linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57                                   struct buffer_head *bh_result, int create)
  58{
  59        int err = -EIO;
  60        int status;
  61        struct ocfs2_dinode *fe = NULL;
  62        struct buffer_head *bh = NULL;
  63        struct buffer_head *buffer_cache_bh = NULL;
  64        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65        void *kaddr;
  66
  67        trace_ocfs2_symlink_get_block(
  68                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  69                        (unsigned long long)iblock, bh_result, create);
  70
  71        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75                     (unsigned long long)iblock);
  76                goto bail;
  77        }
  78
  79        status = ocfs2_read_inode_block(inode, &bh);
  80        if (status < 0) {
  81                mlog_errno(status);
  82                goto bail;
  83        }
  84        fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87                                                    le32_to_cpu(fe->i_clusters))) {
  88                err = -ENOMEM;
  89                mlog(ML_ERROR, "block offset is outside the allocated size: "
  90                     "%llu\n", (unsigned long long)iblock);
  91                goto bail;
  92        }
  93
  94        /* We don't use the page cache to create symlink data, so if
  95         * need be, copy it over from the buffer cache. */
  96        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98                            iblock;
  99                buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100                if (!buffer_cache_bh) {
 101                        err = -ENOMEM;
 102                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103                        goto bail;
 104                }
 105
 106                /* we haven't locked out transactions, so a commit
 107                 * could've happened. Since we've got a reference on
 108                 * the bh, even if it commits while we're doing the
 109                 * copy, the data is still good. */
 110                if (buffer_jbd(buffer_cache_bh)
 111                    && ocfs2_inode_is_new(inode)) {
 112                        kaddr = kmap_atomic(bh_result->b_page);
 113                        if (!kaddr) {
 114                                mlog(ML_ERROR, "couldn't kmap!\n");
 115                                goto bail;
 116                        }
 117                        memcpy(kaddr + (bh_result->b_size * iblock),
 118                               buffer_cache_bh->b_data,
 119                               bh_result->b_size);
 120                        kunmap_atomic(kaddr);
 121                        set_buffer_uptodate(bh_result);
 122                }
 123                brelse(buffer_cache_bh);
 124        }
 125
 126        map_bh(bh_result, inode->i_sb,
 127               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129        err = 0;
 130
 131bail:
 132        brelse(bh);
 133
 134        return err;
 135}
 136
 137int ocfs2_get_block(struct inode *inode, sector_t iblock,
 138                    struct buffer_head *bh_result, int create)
 139{
 140        int err = 0;
 141        unsigned int ext_flags;
 142        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 143        u64 p_blkno, count, past_eof;
 144        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 145
 146        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 147                              (unsigned long long)iblock, bh_result, create);
 148
 149        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 150                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 151                     inode, inode->i_ino);
 152
 153        if (S_ISLNK(inode->i_mode)) {
 154                /* this always does I/O for some reason. */
 155                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 156                goto bail;
 157        }
 158
 159        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 160                                          &ext_flags);
 161        if (err) {
 162                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 163                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 164                     (unsigned long long)p_blkno);
 165                goto bail;
 166        }
 167
 168        if (max_blocks < count)
 169                count = max_blocks;
 170
 171        /*
 172         * ocfs2 never allocates in this function - the only time we
 173         * need to use BH_New is when we're extending i_size on a file
 174         * system which doesn't support holes, in which case BH_New
 175         * allows __block_write_begin() to zero.
 176         *
 177         * If we see this on a sparse file system, then a truncate has
 178         * raced us and removed the cluster. In this case, we clear
 179         * the buffers dirty and uptodate bits and let the buffer code
 180         * ignore it as a hole.
 181         */
 182        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 183                clear_buffer_dirty(bh_result);
 184                clear_buffer_uptodate(bh_result);
 185                goto bail;
 186        }
 187
 188        /* Treat the unwritten extent as a hole for zeroing purposes. */
 189        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 190                map_bh(bh_result, inode->i_sb, p_blkno);
 191
 192        bh_result->b_size = count << inode->i_blkbits;
 193
 194        if (!ocfs2_sparse_alloc(osb)) {
 195                if (p_blkno == 0) {
 196                        err = -EIO;
 197                        mlog(ML_ERROR,
 198                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 199                             (unsigned long long)iblock,
 200                             (unsigned long long)p_blkno,
 201                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 202                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 203                        dump_stack();
 204                        goto bail;
 205                }
 206        }
 207
 208        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 209
 210        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 211                                  (unsigned long long)past_eof);
 212        if (create && (iblock >= past_eof))
 213                set_buffer_new(bh_result);
 214
 215bail:
 216        if (err < 0)
 217                err = -EIO;
 218
 219        return err;
 220}
 221
 222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 223                           struct buffer_head *di_bh)
 224{
 225        void *kaddr;
 226        loff_t size;
 227        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 228
 229        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 230                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 231                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 232                return -EROFS;
 233        }
 234
 235        size = i_size_read(inode);
 236
 237        if (size > PAGE_CACHE_SIZE ||
 238            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 239                ocfs2_error(inode->i_sb,
 240                            "Inode %llu has with inline data has bad size: %Lu\n",
 241                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 242                            (unsigned long long)size);
 243                return -EROFS;
 244        }
 245
 246        kaddr = kmap_atomic(page);
 247        if (size)
 248                memcpy(kaddr, di->id2.i_data.id_data, size);
 249        /* Clear the remaining part of the page */
 250        memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 251        flush_dcache_page(page);
 252        kunmap_atomic(kaddr);
 253
 254        SetPageUptodate(page);
 255
 256        return 0;
 257}
 258
 259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 260{
 261        int ret;
 262        struct buffer_head *di_bh = NULL;
 263
 264        BUG_ON(!PageLocked(page));
 265        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 266
 267        ret = ocfs2_read_inode_block(inode, &di_bh);
 268        if (ret) {
 269                mlog_errno(ret);
 270                goto out;
 271        }
 272
 273        ret = ocfs2_read_inline_data(inode, page, di_bh);
 274out:
 275        unlock_page(page);
 276
 277        brelse(di_bh);
 278        return ret;
 279}
 280
 281static int ocfs2_readpage(struct file *file, struct page *page)
 282{
 283        struct inode *inode = page->mapping->host;
 284        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 285        loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 286        int ret, unlock = 1;
 287
 288        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 289                             (page ? page->index : 0));
 290
 291        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 292        if (ret != 0) {
 293                if (ret == AOP_TRUNCATED_PAGE)
 294                        unlock = 0;
 295                mlog_errno(ret);
 296                goto out;
 297        }
 298
 299        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 300                /*
 301                 * Unlock the page and cycle ip_alloc_sem so that we don't
 302                 * busyloop waiting for ip_alloc_sem to unlock
 303                 */
 304                ret = AOP_TRUNCATED_PAGE;
 305                unlock_page(page);
 306                unlock = 0;
 307                down_read(&oi->ip_alloc_sem);
 308                up_read(&oi->ip_alloc_sem);
 309                goto out_inode_unlock;
 310        }
 311
 312        /*
 313         * i_size might have just been updated as we grabed the meta lock.  We
 314         * might now be discovering a truncate that hit on another node.
 315         * block_read_full_page->get_block freaks out if it is asked to read
 316         * beyond the end of a file, so we check here.  Callers
 317         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 318         * and notice that the page they just read isn't needed.
 319         *
 320         * XXX sys_readahead() seems to get that wrong?
 321         */
 322        if (start >= i_size_read(inode)) {
 323                zero_user(page, 0, PAGE_SIZE);
 324                SetPageUptodate(page);
 325                ret = 0;
 326                goto out_alloc;
 327        }
 328
 329        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 330                ret = ocfs2_readpage_inline(inode, page);
 331        else
 332                ret = block_read_full_page(page, ocfs2_get_block);
 333        unlock = 0;
 334
 335out_alloc:
 336        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 337out_inode_unlock:
 338        ocfs2_inode_unlock(inode, 0);
 339out:
 340        if (unlock)
 341                unlock_page(page);
 342        return ret;
 343}
 344
 345/*
 346 * This is used only for read-ahead. Failures or difficult to handle
 347 * situations are safe to ignore.
 348 *
 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 350 * are quite large (243 extents on 4k blocks), so most inodes don't
 351 * grow out to a tree. If need be, detecting boundary extents could
 352 * trivially be added in a future version of ocfs2_get_block().
 353 */
 354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 355                           struct list_head *pages, unsigned nr_pages)
 356{
 357        int ret, err = -EIO;
 358        struct inode *inode = mapping->host;
 359        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 360        loff_t start;
 361        struct page *last;
 362
 363        /*
 364         * Use the nonblocking flag for the dlm code to avoid page
 365         * lock inversion, but don't bother with retrying.
 366         */
 367        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 368        if (ret)
 369                return err;
 370
 371        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 372                ocfs2_inode_unlock(inode, 0);
 373                return err;
 374        }
 375
 376        /*
 377         * Don't bother with inline-data. There isn't anything
 378         * to read-ahead in that case anyway...
 379         */
 380        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 381                goto out_unlock;
 382
 383        /*
 384         * Check whether a remote node truncated this file - we just
 385         * drop out in that case as it's not worth handling here.
 386         */
 387        last = list_entry(pages->prev, struct page, lru);
 388        start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 389        if (start >= i_size_read(inode))
 390                goto out_unlock;
 391
 392        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 393
 394out_unlock:
 395        up_read(&oi->ip_alloc_sem);
 396        ocfs2_inode_unlock(inode, 0);
 397
 398        return err;
 399}
 400
 401/* Note: Because we don't support holes, our allocation has
 402 * already happened (allocation writes zeros to the file data)
 403 * so we don't have to worry about ordered writes in
 404 * ocfs2_writepage.
 405 *
 406 * ->writepage is called during the process of invalidating the page cache
 407 * during blocked lock processing.  It can't block on any cluster locks
 408 * to during block mapping.  It's relying on the fact that the block
 409 * mapping can't have disappeared under the dirty pages that it is
 410 * being asked to write back.
 411 */
 412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 413{
 414        trace_ocfs2_writepage(
 415                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 416                page->index);
 417
 418        return block_write_full_page(page, ocfs2_get_block, wbc);
 419}
 420
 421/* Taken from ext3. We don't necessarily need the full blown
 422 * functionality yet, but IMHO it's better to cut and paste the whole
 423 * thing so we can avoid introducing our own bugs (and easily pick up
 424 * their fixes when they happen) --Mark */
 425int walk_page_buffers(  handle_t *handle,
 426                        struct buffer_head *head,
 427                        unsigned from,
 428                        unsigned to,
 429                        int *partial,
 430                        int (*fn)(      handle_t *handle,
 431                                        struct buffer_head *bh))
 432{
 433        struct buffer_head *bh;
 434        unsigned block_start, block_end;
 435        unsigned blocksize = head->b_size;
 436        int err, ret = 0;
 437        struct buffer_head *next;
 438
 439        for (   bh = head, block_start = 0;
 440                ret == 0 && (bh != head || !block_start);
 441                block_start = block_end, bh = next)
 442        {
 443                next = bh->b_this_page;
 444                block_end = block_start + blocksize;
 445                if (block_end <= from || block_start >= to) {
 446                        if (partial && !buffer_uptodate(bh))
 447                                *partial = 1;
 448                        continue;
 449                }
 450                err = (*fn)(handle, bh);
 451                if (!ret)
 452                        ret = err;
 453        }
 454        return ret;
 455}
 456
 457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 458{
 459        sector_t status;
 460        u64 p_blkno = 0;
 461        int err = 0;
 462        struct inode *inode = mapping->host;
 463
 464        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 465                         (unsigned long long)block);
 466
 467        /* We don't need to lock journal system files, since they aren't
 468         * accessed concurrently from multiple nodes.
 469         */
 470        if (!INODE_JOURNAL(inode)) {
 471                err = ocfs2_inode_lock(inode, NULL, 0);
 472                if (err) {
 473                        if (err != -ENOENT)
 474                                mlog_errno(err);
 475                        goto bail;
 476                }
 477                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 478        }
 479
 480        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 481                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 482                                                  NULL);
 483
 484        if (!INODE_JOURNAL(inode)) {
 485                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 486                ocfs2_inode_unlock(inode, 0);
 487        }
 488
 489        if (err) {
 490                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 491                     (unsigned long long)block);
 492                mlog_errno(err);
 493                goto bail;
 494        }
 495
 496bail:
 497        status = err ? 0 : p_blkno;
 498
 499        return status;
 500}
 501
 502/*
 503 * TODO: Make this into a generic get_blocks function.
 504 *
 505 * From do_direct_io in direct-io.c:
 506 *  "So what we do is to permit the ->get_blocks function to populate
 507 *   bh.b_size with the size of IO which is permitted at this offset and
 508 *   this i_blkbits."
 509 *
 510 * This function is called directly from get_more_blocks in direct-io.c.
 511 *
 512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 513 *                                      fs_count, map_bh, dio->rw == WRITE);
 514 */
 515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 516                                     struct buffer_head *bh_result, int create)
 517{
 518        int ret;
 519        u32 cpos = 0;
 520        int alloc_locked = 0;
 521        u64 p_blkno, inode_blocks, contig_blocks;
 522        unsigned int ext_flags;
 523        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 524        unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 525        unsigned long len = bh_result->b_size;
 526        unsigned int clusters_to_alloc = 0, contig_clusters = 0;
 527
 528        cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
 529
 530        /* This function won't even be called if the request isn't all
 531         * nicely aligned and of the right size, so there's no need
 532         * for us to check any of that. */
 533
 534        inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 535
 536        down_read(&OCFS2_I(inode)->ip_alloc_sem);
 537
 538        /* This figures out the size of the next contiguous block, and
 539         * our logical offset */
 540        ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 541                                          &contig_blocks, &ext_flags);
 542        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 543
 544        if (ret) {
 545                mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 546                     (unsigned long long)iblock);
 547                ret = -EIO;
 548                goto bail;
 549        }
 550
 551        /* We should already CoW the refcounted extent in case of create. */
 552        BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 553
 554        /* allocate blocks if no p_blkno is found, and create == 1 */
 555        if (!p_blkno && create) {
 556                ret = ocfs2_inode_lock(inode, NULL, 1);
 557                if (ret < 0) {
 558                        mlog_errno(ret);
 559                        goto bail;
 560                }
 561
 562                alloc_locked = 1;
 563
 564                down_write(&OCFS2_I(inode)->ip_alloc_sem);
 565
 566                /* fill hole, allocate blocks can't be larger than the size
 567                 * of the hole */
 568                clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
 569                contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
 570                                contig_blocks);
 571                if (clusters_to_alloc > contig_clusters)
 572                        clusters_to_alloc = contig_clusters;
 573
 574                /* allocate extent and insert them into the extent tree */
 575                ret = ocfs2_extend_allocation(inode, cpos,
 576                                clusters_to_alloc, 0);
 577                if (ret < 0) {
 578                        up_write(&OCFS2_I(inode)->ip_alloc_sem);
 579                        mlog_errno(ret);
 580                        goto bail;
 581                }
 582
 583                ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 584                                &contig_blocks, &ext_flags);
 585                if (ret < 0) {
 586                        up_write(&OCFS2_I(inode)->ip_alloc_sem);
 587                        mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 588                                        (unsigned long long)iblock);
 589                        ret = -EIO;
 590                        goto bail;
 591                }
 592                set_buffer_new(bh_result);
 593                up_write(&OCFS2_I(inode)->ip_alloc_sem);
 594        }
 595
 596        /*
 597         * get_more_blocks() expects us to describe a hole by clearing
 598         * the mapped bit on bh_result().
 599         *
 600         * Consider an unwritten extent as a hole.
 601         */
 602        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 603                map_bh(bh_result, inode->i_sb, p_blkno);
 604        else
 605                clear_buffer_mapped(bh_result);
 606
 607        /* make sure we don't map more than max_blocks blocks here as
 608           that's all the kernel will handle at this point. */
 609        if (max_blocks < contig_blocks)
 610                contig_blocks = max_blocks;
 611        bh_result->b_size = contig_blocks << blocksize_bits;
 612bail:
 613        if (alloc_locked)
 614                ocfs2_inode_unlock(inode, 1);
 615        return ret;
 616}
 617
 618/*
 619 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 620 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 621 * to protect io on one node from truncation on another.
 622 */
 623static void ocfs2_dio_end_io(struct kiocb *iocb,
 624                             loff_t offset,
 625                             ssize_t bytes,
 626                             void *private)
 627{
 628        struct inode *inode = file_inode(iocb->ki_filp);
 629        int level;
 630
 631        /* this io's submitter should not have unlocked this before we could */
 632        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 633
 634        if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 635                ocfs2_iocb_clear_unaligned_aio(iocb);
 636
 637                mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
 638        }
 639
 640        /* Let rw unlock to be done later to protect append direct io write */
 641        if (offset + bytes <= i_size_read(inode)) {
 642                ocfs2_iocb_clear_rw_locked(iocb);
 643
 644                level = ocfs2_iocb_rw_locked_level(iocb);
 645                ocfs2_rw_unlock(inode, level);
 646        }
 647}
 648
 649static int ocfs2_releasepage(struct page *page, gfp_t wait)
 650{
 651        if (!page_has_buffers(page))
 652                return 0;
 653        return try_to_free_buffers(page);
 654}
 655
 656static int ocfs2_is_overwrite(struct ocfs2_super *osb,
 657                struct inode *inode, loff_t offset)
 658{
 659        int ret = 0;
 660        u32 v_cpos = 0;
 661        u32 p_cpos = 0;
 662        unsigned int num_clusters = 0;
 663        unsigned int ext_flags = 0;
 664
 665        v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
 666        ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
 667                        &num_clusters, &ext_flags);
 668        if (ret < 0) {
 669                mlog_errno(ret);
 670                return ret;
 671        }
 672
 673        if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 674                return 1;
 675
 676        return 0;
 677}
 678
 679static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
 680                struct inode *inode, loff_t offset,
 681                u64 zero_len, int cluster_align)
 682{
 683        u32 p_cpos = 0;
 684        u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
 685        unsigned int num_clusters = 0;
 686        unsigned int ext_flags = 0;
 687        int ret = 0;
 688
 689        if (offset <= i_size_read(inode) || cluster_align)
 690                return 0;
 691
 692        ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
 693                        &ext_flags);
 694        if (ret < 0) {
 695                mlog_errno(ret);
 696                return ret;
 697        }
 698
 699        if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
 700                u64 s = i_size_read(inode);
 701                sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
 702                        (do_div(s, osb->s_clustersize) >> 9);
 703
 704                ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
 705                                zero_len >> 9, GFP_NOFS, false);
 706                if (ret < 0)
 707                        mlog_errno(ret);
 708        }
 709
 710        return ret;
 711}
 712
 713static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
 714                struct inode *inode, loff_t offset)
 715{
 716        u64 zero_start, zero_len, total_zero_len;
 717        u32 p_cpos = 0, clusters_to_add;
 718        u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
 719        unsigned int num_clusters = 0;
 720        unsigned int ext_flags = 0;
 721        u32 size_div, offset_div;
 722        int ret = 0;
 723
 724        {
 725                u64 o = offset;
 726                u64 s = i_size_read(inode);
 727
 728                offset_div = do_div(o, osb->s_clustersize);
 729                size_div = do_div(s, osb->s_clustersize);
 730        }
 731
 732        if (offset <= i_size_read(inode))
 733                return 0;
 734
 735        clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
 736                ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
 737        total_zero_len = offset - i_size_read(inode);
 738        if (clusters_to_add)
 739                total_zero_len -= offset_div;
 740
 741        /* Allocate clusters to fill out holes, and this is only needed
 742         * when we add more than one clusters. Otherwise the cluster will
 743         * be allocated during direct IO */
 744        if (clusters_to_add > 1) {
 745                ret = ocfs2_extend_allocation(inode,
 746                                OCFS2_I(inode)->ip_clusters,
 747                                clusters_to_add - 1, 0);
 748                if (ret) {
 749                        mlog_errno(ret);
 750                        goto out;
 751                }
 752        }
 753
 754        while (total_zero_len) {
 755                ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
 756                                &ext_flags);
 757                if (ret < 0) {
 758                        mlog_errno(ret);
 759                        goto out;
 760                }
 761
 762                zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
 763                        size_div;
 764                zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
 765                        size_div;
 766                zero_len = min(total_zero_len, zero_len);
 767
 768                if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
 769                        ret = blkdev_issue_zeroout(osb->sb->s_bdev,
 770                                        zero_start >> 9, zero_len >> 9,
 771                                        GFP_NOFS, false);
 772                        if (ret < 0) {
 773                                mlog_errno(ret);
 774                                goto out;
 775                        }
 776                }
 777
 778                total_zero_len -= zero_len;
 779                v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
 780
 781                /* Only at first iteration can be cluster not aligned.
 782                 * So set size_div to 0 for the rest */
 783                size_div = 0;
 784        }
 785
 786out:
 787        return ret;
 788}
 789
 790static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
 791                struct iov_iter *iter,
 792                loff_t offset)
 793{
 794        ssize_t ret = 0;
 795        ssize_t written = 0;
 796        bool orphaned = false;
 797        int is_overwrite = 0;
 798        struct file *file = iocb->ki_filp;
 799        struct inode *inode = file_inode(file)->i_mapping->host;
 800        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 801        struct buffer_head *di_bh = NULL;
 802        size_t count = iter->count;
 803        journal_t *journal = osb->journal->j_journal;
 804        u64 zero_len_head, zero_len_tail;
 805        int cluster_align_head, cluster_align_tail;
 806        loff_t final_size = offset + count;
 807        int append_write = offset >= i_size_read(inode) ? 1 : 0;
 808        unsigned int num_clusters = 0;
 809        unsigned int ext_flags = 0;
 810
 811        {
 812                u64 o = offset;
 813                u64 s = i_size_read(inode);
 814
 815                zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
 816                cluster_align_head = !zero_len_head;
 817
 818                zero_len_tail = osb->s_clustersize -
 819                        do_div(s, osb->s_clustersize);
 820                if ((offset - i_size_read(inode)) < zero_len_tail)
 821                        zero_len_tail = offset - i_size_read(inode);
 822                cluster_align_tail = !zero_len_tail;
 823        }
 824
 825        /*
 826         * when final_size > inode->i_size, inode->i_size will be
 827         * updated after direct write, so add the inode to orphan
 828         * dir first.
 829         */
 830        if (final_size > i_size_read(inode)) {
 831                ret = ocfs2_add_inode_to_orphan(osb, inode);
 832                if (ret < 0) {
 833                        mlog_errno(ret);
 834                        goto out;
 835                }
 836                orphaned = true;
 837        }
 838
 839        if (append_write) {
 840                ret = ocfs2_inode_lock(inode, NULL, 1);
 841                if (ret < 0) {
 842                        mlog_errno(ret);
 843                        goto clean_orphan;
 844                }
 845
 846                /* zeroing out the previously allocated cluster tail
 847                 * that but not zeroed */
 848                if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
 849                        down_read(&OCFS2_I(inode)->ip_alloc_sem);
 850                        ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
 851                                        zero_len_tail, cluster_align_tail);
 852                        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 853                } else {
 854                        down_write(&OCFS2_I(inode)->ip_alloc_sem);
 855                        ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
 856                                        offset);
 857                        up_write(&OCFS2_I(inode)->ip_alloc_sem);
 858                }
 859                if (ret < 0) {
 860                        mlog_errno(ret);
 861                        ocfs2_inode_unlock(inode, 1);
 862                        goto clean_orphan;
 863                }
 864
 865                is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
 866                if (is_overwrite < 0) {
 867                        mlog_errno(is_overwrite);
 868                        ret = is_overwrite;
 869                        ocfs2_inode_unlock(inode, 1);
 870                        goto clean_orphan;
 871                }
 872
 873                ocfs2_inode_unlock(inode, 1);
 874        }
 875
 876        written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
 877                                       offset, ocfs2_direct_IO_get_blocks,
 878                                       ocfs2_dio_end_io, NULL, 0);
 879        /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
 880        if ((written < 0) && (written != -EIOCBQUEUED)) {
 881                loff_t i_size = i_size_read(inode);
 882
 883                if (offset + count > i_size) {
 884                        ret = ocfs2_inode_lock(inode, &di_bh, 1);
 885                        if (ret < 0) {
 886                                mlog_errno(ret);
 887                                goto clean_orphan;
 888                        }
 889
 890                        if (i_size == i_size_read(inode)) {
 891                                ret = ocfs2_truncate_file(inode, di_bh,
 892                                                i_size);
 893                                if (ret < 0) {
 894                                        if (ret != -ENOSPC)
 895                                                mlog_errno(ret);
 896
 897                                        ocfs2_inode_unlock(inode, 1);
 898                                        brelse(di_bh);
 899                                        di_bh = NULL;
 900                                        goto clean_orphan;
 901                                }
 902                        }
 903
 904                        ocfs2_inode_unlock(inode, 1);
 905                        brelse(di_bh);
 906                        di_bh = NULL;
 907
 908                        ret = jbd2_journal_force_commit(journal);
 909                        if (ret < 0)
 910                                mlog_errno(ret);
 911                }
 912        } else if (written > 0 && append_write && !is_overwrite &&
 913                        !cluster_align_head) {
 914                /* zeroing out the allocated cluster head */
 915                u32 p_cpos = 0;
 916                u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
 917
 918                ret = ocfs2_inode_lock(inode, NULL, 0);
 919                if (ret < 0) {
 920                        mlog_errno(ret);
 921                        goto clean_orphan;
 922                }
 923
 924                ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
 925                                &num_clusters, &ext_flags);
 926                if (ret < 0) {
 927                        mlog_errno(ret);
 928                        ocfs2_inode_unlock(inode, 0);
 929                        goto clean_orphan;
 930                }
 931
 932                BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
 933
 934                ret = blkdev_issue_zeroout(osb->sb->s_bdev,
 935                                (u64)p_cpos << (osb->s_clustersize_bits - 9),
 936                                zero_len_head >> 9, GFP_NOFS, false);
 937                if (ret < 0)
 938                        mlog_errno(ret);
 939
 940                ocfs2_inode_unlock(inode, 0);
 941        }
 942
 943clean_orphan:
 944        if (orphaned) {
 945                int tmp_ret;
 946                int update_isize = written > 0 ? 1 : 0;
 947                loff_t end = update_isize ? offset + written : 0;
 948
 949                tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
 950                if (tmp_ret < 0) {
 951                        ret = tmp_ret;
 952                        mlog_errno(ret);
 953                        goto out;
 954                }
 955
 956                tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
 957                                update_isize, end);
 958                if (tmp_ret < 0) {
 959                        ret = tmp_ret;
 960                        mlog_errno(ret);
 961                        brelse(di_bh);
 962                        goto out;
 963                }
 964
 965                ocfs2_inode_unlock(inode, 1);
 966                brelse(di_bh);
 967
 968                tmp_ret = jbd2_journal_force_commit(journal);
 969                if (tmp_ret < 0) {
 970                        ret = tmp_ret;
 971                        mlog_errno(tmp_ret);
 972                }
 973        }
 974
 975out:
 976        if (ret >= 0)
 977                ret = written;
 978        return ret;
 979}
 980
 981static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
 982                               loff_t offset)
 983{
 984        struct file *file = iocb->ki_filp;
 985        struct inode *inode = file_inode(file)->i_mapping->host;
 986        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 987        int full_coherency = !(osb->s_mount_opt &
 988                        OCFS2_MOUNT_COHERENCY_BUFFERED);
 989
 990        /*
 991         * Fallback to buffered I/O if we see an inode without
 992         * extents.
 993         */
 994        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 995                return 0;
 996
 997        /* Fallback to buffered I/O if we are appending and
 998         * concurrent O_DIRECT writes are allowed.
 999         */
1000        if (i_size_read(inode) <= offset && !full_coherency)
1001                return 0;
1002
1003        if (iov_iter_rw(iter) == READ)
1004                return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1005                                            iter, offset,
1006                                            ocfs2_direct_IO_get_blocks,
1007                                            ocfs2_dio_end_io, NULL, 0);
1008        else
1009                return ocfs2_direct_IO_write(iocb, iter, offset);
1010}
1011
1012static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1013                                            u32 cpos,
1014                                            unsigned int *start,
1015                                            unsigned int *end)
1016{
1017        unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1018
1019        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1020                unsigned int cpp;
1021
1022                cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1023
1024                cluster_start = cpos % cpp;
1025                cluster_start = cluster_start << osb->s_clustersize_bits;
1026
1027                cluster_end = cluster_start + osb->s_clustersize;
1028        }
1029
1030        BUG_ON(cluster_start > PAGE_SIZE);
1031        BUG_ON(cluster_end > PAGE_SIZE);
1032
1033        if (start)
1034                *start = cluster_start;
1035        if (end)
1036                *end = cluster_end;
1037}
1038
1039/*
1040 * 'from' and 'to' are the region in the page to avoid zeroing.
1041 *
1042 * If pagesize > clustersize, this function will avoid zeroing outside
1043 * of the cluster boundary.
1044 *
1045 * from == to == 0 is code for "zero the entire cluster region"
1046 */
1047static void ocfs2_clear_page_regions(struct page *page,
1048                                     struct ocfs2_super *osb, u32 cpos,
1049                                     unsigned from, unsigned to)
1050{
1051        void *kaddr;
1052        unsigned int cluster_start, cluster_end;
1053
1054        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1055
1056        kaddr = kmap_atomic(page);
1057
1058        if (from || to) {
1059                if (from > cluster_start)
1060                        memset(kaddr + cluster_start, 0, from - cluster_start);
1061                if (to < cluster_end)
1062                        memset(kaddr + to, 0, cluster_end - to);
1063        } else {
1064                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1065        }
1066
1067        kunmap_atomic(kaddr);
1068}
1069
1070/*
1071 * Nonsparse file systems fully allocate before we get to the write
1072 * code. This prevents ocfs2_write() from tagging the write as an
1073 * allocating one, which means ocfs2_map_page_blocks() might try to
1074 * read-in the blocks at the tail of our file. Avoid reading them by
1075 * testing i_size against each block offset.
1076 */
1077static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1078                                 unsigned int block_start)
1079{
1080        u64 offset = page_offset(page) + block_start;
1081
1082        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083                return 1;
1084
1085        if (i_size_read(inode) > offset)
1086                return 1;
1087
1088        return 0;
1089}
1090
1091/*
1092 * Some of this taken from __block_write_begin(). We already have our
1093 * mapping by now though, and the entire write will be allocating or
1094 * it won't, so not much need to use BH_New.
1095 *
1096 * This will also skip zeroing, which is handled externally.
1097 */
1098int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1099                          struct inode *inode, unsigned int from,
1100                          unsigned int to, int new)
1101{
1102        int ret = 0;
1103        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1104        unsigned int block_end, block_start;
1105        unsigned int bsize = 1 << inode->i_blkbits;
1106
1107        if (!page_has_buffers(page))
1108                create_empty_buffers(page, bsize, 0);
1109
1110        head = page_buffers(page);
1111        for (bh = head, block_start = 0; bh != head || !block_start;
1112             bh = bh->b_this_page, block_start += bsize) {
1113                block_end = block_start + bsize;
1114
1115                clear_buffer_new(bh);
1116
1117                /*
1118                 * Ignore blocks outside of our i/o range -
1119                 * they may belong to unallocated clusters.
1120                 */
1121                if (block_start >= to || block_end <= from) {
1122                        if (PageUptodate(page))
1123                                set_buffer_uptodate(bh);
1124                        continue;
1125                }
1126
1127                /*
1128                 * For an allocating write with cluster size >= page
1129                 * size, we always write the entire page.
1130                 */
1131                if (new)
1132                        set_buffer_new(bh);
1133
1134                if (!buffer_mapped(bh)) {
1135                        map_bh(bh, inode->i_sb, *p_blkno);
1136                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1137                }
1138
1139                if (PageUptodate(page)) {
1140                        if (!buffer_uptodate(bh))
1141                                set_buffer_uptodate(bh);
1142                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1143                           !buffer_new(bh) &&
1144                           ocfs2_should_read_blk(inode, page, block_start) &&
1145                           (block_start < from || block_end > to)) {
1146                        ll_rw_block(READ, 1, &bh);
1147                        *wait_bh++=bh;
1148                }
1149
1150                *p_blkno = *p_blkno + 1;
1151        }
1152
1153        /*
1154         * If we issued read requests - let them complete.
1155         */
1156        while(wait_bh > wait) {
1157                wait_on_buffer(*--wait_bh);
1158                if (!buffer_uptodate(*wait_bh))
1159                        ret = -EIO;
1160        }
1161
1162        if (ret == 0 || !new)
1163                return ret;
1164
1165        /*
1166         * If we get -EIO above, zero out any newly allocated blocks
1167         * to avoid exposing stale data.
1168         */
1169        bh = head;
1170        block_start = 0;
1171        do {
1172                block_end = block_start + bsize;
1173                if (block_end <= from)
1174                        goto next_bh;
1175                if (block_start >= to)
1176                        break;
1177
1178                zero_user(page, block_start, bh->b_size);
1179                set_buffer_uptodate(bh);
1180                mark_buffer_dirty(bh);
1181
1182next_bh:
1183                block_start = block_end;
1184                bh = bh->b_this_page;
1185        } while (bh != head);
1186
1187        return ret;
1188}
1189
1190#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1191#define OCFS2_MAX_CTXT_PAGES    1
1192#else
1193#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1194#endif
1195
1196#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1197
1198/*
1199 * Describe the state of a single cluster to be written to.
1200 */
1201struct ocfs2_write_cluster_desc {
1202        u32             c_cpos;
1203        u32             c_phys;
1204        /*
1205         * Give this a unique field because c_phys eventually gets
1206         * filled.
1207         */
1208        unsigned        c_new;
1209        unsigned        c_unwritten;
1210        unsigned        c_needs_zero;
1211};
1212
1213struct ocfs2_write_ctxt {
1214        /* Logical cluster position / len of write */
1215        u32                             w_cpos;
1216        u32                             w_clen;
1217
1218        /* First cluster allocated in a nonsparse extend */
1219        u32                             w_first_new_cpos;
1220
1221        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1222
1223        /*
1224         * This is true if page_size > cluster_size.
1225         *
1226         * It triggers a set of special cases during write which might
1227         * have to deal with allocating writes to partial pages.
1228         */
1229        unsigned int                    w_large_pages;
1230
1231        /*
1232         * Pages involved in this write.
1233         *
1234         * w_target_page is the page being written to by the user.
1235         *
1236         * w_pages is an array of pages which always contains
1237         * w_target_page, and in the case of an allocating write with
1238         * page_size < cluster size, it will contain zero'd and mapped
1239         * pages adjacent to w_target_page which need to be written
1240         * out in so that future reads from that region will get
1241         * zero's.
1242         */
1243        unsigned int                    w_num_pages;
1244        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1245        struct page                     *w_target_page;
1246
1247        /*
1248         * w_target_locked is used for page_mkwrite path indicating no unlocking
1249         * against w_target_page in ocfs2_write_end_nolock.
1250         */
1251        unsigned int                    w_target_locked:1;
1252
1253        /*
1254         * ocfs2_write_end() uses this to know what the real range to
1255         * write in the target should be.
1256         */
1257        unsigned int                    w_target_from;
1258        unsigned int                    w_target_to;
1259
1260        /*
1261         * We could use journal_current_handle() but this is cleaner,
1262         * IMHO -Mark
1263         */
1264        handle_t                        *w_handle;
1265
1266        struct buffer_head              *w_di_bh;
1267
1268        struct ocfs2_cached_dealloc_ctxt w_dealloc;
1269};
1270
1271void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1272{
1273        int i;
1274
1275        for(i = 0; i < num_pages; i++) {
1276                if (pages[i]) {
1277                        unlock_page(pages[i]);
1278                        mark_page_accessed(pages[i]);
1279                        page_cache_release(pages[i]);
1280                }
1281        }
1282}
1283
1284static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1285{
1286        int i;
1287
1288        /*
1289         * w_target_locked is only set to true in the page_mkwrite() case.
1290         * The intent is to allow us to lock the target page from write_begin()
1291         * to write_end(). The caller must hold a ref on w_target_page.
1292         */
1293        if (wc->w_target_locked) {
1294                BUG_ON(!wc->w_target_page);
1295                for (i = 0; i < wc->w_num_pages; i++) {
1296                        if (wc->w_target_page == wc->w_pages[i]) {
1297                                wc->w_pages[i] = NULL;
1298                                break;
1299                        }
1300                }
1301                mark_page_accessed(wc->w_target_page);
1302                page_cache_release(wc->w_target_page);
1303        }
1304        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1305}
1306
1307static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1308{
1309        ocfs2_unlock_pages(wc);
1310        brelse(wc->w_di_bh);
1311        kfree(wc);
1312}
1313
1314static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1315                                  struct ocfs2_super *osb, loff_t pos,
1316                                  unsigned len, struct buffer_head *di_bh)
1317{
1318        u32 cend;
1319        struct ocfs2_write_ctxt *wc;
1320
1321        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1322        if (!wc)
1323                return -ENOMEM;
1324
1325        wc->w_cpos = pos >> osb->s_clustersize_bits;
1326        wc->w_first_new_cpos = UINT_MAX;
1327        cend = (pos + len - 1) >> osb->s_clustersize_bits;
1328        wc->w_clen = cend - wc->w_cpos + 1;
1329        get_bh(di_bh);
1330        wc->w_di_bh = di_bh;
1331
1332        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1333                wc->w_large_pages = 1;
1334        else
1335                wc->w_large_pages = 0;
1336
1337        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1338
1339        *wcp = wc;
1340
1341        return 0;
1342}
1343
1344/*
1345 * If a page has any new buffers, zero them out here, and mark them uptodate
1346 * and dirty so they'll be written out (in order to prevent uninitialised
1347 * block data from leaking). And clear the new bit.
1348 */
1349static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1350{
1351        unsigned int block_start, block_end;
1352        struct buffer_head *head, *bh;
1353
1354        BUG_ON(!PageLocked(page));
1355        if (!page_has_buffers(page))
1356                return;
1357
1358        bh = head = page_buffers(page);
1359        block_start = 0;
1360        do {
1361                block_end = block_start + bh->b_size;
1362
1363                if (buffer_new(bh)) {
1364                        if (block_end > from && block_start < to) {
1365                                if (!PageUptodate(page)) {
1366                                        unsigned start, end;
1367
1368                                        start = max(from, block_start);
1369                                        end = min(to, block_end);
1370
1371                                        zero_user_segment(page, start, end);
1372                                        set_buffer_uptodate(bh);
1373                                }
1374
1375                                clear_buffer_new(bh);
1376                                mark_buffer_dirty(bh);
1377                        }
1378                }
1379
1380                block_start = block_end;
1381                bh = bh->b_this_page;
1382        } while (bh != head);
1383}
1384
1385/*
1386 * Only called when we have a failure during allocating write to write
1387 * zero's to the newly allocated region.
1388 */
1389static void ocfs2_write_failure(struct inode *inode,
1390                                struct ocfs2_write_ctxt *wc,
1391                                loff_t user_pos, unsigned user_len)
1392{
1393        int i;
1394        unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1395                to = user_pos + user_len;
1396        struct page *tmppage;
1397
1398        ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1399
1400        for(i = 0; i < wc->w_num_pages; i++) {
1401                tmppage = wc->w_pages[i];
1402
1403                if (page_has_buffers(tmppage)) {
1404                        if (ocfs2_should_order_data(inode))
1405                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1406
1407                        block_commit_write(tmppage, from, to);
1408                }
1409        }
1410}
1411
1412static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1413                                        struct ocfs2_write_ctxt *wc,
1414                                        struct page *page, u32 cpos,
1415                                        loff_t user_pos, unsigned user_len,
1416                                        int new)
1417{
1418        int ret;
1419        unsigned int map_from = 0, map_to = 0;
1420        unsigned int cluster_start, cluster_end;
1421        unsigned int user_data_from = 0, user_data_to = 0;
1422
1423        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1424                                        &cluster_start, &cluster_end);
1425
1426        /* treat the write as new if the a hole/lseek spanned across
1427         * the page boundary.
1428         */
1429        new = new | ((i_size_read(inode) <= page_offset(page)) &&
1430                        (page_offset(page) <= user_pos));
1431
1432        if (page == wc->w_target_page) {
1433                map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1434                map_to = map_from + user_len;
1435
1436                if (new)
1437                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1438                                                    cluster_start, cluster_end,
1439                                                    new);
1440                else
1441                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1442                                                    map_from, map_to, new);
1443                if (ret) {
1444                        mlog_errno(ret);
1445                        goto out;
1446                }
1447
1448                user_data_from = map_from;
1449                user_data_to = map_to;
1450                if (new) {
1451                        map_from = cluster_start;
1452                        map_to = cluster_end;
1453                }
1454        } else {
1455                /*
1456                 * If we haven't allocated the new page yet, we
1457                 * shouldn't be writing it out without copying user
1458                 * data. This is likely a math error from the caller.
1459                 */
1460                BUG_ON(!new);
1461
1462                map_from = cluster_start;
1463                map_to = cluster_end;
1464
1465                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1466                                            cluster_start, cluster_end, new);
1467                if (ret) {
1468                        mlog_errno(ret);
1469                        goto out;
1470                }
1471        }
1472
1473        /*
1474         * Parts of newly allocated pages need to be zero'd.
1475         *
1476         * Above, we have also rewritten 'to' and 'from' - as far as
1477         * the rest of the function is concerned, the entire cluster
1478         * range inside of a page needs to be written.
1479         *
1480         * We can skip this if the page is up to date - it's already
1481         * been zero'd from being read in as a hole.
1482         */
1483        if (new && !PageUptodate(page))
1484                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1485                                         cpos, user_data_from, user_data_to);
1486
1487        flush_dcache_page(page);
1488
1489out:
1490        return ret;
1491}
1492
1493/*
1494 * This function will only grab one clusters worth of pages.
1495 */
1496static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1497                                      struct ocfs2_write_ctxt *wc,
1498                                      u32 cpos, loff_t user_pos,
1499                                      unsigned user_len, int new,
1500                                      struct page *mmap_page)
1501{
1502        int ret = 0, i;
1503        unsigned long start, target_index, end_index, index;
1504        struct inode *inode = mapping->host;
1505        loff_t last_byte;
1506
1507        target_index = user_pos >> PAGE_CACHE_SHIFT;
1508
1509        /*
1510         * Figure out how many pages we'll be manipulating here. For
1511         * non allocating write, we just change the one
1512         * page. Otherwise, we'll need a whole clusters worth.  If we're
1513         * writing past i_size, we only need enough pages to cover the
1514         * last page of the write.
1515         */
1516        if (new) {
1517                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1518                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1519                /*
1520                 * We need the index *past* the last page we could possibly
1521                 * touch.  This is the page past the end of the write or
1522                 * i_size, whichever is greater.
1523                 */
1524                last_byte = max(user_pos + user_len, i_size_read(inode));
1525                BUG_ON(last_byte < 1);
1526                end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1527                if ((start + wc->w_num_pages) > end_index)
1528                        wc->w_num_pages = end_index - start;
1529        } else {
1530                wc->w_num_pages = 1;
1531                start = target_index;
1532        }
1533
1534        for(i = 0; i < wc->w_num_pages; i++) {
1535                index = start + i;
1536
1537                if (index == target_index && mmap_page) {
1538                        /*
1539                         * ocfs2_pagemkwrite() is a little different
1540                         * and wants us to directly use the page
1541                         * passed in.
1542                         */
1543                        lock_page(mmap_page);
1544
1545                        /* Exit and let the caller retry */
1546                        if (mmap_page->mapping != mapping) {
1547                                WARN_ON(mmap_page->mapping);
1548                                unlock_page(mmap_page);
1549                                ret = -EAGAIN;
1550                                goto out;
1551                        }
1552
1553                        page_cache_get(mmap_page);
1554                        wc->w_pages[i] = mmap_page;
1555                        wc->w_target_locked = true;
1556                } else {
1557                        wc->w_pages[i] = find_or_create_page(mapping, index,
1558                                                             GFP_NOFS);
1559                        if (!wc->w_pages[i]) {
1560                                ret = -ENOMEM;
1561                                mlog_errno(ret);
1562                                goto out;
1563                        }
1564                }
1565                wait_for_stable_page(wc->w_pages[i]);
1566
1567                if (index == target_index)
1568                        wc->w_target_page = wc->w_pages[i];
1569        }
1570out:
1571        if (ret)
1572                wc->w_target_locked = false;
1573        return ret;
1574}
1575
1576/*
1577 * Prepare a single cluster for write one cluster into the file.
1578 */
1579static int ocfs2_write_cluster(struct address_space *mapping,
1580                               u32 phys, unsigned int unwritten,
1581                               unsigned int should_zero,
1582                               struct ocfs2_alloc_context *data_ac,
1583                               struct ocfs2_alloc_context *meta_ac,
1584                               struct ocfs2_write_ctxt *wc, u32 cpos,
1585                               loff_t user_pos, unsigned user_len)
1586{
1587        int ret, i, new;
1588        u64 v_blkno, p_blkno;
1589        struct inode *inode = mapping->host;
1590        struct ocfs2_extent_tree et;
1591
1592        new = phys == 0 ? 1 : 0;
1593        if (new) {
1594                u32 tmp_pos;
1595
1596                /*
1597                 * This is safe to call with the page locks - it won't take
1598                 * any additional semaphores or cluster locks.
1599                 */
1600                tmp_pos = cpos;
1601                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1602                                           &tmp_pos, 1, 0, wc->w_di_bh,
1603                                           wc->w_handle, data_ac,
1604                                           meta_ac, NULL);
1605                /*
1606                 * This shouldn't happen because we must have already
1607                 * calculated the correct meta data allocation required. The
1608                 * internal tree allocation code should know how to increase
1609                 * transaction credits itself.
1610                 *
1611                 * If need be, we could handle -EAGAIN for a
1612                 * RESTART_TRANS here.
1613                 */
1614                mlog_bug_on_msg(ret == -EAGAIN,
1615                                "Inode %llu: EAGAIN return during allocation.\n",
1616                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1617                if (ret < 0) {
1618                        mlog_errno(ret);
1619                        goto out;
1620                }
1621        } else if (unwritten) {
1622                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1623                                              wc->w_di_bh);
1624                ret = ocfs2_mark_extent_written(inode, &et,
1625                                                wc->w_handle, cpos, 1, phys,
1626                                                meta_ac, &wc->w_dealloc);
1627                if (ret < 0) {
1628                        mlog_errno(ret);
1629                        goto out;
1630                }
1631        }
1632
1633        if (should_zero)
1634                v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1635        else
1636                v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1637
1638        /*
1639         * The only reason this should fail is due to an inability to
1640         * find the extent added.
1641         */
1642        ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1643                                          NULL);
1644        if (ret < 0) {
1645                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1646                            "at logical block %llu",
1647                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
1648                            (unsigned long long)v_blkno);
1649                goto out;
1650        }
1651
1652        BUG_ON(p_blkno == 0);
1653
1654        for(i = 0; i < wc->w_num_pages; i++) {
1655                int tmpret;
1656
1657                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1658                                                      wc->w_pages[i], cpos,
1659                                                      user_pos, user_len,
1660                                                      should_zero);
1661                if (tmpret) {
1662                        mlog_errno(tmpret);
1663                        if (ret == 0)
1664                                ret = tmpret;
1665                }
1666        }
1667
1668        /*
1669         * We only have cleanup to do in case of allocating write.
1670         */
1671        if (ret && new)
1672                ocfs2_write_failure(inode, wc, user_pos, user_len);
1673
1674out:
1675
1676        return ret;
1677}
1678
1679static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1680                                       struct ocfs2_alloc_context *data_ac,
1681                                       struct ocfs2_alloc_context *meta_ac,
1682                                       struct ocfs2_write_ctxt *wc,
1683                                       loff_t pos, unsigned len)
1684{
1685        int ret, i;
1686        loff_t cluster_off;
1687        unsigned int local_len = len;
1688        struct ocfs2_write_cluster_desc *desc;
1689        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1690
1691        for (i = 0; i < wc->w_clen; i++) {
1692                desc = &wc->w_desc[i];
1693
1694                /*
1695                 * We have to make sure that the total write passed in
1696                 * doesn't extend past a single cluster.
1697                 */
1698                local_len = len;
1699                cluster_off = pos & (osb->s_clustersize - 1);
1700                if ((cluster_off + local_len) > osb->s_clustersize)
1701                        local_len = osb->s_clustersize - cluster_off;
1702
1703                ret = ocfs2_write_cluster(mapping, desc->c_phys,
1704                                          desc->c_unwritten,
1705                                          desc->c_needs_zero,
1706                                          data_ac, meta_ac,
1707                                          wc, desc->c_cpos, pos, local_len);
1708                if (ret) {
1709                        mlog_errno(ret);
1710                        goto out;
1711                }
1712
1713                len -= local_len;
1714                pos += local_len;
1715        }
1716
1717        ret = 0;
1718out:
1719        return ret;
1720}
1721
1722/*
1723 * ocfs2_write_end() wants to know which parts of the target page it
1724 * should complete the write on. It's easiest to compute them ahead of
1725 * time when a more complete view of the write is available.
1726 */
1727static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1728                                        struct ocfs2_write_ctxt *wc,
1729                                        loff_t pos, unsigned len, int alloc)
1730{
1731        struct ocfs2_write_cluster_desc *desc;
1732
1733        wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1734        wc->w_target_to = wc->w_target_from + len;
1735
1736        if (alloc == 0)
1737                return;
1738
1739        /*
1740         * Allocating write - we may have different boundaries based
1741         * on page size and cluster size.
1742         *
1743         * NOTE: We can no longer compute one value from the other as
1744         * the actual write length and user provided length may be
1745         * different.
1746         */
1747
1748        if (wc->w_large_pages) {
1749                /*
1750                 * We only care about the 1st and last cluster within
1751                 * our range and whether they should be zero'd or not. Either
1752                 * value may be extended out to the start/end of a
1753                 * newly allocated cluster.
1754                 */
1755                desc = &wc->w_desc[0];
1756                if (desc->c_needs_zero)
1757                        ocfs2_figure_cluster_boundaries(osb,
1758                                                        desc->c_cpos,
1759                                                        &wc->w_target_from,
1760                                                        NULL);
1761
1762                desc = &wc->w_desc[wc->w_clen - 1];
1763                if (desc->c_needs_zero)
1764                        ocfs2_figure_cluster_boundaries(osb,
1765                                                        desc->c_cpos,
1766                                                        NULL,
1767                                                        &wc->w_target_to);
1768        } else {
1769                wc->w_target_from = 0;
1770                wc->w_target_to = PAGE_CACHE_SIZE;
1771        }
1772}
1773
1774/*
1775 * Populate each single-cluster write descriptor in the write context
1776 * with information about the i/o to be done.
1777 *
1778 * Returns the number of clusters that will have to be allocated, as
1779 * well as a worst case estimate of the number of extent records that
1780 * would have to be created during a write to an unwritten region.
1781 */
1782static int ocfs2_populate_write_desc(struct inode *inode,
1783                                     struct ocfs2_write_ctxt *wc,
1784                                     unsigned int *clusters_to_alloc,
1785                                     unsigned int *extents_to_split)
1786{
1787        int ret;
1788        struct ocfs2_write_cluster_desc *desc;
1789        unsigned int num_clusters = 0;
1790        unsigned int ext_flags = 0;
1791        u32 phys = 0;
1792        int i;
1793
1794        *clusters_to_alloc = 0;
1795        *extents_to_split = 0;
1796
1797        for (i = 0; i < wc->w_clen; i++) {
1798                desc = &wc->w_desc[i];
1799                desc->c_cpos = wc->w_cpos + i;
1800
1801                if (num_clusters == 0) {
1802                        /*
1803                         * Need to look up the next extent record.
1804                         */
1805                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1806                                                 &num_clusters, &ext_flags);
1807                        if (ret) {
1808                                mlog_errno(ret);
1809                                goto out;
1810                        }
1811
1812                        /* We should already CoW the refcountd extent. */
1813                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1814
1815                        /*
1816                         * Assume worst case - that we're writing in
1817                         * the middle of the extent.
1818                         *
1819                         * We can assume that the write proceeds from
1820                         * left to right, in which case the extent
1821                         * insert code is smart enough to coalesce the
1822                         * next splits into the previous records created.
1823                         */
1824                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1825                                *extents_to_split = *extents_to_split + 2;
1826                } else if (phys) {
1827                        /*
1828                         * Only increment phys if it doesn't describe
1829                         * a hole.
1830                         */
1831                        phys++;
1832                }
1833
1834                /*
1835                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1836                 * file that got extended.  w_first_new_cpos tells us
1837                 * where the newly allocated clusters are so we can
1838                 * zero them.
1839                 */
1840                if (desc->c_cpos >= wc->w_first_new_cpos) {
1841                        BUG_ON(phys == 0);
1842                        desc->c_needs_zero = 1;
1843                }
1844
1845                desc->c_phys = phys;
1846                if (phys == 0) {
1847                        desc->c_new = 1;
1848                        desc->c_needs_zero = 1;
1849                        *clusters_to_alloc = *clusters_to_alloc + 1;
1850                }
1851
1852                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1853                        desc->c_unwritten = 1;
1854                        desc->c_needs_zero = 1;
1855                }
1856
1857                num_clusters--;
1858        }
1859
1860        ret = 0;
1861out:
1862        return ret;
1863}
1864
1865static int ocfs2_write_begin_inline(struct address_space *mapping,
1866                                    struct inode *inode,
1867                                    struct ocfs2_write_ctxt *wc)
1868{
1869        int ret;
1870        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1871        struct page *page;
1872        handle_t *handle;
1873        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1874
1875        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1876        if (IS_ERR(handle)) {
1877                ret = PTR_ERR(handle);
1878                mlog_errno(ret);
1879                goto out;
1880        }
1881
1882        page = find_or_create_page(mapping, 0, GFP_NOFS);
1883        if (!page) {
1884                ocfs2_commit_trans(osb, handle);
1885                ret = -ENOMEM;
1886                mlog_errno(ret);
1887                goto out;
1888        }
1889        /*
1890         * If we don't set w_num_pages then this page won't get unlocked
1891         * and freed on cleanup of the write context.
1892         */
1893        wc->w_pages[0] = wc->w_target_page = page;
1894        wc->w_num_pages = 1;
1895
1896        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1897                                      OCFS2_JOURNAL_ACCESS_WRITE);
1898        if (ret) {
1899                ocfs2_commit_trans(osb, handle);
1900
1901                mlog_errno(ret);
1902                goto out;
1903        }
1904
1905        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1906                ocfs2_set_inode_data_inline(inode, di);
1907
1908        if (!PageUptodate(page)) {
1909                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1910                if (ret) {
1911                        ocfs2_commit_trans(osb, handle);
1912
1913                        goto out;
1914                }
1915        }
1916
1917        wc->w_handle = handle;
1918out:
1919        return ret;
1920}
1921
1922int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1923{
1924        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1925
1926        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1927                return 1;
1928        return 0;
1929}
1930
1931static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1932                                          struct inode *inode, loff_t pos,
1933                                          unsigned len, struct page *mmap_page,
1934                                          struct ocfs2_write_ctxt *wc)
1935{
1936        int ret, written = 0;
1937        loff_t end = pos + len;
1938        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1939        struct ocfs2_dinode *di = NULL;
1940
1941        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1942                                             len, (unsigned long long)pos,
1943                                             oi->ip_dyn_features);
1944
1945        /*
1946         * Handle inodes which already have inline data 1st.
1947         */
1948        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1949                if (mmap_page == NULL &&
1950                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1951                        goto do_inline_write;
1952
1953                /*
1954                 * The write won't fit - we have to give this inode an
1955                 * inline extent list now.
1956                 */
1957                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1958                if (ret)
1959                        mlog_errno(ret);
1960                goto out;
1961        }
1962
1963        /*
1964         * Check whether the inode can accept inline data.
1965         */
1966        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1967                return 0;
1968
1969        /*
1970         * Check whether the write can fit.
1971         */
1972        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1973        if (mmap_page ||
1974            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1975                return 0;
1976
1977do_inline_write:
1978        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1979        if (ret) {
1980                mlog_errno(ret);
1981                goto out;
1982        }
1983
1984        /*
1985         * This signals to the caller that the data can be written
1986         * inline.
1987         */
1988        written = 1;
1989out:
1990        return written ? written : ret;
1991}
1992
1993/*
1994 * This function only does anything for file systems which can't
1995 * handle sparse files.
1996 *
1997 * What we want to do here is fill in any hole between the current end
1998 * of allocation and the end of our write. That way the rest of the
1999 * write path can treat it as an non-allocating write, which has no
2000 * special case code for sparse/nonsparse files.
2001 */
2002static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2003                                        struct buffer_head *di_bh,
2004                                        loff_t pos, unsigned len,
2005                                        struct ocfs2_write_ctxt *wc)
2006{
2007        int ret;
2008        loff_t newsize = pos + len;
2009
2010        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2011
2012        if (newsize <= i_size_read(inode))
2013                return 0;
2014
2015        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2016        if (ret)
2017                mlog_errno(ret);
2018
2019        wc->w_first_new_cpos =
2020                ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2021
2022        return ret;
2023}
2024
2025static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2026                           loff_t pos)
2027{
2028        int ret = 0;
2029
2030        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2031        if (pos > i_size_read(inode))
2032                ret = ocfs2_zero_extend(inode, di_bh, pos);
2033
2034        return ret;
2035}
2036
2037/*
2038 * Try to flush truncate logs if we can free enough clusters from it.
2039 * As for return value, "< 0" means error, "0" no space and "1" means
2040 * we have freed enough spaces and let the caller try to allocate again.
2041 */
2042static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2043                                          unsigned int needed)
2044{
2045        tid_t target;
2046        int ret = 0;
2047        unsigned int truncated_clusters;
2048
2049        mutex_lock(&osb->osb_tl_inode->i_mutex);
2050        truncated_clusters = osb->truncated_clusters;
2051        mutex_unlock(&osb->osb_tl_inode->i_mutex);
2052
2053        /*
2054         * Check whether we can succeed in allocating if we free
2055         * the truncate log.
2056         */
2057        if (truncated_clusters < needed)
2058                goto out;
2059
2060        ret = ocfs2_flush_truncate_log(osb);
2061        if (ret) {
2062                mlog_errno(ret);
2063                goto out;
2064        }
2065
2066        if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2067                jbd2_log_wait_commit(osb->journal->j_journal, target);
2068                ret = 1;
2069        }
2070out:
2071        return ret;
2072}
2073
2074int ocfs2_write_begin_nolock(struct file *filp,
2075                             struct address_space *mapping,
2076                             loff_t pos, unsigned len, unsigned flags,
2077                             struct page **pagep, void **fsdata,
2078                             struct buffer_head *di_bh, struct page *mmap_page)
2079{
2080        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2081        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2082        struct ocfs2_write_ctxt *wc;
2083        struct inode *inode = mapping->host;
2084        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2085        struct ocfs2_dinode *di;
2086        struct ocfs2_alloc_context *data_ac = NULL;
2087        struct ocfs2_alloc_context *meta_ac = NULL;
2088        handle_t *handle;
2089        struct ocfs2_extent_tree et;
2090        int try_free = 1, ret1;
2091
2092try_again:
2093        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2094        if (ret) {
2095                mlog_errno(ret);
2096                return ret;
2097        }
2098
2099        if (ocfs2_supports_inline_data(osb)) {
2100                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2101                                                     mmap_page, wc);
2102                if (ret == 1) {
2103                        ret = 0;
2104                        goto success;
2105                }
2106                if (ret < 0) {
2107                        mlog_errno(ret);
2108                        goto out;
2109                }
2110        }
2111
2112        if (ocfs2_sparse_alloc(osb))
2113                ret = ocfs2_zero_tail(inode, di_bh, pos);
2114        else
2115                ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2116                                                   wc);
2117        if (ret) {
2118                mlog_errno(ret);
2119                goto out;
2120        }
2121
2122        ret = ocfs2_check_range_for_refcount(inode, pos, len);
2123        if (ret < 0) {
2124                mlog_errno(ret);
2125                goto out;
2126        } else if (ret == 1) {
2127                clusters_need = wc->w_clen;
2128                ret = ocfs2_refcount_cow(inode, di_bh,
2129                                         wc->w_cpos, wc->w_clen, UINT_MAX);
2130                if (ret) {
2131                        mlog_errno(ret);
2132                        goto out;
2133                }
2134        }
2135
2136        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2137                                        &extents_to_split);
2138        if (ret) {
2139                mlog_errno(ret);
2140                goto out;
2141        }
2142        clusters_need += clusters_to_alloc;
2143
2144        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2145
2146        trace_ocfs2_write_begin_nolock(
2147                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
2148                        (long long)i_size_read(inode),
2149                        le32_to_cpu(di->i_clusters),
2150                        pos, len, flags, mmap_page,
2151                        clusters_to_alloc, extents_to_split);
2152
2153        /*
2154         * We set w_target_from, w_target_to here so that
2155         * ocfs2_write_end() knows which range in the target page to
2156         * write out. An allocation requires that we write the entire
2157         * cluster range.
2158         */
2159        if (clusters_to_alloc || extents_to_split) {
2160                /*
2161                 * XXX: We are stretching the limits of
2162                 * ocfs2_lock_allocators(). It greatly over-estimates
2163                 * the work to be done.
2164                 */
2165                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2166                                              wc->w_di_bh);
2167                ret = ocfs2_lock_allocators(inode, &et,
2168                                            clusters_to_alloc, extents_to_split,
2169                                            &data_ac, &meta_ac);
2170                if (ret) {
2171                        mlog_errno(ret);
2172                        goto out;
2173                }
2174
2175                if (data_ac)
2176                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2177
2178                credits = ocfs2_calc_extend_credits(inode->i_sb,
2179                                                    &di->id2.i_list);
2180
2181        }
2182
2183        /*
2184         * We have to zero sparse allocated clusters, unwritten extent clusters,
2185         * and non-sparse clusters we just extended.  For non-sparse writes,
2186         * we know zeros will only be needed in the first and/or last cluster.
2187         */
2188        if (clusters_to_alloc || extents_to_split ||
2189            (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2190                            wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2191                cluster_of_pages = 1;
2192        else
2193                cluster_of_pages = 0;
2194
2195        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2196
2197        handle = ocfs2_start_trans(osb, credits);
2198        if (IS_ERR(handle)) {
2199                ret = PTR_ERR(handle);
2200                mlog_errno(ret);
2201                goto out;
2202        }
2203
2204        wc->w_handle = handle;
2205
2206        if (clusters_to_alloc) {
2207                ret = dquot_alloc_space_nodirty(inode,
2208                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2209                if (ret)
2210                        goto out_commit;
2211        }
2212
2213        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2214                                      OCFS2_JOURNAL_ACCESS_WRITE);
2215        if (ret) {
2216                mlog_errno(ret);
2217                goto out_quota;
2218        }
2219
2220        /*
2221         * Fill our page array first. That way we've grabbed enough so
2222         * that we can zero and flush if we error after adding the
2223         * extent.
2224         */
2225        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2226                                         cluster_of_pages, mmap_page);
2227        if (ret && ret != -EAGAIN) {
2228                mlog_errno(ret);
2229                goto out_quota;
2230        }
2231
2232        /*
2233         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2234         * the target page. In this case, we exit with no error and no target
2235         * page. This will trigger the caller, page_mkwrite(), to re-try
2236         * the operation.
2237         */
2238        if (ret == -EAGAIN) {
2239                BUG_ON(wc->w_target_page);
2240                ret = 0;
2241                goto out_quota;
2242        }
2243
2244        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2245                                          len);
2246        if (ret) {
2247                mlog_errno(ret);
2248                goto out_quota;
2249        }
2250
2251        if (data_ac)
2252                ocfs2_free_alloc_context(data_ac);
2253        if (meta_ac)
2254                ocfs2_free_alloc_context(meta_ac);
2255
2256success:
2257        *pagep = wc->w_target_page;
2258        *fsdata = wc;
2259        return 0;
2260out_quota:
2261        if (clusters_to_alloc)
2262                dquot_free_space(inode,
2263                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2264out_commit:
2265        ocfs2_commit_trans(osb, handle);
2266
2267out:
2268        ocfs2_free_write_ctxt(wc);
2269
2270        if (data_ac) {
2271                ocfs2_free_alloc_context(data_ac);
2272                data_ac = NULL;
2273        }
2274        if (meta_ac) {
2275                ocfs2_free_alloc_context(meta_ac);
2276                meta_ac = NULL;
2277        }
2278
2279        if (ret == -ENOSPC && try_free) {
2280                /*
2281                 * Try to free some truncate log so that we can have enough
2282                 * clusters to allocate.
2283                 */
2284                try_free = 0;
2285
2286                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2287                if (ret1 == 1)
2288                        goto try_again;
2289
2290                if (ret1 < 0)
2291                        mlog_errno(ret1);
2292        }
2293
2294        return ret;
2295}
2296
2297static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2298                             loff_t pos, unsigned len, unsigned flags,
2299                             struct page **pagep, void **fsdata)
2300{
2301        int ret;
2302        struct buffer_head *di_bh = NULL;
2303        struct inode *inode = mapping->host;
2304
2305        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2306        if (ret) {
2307                mlog_errno(ret);
2308                return ret;
2309        }
2310
2311        /*
2312         * Take alloc sem here to prevent concurrent lookups. That way
2313         * the mapping, zeroing and tree manipulation within
2314         * ocfs2_write() will be safe against ->readpage(). This
2315         * should also serve to lock out allocation from a shared
2316         * writeable region.
2317         */
2318        down_write(&OCFS2_I(inode)->ip_alloc_sem);
2319
2320        ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2321                                       fsdata, di_bh, NULL);
2322        if (ret) {
2323                mlog_errno(ret);
2324                goto out_fail;
2325        }
2326
2327        brelse(di_bh);
2328
2329        return 0;
2330
2331out_fail:
2332        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2333
2334        brelse(di_bh);
2335        ocfs2_inode_unlock(inode, 1);
2336
2337        return ret;
2338}
2339
2340static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2341                                   unsigned len, unsigned *copied,
2342                                   struct ocfs2_dinode *di,
2343                                   struct ocfs2_write_ctxt *wc)
2344{
2345        void *kaddr;
2346
2347        if (unlikely(*copied < len)) {
2348                if (!PageUptodate(wc->w_target_page)) {
2349                        *copied = 0;
2350                        return;
2351                }
2352        }
2353
2354        kaddr = kmap_atomic(wc->w_target_page);
2355        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2356        kunmap_atomic(kaddr);
2357
2358        trace_ocfs2_write_end_inline(
2359             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2360             (unsigned long long)pos, *copied,
2361             le16_to_cpu(di->id2.i_data.id_count),
2362             le16_to_cpu(di->i_dyn_features));
2363}
2364
2365int ocfs2_write_end_nolock(struct address_space *mapping,
2366                           loff_t pos, unsigned len, unsigned copied,
2367                           struct page *page, void *fsdata)
2368{
2369        int i, ret;
2370        unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2371        struct inode *inode = mapping->host;
2372        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2373        struct ocfs2_write_ctxt *wc = fsdata;
2374        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2375        handle_t *handle = wc->w_handle;
2376        struct page *tmppage;
2377
2378        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2379                        OCFS2_JOURNAL_ACCESS_WRITE);
2380        if (ret) {
2381                copied = ret;
2382                mlog_errno(ret);
2383                goto out;
2384        }
2385
2386        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2387                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2388                goto out_write_size;
2389        }
2390
2391        if (unlikely(copied < len)) {
2392                if (!PageUptodate(wc->w_target_page))
2393                        copied = 0;
2394
2395                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2396                                       start+len);
2397        }
2398        flush_dcache_page(wc->w_target_page);
2399
2400        for(i = 0; i < wc->w_num_pages; i++) {
2401                tmppage = wc->w_pages[i];
2402
2403                if (tmppage == wc->w_target_page) {
2404                        from = wc->w_target_from;
2405                        to = wc->w_target_to;
2406
2407                        BUG_ON(from > PAGE_CACHE_SIZE ||
2408                               to > PAGE_CACHE_SIZE ||
2409                               to < from);
2410                } else {
2411                        /*
2412                         * Pages adjacent to the target (if any) imply
2413                         * a hole-filling write in which case we want
2414                         * to flush their entire range.
2415                         */
2416                        from = 0;
2417                        to = PAGE_CACHE_SIZE;
2418                }
2419
2420                if (page_has_buffers(tmppage)) {
2421                        if (ocfs2_should_order_data(inode))
2422                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
2423                        block_commit_write(tmppage, from, to);
2424                }
2425        }
2426
2427out_write_size:
2428        pos += copied;
2429        if (pos > i_size_read(inode)) {
2430                i_size_write(inode, pos);
2431                mark_inode_dirty(inode);
2432        }
2433        inode->i_blocks = ocfs2_inode_sector_count(inode);
2434        di->i_size = cpu_to_le64((u64)i_size_read(inode));
2435        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2436        di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2437        di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2438        ocfs2_update_inode_fsync_trans(handle, inode, 1);
2439        ocfs2_journal_dirty(handle, wc->w_di_bh);
2440
2441out:
2442        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2443         * lock, or it will cause a deadlock since journal commit threads holds
2444         * this lock and will ask for the page lock when flushing the data.
2445         * put it here to preserve the unlock order.
2446         */
2447        ocfs2_unlock_pages(wc);
2448
2449        ocfs2_commit_trans(osb, handle);
2450
2451        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2452
2453        brelse(wc->w_di_bh);
2454        kfree(wc);
2455
2456        return copied;
2457}
2458
2459static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2460                           loff_t pos, unsigned len, unsigned copied,
2461                           struct page *page, void *fsdata)
2462{
2463        int ret;
2464        struct inode *inode = mapping->host;
2465
2466        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2467
2468        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2469        ocfs2_inode_unlock(inode, 1);
2470
2471        return ret;
2472}
2473
2474const struct address_space_operations ocfs2_aops = {
2475        .readpage               = ocfs2_readpage,
2476        .readpages              = ocfs2_readpages,
2477        .writepage              = ocfs2_writepage,
2478        .write_begin            = ocfs2_write_begin,
2479        .write_end              = ocfs2_write_end,
2480        .bmap                   = ocfs2_bmap,
2481        .direct_IO              = ocfs2_direct_IO,
2482        .invalidatepage         = block_invalidatepage,
2483        .releasepage            = ocfs2_releasepage,
2484        .migratepage            = buffer_migrate_page,
2485        .is_partially_uptodate  = block_is_partially_uptodate,
2486        .error_remove_page      = generic_error_remove_page,
2487};
2488