linux/fs/btrfs/reada.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include <linux/workqueue.h>
  26#include "ctree.h"
  27#include "volumes.h"
  28#include "disk-io.h"
  29#include "transaction.h"
  30#include "dev-replace.h"
  31
  32#undef DEBUG
  33
  34/*
  35 * This is the implementation for the generic read ahead framework.
  36 *
  37 * To trigger a readahead, btrfs_reada_add must be called. It will start
  38 * a read ahead for the given range [start, end) on tree root. The returned
  39 * handle can either be used to wait on the readahead to finish
  40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  41 *
  42 * The read ahead works as follows:
  43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  44 * reada_start_machine will then search for extents to prefetch and trigger
  45 * some reads. When a read finishes for a node, all contained node/leaf
  46 * pointers that lie in the given range will also be enqueued. The reads will
  47 * be triggered in sequential order, thus giving a big win over a naive
  48 * enumeration. It will also make use of multi-device layouts. Each disk
  49 * will have its on read pointer and all disks will by utilized in parallel.
  50 * Also will no two disks read both sides of a mirror simultaneously, as this
  51 * would waste seeking capacity. Instead both disks will read different parts
  52 * of the filesystem.
  53 * Any number of readaheads can be started in parallel. The read order will be
  54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  55 * than the 2 started one after another.
  56 */
  57
  58#define MAX_IN_FLIGHT 6
  59
  60struct reada_extctl {
  61        struct list_head        list;
  62        struct reada_control    *rc;
  63        u64                     generation;
  64};
  65
  66struct reada_extent {
  67        u64                     logical;
  68        struct btrfs_key        top;
  69        int                     err;
  70        struct list_head        extctl;
  71        int                     refcnt;
  72        spinlock_t              lock;
  73        struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
  74        int                     nzones;
  75        struct btrfs_device     *scheduled_for;
  76};
  77
  78struct reada_zone {
  79        u64                     start;
  80        u64                     end;
  81        u64                     elems;
  82        struct list_head        list;
  83        spinlock_t              lock;
  84        int                     locked;
  85        struct btrfs_device     *device;
  86        struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  87                                                           * self */
  88        int                     ndevs;
  89        struct kref             refcnt;
  90};
  91
  92struct reada_machine_work {
  93        struct btrfs_work       work;
  94        struct btrfs_fs_info    *fs_info;
  95};
  96
  97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  98static void reada_control_release(struct kref *kref);
  99static void reada_zone_release(struct kref *kref);
 100static void reada_start_machine(struct btrfs_fs_info *fs_info);
 101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
 102
 103static int reada_add_block(struct reada_control *rc, u64 logical,
 104                           struct btrfs_key *top, int level, u64 generation);
 105
 106/* recurses */
 107/* in case of err, eb might be NULL */
 108static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 109                            u64 start, int err)
 110{
 111        int level = 0;
 112        int nritems;
 113        int i;
 114        u64 bytenr;
 115        u64 generation;
 116        struct reada_extent *re;
 117        struct btrfs_fs_info *fs_info = root->fs_info;
 118        struct list_head list;
 119        unsigned long index = start >> PAGE_CACHE_SHIFT;
 120        struct btrfs_device *for_dev;
 121
 122        if (eb)
 123                level = btrfs_header_level(eb);
 124
 125        /* find extent */
 126        spin_lock(&fs_info->reada_lock);
 127        re = radix_tree_lookup(&fs_info->reada_tree, index);
 128        if (re)
 129                re->refcnt++;
 130        spin_unlock(&fs_info->reada_lock);
 131
 132        if (!re)
 133                return -1;
 134
 135        spin_lock(&re->lock);
 136        /*
 137         * just take the full list from the extent. afterwards we
 138         * don't need the lock anymore
 139         */
 140        list_replace_init(&re->extctl, &list);
 141        for_dev = re->scheduled_for;
 142        re->scheduled_for = NULL;
 143        spin_unlock(&re->lock);
 144
 145        if (err == 0) {
 146                nritems = level ? btrfs_header_nritems(eb) : 0;
 147                generation = btrfs_header_generation(eb);
 148                /*
 149                 * FIXME: currently we just set nritems to 0 if this is a leaf,
 150                 * effectively ignoring the content. In a next step we could
 151                 * trigger more readahead depending from the content, e.g.
 152                 * fetch the checksums for the extents in the leaf.
 153                 */
 154        } else {
 155                /*
 156                 * this is the error case, the extent buffer has not been
 157                 * read correctly. We won't access anything from it and
 158                 * just cleanup our data structures. Effectively this will
 159                 * cut the branch below this node from read ahead.
 160                 */
 161                nritems = 0;
 162                generation = 0;
 163        }
 164
 165        for (i = 0; i < nritems; i++) {
 166                struct reada_extctl *rec;
 167                u64 n_gen;
 168                struct btrfs_key key;
 169                struct btrfs_key next_key;
 170
 171                btrfs_node_key_to_cpu(eb, &key, i);
 172                if (i + 1 < nritems)
 173                        btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 174                else
 175                        next_key = re->top;
 176                bytenr = btrfs_node_blockptr(eb, i);
 177                n_gen = btrfs_node_ptr_generation(eb, i);
 178
 179                list_for_each_entry(rec, &list, list) {
 180                        struct reada_control *rc = rec->rc;
 181
 182                        /*
 183                         * if the generation doesn't match, just ignore this
 184                         * extctl. This will probably cut off a branch from
 185                         * prefetch. Alternatively one could start a new (sub-)
 186                         * prefetch for this branch, starting again from root.
 187                         * FIXME: move the generation check out of this loop
 188                         */
 189#ifdef DEBUG
 190                        if (rec->generation != generation) {
 191                                btrfs_debug(root->fs_info,
 192                                           "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 193                                       key.objectid, key.type, key.offset,
 194                                       rec->generation, generation);
 195                        }
 196#endif
 197                        if (rec->generation == generation &&
 198                            btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 199                            btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 200                                reada_add_block(rc, bytenr, &next_key,
 201                                                level - 1, n_gen);
 202                }
 203        }
 204        /*
 205         * free extctl records
 206         */
 207        while (!list_empty(&list)) {
 208                struct reada_control *rc;
 209                struct reada_extctl *rec;
 210
 211                rec = list_first_entry(&list, struct reada_extctl, list);
 212                list_del(&rec->list);
 213                rc = rec->rc;
 214                kfree(rec);
 215
 216                kref_get(&rc->refcnt);
 217                if (atomic_dec_and_test(&rc->elems)) {
 218                        kref_put(&rc->refcnt, reada_control_release);
 219                        wake_up(&rc->wait);
 220                }
 221                kref_put(&rc->refcnt, reada_control_release);
 222
 223                reada_extent_put(fs_info, re);  /* one ref for each entry */
 224        }
 225        reada_extent_put(fs_info, re);  /* our ref */
 226        if (for_dev)
 227                atomic_dec(&for_dev->reada_in_flight);
 228
 229        return 0;
 230}
 231
 232/*
 233 * start is passed separately in case eb in NULL, which may be the case with
 234 * failed I/O
 235 */
 236int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 237                         u64 start, int err)
 238{
 239        int ret;
 240
 241        ret = __readahead_hook(root, eb, start, err);
 242
 243        reada_start_machine(root->fs_info);
 244
 245        return ret;
 246}
 247
 248static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
 249                                          struct btrfs_device *dev, u64 logical,
 250                                          struct btrfs_bio *bbio)
 251{
 252        int ret;
 253        struct reada_zone *zone;
 254        struct btrfs_block_group_cache *cache = NULL;
 255        u64 start;
 256        u64 end;
 257        int i;
 258
 259        zone = NULL;
 260        spin_lock(&fs_info->reada_lock);
 261        ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 262                                     logical >> PAGE_CACHE_SHIFT, 1);
 263        if (ret == 1)
 264                kref_get(&zone->refcnt);
 265        spin_unlock(&fs_info->reada_lock);
 266
 267        if (ret == 1) {
 268                if (logical >= zone->start && logical < zone->end)
 269                        return zone;
 270                spin_lock(&fs_info->reada_lock);
 271                kref_put(&zone->refcnt, reada_zone_release);
 272                spin_unlock(&fs_info->reada_lock);
 273        }
 274
 275        cache = btrfs_lookup_block_group(fs_info, logical);
 276        if (!cache)
 277                return NULL;
 278
 279        start = cache->key.objectid;
 280        end = start + cache->key.offset - 1;
 281        btrfs_put_block_group(cache);
 282
 283        zone = kzalloc(sizeof(*zone), GFP_NOFS);
 284        if (!zone)
 285                return NULL;
 286
 287        zone->start = start;
 288        zone->end = end;
 289        INIT_LIST_HEAD(&zone->list);
 290        spin_lock_init(&zone->lock);
 291        zone->locked = 0;
 292        kref_init(&zone->refcnt);
 293        zone->elems = 0;
 294        zone->device = dev; /* our device always sits at index 0 */
 295        for (i = 0; i < bbio->num_stripes; ++i) {
 296                /* bounds have already been checked */
 297                zone->devs[i] = bbio->stripes[i].dev;
 298        }
 299        zone->ndevs = bbio->num_stripes;
 300
 301        spin_lock(&fs_info->reada_lock);
 302        ret = radix_tree_insert(&dev->reada_zones,
 303                                (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
 304                                zone);
 305
 306        if (ret == -EEXIST) {
 307                kfree(zone);
 308                ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 309                                             logical >> PAGE_CACHE_SHIFT, 1);
 310                if (ret == 1)
 311                        kref_get(&zone->refcnt);
 312        }
 313        spin_unlock(&fs_info->reada_lock);
 314
 315        return zone;
 316}
 317
 318static struct reada_extent *reada_find_extent(struct btrfs_root *root,
 319                                              u64 logical,
 320                                              struct btrfs_key *top, int level)
 321{
 322        int ret;
 323        struct reada_extent *re = NULL;
 324        struct reada_extent *re_exist = NULL;
 325        struct btrfs_fs_info *fs_info = root->fs_info;
 326        struct btrfs_bio *bbio = NULL;
 327        struct btrfs_device *dev;
 328        struct btrfs_device *prev_dev;
 329        u32 blocksize;
 330        u64 length;
 331        int real_stripes;
 332        int nzones = 0;
 333        int i;
 334        unsigned long index = logical >> PAGE_CACHE_SHIFT;
 335        int dev_replace_is_ongoing;
 336
 337        spin_lock(&fs_info->reada_lock);
 338        re = radix_tree_lookup(&fs_info->reada_tree, index);
 339        if (re)
 340                re->refcnt++;
 341        spin_unlock(&fs_info->reada_lock);
 342
 343        if (re)
 344                return re;
 345
 346        re = kzalloc(sizeof(*re), GFP_NOFS);
 347        if (!re)
 348                return NULL;
 349
 350        blocksize = root->nodesize;
 351        re->logical = logical;
 352        re->top = *top;
 353        INIT_LIST_HEAD(&re->extctl);
 354        spin_lock_init(&re->lock);
 355        re->refcnt = 1;
 356
 357        /*
 358         * map block
 359         */
 360        length = blocksize;
 361        ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
 362                              &bbio, 0);
 363        if (ret || !bbio || length < blocksize)
 364                goto error;
 365
 366        if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 367                btrfs_err(root->fs_info,
 368                           "readahead: more than %d copies not supported",
 369                           BTRFS_MAX_MIRRORS);
 370                goto error;
 371        }
 372
 373        real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 374        for (nzones = 0; nzones < real_stripes; ++nzones) {
 375                struct reada_zone *zone;
 376
 377                dev = bbio->stripes[nzones].dev;
 378                zone = reada_find_zone(fs_info, dev, logical, bbio);
 379                if (!zone)
 380                        break;
 381
 382                re->zones[nzones] = zone;
 383                spin_lock(&zone->lock);
 384                if (!zone->elems)
 385                        kref_get(&zone->refcnt);
 386                ++zone->elems;
 387                spin_unlock(&zone->lock);
 388                spin_lock(&fs_info->reada_lock);
 389                kref_put(&zone->refcnt, reada_zone_release);
 390                spin_unlock(&fs_info->reada_lock);
 391        }
 392        re->nzones = nzones;
 393        if (nzones == 0) {
 394                /* not a single zone found, error and out */
 395                goto error;
 396        }
 397
 398        /* insert extent in reada_tree + all per-device trees, all or nothing */
 399        btrfs_dev_replace_lock(&fs_info->dev_replace);
 400        spin_lock(&fs_info->reada_lock);
 401        ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 402        if (ret == -EEXIST) {
 403                re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 404                BUG_ON(!re_exist);
 405                re_exist->refcnt++;
 406                spin_unlock(&fs_info->reada_lock);
 407                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 408                goto error;
 409        }
 410        if (ret) {
 411                spin_unlock(&fs_info->reada_lock);
 412                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 413                goto error;
 414        }
 415        prev_dev = NULL;
 416        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 417                        &fs_info->dev_replace);
 418        for (i = 0; i < nzones; ++i) {
 419                dev = bbio->stripes[i].dev;
 420                if (dev == prev_dev) {
 421                        /*
 422                         * in case of DUP, just add the first zone. As both
 423                         * are on the same device, there's nothing to gain
 424                         * from adding both.
 425                         * Also, it wouldn't work, as the tree is per device
 426                         * and adding would fail with EEXIST
 427                         */
 428                        continue;
 429                }
 430                if (!dev->bdev) {
 431                        /*
 432                         * cannot read ahead on missing device, but for RAID5/6,
 433                         * REQ_GET_READ_MIRRORS return 1. So don't skip missing
 434                         * device for such case.
 435                         */
 436                        if (nzones > 1)
 437                                continue;
 438                }
 439                if (dev_replace_is_ongoing &&
 440                    dev == fs_info->dev_replace.tgtdev) {
 441                        /*
 442                         * as this device is selected for reading only as
 443                         * a last resort, skip it for read ahead.
 444                         */
 445                        continue;
 446                }
 447                prev_dev = dev;
 448                ret = radix_tree_insert(&dev->reada_extents, index, re);
 449                if (ret) {
 450                        while (--i >= 0) {
 451                                dev = bbio->stripes[i].dev;
 452                                BUG_ON(dev == NULL);
 453                                /* ignore whether the entry was inserted */
 454                                radix_tree_delete(&dev->reada_extents, index);
 455                        }
 456                        BUG_ON(fs_info == NULL);
 457                        radix_tree_delete(&fs_info->reada_tree, index);
 458                        spin_unlock(&fs_info->reada_lock);
 459                        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 460                        goto error;
 461                }
 462        }
 463        spin_unlock(&fs_info->reada_lock);
 464        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 465
 466        btrfs_put_bbio(bbio);
 467        return re;
 468
 469error:
 470        while (nzones) {
 471                struct reada_zone *zone;
 472
 473                --nzones;
 474                zone = re->zones[nzones];
 475                kref_get(&zone->refcnt);
 476                spin_lock(&zone->lock);
 477                --zone->elems;
 478                if (zone->elems == 0) {
 479                        /*
 480                         * no fs_info->reada_lock needed, as this can't be
 481                         * the last ref
 482                         */
 483                        kref_put(&zone->refcnt, reada_zone_release);
 484                }
 485                spin_unlock(&zone->lock);
 486
 487                spin_lock(&fs_info->reada_lock);
 488                kref_put(&zone->refcnt, reada_zone_release);
 489                spin_unlock(&fs_info->reada_lock);
 490        }
 491        btrfs_put_bbio(bbio);
 492        kfree(re);
 493        return re_exist;
 494}
 495
 496static void reada_extent_put(struct btrfs_fs_info *fs_info,
 497                             struct reada_extent *re)
 498{
 499        int i;
 500        unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
 501
 502        spin_lock(&fs_info->reada_lock);
 503        if (--re->refcnt) {
 504                spin_unlock(&fs_info->reada_lock);
 505                return;
 506        }
 507
 508        radix_tree_delete(&fs_info->reada_tree, index);
 509        for (i = 0; i < re->nzones; ++i) {
 510                struct reada_zone *zone = re->zones[i];
 511
 512                radix_tree_delete(&zone->device->reada_extents, index);
 513        }
 514
 515        spin_unlock(&fs_info->reada_lock);
 516
 517        for (i = 0; i < re->nzones; ++i) {
 518                struct reada_zone *zone = re->zones[i];
 519
 520                kref_get(&zone->refcnt);
 521                spin_lock(&zone->lock);
 522                --zone->elems;
 523                if (zone->elems == 0) {
 524                        /* no fs_info->reada_lock needed, as this can't be
 525                         * the last ref */
 526                        kref_put(&zone->refcnt, reada_zone_release);
 527                }
 528                spin_unlock(&zone->lock);
 529
 530                spin_lock(&fs_info->reada_lock);
 531                kref_put(&zone->refcnt, reada_zone_release);
 532                spin_unlock(&fs_info->reada_lock);
 533        }
 534        if (re->scheduled_for)
 535                atomic_dec(&re->scheduled_for->reada_in_flight);
 536
 537        kfree(re);
 538}
 539
 540static void reada_zone_release(struct kref *kref)
 541{
 542        struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 543
 544        radix_tree_delete(&zone->device->reada_zones,
 545                          zone->end >> PAGE_CACHE_SHIFT);
 546
 547        kfree(zone);
 548}
 549
 550static void reada_control_release(struct kref *kref)
 551{
 552        struct reada_control *rc = container_of(kref, struct reada_control,
 553                                                refcnt);
 554
 555        kfree(rc);
 556}
 557
 558static int reada_add_block(struct reada_control *rc, u64 logical,
 559                           struct btrfs_key *top, int level, u64 generation)
 560{
 561        struct btrfs_root *root = rc->root;
 562        struct reada_extent *re;
 563        struct reada_extctl *rec;
 564
 565        re = reada_find_extent(root, logical, top, level); /* takes one ref */
 566        if (!re)
 567                return -1;
 568
 569        rec = kzalloc(sizeof(*rec), GFP_NOFS);
 570        if (!rec) {
 571                reada_extent_put(root->fs_info, re);
 572                return -ENOMEM;
 573        }
 574
 575        rec->rc = rc;
 576        rec->generation = generation;
 577        atomic_inc(&rc->elems);
 578
 579        spin_lock(&re->lock);
 580        list_add_tail(&rec->list, &re->extctl);
 581        spin_unlock(&re->lock);
 582
 583        /* leave the ref on the extent */
 584
 585        return 0;
 586}
 587
 588/*
 589 * called with fs_info->reada_lock held
 590 */
 591static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 592{
 593        int i;
 594        unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
 595
 596        for (i = 0; i < zone->ndevs; ++i) {
 597                struct reada_zone *peer;
 598                peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 599                if (peer && peer->device != zone->device)
 600                        peer->locked = lock;
 601        }
 602}
 603
 604/*
 605 * called with fs_info->reada_lock held
 606 */
 607static int reada_pick_zone(struct btrfs_device *dev)
 608{
 609        struct reada_zone *top_zone = NULL;
 610        struct reada_zone *top_locked_zone = NULL;
 611        u64 top_elems = 0;
 612        u64 top_locked_elems = 0;
 613        unsigned long index = 0;
 614        int ret;
 615
 616        if (dev->reada_curr_zone) {
 617                reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 618                kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 619                dev->reada_curr_zone = NULL;
 620        }
 621        /* pick the zone with the most elements */
 622        while (1) {
 623                struct reada_zone *zone;
 624
 625                ret = radix_tree_gang_lookup(&dev->reada_zones,
 626                                             (void **)&zone, index, 1);
 627                if (ret == 0)
 628                        break;
 629                index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 630                if (zone->locked) {
 631                        if (zone->elems > top_locked_elems) {
 632                                top_locked_elems = zone->elems;
 633                                top_locked_zone = zone;
 634                        }
 635                } else {
 636                        if (zone->elems > top_elems) {
 637                                top_elems = zone->elems;
 638                                top_zone = zone;
 639                        }
 640                }
 641        }
 642        if (top_zone)
 643                dev->reada_curr_zone = top_zone;
 644        else if (top_locked_zone)
 645                dev->reada_curr_zone = top_locked_zone;
 646        else
 647                return 0;
 648
 649        dev->reada_next = dev->reada_curr_zone->start;
 650        kref_get(&dev->reada_curr_zone->refcnt);
 651        reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 652
 653        return 1;
 654}
 655
 656static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
 657                                   struct btrfs_device *dev)
 658{
 659        struct reada_extent *re = NULL;
 660        int mirror_num = 0;
 661        struct extent_buffer *eb = NULL;
 662        u64 logical;
 663        int ret;
 664        int i;
 665        int need_kick = 0;
 666
 667        spin_lock(&fs_info->reada_lock);
 668        if (dev->reada_curr_zone == NULL) {
 669                ret = reada_pick_zone(dev);
 670                if (!ret) {
 671                        spin_unlock(&fs_info->reada_lock);
 672                        return 0;
 673                }
 674        }
 675        /*
 676         * FIXME currently we issue the reads one extent at a time. If we have
 677         * a contiguous block of extents, we could also coagulate them or use
 678         * plugging to speed things up
 679         */
 680        ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 681                                     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 682        if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
 683                ret = reada_pick_zone(dev);
 684                if (!ret) {
 685                        spin_unlock(&fs_info->reada_lock);
 686                        return 0;
 687                }
 688                re = NULL;
 689                ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 690                                        dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 691        }
 692        if (ret == 0) {
 693                spin_unlock(&fs_info->reada_lock);
 694                return 0;
 695        }
 696        dev->reada_next = re->logical + fs_info->tree_root->nodesize;
 697        re->refcnt++;
 698
 699        spin_unlock(&fs_info->reada_lock);
 700
 701        /*
 702         * find mirror num
 703         */
 704        for (i = 0; i < re->nzones; ++i) {
 705                if (re->zones[i]->device == dev) {
 706                        mirror_num = i + 1;
 707                        break;
 708                }
 709        }
 710        logical = re->logical;
 711
 712        spin_lock(&re->lock);
 713        if (re->scheduled_for == NULL) {
 714                re->scheduled_for = dev;
 715                need_kick = 1;
 716        }
 717        spin_unlock(&re->lock);
 718
 719        reada_extent_put(fs_info, re);
 720
 721        if (!need_kick)
 722                return 0;
 723
 724        atomic_inc(&dev->reada_in_flight);
 725        ret = reada_tree_block_flagged(fs_info->extent_root, logical,
 726                        mirror_num, &eb);
 727        if (ret)
 728                __readahead_hook(fs_info->extent_root, NULL, logical, ret);
 729        else if (eb)
 730                __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
 731
 732        if (eb)
 733                free_extent_buffer(eb);
 734
 735        return 1;
 736
 737}
 738
 739static void reada_start_machine_worker(struct btrfs_work *work)
 740{
 741        struct reada_machine_work *rmw;
 742        struct btrfs_fs_info *fs_info;
 743        int old_ioprio;
 744
 745        rmw = container_of(work, struct reada_machine_work, work);
 746        fs_info = rmw->fs_info;
 747
 748        kfree(rmw);
 749
 750        old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 751                                       task_nice_ioprio(current));
 752        set_task_ioprio(current, BTRFS_IOPRIO_READA);
 753        __reada_start_machine(fs_info);
 754        set_task_ioprio(current, old_ioprio);
 755}
 756
 757static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 758{
 759        struct btrfs_device *device;
 760        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 761        u64 enqueued;
 762        u64 total = 0;
 763        int i;
 764
 765        do {
 766                enqueued = 0;
 767                list_for_each_entry(device, &fs_devices->devices, dev_list) {
 768                        if (atomic_read(&device->reada_in_flight) <
 769                            MAX_IN_FLIGHT)
 770                                enqueued += reada_start_machine_dev(fs_info,
 771                                                                    device);
 772                }
 773                total += enqueued;
 774        } while (enqueued && total < 10000);
 775
 776        if (enqueued == 0)
 777                return;
 778
 779        /*
 780         * If everything is already in the cache, this is effectively single
 781         * threaded. To a) not hold the caller for too long and b) to utilize
 782         * more cores, we broke the loop above after 10000 iterations and now
 783         * enqueue to workers to finish it. This will distribute the load to
 784         * the cores.
 785         */
 786        for (i = 0; i < 2; ++i)
 787                reada_start_machine(fs_info);
 788}
 789
 790static void reada_start_machine(struct btrfs_fs_info *fs_info)
 791{
 792        struct reada_machine_work *rmw;
 793
 794        rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
 795        if (!rmw) {
 796                /* FIXME we cannot handle this properly right now */
 797                BUG();
 798        }
 799        btrfs_init_work(&rmw->work, btrfs_readahead_helper,
 800                        reada_start_machine_worker, NULL, NULL);
 801        rmw->fs_info = fs_info;
 802
 803        btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 804}
 805
 806#ifdef DEBUG
 807static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 808{
 809        struct btrfs_device *device;
 810        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 811        unsigned long index;
 812        int ret;
 813        int i;
 814        int j;
 815        int cnt;
 816
 817        spin_lock(&fs_info->reada_lock);
 818        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 819                printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
 820                        atomic_read(&device->reada_in_flight));
 821                index = 0;
 822                while (1) {
 823                        struct reada_zone *zone;
 824                        ret = radix_tree_gang_lookup(&device->reada_zones,
 825                                                     (void **)&zone, index, 1);
 826                        if (ret == 0)
 827                                break;
 828                        printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
 829                                "%d devs", zone->start, zone->end, zone->elems,
 830                                zone->locked);
 831                        for (j = 0; j < zone->ndevs; ++j) {
 832                                printk(KERN_CONT " %lld",
 833                                        zone->devs[j]->devid);
 834                        }
 835                        if (device->reada_curr_zone == zone)
 836                                printk(KERN_CONT " curr off %llu",
 837                                        device->reada_next - zone->start);
 838                        printk(KERN_CONT "\n");
 839                        index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 840                }
 841                cnt = 0;
 842                index = 0;
 843                while (all) {
 844                        struct reada_extent *re = NULL;
 845
 846                        ret = radix_tree_gang_lookup(&device->reada_extents,
 847                                                     (void **)&re, index, 1);
 848                        if (ret == 0)
 849                                break;
 850                        printk(KERN_DEBUG
 851                                "  re: logical %llu size %u empty %d for %lld",
 852                                re->logical, fs_info->tree_root->nodesize,
 853                                list_empty(&re->extctl), re->scheduled_for ?
 854                                re->scheduled_for->devid : -1);
 855
 856                        for (i = 0; i < re->nzones; ++i) {
 857                                printk(KERN_CONT " zone %llu-%llu devs",
 858                                        re->zones[i]->start,
 859                                        re->zones[i]->end);
 860                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 861                                        printk(KERN_CONT " %lld",
 862                                                re->zones[i]->devs[j]->devid);
 863                                }
 864                        }
 865                        printk(KERN_CONT "\n");
 866                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 867                        if (++cnt > 15)
 868                                break;
 869                }
 870        }
 871
 872        index = 0;
 873        cnt = 0;
 874        while (all) {
 875                struct reada_extent *re = NULL;
 876
 877                ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 878                                             index, 1);
 879                if (ret == 0)
 880                        break;
 881                if (!re->scheduled_for) {
 882                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 883                        continue;
 884                }
 885                printk(KERN_DEBUG
 886                        "re: logical %llu size %u list empty %d for %lld",
 887                        re->logical, fs_info->tree_root->nodesize,
 888                        list_empty(&re->extctl),
 889                        re->scheduled_for ? re->scheduled_for->devid : -1);
 890                for (i = 0; i < re->nzones; ++i) {
 891                        printk(KERN_CONT " zone %llu-%llu devs",
 892                                re->zones[i]->start,
 893                                re->zones[i]->end);
 894                        for (i = 0; i < re->nzones; ++i) {
 895                                printk(KERN_CONT " zone %llu-%llu devs",
 896                                        re->zones[i]->start,
 897                                        re->zones[i]->end);
 898                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 899                                        printk(KERN_CONT " %lld",
 900                                                re->zones[i]->devs[j]->devid);
 901                                }
 902                        }
 903                }
 904                printk(KERN_CONT "\n");
 905                index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 906        }
 907        spin_unlock(&fs_info->reada_lock);
 908}
 909#endif
 910
 911/*
 912 * interface
 913 */
 914struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 915                        struct btrfs_key *key_start, struct btrfs_key *key_end)
 916{
 917        struct reada_control *rc;
 918        u64 start;
 919        u64 generation;
 920        int level;
 921        int ret;
 922        struct extent_buffer *node;
 923        static struct btrfs_key max_key = {
 924                .objectid = (u64)-1,
 925                .type = (u8)-1,
 926                .offset = (u64)-1
 927        };
 928
 929        rc = kzalloc(sizeof(*rc), GFP_NOFS);
 930        if (!rc)
 931                return ERR_PTR(-ENOMEM);
 932
 933        rc->root = root;
 934        rc->key_start = *key_start;
 935        rc->key_end = *key_end;
 936        atomic_set(&rc->elems, 0);
 937        init_waitqueue_head(&rc->wait);
 938        kref_init(&rc->refcnt);
 939        kref_get(&rc->refcnt); /* one ref for having elements */
 940
 941        node = btrfs_root_node(root);
 942        start = node->start;
 943        level = btrfs_header_level(node);
 944        generation = btrfs_header_generation(node);
 945        free_extent_buffer(node);
 946
 947        ret = reada_add_block(rc, start, &max_key, level, generation);
 948        if (ret) {
 949                kfree(rc);
 950                return ERR_PTR(ret);
 951        }
 952
 953        reada_start_machine(root->fs_info);
 954
 955        return rc;
 956}
 957
 958#ifdef DEBUG
 959int btrfs_reada_wait(void *handle)
 960{
 961        struct reada_control *rc = handle;
 962
 963        while (atomic_read(&rc->elems)) {
 964                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 965                                   5 * HZ);
 966                dump_devs(rc->root->fs_info,
 967                          atomic_read(&rc->elems) < 10 ? 1 : 0);
 968        }
 969
 970        dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 971
 972        kref_put(&rc->refcnt, reada_control_release);
 973
 974        return 0;
 975}
 976#else
 977int btrfs_reada_wait(void *handle)
 978{
 979        struct reada_control *rc = handle;
 980
 981        while (atomic_read(&rc->elems)) {
 982                wait_event(rc->wait, atomic_read(&rc->elems) == 0);
 983        }
 984
 985        kref_put(&rc->refcnt, reada_control_release);
 986
 987        return 0;
 988}
 989#endif
 990
 991void btrfs_reada_detach(void *handle)
 992{
 993        struct reada_control *rc = handle;
 994
 995        kref_put(&rc->refcnt, reada_control_release);
 996}
 997