linux/fs/inode.c
<<
>>
Prefs
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <trace/events/writeback.h>
  22#include "internal.h"
  23
  24/*
  25 * Inode locking rules:
  26 *
  27 * inode->i_lock protects:
  28 *   inode->i_state, inode->i_hash, __iget()
  29 * Inode LRU list locks protect:
  30 *   inode->i_sb->s_inode_lru, inode->i_lru
  31 * inode->i_sb->s_inode_list_lock protects:
  32 *   inode->i_sb->s_inodes, inode->i_sb_list
  33 * bdi->wb.list_lock protects:
  34 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  35 * inode_hash_lock protects:
  36 *   inode_hashtable, inode->i_hash
  37 *
  38 * Lock ordering:
  39 *
  40 * inode->i_sb->s_inode_list_lock
  41 *   inode->i_lock
  42 *     Inode LRU list locks
  43 *
  44 * bdi->wb.list_lock
  45 *   inode->i_lock
  46 *
  47 * inode_hash_lock
  48 *   inode->i_sb->s_inode_list_lock
  49 *   inode->i_lock
  50 *
  51 * iunique_lock
  52 *   inode_hash_lock
  53 */
  54
  55static unsigned int i_hash_mask __read_mostly;
  56static unsigned int i_hash_shift __read_mostly;
  57static struct hlist_head *inode_hashtable __read_mostly;
  58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  59
  60/*
  61 * Empty aops. Can be used for the cases where the user does not
  62 * define any of the address_space operations.
  63 */
  64const struct address_space_operations empty_aops = {
  65};
  66EXPORT_SYMBOL(empty_aops);
  67
  68/*
  69 * Statistics gathering..
  70 */
  71struct inodes_stat_t inodes_stat;
  72
  73static DEFINE_PER_CPU(unsigned long, nr_inodes);
  74static DEFINE_PER_CPU(unsigned long, nr_unused);
  75
  76static struct kmem_cache *inode_cachep __read_mostly;
  77
  78static long get_nr_inodes(void)
  79{
  80        int i;
  81        long sum = 0;
  82        for_each_possible_cpu(i)
  83                sum += per_cpu(nr_inodes, i);
  84        return sum < 0 ? 0 : sum;
  85}
  86
  87static inline long get_nr_inodes_unused(void)
  88{
  89        int i;
  90        long sum = 0;
  91        for_each_possible_cpu(i)
  92                sum += per_cpu(nr_unused, i);
  93        return sum < 0 ? 0 : sum;
  94}
  95
  96long get_nr_dirty_inodes(void)
  97{
  98        /* not actually dirty inodes, but a wild approximation */
  99        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 100        return nr_dirty > 0 ? nr_dirty : 0;
 101}
 102
 103/*
 104 * Handle nr_inode sysctl
 105 */
 106#ifdef CONFIG_SYSCTL
 107int proc_nr_inodes(struct ctl_table *table, int write,
 108                   void __user *buffer, size_t *lenp, loff_t *ppos)
 109{
 110        inodes_stat.nr_inodes = get_nr_inodes();
 111        inodes_stat.nr_unused = get_nr_inodes_unused();
 112        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 113}
 114#endif
 115
 116static int no_open(struct inode *inode, struct file *file)
 117{
 118        return -ENXIO;
 119}
 120
 121/**
 122 * inode_init_always - perform inode structure intialisation
 123 * @sb: superblock inode belongs to
 124 * @inode: inode to initialise
 125 *
 126 * These are initializations that need to be done on every inode
 127 * allocation as the fields are not initialised by slab allocation.
 128 */
 129int inode_init_always(struct super_block *sb, struct inode *inode)
 130{
 131        static const struct inode_operations empty_iops;
 132        static const struct file_operations no_open_fops = {.open = no_open};
 133        struct address_space *const mapping = &inode->i_data;
 134
 135        inode->i_sb = sb;
 136        inode->i_blkbits = sb->s_blocksize_bits;
 137        inode->i_flags = 0;
 138        atomic_set(&inode->i_count, 1);
 139        inode->i_op = &empty_iops;
 140        inode->i_fop = &no_open_fops;
 141        inode->__i_nlink = 1;
 142        inode->i_opflags = 0;
 143        i_uid_write(inode, 0);
 144        i_gid_write(inode, 0);
 145        atomic_set(&inode->i_writecount, 0);
 146        inode->i_size = 0;
 147        inode->i_blocks = 0;
 148        inode->i_bytes = 0;
 149        inode->i_generation = 0;
 150        inode->i_pipe = NULL;
 151        inode->i_bdev = NULL;
 152        inode->i_cdev = NULL;
 153        inode->i_link = NULL;
 154        inode->i_rdev = 0;
 155        inode->dirtied_when = 0;
 156
 157        if (security_inode_alloc(inode))
 158                goto out;
 159        spin_lock_init(&inode->i_lock);
 160        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 161
 162        mutex_init(&inode->i_mutex);
 163        lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 164
 165        atomic_set(&inode->i_dio_count, 0);
 166
 167        mapping->a_ops = &empty_aops;
 168        mapping->host = inode;
 169        mapping->flags = 0;
 170        atomic_set(&mapping->i_mmap_writable, 0);
 171        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 172        mapping->private_data = NULL;
 173        mapping->writeback_index = 0;
 174        inode->i_private = NULL;
 175        inode->i_mapping = mapping;
 176        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 177#ifdef CONFIG_FS_POSIX_ACL
 178        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 179#endif
 180
 181#ifdef CONFIG_FSNOTIFY
 182        inode->i_fsnotify_mask = 0;
 183#endif
 184        inode->i_flctx = NULL;
 185        this_cpu_inc(nr_inodes);
 186
 187        return 0;
 188out:
 189        return -ENOMEM;
 190}
 191EXPORT_SYMBOL(inode_init_always);
 192
 193static struct inode *alloc_inode(struct super_block *sb)
 194{
 195        struct inode *inode;
 196
 197        if (sb->s_op->alloc_inode)
 198                inode = sb->s_op->alloc_inode(sb);
 199        else
 200                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 201
 202        if (!inode)
 203                return NULL;
 204
 205        if (unlikely(inode_init_always(sb, inode))) {
 206                if (inode->i_sb->s_op->destroy_inode)
 207                        inode->i_sb->s_op->destroy_inode(inode);
 208                else
 209                        kmem_cache_free(inode_cachep, inode);
 210                return NULL;
 211        }
 212
 213        return inode;
 214}
 215
 216void free_inode_nonrcu(struct inode *inode)
 217{
 218        kmem_cache_free(inode_cachep, inode);
 219}
 220EXPORT_SYMBOL(free_inode_nonrcu);
 221
 222void __destroy_inode(struct inode *inode)
 223{
 224        BUG_ON(inode_has_buffers(inode));
 225        inode_detach_wb(inode);
 226        security_inode_free(inode);
 227        fsnotify_inode_delete(inode);
 228        locks_free_lock_context(inode->i_flctx);
 229        if (!inode->i_nlink) {
 230                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 231                atomic_long_dec(&inode->i_sb->s_remove_count);
 232        }
 233
 234#ifdef CONFIG_FS_POSIX_ACL
 235        if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 236                posix_acl_release(inode->i_acl);
 237        if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 238                posix_acl_release(inode->i_default_acl);
 239#endif
 240        this_cpu_dec(nr_inodes);
 241}
 242EXPORT_SYMBOL(__destroy_inode);
 243
 244static void i_callback(struct rcu_head *head)
 245{
 246        struct inode *inode = container_of(head, struct inode, i_rcu);
 247        kmem_cache_free(inode_cachep, inode);
 248}
 249
 250static void destroy_inode(struct inode *inode)
 251{
 252        BUG_ON(!list_empty(&inode->i_lru));
 253        __destroy_inode(inode);
 254        if (inode->i_sb->s_op->destroy_inode)
 255                inode->i_sb->s_op->destroy_inode(inode);
 256        else
 257                call_rcu(&inode->i_rcu, i_callback);
 258}
 259
 260/**
 261 * drop_nlink - directly drop an inode's link count
 262 * @inode: inode
 263 *
 264 * This is a low-level filesystem helper to replace any
 265 * direct filesystem manipulation of i_nlink.  In cases
 266 * where we are attempting to track writes to the
 267 * filesystem, a decrement to zero means an imminent
 268 * write when the file is truncated and actually unlinked
 269 * on the filesystem.
 270 */
 271void drop_nlink(struct inode *inode)
 272{
 273        WARN_ON(inode->i_nlink == 0);
 274        inode->__i_nlink--;
 275        if (!inode->i_nlink)
 276                atomic_long_inc(&inode->i_sb->s_remove_count);
 277}
 278EXPORT_SYMBOL(drop_nlink);
 279
 280/**
 281 * clear_nlink - directly zero an inode's link count
 282 * @inode: inode
 283 *
 284 * This is a low-level filesystem helper to replace any
 285 * direct filesystem manipulation of i_nlink.  See
 286 * drop_nlink() for why we care about i_nlink hitting zero.
 287 */
 288void clear_nlink(struct inode *inode)
 289{
 290        if (inode->i_nlink) {
 291                inode->__i_nlink = 0;
 292                atomic_long_inc(&inode->i_sb->s_remove_count);
 293        }
 294}
 295EXPORT_SYMBOL(clear_nlink);
 296
 297/**
 298 * set_nlink - directly set an inode's link count
 299 * @inode: inode
 300 * @nlink: new nlink (should be non-zero)
 301 *
 302 * This is a low-level filesystem helper to replace any
 303 * direct filesystem manipulation of i_nlink.
 304 */
 305void set_nlink(struct inode *inode, unsigned int nlink)
 306{
 307        if (!nlink) {
 308                clear_nlink(inode);
 309        } else {
 310                /* Yes, some filesystems do change nlink from zero to one */
 311                if (inode->i_nlink == 0)
 312                        atomic_long_dec(&inode->i_sb->s_remove_count);
 313
 314                inode->__i_nlink = nlink;
 315        }
 316}
 317EXPORT_SYMBOL(set_nlink);
 318
 319/**
 320 * inc_nlink - directly increment an inode's link count
 321 * @inode: inode
 322 *
 323 * This is a low-level filesystem helper to replace any
 324 * direct filesystem manipulation of i_nlink.  Currently,
 325 * it is only here for parity with dec_nlink().
 326 */
 327void inc_nlink(struct inode *inode)
 328{
 329        if (unlikely(inode->i_nlink == 0)) {
 330                WARN_ON(!(inode->i_state & I_LINKABLE));
 331                atomic_long_dec(&inode->i_sb->s_remove_count);
 332        }
 333
 334        inode->__i_nlink++;
 335}
 336EXPORT_SYMBOL(inc_nlink);
 337
 338void address_space_init_once(struct address_space *mapping)
 339{
 340        memset(mapping, 0, sizeof(*mapping));
 341        INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 342        spin_lock_init(&mapping->tree_lock);
 343        init_rwsem(&mapping->i_mmap_rwsem);
 344        INIT_LIST_HEAD(&mapping->private_list);
 345        spin_lock_init(&mapping->private_lock);
 346        mapping->i_mmap = RB_ROOT;
 347}
 348EXPORT_SYMBOL(address_space_init_once);
 349
 350/*
 351 * These are initializations that only need to be done
 352 * once, because the fields are idempotent across use
 353 * of the inode, so let the slab aware of that.
 354 */
 355void inode_init_once(struct inode *inode)
 356{
 357        memset(inode, 0, sizeof(*inode));
 358        INIT_HLIST_NODE(&inode->i_hash);
 359        INIT_LIST_HEAD(&inode->i_devices);
 360        INIT_LIST_HEAD(&inode->i_io_list);
 361        INIT_LIST_HEAD(&inode->i_lru);
 362        address_space_init_once(&inode->i_data);
 363        i_size_ordered_init(inode);
 364#ifdef CONFIG_FSNOTIFY
 365        INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 366#endif
 367}
 368EXPORT_SYMBOL(inode_init_once);
 369
 370static void init_once(void *foo)
 371{
 372        struct inode *inode = (struct inode *) foo;
 373
 374        inode_init_once(inode);
 375}
 376
 377/*
 378 * inode->i_lock must be held
 379 */
 380void __iget(struct inode *inode)
 381{
 382        atomic_inc(&inode->i_count);
 383}
 384
 385/*
 386 * get additional reference to inode; caller must already hold one.
 387 */
 388void ihold(struct inode *inode)
 389{
 390        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 391}
 392EXPORT_SYMBOL(ihold);
 393
 394static void inode_lru_list_add(struct inode *inode)
 395{
 396        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 397                this_cpu_inc(nr_unused);
 398}
 399
 400/*
 401 * Add inode to LRU if needed (inode is unused and clean).
 402 *
 403 * Needs inode->i_lock held.
 404 */
 405void inode_add_lru(struct inode *inode)
 406{
 407        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 408                                I_FREEING | I_WILL_FREE)) &&
 409            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 410                inode_lru_list_add(inode);
 411}
 412
 413
 414static void inode_lru_list_del(struct inode *inode)
 415{
 416
 417        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 418                this_cpu_dec(nr_unused);
 419}
 420
 421/**
 422 * inode_sb_list_add - add inode to the superblock list of inodes
 423 * @inode: inode to add
 424 */
 425void inode_sb_list_add(struct inode *inode)
 426{
 427        spin_lock(&inode->i_sb->s_inode_list_lock);
 428        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 429        spin_unlock(&inode->i_sb->s_inode_list_lock);
 430}
 431EXPORT_SYMBOL_GPL(inode_sb_list_add);
 432
 433static inline void inode_sb_list_del(struct inode *inode)
 434{
 435        if (!list_empty(&inode->i_sb_list)) {
 436                spin_lock(&inode->i_sb->s_inode_list_lock);
 437                list_del_init(&inode->i_sb_list);
 438                spin_unlock(&inode->i_sb->s_inode_list_lock);
 439        }
 440}
 441
 442static unsigned long hash(struct super_block *sb, unsigned long hashval)
 443{
 444        unsigned long tmp;
 445
 446        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 447                        L1_CACHE_BYTES;
 448        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 449        return tmp & i_hash_mask;
 450}
 451
 452/**
 453 *      __insert_inode_hash - hash an inode
 454 *      @inode: unhashed inode
 455 *      @hashval: unsigned long value used to locate this object in the
 456 *              inode_hashtable.
 457 *
 458 *      Add an inode to the inode hash for this superblock.
 459 */
 460void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 461{
 462        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 463
 464        spin_lock(&inode_hash_lock);
 465        spin_lock(&inode->i_lock);
 466        hlist_add_head(&inode->i_hash, b);
 467        spin_unlock(&inode->i_lock);
 468        spin_unlock(&inode_hash_lock);
 469}
 470EXPORT_SYMBOL(__insert_inode_hash);
 471
 472/**
 473 *      __remove_inode_hash - remove an inode from the hash
 474 *      @inode: inode to unhash
 475 *
 476 *      Remove an inode from the superblock.
 477 */
 478void __remove_inode_hash(struct inode *inode)
 479{
 480        spin_lock(&inode_hash_lock);
 481        spin_lock(&inode->i_lock);
 482        hlist_del_init(&inode->i_hash);
 483        spin_unlock(&inode->i_lock);
 484        spin_unlock(&inode_hash_lock);
 485}
 486EXPORT_SYMBOL(__remove_inode_hash);
 487
 488void clear_inode(struct inode *inode)
 489{
 490        might_sleep();
 491        /*
 492         * We have to cycle tree_lock here because reclaim can be still in the
 493         * process of removing the last page (in __delete_from_page_cache())
 494         * and we must not free mapping under it.
 495         */
 496        spin_lock_irq(&inode->i_data.tree_lock);
 497        BUG_ON(inode->i_data.nrpages);
 498        BUG_ON(inode->i_data.nrshadows);
 499        spin_unlock_irq(&inode->i_data.tree_lock);
 500        BUG_ON(!list_empty(&inode->i_data.private_list));
 501        BUG_ON(!(inode->i_state & I_FREEING));
 502        BUG_ON(inode->i_state & I_CLEAR);
 503        /* don't need i_lock here, no concurrent mods to i_state */
 504        inode->i_state = I_FREEING | I_CLEAR;
 505}
 506EXPORT_SYMBOL(clear_inode);
 507
 508/*
 509 * Free the inode passed in, removing it from the lists it is still connected
 510 * to. We remove any pages still attached to the inode and wait for any IO that
 511 * is still in progress before finally destroying the inode.
 512 *
 513 * An inode must already be marked I_FREEING so that we avoid the inode being
 514 * moved back onto lists if we race with other code that manipulates the lists
 515 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 516 *
 517 * An inode must already be removed from the LRU list before being evicted from
 518 * the cache. This should occur atomically with setting the I_FREEING state
 519 * flag, so no inodes here should ever be on the LRU when being evicted.
 520 */
 521static void evict(struct inode *inode)
 522{
 523        const struct super_operations *op = inode->i_sb->s_op;
 524
 525        BUG_ON(!(inode->i_state & I_FREEING));
 526        BUG_ON(!list_empty(&inode->i_lru));
 527
 528        if (!list_empty(&inode->i_io_list))
 529                inode_io_list_del(inode);
 530
 531        inode_sb_list_del(inode);
 532
 533        /*
 534         * Wait for flusher thread to be done with the inode so that filesystem
 535         * does not start destroying it while writeback is still running. Since
 536         * the inode has I_FREEING set, flusher thread won't start new work on
 537         * the inode.  We just have to wait for running writeback to finish.
 538         */
 539        inode_wait_for_writeback(inode);
 540
 541        if (op->evict_inode) {
 542                op->evict_inode(inode);
 543        } else {
 544                truncate_inode_pages_final(&inode->i_data);
 545                clear_inode(inode);
 546        }
 547        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 548                bd_forget(inode);
 549        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 550                cd_forget(inode);
 551
 552        remove_inode_hash(inode);
 553
 554        spin_lock(&inode->i_lock);
 555        wake_up_bit(&inode->i_state, __I_NEW);
 556        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 557        spin_unlock(&inode->i_lock);
 558
 559        destroy_inode(inode);
 560}
 561
 562/*
 563 * dispose_list - dispose of the contents of a local list
 564 * @head: the head of the list to free
 565 *
 566 * Dispose-list gets a local list with local inodes in it, so it doesn't
 567 * need to worry about list corruption and SMP locks.
 568 */
 569static void dispose_list(struct list_head *head)
 570{
 571        while (!list_empty(head)) {
 572                struct inode *inode;
 573
 574                inode = list_first_entry(head, struct inode, i_lru);
 575                list_del_init(&inode->i_lru);
 576
 577                evict(inode);
 578                cond_resched();
 579        }
 580}
 581
 582/**
 583 * evict_inodes - evict all evictable inodes for a superblock
 584 * @sb:         superblock to operate on
 585 *
 586 * Make sure that no inodes with zero refcount are retained.  This is
 587 * called by superblock shutdown after having MS_ACTIVE flag removed,
 588 * so any inode reaching zero refcount during or after that call will
 589 * be immediately evicted.
 590 */
 591void evict_inodes(struct super_block *sb)
 592{
 593        struct inode *inode, *next;
 594        LIST_HEAD(dispose);
 595
 596again:
 597        spin_lock(&sb->s_inode_list_lock);
 598        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 599                if (atomic_read(&inode->i_count))
 600                        continue;
 601
 602                spin_lock(&inode->i_lock);
 603                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 604                        spin_unlock(&inode->i_lock);
 605                        continue;
 606                }
 607
 608                inode->i_state |= I_FREEING;
 609                inode_lru_list_del(inode);
 610                spin_unlock(&inode->i_lock);
 611                list_add(&inode->i_lru, &dispose);
 612
 613                /*
 614                 * We can have a ton of inodes to evict at unmount time given
 615                 * enough memory, check to see if we need to go to sleep for a
 616                 * bit so we don't livelock.
 617                 */
 618                if (need_resched()) {
 619                        spin_unlock(&sb->s_inode_list_lock);
 620                        cond_resched();
 621                        dispose_list(&dispose);
 622                        goto again;
 623                }
 624        }
 625        spin_unlock(&sb->s_inode_list_lock);
 626
 627        dispose_list(&dispose);
 628}
 629
 630/**
 631 * invalidate_inodes    - attempt to free all inodes on a superblock
 632 * @sb:         superblock to operate on
 633 * @kill_dirty: flag to guide handling of dirty inodes
 634 *
 635 * Attempts to free all inodes for a given superblock.  If there were any
 636 * busy inodes return a non-zero value, else zero.
 637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 638 * them as busy.
 639 */
 640int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 641{
 642        int busy = 0;
 643        struct inode *inode, *next;
 644        LIST_HEAD(dispose);
 645
 646        spin_lock(&sb->s_inode_list_lock);
 647        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 648                spin_lock(&inode->i_lock);
 649                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 650                        spin_unlock(&inode->i_lock);
 651                        continue;
 652                }
 653                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 654                        spin_unlock(&inode->i_lock);
 655                        busy = 1;
 656                        continue;
 657                }
 658                if (atomic_read(&inode->i_count)) {
 659                        spin_unlock(&inode->i_lock);
 660                        busy = 1;
 661                        continue;
 662                }
 663
 664                inode->i_state |= I_FREEING;
 665                inode_lru_list_del(inode);
 666                spin_unlock(&inode->i_lock);
 667                list_add(&inode->i_lru, &dispose);
 668        }
 669        spin_unlock(&sb->s_inode_list_lock);
 670
 671        dispose_list(&dispose);
 672
 673        return busy;
 674}
 675
 676/*
 677 * Isolate the inode from the LRU in preparation for freeing it.
 678 *
 679 * Any inodes which are pinned purely because of attached pagecache have their
 680 * pagecache removed.  If the inode has metadata buffers attached to
 681 * mapping->private_list then try to remove them.
 682 *
 683 * If the inode has the I_REFERENCED flag set, then it means that it has been
 684 * used recently - the flag is set in iput_final(). When we encounter such an
 685 * inode, clear the flag and move it to the back of the LRU so it gets another
 686 * pass through the LRU before it gets reclaimed. This is necessary because of
 687 * the fact we are doing lazy LRU updates to minimise lock contention so the
 688 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 689 * with this flag set because they are the inodes that are out of order.
 690 */
 691static enum lru_status inode_lru_isolate(struct list_head *item,
 692                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 693{
 694        struct list_head *freeable = arg;
 695        struct inode    *inode = container_of(item, struct inode, i_lru);
 696
 697        /*
 698         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 699         * If we fail to get the lock, just skip it.
 700         */
 701        if (!spin_trylock(&inode->i_lock))
 702                return LRU_SKIP;
 703
 704        /*
 705         * Referenced or dirty inodes are still in use. Give them another pass
 706         * through the LRU as we canot reclaim them now.
 707         */
 708        if (atomic_read(&inode->i_count) ||
 709            (inode->i_state & ~I_REFERENCED)) {
 710                list_lru_isolate(lru, &inode->i_lru);
 711                spin_unlock(&inode->i_lock);
 712                this_cpu_dec(nr_unused);
 713                return LRU_REMOVED;
 714        }
 715
 716        /* recently referenced inodes get one more pass */
 717        if (inode->i_state & I_REFERENCED) {
 718                inode->i_state &= ~I_REFERENCED;
 719                spin_unlock(&inode->i_lock);
 720                return LRU_ROTATE;
 721        }
 722
 723        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 724                __iget(inode);
 725                spin_unlock(&inode->i_lock);
 726                spin_unlock(lru_lock);
 727                if (remove_inode_buffers(inode)) {
 728                        unsigned long reap;
 729                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 730                        if (current_is_kswapd())
 731                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 732                        else
 733                                __count_vm_events(PGINODESTEAL, reap);
 734                        if (current->reclaim_state)
 735                                current->reclaim_state->reclaimed_slab += reap;
 736                }
 737                iput(inode);
 738                spin_lock(lru_lock);
 739                return LRU_RETRY;
 740        }
 741
 742        WARN_ON(inode->i_state & I_NEW);
 743        inode->i_state |= I_FREEING;
 744        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 745        spin_unlock(&inode->i_lock);
 746
 747        this_cpu_dec(nr_unused);
 748        return LRU_REMOVED;
 749}
 750
 751/*
 752 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 753 * This is called from the superblock shrinker function with a number of inodes
 754 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 755 * then are freed outside inode_lock by dispose_list().
 756 */
 757long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 758{
 759        LIST_HEAD(freeable);
 760        long freed;
 761
 762        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 763                                     inode_lru_isolate, &freeable);
 764        dispose_list(&freeable);
 765        return freed;
 766}
 767
 768static void __wait_on_freeing_inode(struct inode *inode);
 769/*
 770 * Called with the inode lock held.
 771 */
 772static struct inode *find_inode(struct super_block *sb,
 773                                struct hlist_head *head,
 774                                int (*test)(struct inode *, void *),
 775                                void *data)
 776{
 777        struct inode *inode = NULL;
 778
 779repeat:
 780        hlist_for_each_entry(inode, head, i_hash) {
 781                if (inode->i_sb != sb)
 782                        continue;
 783                if (!test(inode, data))
 784                        continue;
 785                spin_lock(&inode->i_lock);
 786                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 787                        __wait_on_freeing_inode(inode);
 788                        goto repeat;
 789                }
 790                __iget(inode);
 791                spin_unlock(&inode->i_lock);
 792                return inode;
 793        }
 794        return NULL;
 795}
 796
 797/*
 798 * find_inode_fast is the fast path version of find_inode, see the comment at
 799 * iget_locked for details.
 800 */
 801static struct inode *find_inode_fast(struct super_block *sb,
 802                                struct hlist_head *head, unsigned long ino)
 803{
 804        struct inode *inode = NULL;
 805
 806repeat:
 807        hlist_for_each_entry(inode, head, i_hash) {
 808                if (inode->i_ino != ino)
 809                        continue;
 810                if (inode->i_sb != sb)
 811                        continue;
 812                spin_lock(&inode->i_lock);
 813                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 814                        __wait_on_freeing_inode(inode);
 815                        goto repeat;
 816                }
 817                __iget(inode);
 818                spin_unlock(&inode->i_lock);
 819                return inode;
 820        }
 821        return NULL;
 822}
 823
 824/*
 825 * Each cpu owns a range of LAST_INO_BATCH numbers.
 826 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 827 * to renew the exhausted range.
 828 *
 829 * This does not significantly increase overflow rate because every CPU can
 830 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 831 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 832 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 833 * overflow rate by 2x, which does not seem too significant.
 834 *
 835 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 836 * error if st_ino won't fit in target struct field. Use 32bit counter
 837 * here to attempt to avoid that.
 838 */
 839#define LAST_INO_BATCH 1024
 840static DEFINE_PER_CPU(unsigned int, last_ino);
 841
 842unsigned int get_next_ino(void)
 843{
 844        unsigned int *p = &get_cpu_var(last_ino);
 845        unsigned int res = *p;
 846
 847#ifdef CONFIG_SMP
 848        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 849                static atomic_t shared_last_ino;
 850                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 851
 852                res = next - LAST_INO_BATCH;
 853        }
 854#endif
 855
 856        res++;
 857        /* get_next_ino should not provide a 0 inode number */
 858        if (unlikely(!res))
 859                res++;
 860        *p = res;
 861        put_cpu_var(last_ino);
 862        return res;
 863}
 864EXPORT_SYMBOL(get_next_ino);
 865
 866/**
 867 *      new_inode_pseudo        - obtain an inode
 868 *      @sb: superblock
 869 *
 870 *      Allocates a new inode for given superblock.
 871 *      Inode wont be chained in superblock s_inodes list
 872 *      This means :
 873 *      - fs can't be unmount
 874 *      - quotas, fsnotify, writeback can't work
 875 */
 876struct inode *new_inode_pseudo(struct super_block *sb)
 877{
 878        struct inode *inode = alloc_inode(sb);
 879
 880        if (inode) {
 881                spin_lock(&inode->i_lock);
 882                inode->i_state = 0;
 883                spin_unlock(&inode->i_lock);
 884                INIT_LIST_HEAD(&inode->i_sb_list);
 885        }
 886        return inode;
 887}
 888
 889/**
 890 *      new_inode       - obtain an inode
 891 *      @sb: superblock
 892 *
 893 *      Allocates a new inode for given superblock. The default gfp_mask
 894 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 895 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 896 *      for the page cache are not reclaimable or migratable,
 897 *      mapping_set_gfp_mask() must be called with suitable flags on the
 898 *      newly created inode's mapping
 899 *
 900 */
 901struct inode *new_inode(struct super_block *sb)
 902{
 903        struct inode *inode;
 904
 905        spin_lock_prefetch(&sb->s_inode_list_lock);
 906
 907        inode = new_inode_pseudo(sb);
 908        if (inode)
 909                inode_sb_list_add(inode);
 910        return inode;
 911}
 912EXPORT_SYMBOL(new_inode);
 913
 914#ifdef CONFIG_DEBUG_LOCK_ALLOC
 915void lockdep_annotate_inode_mutex_key(struct inode *inode)
 916{
 917        if (S_ISDIR(inode->i_mode)) {
 918                struct file_system_type *type = inode->i_sb->s_type;
 919
 920                /* Set new key only if filesystem hasn't already changed it */
 921                if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
 922                        /*
 923                         * ensure nobody is actually holding i_mutex
 924                         */
 925                        mutex_destroy(&inode->i_mutex);
 926                        mutex_init(&inode->i_mutex);
 927                        lockdep_set_class(&inode->i_mutex,
 928                                          &type->i_mutex_dir_key);
 929                }
 930        }
 931}
 932EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 933#endif
 934
 935/**
 936 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 937 * @inode:      new inode to unlock
 938 *
 939 * Called when the inode is fully initialised to clear the new state of the
 940 * inode and wake up anyone waiting for the inode to finish initialisation.
 941 */
 942void unlock_new_inode(struct inode *inode)
 943{
 944        lockdep_annotate_inode_mutex_key(inode);
 945        spin_lock(&inode->i_lock);
 946        WARN_ON(!(inode->i_state & I_NEW));
 947        inode->i_state &= ~I_NEW;
 948        smp_mb();
 949        wake_up_bit(&inode->i_state, __I_NEW);
 950        spin_unlock(&inode->i_lock);
 951}
 952EXPORT_SYMBOL(unlock_new_inode);
 953
 954/**
 955 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 956 *
 957 * Lock any non-NULL argument that is not a directory.
 958 * Zero, one or two objects may be locked by this function.
 959 *
 960 * @inode1: first inode to lock
 961 * @inode2: second inode to lock
 962 */
 963void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 964{
 965        if (inode1 > inode2)
 966                swap(inode1, inode2);
 967
 968        if (inode1 && !S_ISDIR(inode1->i_mode))
 969                mutex_lock(&inode1->i_mutex);
 970        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 971                mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
 972}
 973EXPORT_SYMBOL(lock_two_nondirectories);
 974
 975/**
 976 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 977 * @inode1: first inode to unlock
 978 * @inode2: second inode to unlock
 979 */
 980void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 981{
 982        if (inode1 && !S_ISDIR(inode1->i_mode))
 983                mutex_unlock(&inode1->i_mutex);
 984        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 985                mutex_unlock(&inode2->i_mutex);
 986}
 987EXPORT_SYMBOL(unlock_two_nondirectories);
 988
 989/**
 990 * iget5_locked - obtain an inode from a mounted file system
 991 * @sb:         super block of file system
 992 * @hashval:    hash value (usually inode number) to get
 993 * @test:       callback used for comparisons between inodes
 994 * @set:        callback used to initialize a new struct inode
 995 * @data:       opaque data pointer to pass to @test and @set
 996 *
 997 * Search for the inode specified by @hashval and @data in the inode cache,
 998 * and if present it is return it with an increased reference count. This is
 999 * a generalized version of iget_locked() for file systems where the inode
1000 * number is not sufficient for unique identification of an inode.
1001 *
1002 * If the inode is not in cache, allocate a new inode and return it locked,
1003 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1004 * before unlocking it via unlock_new_inode().
1005 *
1006 * Note both @test and @set are called with the inode_hash_lock held, so can't
1007 * sleep.
1008 */
1009struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1010                int (*test)(struct inode *, void *),
1011                int (*set)(struct inode *, void *), void *data)
1012{
1013        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1014        struct inode *inode;
1015
1016        spin_lock(&inode_hash_lock);
1017        inode = find_inode(sb, head, test, data);
1018        spin_unlock(&inode_hash_lock);
1019
1020        if (inode) {
1021                wait_on_inode(inode);
1022                return inode;
1023        }
1024
1025        inode = alloc_inode(sb);
1026        if (inode) {
1027                struct inode *old;
1028
1029                spin_lock(&inode_hash_lock);
1030                /* We released the lock, so.. */
1031                old = find_inode(sb, head, test, data);
1032                if (!old) {
1033                        if (set(inode, data))
1034                                goto set_failed;
1035
1036                        spin_lock(&inode->i_lock);
1037                        inode->i_state = I_NEW;
1038                        hlist_add_head(&inode->i_hash, head);
1039                        spin_unlock(&inode->i_lock);
1040                        inode_sb_list_add(inode);
1041                        spin_unlock(&inode_hash_lock);
1042
1043                        /* Return the locked inode with I_NEW set, the
1044                         * caller is responsible for filling in the contents
1045                         */
1046                        return inode;
1047                }
1048
1049                /*
1050                 * Uhhuh, somebody else created the same inode under
1051                 * us. Use the old inode instead of the one we just
1052                 * allocated.
1053                 */
1054                spin_unlock(&inode_hash_lock);
1055                destroy_inode(inode);
1056                inode = old;
1057                wait_on_inode(inode);
1058        }
1059        return inode;
1060
1061set_failed:
1062        spin_unlock(&inode_hash_lock);
1063        destroy_inode(inode);
1064        return NULL;
1065}
1066EXPORT_SYMBOL(iget5_locked);
1067
1068/**
1069 * iget_locked - obtain an inode from a mounted file system
1070 * @sb:         super block of file system
1071 * @ino:        inode number to get
1072 *
1073 * Search for the inode specified by @ino in the inode cache and if present
1074 * return it with an increased reference count. This is for file systems
1075 * where the inode number is sufficient for unique identification of an inode.
1076 *
1077 * If the inode is not in cache, allocate a new inode and return it locked,
1078 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1079 * before unlocking it via unlock_new_inode().
1080 */
1081struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1082{
1083        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1084        struct inode *inode;
1085
1086        spin_lock(&inode_hash_lock);
1087        inode = find_inode_fast(sb, head, ino);
1088        spin_unlock(&inode_hash_lock);
1089        if (inode) {
1090                wait_on_inode(inode);
1091                return inode;
1092        }
1093
1094        inode = alloc_inode(sb);
1095        if (inode) {
1096                struct inode *old;
1097
1098                spin_lock(&inode_hash_lock);
1099                /* We released the lock, so.. */
1100                old = find_inode_fast(sb, head, ino);
1101                if (!old) {
1102                        inode->i_ino = ino;
1103                        spin_lock(&inode->i_lock);
1104                        inode->i_state = I_NEW;
1105                        hlist_add_head(&inode->i_hash, head);
1106                        spin_unlock(&inode->i_lock);
1107                        inode_sb_list_add(inode);
1108                        spin_unlock(&inode_hash_lock);
1109
1110                        /* Return the locked inode with I_NEW set, the
1111                         * caller is responsible for filling in the contents
1112                         */
1113                        return inode;
1114                }
1115
1116                /*
1117                 * Uhhuh, somebody else created the same inode under
1118                 * us. Use the old inode instead of the one we just
1119                 * allocated.
1120                 */
1121                spin_unlock(&inode_hash_lock);
1122                destroy_inode(inode);
1123                inode = old;
1124                wait_on_inode(inode);
1125        }
1126        return inode;
1127}
1128EXPORT_SYMBOL(iget_locked);
1129
1130/*
1131 * search the inode cache for a matching inode number.
1132 * If we find one, then the inode number we are trying to
1133 * allocate is not unique and so we should not use it.
1134 *
1135 * Returns 1 if the inode number is unique, 0 if it is not.
1136 */
1137static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1138{
1139        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1140        struct inode *inode;
1141
1142        spin_lock(&inode_hash_lock);
1143        hlist_for_each_entry(inode, b, i_hash) {
1144                if (inode->i_ino == ino && inode->i_sb == sb) {
1145                        spin_unlock(&inode_hash_lock);
1146                        return 0;
1147                }
1148        }
1149        spin_unlock(&inode_hash_lock);
1150
1151        return 1;
1152}
1153
1154/**
1155 *      iunique - get a unique inode number
1156 *      @sb: superblock
1157 *      @max_reserved: highest reserved inode number
1158 *
1159 *      Obtain an inode number that is unique on the system for a given
1160 *      superblock. This is used by file systems that have no natural
1161 *      permanent inode numbering system. An inode number is returned that
1162 *      is higher than the reserved limit but unique.
1163 *
1164 *      BUGS:
1165 *      With a large number of inodes live on the file system this function
1166 *      currently becomes quite slow.
1167 */
1168ino_t iunique(struct super_block *sb, ino_t max_reserved)
1169{
1170        /*
1171         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1172         * error if st_ino won't fit in target struct field. Use 32bit counter
1173         * here to attempt to avoid that.
1174         */
1175        static DEFINE_SPINLOCK(iunique_lock);
1176        static unsigned int counter;
1177        ino_t res;
1178
1179        spin_lock(&iunique_lock);
1180        do {
1181                if (counter <= max_reserved)
1182                        counter = max_reserved + 1;
1183                res = counter++;
1184        } while (!test_inode_iunique(sb, res));
1185        spin_unlock(&iunique_lock);
1186
1187        return res;
1188}
1189EXPORT_SYMBOL(iunique);
1190
1191struct inode *igrab(struct inode *inode)
1192{
1193        spin_lock(&inode->i_lock);
1194        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1195                __iget(inode);
1196                spin_unlock(&inode->i_lock);
1197        } else {
1198                spin_unlock(&inode->i_lock);
1199                /*
1200                 * Handle the case where s_op->clear_inode is not been
1201                 * called yet, and somebody is calling igrab
1202                 * while the inode is getting freed.
1203                 */
1204                inode = NULL;
1205        }
1206        return inode;
1207}
1208EXPORT_SYMBOL(igrab);
1209
1210/**
1211 * ilookup5_nowait - search for an inode in the inode cache
1212 * @sb:         super block of file system to search
1213 * @hashval:    hash value (usually inode number) to search for
1214 * @test:       callback used for comparisons between inodes
1215 * @data:       opaque data pointer to pass to @test
1216 *
1217 * Search for the inode specified by @hashval and @data in the inode cache.
1218 * If the inode is in the cache, the inode is returned with an incremented
1219 * reference count.
1220 *
1221 * Note: I_NEW is not waited upon so you have to be very careful what you do
1222 * with the returned inode.  You probably should be using ilookup5() instead.
1223 *
1224 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1225 */
1226struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1227                int (*test)(struct inode *, void *), void *data)
1228{
1229        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1230        struct inode *inode;
1231
1232        spin_lock(&inode_hash_lock);
1233        inode = find_inode(sb, head, test, data);
1234        spin_unlock(&inode_hash_lock);
1235
1236        return inode;
1237}
1238EXPORT_SYMBOL(ilookup5_nowait);
1239
1240/**
1241 * ilookup5 - search for an inode in the inode cache
1242 * @sb:         super block of file system to search
1243 * @hashval:    hash value (usually inode number) to search for
1244 * @test:       callback used for comparisons between inodes
1245 * @data:       opaque data pointer to pass to @test
1246 *
1247 * Search for the inode specified by @hashval and @data in the inode cache,
1248 * and if the inode is in the cache, return the inode with an incremented
1249 * reference count.  Waits on I_NEW before returning the inode.
1250 * returned with an incremented reference count.
1251 *
1252 * This is a generalized version of ilookup() for file systems where the
1253 * inode number is not sufficient for unique identification of an inode.
1254 *
1255 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1256 */
1257struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1258                int (*test)(struct inode *, void *), void *data)
1259{
1260        struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1261
1262        if (inode)
1263                wait_on_inode(inode);
1264        return inode;
1265}
1266EXPORT_SYMBOL(ilookup5);
1267
1268/**
1269 * ilookup - search for an inode in the inode cache
1270 * @sb:         super block of file system to search
1271 * @ino:        inode number to search for
1272 *
1273 * Search for the inode @ino in the inode cache, and if the inode is in the
1274 * cache, the inode is returned with an incremented reference count.
1275 */
1276struct inode *ilookup(struct super_block *sb, unsigned long ino)
1277{
1278        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1279        struct inode *inode;
1280
1281        spin_lock(&inode_hash_lock);
1282        inode = find_inode_fast(sb, head, ino);
1283        spin_unlock(&inode_hash_lock);
1284
1285        if (inode)
1286                wait_on_inode(inode);
1287        return inode;
1288}
1289EXPORT_SYMBOL(ilookup);
1290
1291/**
1292 * find_inode_nowait - find an inode in the inode cache
1293 * @sb:         super block of file system to search
1294 * @hashval:    hash value (usually inode number) to search for
1295 * @match:      callback used for comparisons between inodes
1296 * @data:       opaque data pointer to pass to @match
1297 *
1298 * Search for the inode specified by @hashval and @data in the inode
1299 * cache, where the helper function @match will return 0 if the inode
1300 * does not match, 1 if the inode does match, and -1 if the search
1301 * should be stopped.  The @match function must be responsible for
1302 * taking the i_lock spin_lock and checking i_state for an inode being
1303 * freed or being initialized, and incrementing the reference count
1304 * before returning 1.  It also must not sleep, since it is called with
1305 * the inode_hash_lock spinlock held.
1306 *
1307 * This is a even more generalized version of ilookup5() when the
1308 * function must never block --- find_inode() can block in
1309 * __wait_on_freeing_inode() --- or when the caller can not increment
1310 * the reference count because the resulting iput() might cause an
1311 * inode eviction.  The tradeoff is that the @match funtion must be
1312 * very carefully implemented.
1313 */
1314struct inode *find_inode_nowait(struct super_block *sb,
1315                                unsigned long hashval,
1316                                int (*match)(struct inode *, unsigned long,
1317                                             void *),
1318                                void *data)
1319{
1320        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1321        struct inode *inode, *ret_inode = NULL;
1322        int mval;
1323
1324        spin_lock(&inode_hash_lock);
1325        hlist_for_each_entry(inode, head, i_hash) {
1326                if (inode->i_sb != sb)
1327                        continue;
1328                mval = match(inode, hashval, data);
1329                if (mval == 0)
1330                        continue;
1331                if (mval == 1)
1332                        ret_inode = inode;
1333                goto out;
1334        }
1335out:
1336        spin_unlock(&inode_hash_lock);
1337        return ret_inode;
1338}
1339EXPORT_SYMBOL(find_inode_nowait);
1340
1341int insert_inode_locked(struct inode *inode)
1342{
1343        struct super_block *sb = inode->i_sb;
1344        ino_t ino = inode->i_ino;
1345        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1346
1347        while (1) {
1348                struct inode *old = NULL;
1349                spin_lock(&inode_hash_lock);
1350                hlist_for_each_entry(old, head, i_hash) {
1351                        if (old->i_ino != ino)
1352                                continue;
1353                        if (old->i_sb != sb)
1354                                continue;
1355                        spin_lock(&old->i_lock);
1356                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1357                                spin_unlock(&old->i_lock);
1358                                continue;
1359                        }
1360                        break;
1361                }
1362                if (likely(!old)) {
1363                        spin_lock(&inode->i_lock);
1364                        inode->i_state |= I_NEW;
1365                        hlist_add_head(&inode->i_hash, head);
1366                        spin_unlock(&inode->i_lock);
1367                        spin_unlock(&inode_hash_lock);
1368                        return 0;
1369                }
1370                __iget(old);
1371                spin_unlock(&old->i_lock);
1372                spin_unlock(&inode_hash_lock);
1373                wait_on_inode(old);
1374                if (unlikely(!inode_unhashed(old))) {
1375                        iput(old);
1376                        return -EBUSY;
1377                }
1378                iput(old);
1379        }
1380}
1381EXPORT_SYMBOL(insert_inode_locked);
1382
1383int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1384                int (*test)(struct inode *, void *), void *data)
1385{
1386        struct super_block *sb = inode->i_sb;
1387        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1388
1389        while (1) {
1390                struct inode *old = NULL;
1391
1392                spin_lock(&inode_hash_lock);
1393                hlist_for_each_entry(old, head, i_hash) {
1394                        if (old->i_sb != sb)
1395                                continue;
1396                        if (!test(old, data))
1397                                continue;
1398                        spin_lock(&old->i_lock);
1399                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1400                                spin_unlock(&old->i_lock);
1401                                continue;
1402                        }
1403                        break;
1404                }
1405                if (likely(!old)) {
1406                        spin_lock(&inode->i_lock);
1407                        inode->i_state |= I_NEW;
1408                        hlist_add_head(&inode->i_hash, head);
1409                        spin_unlock(&inode->i_lock);
1410                        spin_unlock(&inode_hash_lock);
1411                        return 0;
1412                }
1413                __iget(old);
1414                spin_unlock(&old->i_lock);
1415                spin_unlock(&inode_hash_lock);
1416                wait_on_inode(old);
1417                if (unlikely(!inode_unhashed(old))) {
1418                        iput(old);
1419                        return -EBUSY;
1420                }
1421                iput(old);
1422        }
1423}
1424EXPORT_SYMBOL(insert_inode_locked4);
1425
1426
1427int generic_delete_inode(struct inode *inode)
1428{
1429        return 1;
1430}
1431EXPORT_SYMBOL(generic_delete_inode);
1432
1433/*
1434 * Called when we're dropping the last reference
1435 * to an inode.
1436 *
1437 * Call the FS "drop_inode()" function, defaulting to
1438 * the legacy UNIX filesystem behaviour.  If it tells
1439 * us to evict inode, do so.  Otherwise, retain inode
1440 * in cache if fs is alive, sync and evict if fs is
1441 * shutting down.
1442 */
1443static void iput_final(struct inode *inode)
1444{
1445        struct super_block *sb = inode->i_sb;
1446        const struct super_operations *op = inode->i_sb->s_op;
1447        int drop;
1448
1449        WARN_ON(inode->i_state & I_NEW);
1450
1451        if (op->drop_inode)
1452                drop = op->drop_inode(inode);
1453        else
1454                drop = generic_drop_inode(inode);
1455
1456        if (!drop && (sb->s_flags & MS_ACTIVE)) {
1457                inode->i_state |= I_REFERENCED;
1458                inode_add_lru(inode);
1459                spin_unlock(&inode->i_lock);
1460                return;
1461        }
1462
1463        if (!drop) {
1464                inode->i_state |= I_WILL_FREE;
1465                spin_unlock(&inode->i_lock);
1466                write_inode_now(inode, 1);
1467                spin_lock(&inode->i_lock);
1468                WARN_ON(inode->i_state & I_NEW);
1469                inode->i_state &= ~I_WILL_FREE;
1470        }
1471
1472        inode->i_state |= I_FREEING;
1473        if (!list_empty(&inode->i_lru))
1474                inode_lru_list_del(inode);
1475        spin_unlock(&inode->i_lock);
1476
1477        evict(inode);
1478}
1479
1480/**
1481 *      iput    - put an inode
1482 *      @inode: inode to put
1483 *
1484 *      Puts an inode, dropping its usage count. If the inode use count hits
1485 *      zero, the inode is then freed and may also be destroyed.
1486 *
1487 *      Consequently, iput() can sleep.
1488 */
1489void iput(struct inode *inode)
1490{
1491        if (!inode)
1492                return;
1493        BUG_ON(inode->i_state & I_CLEAR);
1494retry:
1495        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1496                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1497                        atomic_inc(&inode->i_count);
1498                        inode->i_state &= ~I_DIRTY_TIME;
1499                        spin_unlock(&inode->i_lock);
1500                        trace_writeback_lazytime_iput(inode);
1501                        mark_inode_dirty_sync(inode);
1502                        goto retry;
1503                }
1504                iput_final(inode);
1505        }
1506}
1507EXPORT_SYMBOL(iput);
1508
1509/**
1510 *      bmap    - find a block number in a file
1511 *      @inode: inode of file
1512 *      @block: block to find
1513 *
1514 *      Returns the block number on the device holding the inode that
1515 *      is the disk block number for the block of the file requested.
1516 *      That is, asked for block 4 of inode 1 the function will return the
1517 *      disk block relative to the disk start that holds that block of the
1518 *      file.
1519 */
1520sector_t bmap(struct inode *inode, sector_t block)
1521{
1522        sector_t res = 0;
1523        if (inode->i_mapping->a_ops->bmap)
1524                res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1525        return res;
1526}
1527EXPORT_SYMBOL(bmap);
1528
1529/*
1530 * With relative atime, only update atime if the previous atime is
1531 * earlier than either the ctime or mtime or if at least a day has
1532 * passed since the last atime update.
1533 */
1534static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1535                             struct timespec now)
1536{
1537
1538        if (!(mnt->mnt_flags & MNT_RELATIME))
1539                return 1;
1540        /*
1541         * Is mtime younger than atime? If yes, update atime:
1542         */
1543        if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1544                return 1;
1545        /*
1546         * Is ctime younger than atime? If yes, update atime:
1547         */
1548        if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1549                return 1;
1550
1551        /*
1552         * Is the previous atime value older than a day? If yes,
1553         * update atime:
1554         */
1555        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1556                return 1;
1557        /*
1558         * Good, we can skip the atime update:
1559         */
1560        return 0;
1561}
1562
1563int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1564{
1565        int iflags = I_DIRTY_TIME;
1566
1567        if (flags & S_ATIME)
1568                inode->i_atime = *time;
1569        if (flags & S_VERSION)
1570                inode_inc_iversion(inode);
1571        if (flags & S_CTIME)
1572                inode->i_ctime = *time;
1573        if (flags & S_MTIME)
1574                inode->i_mtime = *time;
1575
1576        if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1577                iflags |= I_DIRTY_SYNC;
1578        __mark_inode_dirty(inode, iflags);
1579        return 0;
1580}
1581EXPORT_SYMBOL(generic_update_time);
1582
1583/*
1584 * This does the actual work of updating an inodes time or version.  Must have
1585 * had called mnt_want_write() before calling this.
1586 */
1587static int update_time(struct inode *inode, struct timespec *time, int flags)
1588{
1589        int (*update_time)(struct inode *, struct timespec *, int);
1590
1591        update_time = inode->i_op->update_time ? inode->i_op->update_time :
1592                generic_update_time;
1593
1594        return update_time(inode, time, flags);
1595}
1596
1597/**
1598 *      touch_atime     -       update the access time
1599 *      @path: the &struct path to update
1600 *      @inode: inode to update
1601 *
1602 *      Update the accessed time on an inode and mark it for writeback.
1603 *      This function automatically handles read only file systems and media,
1604 *      as well as the "noatime" flag and inode specific "noatime" markers.
1605 */
1606bool atime_needs_update(const struct path *path, struct inode *inode)
1607{
1608        struct vfsmount *mnt = path->mnt;
1609        struct timespec now;
1610
1611        if (inode->i_flags & S_NOATIME)
1612                return false;
1613        if (IS_NOATIME(inode))
1614                return false;
1615        if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1616                return false;
1617
1618        if (mnt->mnt_flags & MNT_NOATIME)
1619                return false;
1620        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1621                return false;
1622
1623        now = current_fs_time(inode->i_sb);
1624
1625        if (!relatime_need_update(mnt, inode, now))
1626                return false;
1627
1628        if (timespec_equal(&inode->i_atime, &now))
1629                return false;
1630
1631        return true;
1632}
1633
1634void touch_atime(const struct path *path)
1635{
1636        struct vfsmount *mnt = path->mnt;
1637        struct inode *inode = d_inode(path->dentry);
1638        struct timespec now;
1639
1640        if (!atime_needs_update(path, inode))
1641                return;
1642
1643        if (!sb_start_write_trylock(inode->i_sb))
1644                return;
1645
1646        if (__mnt_want_write(mnt) != 0)
1647                goto skip_update;
1648        /*
1649         * File systems can error out when updating inodes if they need to
1650         * allocate new space to modify an inode (such is the case for
1651         * Btrfs), but since we touch atime while walking down the path we
1652         * really don't care if we failed to update the atime of the file,
1653         * so just ignore the return value.
1654         * We may also fail on filesystems that have the ability to make parts
1655         * of the fs read only, e.g. subvolumes in Btrfs.
1656         */
1657        now = current_fs_time(inode->i_sb);
1658        update_time(inode, &now, S_ATIME);
1659        __mnt_drop_write(mnt);
1660skip_update:
1661        sb_end_write(inode->i_sb);
1662}
1663EXPORT_SYMBOL(touch_atime);
1664
1665/*
1666 * The logic we want is
1667 *
1668 *      if suid or (sgid and xgrp)
1669 *              remove privs
1670 */
1671int should_remove_suid(struct dentry *dentry)
1672{
1673        umode_t mode = d_inode(dentry)->i_mode;
1674        int kill = 0;
1675
1676        /* suid always must be killed */
1677        if (unlikely(mode & S_ISUID))
1678                kill = ATTR_KILL_SUID;
1679
1680        /*
1681         * sgid without any exec bits is just a mandatory locking mark; leave
1682         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1683         */
1684        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1685                kill |= ATTR_KILL_SGID;
1686
1687        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1688                return kill;
1689
1690        return 0;
1691}
1692EXPORT_SYMBOL(should_remove_suid);
1693
1694/*
1695 * Return mask of changes for notify_change() that need to be done as a
1696 * response to write or truncate. Return 0 if nothing has to be changed.
1697 * Negative value on error (change should be denied).
1698 */
1699int dentry_needs_remove_privs(struct dentry *dentry)
1700{
1701        struct inode *inode = d_inode(dentry);
1702        int mask = 0;
1703        int ret;
1704
1705        if (IS_NOSEC(inode))
1706                return 0;
1707
1708        mask = should_remove_suid(dentry);
1709        ret = security_inode_need_killpriv(dentry);
1710        if (ret < 0)
1711                return ret;
1712        if (ret)
1713                mask |= ATTR_KILL_PRIV;
1714        return mask;
1715}
1716EXPORT_SYMBOL(dentry_needs_remove_privs);
1717
1718static int __remove_privs(struct dentry *dentry, int kill)
1719{
1720        struct iattr newattrs;
1721
1722        newattrs.ia_valid = ATTR_FORCE | kill;
1723        /*
1724         * Note we call this on write, so notify_change will not
1725         * encounter any conflicting delegations:
1726         */
1727        return notify_change(dentry, &newattrs, NULL);
1728}
1729
1730/*
1731 * Remove special file priviledges (suid, capabilities) when file is written
1732 * to or truncated.
1733 */
1734int file_remove_privs(struct file *file)
1735{
1736        struct dentry *dentry = file->f_path.dentry;
1737        struct inode *inode = d_inode(dentry);
1738        int kill;
1739        int error = 0;
1740
1741        /* Fast path for nothing security related */
1742        if (IS_NOSEC(inode))
1743                return 0;
1744
1745        kill = file_needs_remove_privs(file);
1746        if (kill < 0)
1747                return kill;
1748        if (kill)
1749                error = __remove_privs(dentry, kill);
1750        if (!error)
1751                inode_has_no_xattr(inode);
1752
1753        return error;
1754}
1755EXPORT_SYMBOL(file_remove_privs);
1756
1757/**
1758 *      file_update_time        -       update mtime and ctime time
1759 *      @file: file accessed
1760 *
1761 *      Update the mtime and ctime members of an inode and mark the inode
1762 *      for writeback.  Note that this function is meant exclusively for
1763 *      usage in the file write path of filesystems, and filesystems may
1764 *      choose to explicitly ignore update via this function with the
1765 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1766 *      timestamps are handled by the server.  This can return an error for
1767 *      file systems who need to allocate space in order to update an inode.
1768 */
1769
1770int file_update_time(struct file *file)
1771{
1772        struct inode *inode = file_inode(file);
1773        struct timespec now;
1774        int sync_it = 0;
1775        int ret;
1776
1777        /* First try to exhaust all avenues to not sync */
1778        if (IS_NOCMTIME(inode))
1779                return 0;
1780
1781        now = current_fs_time(inode->i_sb);
1782        if (!timespec_equal(&inode->i_mtime, &now))
1783                sync_it = S_MTIME;
1784
1785        if (!timespec_equal(&inode->i_ctime, &now))
1786                sync_it |= S_CTIME;
1787
1788        if (IS_I_VERSION(inode))
1789                sync_it |= S_VERSION;
1790
1791        if (!sync_it)
1792                return 0;
1793
1794        /* Finally allowed to write? Takes lock. */
1795        if (__mnt_want_write_file(file))
1796                return 0;
1797
1798        ret = update_time(inode, &now, sync_it);
1799        __mnt_drop_write_file(file);
1800
1801        return ret;
1802}
1803EXPORT_SYMBOL(file_update_time);
1804
1805int inode_needs_sync(struct inode *inode)
1806{
1807        if (IS_SYNC(inode))
1808                return 1;
1809        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1810                return 1;
1811        return 0;
1812}
1813EXPORT_SYMBOL(inode_needs_sync);
1814
1815/*
1816 * If we try to find an inode in the inode hash while it is being
1817 * deleted, we have to wait until the filesystem completes its
1818 * deletion before reporting that it isn't found.  This function waits
1819 * until the deletion _might_ have completed.  Callers are responsible
1820 * to recheck inode state.
1821 *
1822 * It doesn't matter if I_NEW is not set initially, a call to
1823 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1824 * will DTRT.
1825 */
1826static void __wait_on_freeing_inode(struct inode *inode)
1827{
1828        wait_queue_head_t *wq;
1829        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1830        wq = bit_waitqueue(&inode->i_state, __I_NEW);
1831        prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1832        spin_unlock(&inode->i_lock);
1833        spin_unlock(&inode_hash_lock);
1834        schedule();
1835        finish_wait(wq, &wait.wait);
1836        spin_lock(&inode_hash_lock);
1837}
1838
1839static __initdata unsigned long ihash_entries;
1840static int __init set_ihash_entries(char *str)
1841{
1842        if (!str)
1843                return 0;
1844        ihash_entries = simple_strtoul(str, &str, 0);
1845        return 1;
1846}
1847__setup("ihash_entries=", set_ihash_entries);
1848
1849/*
1850 * Initialize the waitqueues and inode hash table.
1851 */
1852void __init inode_init_early(void)
1853{
1854        unsigned int loop;
1855
1856        /* If hashes are distributed across NUMA nodes, defer
1857         * hash allocation until vmalloc space is available.
1858         */
1859        if (hashdist)
1860                return;
1861
1862        inode_hashtable =
1863                alloc_large_system_hash("Inode-cache",
1864                                        sizeof(struct hlist_head),
1865                                        ihash_entries,
1866                                        14,
1867                                        HASH_EARLY,
1868                                        &i_hash_shift,
1869                                        &i_hash_mask,
1870                                        0,
1871                                        0);
1872
1873        for (loop = 0; loop < (1U << i_hash_shift); loop++)
1874                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1875}
1876
1877void __init inode_init(void)
1878{
1879        unsigned int loop;
1880
1881        /* inode slab cache */
1882        inode_cachep = kmem_cache_create("inode_cache",
1883                                         sizeof(struct inode),
1884                                         0,
1885                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1886                                         SLAB_MEM_SPREAD),
1887                                         init_once);
1888
1889        /* Hash may have been set up in inode_init_early */
1890        if (!hashdist)
1891                return;
1892
1893        inode_hashtable =
1894                alloc_large_system_hash("Inode-cache",
1895                                        sizeof(struct hlist_head),
1896                                        ihash_entries,
1897                                        14,
1898                                        0,
1899                                        &i_hash_shift,
1900                                        &i_hash_mask,
1901                                        0,
1902                                        0);
1903
1904        for (loop = 0; loop < (1U << i_hash_shift); loop++)
1905                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1906}
1907
1908void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1909{
1910        inode->i_mode = mode;
1911        if (S_ISCHR(mode)) {
1912                inode->i_fop = &def_chr_fops;
1913                inode->i_rdev = rdev;
1914        } else if (S_ISBLK(mode)) {
1915                inode->i_fop = &def_blk_fops;
1916                inode->i_rdev = rdev;
1917        } else if (S_ISFIFO(mode))
1918                inode->i_fop = &pipefifo_fops;
1919        else if (S_ISSOCK(mode))
1920                ;       /* leave it no_open_fops */
1921        else
1922                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1923                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1924                                  inode->i_ino);
1925}
1926EXPORT_SYMBOL(init_special_inode);
1927
1928/**
1929 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1930 * @inode: New inode
1931 * @dir: Directory inode
1932 * @mode: mode of the new inode
1933 */
1934void inode_init_owner(struct inode *inode, const struct inode *dir,
1935                        umode_t mode)
1936{
1937        inode->i_uid = current_fsuid();
1938        if (dir && dir->i_mode & S_ISGID) {
1939                inode->i_gid = dir->i_gid;
1940                if (S_ISDIR(mode))
1941                        mode |= S_ISGID;
1942        } else
1943                inode->i_gid = current_fsgid();
1944        inode->i_mode = mode;
1945}
1946EXPORT_SYMBOL(inode_init_owner);
1947
1948/**
1949 * inode_owner_or_capable - check current task permissions to inode
1950 * @inode: inode being checked
1951 *
1952 * Return true if current either has CAP_FOWNER in a namespace with the
1953 * inode owner uid mapped, or owns the file.
1954 */
1955bool inode_owner_or_capable(const struct inode *inode)
1956{
1957        struct user_namespace *ns;
1958
1959        if (uid_eq(current_fsuid(), inode->i_uid))
1960                return true;
1961
1962        ns = current_user_ns();
1963        if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1964                return true;
1965        return false;
1966}
1967EXPORT_SYMBOL(inode_owner_or_capable);
1968
1969/*
1970 * Direct i/o helper functions
1971 */
1972static void __inode_dio_wait(struct inode *inode)
1973{
1974        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1975        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1976
1977        do {
1978                prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1979                if (atomic_read(&inode->i_dio_count))
1980                        schedule();
1981        } while (atomic_read(&inode->i_dio_count));
1982        finish_wait(wq, &q.wait);
1983}
1984
1985/**
1986 * inode_dio_wait - wait for outstanding DIO requests to finish
1987 * @inode: inode to wait for
1988 *
1989 * Waits for all pending direct I/O requests to finish so that we can
1990 * proceed with a truncate or equivalent operation.
1991 *
1992 * Must be called under a lock that serializes taking new references
1993 * to i_dio_count, usually by inode->i_mutex.
1994 */
1995void inode_dio_wait(struct inode *inode)
1996{
1997        if (atomic_read(&inode->i_dio_count))
1998                __inode_dio_wait(inode);
1999}
2000EXPORT_SYMBOL(inode_dio_wait);
2001
2002/*
2003 * inode_set_flags - atomically set some inode flags
2004 *
2005 * Note: the caller should be holding i_mutex, or else be sure that
2006 * they have exclusive access to the inode structure (i.e., while the
2007 * inode is being instantiated).  The reason for the cmpxchg() loop
2008 * --- which wouldn't be necessary if all code paths which modify
2009 * i_flags actually followed this rule, is that there is at least one
2010 * code path which doesn't today so we use cmpxchg() out of an abundance
2011 * of caution.
2012 *
2013 * In the long run, i_mutex is overkill, and we should probably look
2014 * at using the i_lock spinlock to protect i_flags, and then make sure
2015 * it is so documented in include/linux/fs.h and that all code follows
2016 * the locking convention!!
2017 */
2018void inode_set_flags(struct inode *inode, unsigned int flags,
2019                     unsigned int mask)
2020{
2021        unsigned int old_flags, new_flags;
2022
2023        WARN_ON_ONCE(flags & ~mask);
2024        do {
2025                old_flags = ACCESS_ONCE(inode->i_flags);
2026                new_flags = (old_flags & ~mask) | flags;
2027        } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2028                                  new_flags) != old_flags));
2029}
2030EXPORT_SYMBOL(inode_set_flags);
2031