linux/fs/nilfs2/page.c
<<
>>
Prefs
   1/*
   2 * page.c - buffer/page management specific to NILFS
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  19 *
  20 * Written by Ryusuke Konishi <ryusuke@osrg.net>,
  21 *            Seiji Kihara <kihara@osrg.net>.
  22 */
  23
  24#include <linux/pagemap.h>
  25#include <linux/writeback.h>
  26#include <linux/swap.h>
  27#include <linux/bitops.h>
  28#include <linux/page-flags.h>
  29#include <linux/list.h>
  30#include <linux/highmem.h>
  31#include <linux/pagevec.h>
  32#include <linux/gfp.h>
  33#include "nilfs.h"
  34#include "page.h"
  35#include "mdt.h"
  36
  37
  38#define NILFS_BUFFER_INHERENT_BITS  \
  39        ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
  40         (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked))
  41
  42static struct buffer_head *
  43__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
  44                       int blkbits, unsigned long b_state)
  45
  46{
  47        unsigned long first_block;
  48        struct buffer_head *bh;
  49
  50        if (!page_has_buffers(page))
  51                create_empty_buffers(page, 1 << blkbits, b_state);
  52
  53        first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
  54        bh = nilfs_page_get_nth_block(page, block - first_block);
  55
  56        touch_buffer(bh);
  57        wait_on_buffer(bh);
  58        return bh;
  59}
  60
  61struct buffer_head *nilfs_grab_buffer(struct inode *inode,
  62                                      struct address_space *mapping,
  63                                      unsigned long blkoff,
  64                                      unsigned long b_state)
  65{
  66        int blkbits = inode->i_blkbits;
  67        pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
  68        struct page *page;
  69        struct buffer_head *bh;
  70
  71        page = grab_cache_page(mapping, index);
  72        if (unlikely(!page))
  73                return NULL;
  74
  75        bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
  76        if (unlikely(!bh)) {
  77                unlock_page(page);
  78                page_cache_release(page);
  79                return NULL;
  80        }
  81        return bh;
  82}
  83
  84/**
  85 * nilfs_forget_buffer - discard dirty state
  86 * @inode: owner inode of the buffer
  87 * @bh: buffer head of the buffer to be discarded
  88 */
  89void nilfs_forget_buffer(struct buffer_head *bh)
  90{
  91        struct page *page = bh->b_page;
  92        const unsigned long clear_bits =
  93                (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped |
  94                 1 << BH_Async_Write | 1 << BH_NILFS_Volatile |
  95                 1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected);
  96
  97        lock_buffer(bh);
  98        set_mask_bits(&bh->b_state, clear_bits, 0);
  99        if (nilfs_page_buffers_clean(page))
 100                __nilfs_clear_page_dirty(page);
 101
 102        bh->b_blocknr = -1;
 103        ClearPageUptodate(page);
 104        ClearPageMappedToDisk(page);
 105        unlock_buffer(bh);
 106        brelse(bh);
 107}
 108
 109/**
 110 * nilfs_copy_buffer -- copy buffer data and flags
 111 * @dbh: destination buffer
 112 * @sbh: source buffer
 113 */
 114void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
 115{
 116        void *kaddr0, *kaddr1;
 117        unsigned long bits;
 118        struct page *spage = sbh->b_page, *dpage = dbh->b_page;
 119        struct buffer_head *bh;
 120
 121        kaddr0 = kmap_atomic(spage);
 122        kaddr1 = kmap_atomic(dpage);
 123        memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
 124        kunmap_atomic(kaddr1);
 125        kunmap_atomic(kaddr0);
 126
 127        dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
 128        dbh->b_blocknr = sbh->b_blocknr;
 129        dbh->b_bdev = sbh->b_bdev;
 130
 131        bh = dbh;
 132        bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
 133        while ((bh = bh->b_this_page) != dbh) {
 134                lock_buffer(bh);
 135                bits &= bh->b_state;
 136                unlock_buffer(bh);
 137        }
 138        if (bits & (1UL << BH_Uptodate))
 139                SetPageUptodate(dpage);
 140        else
 141                ClearPageUptodate(dpage);
 142        if (bits & (1UL << BH_Mapped))
 143                SetPageMappedToDisk(dpage);
 144        else
 145                ClearPageMappedToDisk(dpage);
 146}
 147
 148/**
 149 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
 150 * @page: page to be checked
 151 *
 152 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
 153 * Otherwise, it returns non-zero value.
 154 */
 155int nilfs_page_buffers_clean(struct page *page)
 156{
 157        struct buffer_head *bh, *head;
 158
 159        bh = head = page_buffers(page);
 160        do {
 161                if (buffer_dirty(bh))
 162                        return 0;
 163                bh = bh->b_this_page;
 164        } while (bh != head);
 165        return 1;
 166}
 167
 168void nilfs_page_bug(struct page *page)
 169{
 170        struct address_space *m;
 171        unsigned long ino;
 172
 173        if (unlikely(!page)) {
 174                printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
 175                return;
 176        }
 177
 178        m = page->mapping;
 179        ino = m ? m->host->i_ino : 0;
 180
 181        printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
 182               "mapping=%p ino=%lu\n",
 183               page, atomic_read(&page->_count),
 184               (unsigned long long)page->index, page->flags, m, ino);
 185
 186        if (page_has_buffers(page)) {
 187                struct buffer_head *bh, *head;
 188                int i = 0;
 189
 190                bh = head = page_buffers(page);
 191                do {
 192                        printk(KERN_CRIT
 193                               " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
 194                               i++, bh, atomic_read(&bh->b_count),
 195                               (unsigned long long)bh->b_blocknr, bh->b_state);
 196                        bh = bh->b_this_page;
 197                } while (bh != head);
 198        }
 199}
 200
 201/**
 202 * nilfs_copy_page -- copy the page with buffers
 203 * @dst: destination page
 204 * @src: source page
 205 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
 206 *
 207 * This function is for both data pages and btnode pages.  The dirty flag
 208 * should be treated by caller.  The page must not be under i/o.
 209 * Both src and dst page must be locked
 210 */
 211static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
 212{
 213        struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
 214        unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
 215
 216        BUG_ON(PageWriteback(dst));
 217
 218        sbh = sbufs = page_buffers(src);
 219        if (!page_has_buffers(dst))
 220                create_empty_buffers(dst, sbh->b_size, 0);
 221
 222        if (copy_dirty)
 223                mask |= (1UL << BH_Dirty);
 224
 225        dbh = dbufs = page_buffers(dst);
 226        do {
 227                lock_buffer(sbh);
 228                lock_buffer(dbh);
 229                dbh->b_state = sbh->b_state & mask;
 230                dbh->b_blocknr = sbh->b_blocknr;
 231                dbh->b_bdev = sbh->b_bdev;
 232                sbh = sbh->b_this_page;
 233                dbh = dbh->b_this_page;
 234        } while (dbh != dbufs);
 235
 236        copy_highpage(dst, src);
 237
 238        if (PageUptodate(src) && !PageUptodate(dst))
 239                SetPageUptodate(dst);
 240        else if (!PageUptodate(src) && PageUptodate(dst))
 241                ClearPageUptodate(dst);
 242        if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
 243                SetPageMappedToDisk(dst);
 244        else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
 245                ClearPageMappedToDisk(dst);
 246
 247        do {
 248                unlock_buffer(sbh);
 249                unlock_buffer(dbh);
 250                sbh = sbh->b_this_page;
 251                dbh = dbh->b_this_page;
 252        } while (dbh != dbufs);
 253}
 254
 255int nilfs_copy_dirty_pages(struct address_space *dmap,
 256                           struct address_space *smap)
 257{
 258        struct pagevec pvec;
 259        unsigned int i;
 260        pgoff_t index = 0;
 261        int err = 0;
 262
 263        pagevec_init(&pvec, 0);
 264repeat:
 265        if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
 266                                PAGEVEC_SIZE))
 267                return 0;
 268
 269        for (i = 0; i < pagevec_count(&pvec); i++) {
 270                struct page *page = pvec.pages[i], *dpage;
 271
 272                lock_page(page);
 273                if (unlikely(!PageDirty(page)))
 274                        NILFS_PAGE_BUG(page, "inconsistent dirty state");
 275
 276                dpage = grab_cache_page(dmap, page->index);
 277                if (unlikely(!dpage)) {
 278                        /* No empty page is added to the page cache */
 279                        err = -ENOMEM;
 280                        unlock_page(page);
 281                        break;
 282                }
 283                if (unlikely(!page_has_buffers(page)))
 284                        NILFS_PAGE_BUG(page,
 285                                       "found empty page in dat page cache");
 286
 287                nilfs_copy_page(dpage, page, 1);
 288                __set_page_dirty_nobuffers(dpage);
 289
 290                unlock_page(dpage);
 291                page_cache_release(dpage);
 292                unlock_page(page);
 293        }
 294        pagevec_release(&pvec);
 295        cond_resched();
 296
 297        if (likely(!err))
 298                goto repeat;
 299        return err;
 300}
 301
 302/**
 303 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
 304 * @dmap: destination page cache
 305 * @smap: source page cache
 306 *
 307 * No pages must no be added to the cache during this process.
 308 * This must be ensured by the caller.
 309 */
 310void nilfs_copy_back_pages(struct address_space *dmap,
 311                           struct address_space *smap)
 312{
 313        struct pagevec pvec;
 314        unsigned int i, n;
 315        pgoff_t index = 0;
 316        int err;
 317
 318        pagevec_init(&pvec, 0);
 319repeat:
 320        n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
 321        if (!n)
 322                return;
 323        index = pvec.pages[n - 1]->index + 1;
 324
 325        for (i = 0; i < pagevec_count(&pvec); i++) {
 326                struct page *page = pvec.pages[i], *dpage;
 327                pgoff_t offset = page->index;
 328
 329                lock_page(page);
 330                dpage = find_lock_page(dmap, offset);
 331                if (dpage) {
 332                        /* override existing page on the destination cache */
 333                        WARN_ON(PageDirty(dpage));
 334                        nilfs_copy_page(dpage, page, 0);
 335                        unlock_page(dpage);
 336                        page_cache_release(dpage);
 337                } else {
 338                        struct page *page2;
 339
 340                        /* move the page to the destination cache */
 341                        spin_lock_irq(&smap->tree_lock);
 342                        page2 = radix_tree_delete(&smap->page_tree, offset);
 343                        WARN_ON(page2 != page);
 344
 345                        smap->nrpages--;
 346                        spin_unlock_irq(&smap->tree_lock);
 347
 348                        spin_lock_irq(&dmap->tree_lock);
 349                        err = radix_tree_insert(&dmap->page_tree, offset, page);
 350                        if (unlikely(err < 0)) {
 351                                WARN_ON(err == -EEXIST);
 352                                page->mapping = NULL;
 353                                page_cache_release(page); /* for cache */
 354                        } else {
 355                                page->mapping = dmap;
 356                                dmap->nrpages++;
 357                                if (PageDirty(page))
 358                                        radix_tree_tag_set(&dmap->page_tree,
 359                                                           offset,
 360                                                           PAGECACHE_TAG_DIRTY);
 361                        }
 362                        spin_unlock_irq(&dmap->tree_lock);
 363                }
 364                unlock_page(page);
 365        }
 366        pagevec_release(&pvec);
 367        cond_resched();
 368
 369        goto repeat;
 370}
 371
 372/**
 373 * nilfs_clear_dirty_pages - discard dirty pages in address space
 374 * @mapping: address space with dirty pages for discarding
 375 * @silent: suppress [true] or print [false] warning messages
 376 */
 377void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
 378{
 379        struct pagevec pvec;
 380        unsigned int i;
 381        pgoff_t index = 0;
 382
 383        pagevec_init(&pvec, 0);
 384
 385        while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
 386                                  PAGEVEC_SIZE)) {
 387                for (i = 0; i < pagevec_count(&pvec); i++) {
 388                        struct page *page = pvec.pages[i];
 389
 390                        lock_page(page);
 391                        nilfs_clear_dirty_page(page, silent);
 392                        unlock_page(page);
 393                }
 394                pagevec_release(&pvec);
 395                cond_resched();
 396        }
 397}
 398
 399/**
 400 * nilfs_clear_dirty_page - discard dirty page
 401 * @page: dirty page that will be discarded
 402 * @silent: suppress [true] or print [false] warning messages
 403 */
 404void nilfs_clear_dirty_page(struct page *page, bool silent)
 405{
 406        struct inode *inode = page->mapping->host;
 407        struct super_block *sb = inode->i_sb;
 408
 409        BUG_ON(!PageLocked(page));
 410
 411        if (!silent) {
 412                nilfs_warning(sb, __func__,
 413                                "discard page: offset %lld, ino %lu",
 414                                page_offset(page), inode->i_ino);
 415        }
 416
 417        ClearPageUptodate(page);
 418        ClearPageMappedToDisk(page);
 419
 420        if (page_has_buffers(page)) {
 421                struct buffer_head *bh, *head;
 422                const unsigned long clear_bits =
 423                        (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped |
 424                         1 << BH_Async_Write | 1 << BH_NILFS_Volatile |
 425                         1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected);
 426
 427                bh = head = page_buffers(page);
 428                do {
 429                        lock_buffer(bh);
 430                        if (!silent) {
 431                                nilfs_warning(sb, __func__,
 432                                        "discard block %llu, size %zu",
 433                                        (u64)bh->b_blocknr, bh->b_size);
 434                        }
 435                        set_mask_bits(&bh->b_state, clear_bits, 0);
 436                        unlock_buffer(bh);
 437                } while (bh = bh->b_this_page, bh != head);
 438        }
 439
 440        __nilfs_clear_page_dirty(page);
 441}
 442
 443unsigned nilfs_page_count_clean_buffers(struct page *page,
 444                                        unsigned from, unsigned to)
 445{
 446        unsigned block_start, block_end;
 447        struct buffer_head *bh, *head;
 448        unsigned nc = 0;
 449
 450        for (bh = head = page_buffers(page), block_start = 0;
 451             bh != head || !block_start;
 452             block_start = block_end, bh = bh->b_this_page) {
 453                block_end = block_start + bh->b_size;
 454                if (block_end > from && block_start < to && !buffer_dirty(bh))
 455                        nc++;
 456        }
 457        return nc;
 458}
 459
 460void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
 461{
 462        mapping->host = inode;
 463        mapping->flags = 0;
 464        mapping_set_gfp_mask(mapping, GFP_NOFS);
 465        mapping->private_data = NULL;
 466        mapping->a_ops = &empty_aops;
 467}
 468
 469/*
 470 * NILFS2 needs clear_page_dirty() in the following two cases:
 471 *
 472 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
 473 *    page dirty flags when it copies back pages from the shadow cache
 474 *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
 475 *    (dat->{i_mapping,i_btnode_cache}).
 476 *
 477 * 2) Some B-tree operations like insertion or deletion may dispose buffers
 478 *    in dirty state, and this needs to cancel the dirty state of their pages.
 479 */
 480int __nilfs_clear_page_dirty(struct page *page)
 481{
 482        struct address_space *mapping = page->mapping;
 483
 484        if (mapping) {
 485                spin_lock_irq(&mapping->tree_lock);
 486                if (test_bit(PG_dirty, &page->flags)) {
 487                        radix_tree_tag_clear(&mapping->page_tree,
 488                                             page_index(page),
 489                                             PAGECACHE_TAG_DIRTY);
 490                        spin_unlock_irq(&mapping->tree_lock);
 491                        return clear_page_dirty_for_io(page);
 492                }
 493                spin_unlock_irq(&mapping->tree_lock);
 494                return 0;
 495        }
 496        return TestClearPageDirty(page);
 497}
 498
 499/**
 500 * nilfs_find_uncommitted_extent - find extent of uncommitted data
 501 * @inode: inode
 502 * @start_blk: start block offset (in)
 503 * @blkoff: start offset of the found extent (out)
 504 *
 505 * This function searches an extent of buffers marked "delayed" which
 506 * starts from a block offset equal to or larger than @start_blk.  If
 507 * such an extent was found, this will store the start offset in
 508 * @blkoff and return its length in blocks.  Otherwise, zero is
 509 * returned.
 510 */
 511unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
 512                                            sector_t start_blk,
 513                                            sector_t *blkoff)
 514{
 515        unsigned int i;
 516        pgoff_t index;
 517        unsigned int nblocks_in_page;
 518        unsigned long length = 0;
 519        sector_t b;
 520        struct pagevec pvec;
 521        struct page *page;
 522
 523        if (inode->i_mapping->nrpages == 0)
 524                return 0;
 525
 526        index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
 527        nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits);
 528
 529        pagevec_init(&pvec, 0);
 530
 531repeat:
 532        pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
 533                                        pvec.pages);
 534        if (pvec.nr == 0)
 535                return length;
 536
 537        if (length > 0 && pvec.pages[0]->index > index)
 538                goto out;
 539
 540        b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
 541        i = 0;
 542        do {
 543                page = pvec.pages[i];
 544
 545                lock_page(page);
 546                if (page_has_buffers(page)) {
 547                        struct buffer_head *bh, *head;
 548
 549                        bh = head = page_buffers(page);
 550                        do {
 551                                if (b < start_blk)
 552                                        continue;
 553                                if (buffer_delay(bh)) {
 554                                        if (length == 0)
 555                                                *blkoff = b;
 556                                        length++;
 557                                } else if (length > 0) {
 558                                        goto out_locked;
 559                                }
 560                        } while (++b, bh = bh->b_this_page, bh != head);
 561                } else {
 562                        if (length > 0)
 563                                goto out_locked;
 564
 565                        b += nblocks_in_page;
 566                }
 567                unlock_page(page);
 568
 569        } while (++i < pagevec_count(&pvec));
 570
 571        index = page->index + 1;
 572        pagevec_release(&pvec);
 573        cond_resched();
 574        goto repeat;
 575
 576out_locked:
 577        unlock_page(page);
 578out:
 579        pagevec_release(&pvec);
 580        return length;
 581}
 582