page
1071 * that have been filled in.  This will zero everything remaining in the
1072 * biovec.
1073 */
1074void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1075                                   unsigned long pg_index,
1076                                   unsigned long pg_offset)
1077{
1078        while (pg_index < vcnt) {
1079                struct page *page = bvec[pg_index].bv_page;
1080                unsigned long off = bvec[pg_index].bv_offset;
1081                unsigned long len = bvec[pg_index].bv_len;
1082
1083                if (pg_offset < off)
1084                        pg_offset = off;
1085                if (pg_offset < off + len) {
1086                        unsigned long bytes = off + len - pg_offset;
1087                        char *kaddr;
1088
1089                        kaddr = kmap_atomic(page);
1090                        memset(kaddr + pg_offset, 0, bytes);
1091                        kunmap_atomic(kaddr);
1092                }
1093                pg_index++;
1094                pg_offset = 0;
1095        }
1096}
1097