linux/fs/proc/base.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *      Implementing inode permission operations in /proc is almost
  99 *      certainly an error.  Permission checks need to happen during
 100 *      each system call not at open time.  The reason is that most of
 101 *      what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *      The classic example of a problem is opening file descriptors
 104 *      in /proc for a task before it execs a suid executable.
 105 */
 106
 107struct pid_entry {
 108        const char *name;
 109        int len;
 110        umode_t mode;
 111        const struct inode_operations *iop;
 112        const struct file_operations *fop;
 113        union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 117        .name = (NAME),                                 \
 118        .len  = sizeof(NAME) - 1,                       \
 119        .mode = MODE,                                   \
 120        .iop  = IOP,                                    \
 121        .fop  = FOP,                                    \
 122        .op   = OP,                                     \
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)     \
 126        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)                                     \
 128        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 129                &proc_pid_link_inode_operations, NULL,          \
 130                { .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)                           \
 132        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 133#define ONE(NAME, MODE, show)                           \
 134        NOD(NAME, (S_IFREG|(MODE)),                     \
 135                NULL, &proc_single_file_operations,     \
 136                { .proc_show = show } )
 137
 138/*
 139 * Count the number of hardlinks for the pid_entry table, excluding the .
 140 * and .. links.
 141 */
 142static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 143        unsigned int n)
 144{
 145        unsigned int i;
 146        unsigned int count;
 147
 148        count = 0;
 149        for (i = 0; i < n; ++i) {
 150                if (S_ISDIR(entries[i].mode))
 151                        ++count;
 152        }
 153
 154        return count;
 155}
 156
 157static int get_task_root(struct task_struct *task, struct path *root)
 158{
 159        int result = -ENOENT;
 160
 161        task_lock(task);
 162        if (task->fs) {
 163                get_fs_root(task->fs, root);
 164                result = 0;
 165        }
 166        task_unlock(task);
 167        return result;
 168}
 169
 170static int proc_cwd_link(struct dentry *dentry, struct path *path)
 171{
 172        struct task_struct *task = get_proc_task(d_inode(dentry));
 173        int result = -ENOENT;
 174
 175        if (task) {
 176                task_lock(task);
 177                if (task->fs) {
 178                        get_fs_pwd(task->fs, path);
 179                        result = 0;
 180                }
 181                task_unlock(task);
 182                put_task_struct(task);
 183        }
 184        return result;
 185}
 186
 187static int proc_root_link(struct dentry *dentry, struct path *path)
 188{
 189        struct task_struct *task = get_proc_task(d_inode(dentry));
 190        int result = -ENOENT;
 191
 192        if (task) {
 193                result = get_task_root(task, path);
 194                put_task_struct(task);
 195        }
 196        return result;
 197}
 198
 199static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 200                                     size_t _count, loff_t *pos)
 201{
 202        struct task_struct *tsk;
 203        struct mm_struct *mm;
 204        char *page;
 205        unsigned long count = _count;
 206        unsigned long arg_start, arg_end, env_start, env_end;
 207        unsigned long len1, len2, len;
 208        unsigned long p;
 209        char c;
 210        ssize_t rv;
 211
 212        BUG_ON(*pos < 0);
 213
 214        tsk = get_proc_task(file_inode(file));
 215        if (!tsk)
 216                return -ESRCH;
 217        mm = get_task_mm(tsk);
 218        put_task_struct(tsk);
 219        if (!mm)
 220                return 0;
 221        /* Check if process spawned far enough to have cmdline. */
 222        if (!mm->env_end) {
 223                rv = 0;
 224                goto out_mmput;
 225        }
 226
 227        page = (char *)__get_free_page(GFP_TEMPORARY);
 228        if (!page) {
 229                rv = -ENOMEM;
 230                goto out_mmput;
 231        }
 232
 233        down_read(&mm->mmap_sem);
 234        arg_start = mm->arg_start;
 235        arg_end = mm->arg_end;
 236        env_start = mm->env_start;
 237        env_end = mm->env_end;
 238        up_read(&mm->mmap_sem);
 239
 240        BUG_ON(arg_start > arg_end);
 241        BUG_ON(env_start > env_end);
 242
 243        len1 = arg_end - arg_start;
 244        len2 = env_end - env_start;
 245
 246        /* Empty ARGV. */
 247        if (len1 == 0) {
 248                rv = 0;
 249                goto out_free_page;
 250        }
 251        /*
 252         * Inherently racy -- command line shares address space
 253         * with code and data.
 254         */
 255        rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 256        if (rv <= 0)
 257                goto out_free_page;
 258
 259        rv = 0;
 260
 261        if (c == '\0') {
 262                /* Command line (set of strings) occupies whole ARGV. */
 263                if (len1 <= *pos)
 264                        goto out_free_page;
 265
 266                p = arg_start + *pos;
 267                len = len1 - *pos;
 268                while (count > 0 && len > 0) {
 269                        unsigned int _count;
 270                        int nr_read;
 271
 272                        _count = min3(count, len, PAGE_SIZE);
 273                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 274                        if (nr_read < 0)
 275                                rv = nr_read;
 276                        if (nr_read <= 0)
 277                                goto out_free_page;
 278
 279                        if (copy_to_user(buf, page, nr_read)) {
 280                                rv = -EFAULT;
 281                                goto out_free_page;
 282                        }
 283
 284                        p       += nr_read;
 285                        len     -= nr_read;
 286                        buf     += nr_read;
 287                        count   -= nr_read;
 288                        rv      += nr_read;
 289                }
 290        } else {
 291                /*
 292                 * Command line (1 string) occupies ARGV and maybe
 293                 * extends into ENVP.
 294                 */
 295                if (len1 + len2 <= *pos)
 296                        goto skip_argv_envp;
 297                if (len1 <= *pos)
 298                        goto skip_argv;
 299
 300                p = arg_start + *pos;
 301                len = len1 - *pos;
 302                while (count > 0 && len > 0) {
 303                        unsigned int _count, l;
 304                        int nr_read;
 305                        bool final;
 306
 307                        _count = min3(count, len, PAGE_SIZE);
 308                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 309                        if (nr_read < 0)
 310                                rv = nr_read;
 311                        if (nr_read <= 0)
 312                                goto out_free_page;
 313
 314                        /*
 315                         * Command line can be shorter than whole ARGV
 316                         * even if last "marker" byte says it is not.
 317                         */
 318                        final = false;
 319                        l = strnlen(page, nr_read);
 320                        if (l < nr_read) {
 321                                nr_read = l;
 322                                final = true;
 323                        }
 324
 325                        if (copy_to_user(buf, page, nr_read)) {
 326                                rv = -EFAULT;
 327                                goto out_free_page;
 328                        }
 329
 330                        p       += nr_read;
 331                        len     -= nr_read;
 332                        buf     += nr_read;
 333                        count   -= nr_read;
 334                        rv      += nr_read;
 335
 336                        if (final)
 337                                goto out_free_page;
 338                }
 339skip_argv:
 340                /*
 341                 * Command line (1 string) occupies ARGV and
 342                 * extends into ENVP.
 343                 */
 344                if (len1 <= *pos) {
 345                        p = env_start + *pos - len1;
 346                        len = len1 + len2 - *pos;
 347                } else {
 348                        p = env_start;
 349                        len = len2;
 350                }
 351                while (count > 0 && len > 0) {
 352                        unsigned int _count, l;
 353                        int nr_read;
 354                        bool final;
 355
 356                        _count = min3(count, len, PAGE_SIZE);
 357                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 358                        if (nr_read < 0)
 359                                rv = nr_read;
 360                        if (nr_read <= 0)
 361                                goto out_free_page;
 362
 363                        /* Find EOS. */
 364                        final = false;
 365                        l = strnlen(page, nr_read);
 366                        if (l < nr_read) {
 367                                nr_read = l;
 368                                final = true;
 369                        }
 370
 371                        if (copy_to_user(buf, page, nr_read)) {
 372                                rv = -EFAULT;
 373                                goto out_free_page;
 374                        }
 375
 376                        p       += nr_read;
 377                        len     -= nr_read;
 378                        buf     += nr_read;
 379                        count   -= nr_read;
 380                        rv      += nr_read;
 381
 382                        if (final)
 383                                goto out_free_page;
 384                }
 385skip_argv_envp:
 386                ;
 387        }
 388
 389out_free_page:
 390        free_page((unsigned long)page);
 391out_mmput:
 392        mmput(mm);
 393        if (rv > 0)
 394                *pos += rv;
 395        return rv;
 396}
 397
 398static const struct file_operations proc_pid_cmdline_ops = {
 399        .read   = proc_pid_cmdline_read,
 400        .llseek = generic_file_llseek,
 401};
 402
 403static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
 404                         struct pid *pid, struct task_struct *task)
 405{
 406        struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
 407        if (mm && !IS_ERR(mm)) {
 408                unsigned int nwords = 0;
 409                do {
 410                        nwords += 2;
 411                } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 412                seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
 413                mmput(mm);
 414                return 0;
 415        } else
 416                return PTR_ERR(mm);
 417}
 418
 419
 420#ifdef CONFIG_KALLSYMS
 421/*
 422 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 423 * Returns the resolved symbol.  If that fails, simply return the address.
 424 */
 425static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 426                          struct pid *pid, struct task_struct *task)
 427{
 428        unsigned long wchan;
 429        char symname[KSYM_NAME_LEN];
 430
 431        wchan = get_wchan(task);
 432
 433        if (wchan && ptrace_may_access(task, PTRACE_MODE_READ) && !lookup_symbol_name(wchan, symname))
 434                seq_printf(m, "%s", symname);
 435        else
 436                seq_putc(m, '0');
 437
 438        return 0;
 439}
 440#endif /* CONFIG_KALLSYMS */
 441
 442static int lock_trace(struct task_struct *task)
 443{
 444        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 445        if (err)
 446                return err;
 447        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 448                mutex_unlock(&task->signal->cred_guard_mutex);
 449                return -EPERM;
 450        }
 451        return 0;
 452}
 453
 454static void unlock_trace(struct task_struct *task)
 455{
 456        mutex_unlock(&task->signal->cred_guard_mutex);
 457}
 458
 459#ifdef CONFIG_STACKTRACE
 460
 461#define MAX_STACK_TRACE_DEPTH   64
 462
 463static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 464                          struct pid *pid, struct task_struct *task)
 465{
 466        struct stack_trace trace;
 467        unsigned long *entries;
 468        int err;
 469        int i;
 470
 471        entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 472        if (!entries)
 473                return -ENOMEM;
 474
 475        trace.nr_entries        = 0;
 476        trace.max_entries       = MAX_STACK_TRACE_DEPTH;
 477        trace.entries           = entries;
 478        trace.skip              = 0;
 479
 480        err = lock_trace(task);
 481        if (!err) {
 482                save_stack_trace_tsk(task, &trace);
 483
 484                for (i = 0; i < trace.nr_entries; i++) {
 485                        seq_printf(m, "[<%pK>] %pS\n",
 486                                   (void *)entries[i], (void *)entries[i]);
 487                }
 488                unlock_trace(task);
 489        }
 490        kfree(entries);
 491
 492        return err;
 493}
 494#endif
 495
 496#ifdef CONFIG_SCHED_INFO
 497/*
 498 * Provides /proc/PID/schedstat
 499 */
 500static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 501                              struct pid *pid, struct task_struct *task)
 502{
 503        if (unlikely(!sched_info_on()))
 504                seq_printf(m, "0 0 0\n");
 505        else
 506                seq_printf(m, "%llu %llu %lu\n",
 507                   (unsigned long long)task->se.sum_exec_runtime,
 508                   (unsigned long long)task->sched_info.run_delay,
 509                   task->sched_info.pcount);
 510
 511        return 0;
 512}
 513#endif
 514
 515#ifdef CONFIG_LATENCYTOP
 516static int lstats_show_proc(struct seq_file *m, void *v)
 517{
 518        int i;
 519        struct inode *inode = m->private;
 520        struct task_struct *task = get_proc_task(inode);
 521
 522        if (!task)
 523                return -ESRCH;
 524        seq_puts(m, "Latency Top version : v0.1\n");
 525        for (i = 0; i < 32; i++) {
 526                struct latency_record *lr = &task->latency_record[i];
 527                if (lr->backtrace[0]) {
 528                        int q;
 529                        seq_printf(m, "%i %li %li",
 530                                   lr->count, lr->time, lr->max);
 531                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 532                                unsigned long bt = lr->backtrace[q];
 533                                if (!bt)
 534                                        break;
 535                                if (bt == ULONG_MAX)
 536                                        break;
 537                                seq_printf(m, " %ps", (void *)bt);
 538                        }
 539                        seq_putc(m, '\n');
 540                }
 541
 542        }
 543        put_task_struct(task);
 544        return 0;
 545}
 546
 547static int lstats_open(struct inode *inode, struct file *file)
 548{
 549        return single_open(file, lstats_show_proc, inode);
 550}
 551
 552static ssize_t lstats_write(struct file *file, const char __user *buf,
 553                            size_t count, loff_t *offs)
 554{
 555        struct task_struct *task = get_proc_task(file_inode(file));
 556
 557        if (!task)
 558                return -ESRCH;
 559        clear_all_latency_tracing(task);
 560        put_task_struct(task);
 561
 562        return count;
 563}
 564
 565static const struct file_operations proc_lstats_operations = {
 566        .open           = lstats_open,
 567        .read           = seq_read,
 568        .write          = lstats_write,
 569        .llseek         = seq_lseek,
 570        .release        = single_release,
 571};
 572
 573#endif
 574
 575static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 576                          struct pid *pid, struct task_struct *task)
 577{
 578        unsigned long totalpages = totalram_pages + total_swap_pages;
 579        unsigned long points = 0;
 580
 581        read_lock(&tasklist_lock);
 582        if (pid_alive(task))
 583                points = oom_badness(task, NULL, NULL, totalpages) *
 584                                                1000 / totalpages;
 585        read_unlock(&tasklist_lock);
 586        seq_printf(m, "%lu\n", points);
 587
 588        return 0;
 589}
 590
 591struct limit_names {
 592        const char *name;
 593        const char *unit;
 594};
 595
 596static const struct limit_names lnames[RLIM_NLIMITS] = {
 597        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 598        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 599        [RLIMIT_DATA] = {"Max data size", "bytes"},
 600        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 601        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 602        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 603        [RLIMIT_NPROC] = {"Max processes", "processes"},
 604        [RLIMIT_NOFILE] = {"Max open files", "files"},
 605        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 606        [RLIMIT_AS] = {"Max address space", "bytes"},
 607        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 608        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 609        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 610        [RLIMIT_NICE] = {"Max nice priority", NULL},
 611        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 612        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 613};
 614
 615/* Display limits for a process */
 616static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 617                           struct pid *pid, struct task_struct *task)
 618{
 619        unsigned int i;
 620        unsigned long flags;
 621
 622        struct rlimit rlim[RLIM_NLIMITS];
 623
 624        if (!lock_task_sighand(task, &flags))
 625                return 0;
 626        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 627        unlock_task_sighand(task, &flags);
 628
 629        /*
 630         * print the file header
 631         */
 632       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 633                  "Limit", "Soft Limit", "Hard Limit", "Units");
 634
 635        for (i = 0; i < RLIM_NLIMITS; i++) {
 636                if (rlim[i].rlim_cur == RLIM_INFINITY)
 637                        seq_printf(m, "%-25s %-20s ",
 638                                   lnames[i].name, "unlimited");
 639                else
 640                        seq_printf(m, "%-25s %-20lu ",
 641                                   lnames[i].name, rlim[i].rlim_cur);
 642
 643                if (rlim[i].rlim_max == RLIM_INFINITY)
 644                        seq_printf(m, "%-20s ", "unlimited");
 645                else
 646                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 647
 648                if (lnames[i].unit)
 649                        seq_printf(m, "%-10s\n", lnames[i].unit);
 650                else
 651                        seq_putc(m, '\n');
 652        }
 653
 654        return 0;
 655}
 656
 657#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 658static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 659                            struct pid *pid, struct task_struct *task)
 660{
 661        long nr;
 662        unsigned long args[6], sp, pc;
 663        int res;
 664
 665        res = lock_trace(task);
 666        if (res)
 667                return res;
 668
 669        if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 670                seq_puts(m, "running\n");
 671        else if (nr < 0)
 672                seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 673        else
 674                seq_printf(m,
 675                       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 676                       nr,
 677                       args[0], args[1], args[2], args[3], args[4], args[5],
 678                       sp, pc);
 679        unlock_trace(task);
 680
 681        return 0;
 682}
 683#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 684
 685/************************************************************************/
 686/*                       Here the fs part begins                        */
 687/************************************************************************/
 688
 689/* permission checks */
 690static int proc_fd_access_allowed(struct inode *inode)
 691{
 692        struct task_struct *task;
 693        int allowed = 0;
 694        /* Allow access to a task's file descriptors if it is us or we
 695         * may use ptrace attach to the process and find out that
 696         * information.
 697         */
 698        task = get_proc_task(inode);
 699        if (task) {
 700                allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 701                put_task_struct(task);
 702        }
 703        return allowed;
 704}
 705
 706int proc_setattr(struct dentry *dentry, struct iattr *attr)
 707{
 708        int error;
 709        struct inode *inode = d_inode(dentry);
 710
 711        if (attr->ia_valid & ATTR_MODE)
 712                return -EPERM;
 713
 714        error = inode_change_ok(inode, attr);
 715        if (error)
 716                return error;
 717
 718        setattr_copy(inode, attr);
 719        mark_inode_dirty(inode);
 720        return 0;
 721}
 722
 723/*
 724 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 725 * or euid/egid (for hide_pid_min=2)?
 726 */
 727static bool has_pid_permissions(struct pid_namespace *pid,
 728                                 struct task_struct *task,
 729                                 int hide_pid_min)
 730{
 731        if (pid->hide_pid < hide_pid_min)
 732                return true;
 733        if (in_group_p(pid->pid_gid))
 734                return true;
 735        return ptrace_may_access(task, PTRACE_MODE_READ);
 736}
 737
 738
 739static int proc_pid_permission(struct inode *inode, int mask)
 740{
 741        struct pid_namespace *pid = inode->i_sb->s_fs_info;
 742        struct task_struct *task;
 743        bool has_perms;
 744
 745        task = get_proc_task(inode);
 746        if (!task)
 747                return -ESRCH;
 748        has_perms = has_pid_permissions(pid, task, 1);
 749        put_task_struct(task);
 750
 751        if (!has_perms) {
 752                if (pid->hide_pid == 2) {
 753                        /*
 754                         * Let's make getdents(), stat(), and open()
 755                         * consistent with each other.  If a process
 756                         * may not stat() a file, it shouldn't be seen
 757                         * in procfs at all.
 758                         */
 759                        return -ENOENT;
 760                }
 761
 762                return -EPERM;
 763        }
 764        return generic_permission(inode, mask);
 765}
 766
 767
 768
 769static const struct inode_operations proc_def_inode_operations = {
 770        .setattr        = proc_setattr,
 771};
 772
 773static int proc_single_show(struct seq_file *m, void *v)
 774{
 775        struct inode *inode = m->private;
 776        struct pid_namespace *ns;
 777        struct pid *pid;
 778        struct task_struct *task;
 779        int ret;
 780
 781        ns = inode->i_sb->s_fs_info;
 782        pid = proc_pid(inode);
 783        task = get_pid_task(pid, PIDTYPE_PID);
 784        if (!task)
 785                return -ESRCH;
 786
 787        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 788
 789        put_task_struct(task);
 790        return ret;
 791}
 792
 793static int proc_single_open(struct inode *inode, struct file *filp)
 794{
 795        return single_open(filp, proc_single_show, inode);
 796}
 797
 798static const struct file_operations proc_single_file_operations = {
 799        .open           = proc_single_open,
 800        .read           = seq_read,
 801        .llseek         = seq_lseek,
 802        .release        = single_release,
 803};
 804
 805
 806struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 807{
 808        struct task_struct *task = get_proc_task(inode);
 809        struct mm_struct *mm = ERR_PTR(-ESRCH);
 810
 811        if (task) {
 812                mm = mm_access(task, mode);
 813                put_task_struct(task);
 814
 815                if (!IS_ERR_OR_NULL(mm)) {
 816                        /* ensure this mm_struct can't be freed */
 817                        atomic_inc(&mm->mm_count);
 818                        /* but do not pin its memory */
 819                        mmput(mm);
 820                }
 821        }
 822
 823        return mm;
 824}
 825
 826static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 827{
 828        struct mm_struct *mm = proc_mem_open(inode, mode);
 829
 830        if (IS_ERR(mm))
 831                return PTR_ERR(mm);
 832
 833        file->private_data = mm;
 834        return 0;
 835}
 836
 837static int mem_open(struct inode *inode, struct file *file)
 838{
 839        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 840
 841        /* OK to pass negative loff_t, we can catch out-of-range */
 842        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 843
 844        return ret;
 845}
 846
 847static ssize_t mem_rw(struct file *file, char __user *buf,
 848                        size_t count, loff_t *ppos, int write)
 849{
 850        struct mm_struct *mm = file->private_data;
 851        unsigned long addr = *ppos;
 852        ssize_t copied;
 853        char *page;
 854
 855        if (!mm)
 856                return 0;
 857
 858        page = (char *)__get_free_page(GFP_TEMPORARY);
 859        if (!page)
 860                return -ENOMEM;
 861
 862        copied = 0;
 863        if (!atomic_inc_not_zero(&mm->mm_users))
 864                goto free;
 865
 866        while (count > 0) {
 867                int this_len = min_t(int, count, PAGE_SIZE);
 868
 869                if (write && copy_from_user(page, buf, this_len)) {
 870                        copied = -EFAULT;
 871                        break;
 872                }
 873
 874                this_len = access_remote_vm(mm, addr, page, this_len, write);
 875                if (!this_len) {
 876                        if (!copied)
 877                                copied = -EIO;
 878                        break;
 879                }
 880
 881                if (!write && copy_to_user(buf, page, this_len)) {
 882                        copied = -EFAULT;
 883                        break;
 884                }
 885
 886                buf += this_len;
 887                addr += this_len;
 888                copied += this_len;
 889                count -= this_len;
 890        }
 891        *ppos = addr;
 892
 893        mmput(mm);
 894free:
 895        free_page((unsigned long) page);
 896        return copied;
 897}
 898
 899static ssize_t mem_read(struct file *file, char __user *buf,
 900                        size_t count, loff_t *ppos)
 901{
 902        return mem_rw(file, buf, count, ppos, 0);
 903}
 904
 905static ssize_t mem_write(struct file *file, const char __user *buf,
 906                         size_t count, loff_t *ppos)
 907{
 908        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 909}
 910
 911loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 912{
 913        switch (orig) {
 914        case 0:
 915                file->f_pos = offset;
 916                break;
 917        case 1:
 918                file->f_pos += offset;
 919                break;
 920        default:
 921                return -EINVAL;
 922        }
 923        force_successful_syscall_return();
 924        return file->f_pos;
 925}
 926
 927static int mem_release(struct inode *inode, struct file *file)
 928{
 929        struct mm_struct *mm = file->private_data;
 930        if (mm)
 931                mmdrop(mm);
 932        return 0;
 933}
 934
 935static const struct file_operations proc_mem_operations = {
 936        .llseek         = mem_lseek,
 937        .read           = mem_read,
 938        .write          = mem_write,
 939        .open           = mem_open,
 940        .release        = mem_release,
 941};
 942
 943static int environ_open(struct inode *inode, struct file *file)
 944{
 945        return __mem_open(inode, file, PTRACE_MODE_READ);
 946}
 947
 948static ssize_t environ_read(struct file *file, char __user *buf,
 949                        size_t count, loff_t *ppos)
 950{
 951        char *page;
 952        unsigned long src = *ppos;
 953        int ret = 0;
 954        struct mm_struct *mm = file->private_data;
 955
 956        if (!mm)
 957                return 0;
 958
 959        page = (char *)__get_free_page(GFP_TEMPORARY);
 960        if (!page)
 961                return -ENOMEM;
 962
 963        ret = 0;
 964        if (!atomic_inc_not_zero(&mm->mm_users))
 965                goto free;
 966        while (count > 0) {
 967                size_t this_len, max_len;
 968                int retval;
 969
 970                if (src >= (mm->env_end - mm->env_start))
 971                        break;
 972
 973                this_len = mm->env_end - (mm->env_start + src);
 974
 975                max_len = min_t(size_t, PAGE_SIZE, count);
 976                this_len = min(max_len, this_len);
 977
 978                retval = access_remote_vm(mm, (mm->env_start + src),
 979                        page, this_len, 0);
 980
 981                if (retval <= 0) {
 982                        ret = retval;
 983                        break;
 984                }
 985
 986                if (copy_to_user(buf, page, retval)) {
 987                        ret = -EFAULT;
 988                        break;
 989                }
 990
 991                ret += retval;
 992                src += retval;
 993                buf += retval;
 994                count -= retval;
 995        }
 996        *ppos = src;
 997        mmput(mm);
 998
 999free:
1000        free_page((unsigned long) page);
1001        return ret;
1002}
1003
1004static const struct file_operations proc_environ_operations = {
1005        .open           = environ_open,
1006        .read           = environ_read,
1007        .llseek         = generic_file_llseek,
1008        .release        = mem_release,
1009};
1010
1011static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1012                            loff_t *ppos)
1013{
1014        struct task_struct *task = get_proc_task(file_inode(file));
1015        char buffer[PROC_NUMBUF];
1016        int oom_adj = OOM_ADJUST_MIN;
1017        size_t len;
1018        unsigned long flags;
1019
1020        if (!task)
1021                return -ESRCH;
1022        if (lock_task_sighand(task, &flags)) {
1023                if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1024                        oom_adj = OOM_ADJUST_MAX;
1025                else
1026                        oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1027                                  OOM_SCORE_ADJ_MAX;
1028                unlock_task_sighand(task, &flags);
1029        }
1030        put_task_struct(task);
1031        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1032        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1033}
1034
1035/*
1036 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1037 * kernels.  The effective policy is defined by oom_score_adj, which has a
1038 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1039 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1040 * Processes that become oom disabled via oom_adj will still be oom disabled
1041 * with this implementation.
1042 *
1043 * oom_adj cannot be removed since existing userspace binaries use it.
1044 */
1045static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1046                             size_t count, loff_t *ppos)
1047{
1048        struct task_struct *task;
1049        char buffer[PROC_NUMBUF];
1050        int oom_adj;
1051        unsigned long flags;
1052        int err;
1053
1054        memset(buffer, 0, sizeof(buffer));
1055        if (count > sizeof(buffer) - 1)
1056                count = sizeof(buffer) - 1;
1057        if (copy_from_user(buffer, buf, count)) {
1058                err = -EFAULT;
1059                goto out;
1060        }
1061
1062        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1063        if (err)
1064                goto out;
1065        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1066             oom_adj != OOM_DISABLE) {
1067                err = -EINVAL;
1068                goto out;
1069        }
1070
1071        task = get_proc_task(file_inode(file));
1072        if (!task) {
1073                err = -ESRCH;
1074                goto out;
1075        }
1076
1077        task_lock(task);
1078        if (!task->mm) {
1079                err = -EINVAL;
1080                goto err_task_lock;
1081        }
1082
1083        if (!lock_task_sighand(task, &flags)) {
1084                err = -ESRCH;
1085                goto err_task_lock;
1086        }
1087
1088        /*
1089         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1090         * value is always attainable.
1091         */
1092        if (oom_adj == OOM_ADJUST_MAX)
1093                oom_adj = OOM_SCORE_ADJ_MAX;
1094        else
1095                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1096
1097        if (oom_adj < task->signal->oom_score_adj &&
1098            !capable(CAP_SYS_RESOURCE)) {
1099                err = -EACCES;
1100                goto err_sighand;
1101        }
1102
1103        /*
1104         * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1105         * /proc/pid/oom_score_adj instead.
1106         */
1107        pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1108                  current->comm, task_pid_nr(current), task_pid_nr(task),
1109                  task_pid_nr(task));
1110
1111        task->signal->oom_score_adj = oom_adj;
1112        trace_oom_score_adj_update(task);
1113err_sighand:
1114        unlock_task_sighand(task, &flags);
1115err_task_lock:
1116        task_unlock(task);
1117        put_task_struct(task);
1118out:
1119        return err < 0 ? err : count;
1120}
1121
1122static const struct file_operations proc_oom_adj_operations = {
1123        .read           = oom_adj_read,
1124        .write          = oom_adj_write,
1125        .llseek         = generic_file_llseek,
1126};
1127
1128static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1129                                        size_t count, loff_t *ppos)
1130{
1131        struct task_struct *task = get_proc_task(file_inode(file));
1132        char buffer[PROC_NUMBUF];
1133        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1134        unsigned long flags;
1135        size_t len;
1136
1137        if (!task)
1138                return -ESRCH;
1139        if (lock_task_sighand(task, &flags)) {
1140                oom_score_adj = task->signal->oom_score_adj;
1141                unlock_task_sighand(task, &flags);
1142        }
1143        put_task_struct(task);
1144        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1145        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1146}
1147
1148static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1149                                        size_t count, loff_t *ppos)
1150{
1151        struct task_struct *task;
1152        char buffer[PROC_NUMBUF];
1153        unsigned long flags;
1154        int oom_score_adj;
1155        int err;
1156
1157        memset(buffer, 0, sizeof(buffer));
1158        if (count > sizeof(buffer) - 1)
1159                count = sizeof(buffer) - 1;
1160        if (copy_from_user(buffer, buf, count)) {
1161                err = -EFAULT;
1162                goto out;
1163        }
1164
1165        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1166        if (err)
1167                goto out;
1168        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1169                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1170                err = -EINVAL;
1171                goto out;
1172        }
1173
1174        task = get_proc_task(file_inode(file));
1175        if (!task) {
1176                err = -ESRCH;
1177                goto out;
1178        }
1179
1180        task_lock(task);
1181        if (!task->mm) {
1182                err = -EINVAL;
1183                goto err_task_lock;
1184        }
1185
1186        if (!lock_task_sighand(task, &flags)) {
1187                err = -ESRCH;
1188                goto err_task_lock;
1189        }
1190
1191        if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1192                        !capable(CAP_SYS_RESOURCE)) {
1193                err = -EACCES;
1194                goto err_sighand;
1195        }
1196
1197        task->signal->oom_score_adj = (short)oom_score_adj;
1198        if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1199                task->signal->oom_score_adj_min = (short)oom_score_adj;
1200        trace_oom_score_adj_update(task);
1201
1202err_sighand:
1203        unlock_task_sighand(task, &flags);
1204err_task_lock:
1205        task_unlock(task);
1206        put_task_struct(task);
1207out:
1208        return err < 0 ? err : count;
1209}
1210
1211static const struct file_operations proc_oom_score_adj_operations = {
1212        .read           = oom_score_adj_read,
1213        .write          = oom_score_adj_write,
1214        .llseek         = default_llseek,
1215};
1216
1217#ifdef CONFIG_AUDITSYSCALL
1218#define TMPBUFLEN 21
1219static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1220                                  size_t count, loff_t *ppos)
1221{
1222        struct inode * inode = file_inode(file);
1223        struct task_struct *task = get_proc_task(inode);
1224        ssize_t length;
1225        char tmpbuf[TMPBUFLEN];
1226
1227        if (!task)
1228                return -ESRCH;
1229        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1230                           from_kuid(file->f_cred->user_ns,
1231                                     audit_get_loginuid(task)));
1232        put_task_struct(task);
1233        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1234}
1235
1236static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1237                                   size_t count, loff_t *ppos)
1238{
1239        struct inode * inode = file_inode(file);
1240        uid_t loginuid;
1241        kuid_t kloginuid;
1242        int rv;
1243
1244        rcu_read_lock();
1245        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1246                rcu_read_unlock();
1247                return -EPERM;
1248        }
1249        rcu_read_unlock();
1250
1251        if (*ppos != 0) {
1252                /* No partial writes. */
1253                return -EINVAL;
1254        }
1255
1256        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1257        if (rv < 0)
1258                return rv;
1259
1260        /* is userspace tring to explicitly UNSET the loginuid? */
1261        if (loginuid == AUDIT_UID_UNSET) {
1262                kloginuid = INVALID_UID;
1263        } else {
1264                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1265                if (!uid_valid(kloginuid))
1266                        return -EINVAL;
1267        }
1268
1269        rv = audit_set_loginuid(kloginuid);
1270        if (rv < 0)
1271                return rv;
1272        return count;
1273}
1274
1275static const struct file_operations proc_loginuid_operations = {
1276        .read           = proc_loginuid_read,
1277        .write          = proc_loginuid_write,
1278        .llseek         = generic_file_llseek,
1279};
1280
1281static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1282                                  size_t count, loff_t *ppos)
1283{
1284        struct inode * inode = file_inode(file);
1285        struct task_struct *task = get_proc_task(inode);
1286        ssize_t length;
1287        char tmpbuf[TMPBUFLEN];
1288
1289        if (!task)
1290                return -ESRCH;
1291        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1292                                audit_get_sessionid(task));
1293        put_task_struct(task);
1294        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1295}
1296
1297static const struct file_operations proc_sessionid_operations = {
1298        .read           = proc_sessionid_read,
1299        .llseek         = generic_file_llseek,
1300};
1301#endif
1302
1303#ifdef CONFIG_FAULT_INJECTION
1304static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1305                                      size_t count, loff_t *ppos)
1306{
1307        struct task_struct *task = get_proc_task(file_inode(file));
1308        char buffer[PROC_NUMBUF];
1309        size_t len;
1310        int make_it_fail;
1311
1312        if (!task)
1313                return -ESRCH;
1314        make_it_fail = task->make_it_fail;
1315        put_task_struct(task);
1316
1317        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1318
1319        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1320}
1321
1322static ssize_t proc_fault_inject_write(struct file * file,
1323                        const char __user * buf, size_t count, loff_t *ppos)
1324{
1325        struct task_struct *task;
1326        char buffer[PROC_NUMBUF];
1327        int make_it_fail;
1328        int rv;
1329
1330        if (!capable(CAP_SYS_RESOURCE))
1331                return -EPERM;
1332        memset(buffer, 0, sizeof(buffer));
1333        if (count > sizeof(buffer) - 1)
1334                count = sizeof(buffer) - 1;
1335        if (copy_from_user(buffer, buf, count))
1336                return -EFAULT;
1337        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1338        if (rv < 0)
1339                return rv;
1340        if (make_it_fail < 0 || make_it_fail > 1)
1341                return -EINVAL;
1342
1343        task = get_proc_task(file_inode(file));
1344        if (!task)
1345                return -ESRCH;
1346        task->make_it_fail = make_it_fail;
1347        put_task_struct(task);
1348
1349        return count;
1350}
1351
1352static const struct file_operations proc_fault_inject_operations = {
1353        .read           = proc_fault_inject_read,
1354        .write          = proc_fault_inject_write,
1355        .llseek         = generic_file_llseek,
1356};
1357#endif
1358
1359
1360#ifdef CONFIG_SCHED_DEBUG
1361/*
1362 * Print out various scheduling related per-task fields:
1363 */
1364static int sched_show(struct seq_file *m, void *v)
1365{
1366        struct inode *inode = m->private;
1367        struct task_struct *p;
1368
1369        p = get_proc_task(inode);
1370        if (!p)
1371                return -ESRCH;
1372        proc_sched_show_task(p, m);
1373
1374        put_task_struct(p);
1375
1376        return 0;
1377}
1378
1379static ssize_t
1380sched_write(struct file *file, const char __user *buf,
1381            size_t count, loff_t *offset)
1382{
1383        struct inode *inode = file_inode(file);
1384        struct task_struct *p;
1385
1386        p = get_proc_task(inode);
1387        if (!p)
1388                return -ESRCH;
1389        proc_sched_set_task(p);
1390
1391        put_task_struct(p);
1392
1393        return count;
1394}
1395
1396static int sched_open(struct inode *inode, struct file *filp)
1397{
1398        return single_open(filp, sched_show, inode);
1399}
1400
1401static const struct file_operations proc_pid_sched_operations = {
1402        .open           = sched_open,
1403        .read           = seq_read,
1404        .write          = sched_write,
1405        .llseek         = seq_lseek,
1406        .release        = single_release,
1407};
1408
1409#endif
1410
1411#ifdef CONFIG_SCHED_AUTOGROUP
1412/*
1413 * Print out autogroup related information:
1414 */
1415static int sched_autogroup_show(struct seq_file *m, void *v)
1416{
1417        struct inode *inode = m->private;
1418        struct task_struct *p;
1419
1420        p = get_proc_task(inode);
1421        if (!p)
1422                return -ESRCH;
1423        proc_sched_autogroup_show_task(p, m);
1424
1425        put_task_struct(p);
1426
1427        return 0;
1428}
1429
1430static ssize_t
1431sched_autogroup_write(struct file *file, const char __user *buf,
1432            size_t count, loff_t *offset)
1433{
1434        struct inode *inode = file_inode(file);
1435        struct task_struct *p;
1436        char buffer[PROC_NUMBUF];
1437        int nice;
1438        int err;
1439
1440        memset(buffer, 0, sizeof(buffer));
1441        if (count > sizeof(buffer) - 1)
1442                count = sizeof(buffer) - 1;
1443        if (copy_from_user(buffer, buf, count))
1444                return -EFAULT;
1445
1446        err = kstrtoint(strstrip(buffer), 0, &nice);
1447        if (err < 0)
1448                return err;
1449
1450        p = get_proc_task(inode);
1451        if (!p)
1452                return -ESRCH;
1453
1454        err = proc_sched_autogroup_set_nice(p, nice);
1455        if (err)
1456                count = err;
1457
1458        put_task_struct(p);
1459
1460        return count;
1461}
1462
1463static int sched_autogroup_open(struct inode *inode, struct file *filp)
1464{
1465        int ret;
1466
1467        ret = single_open(filp, sched_autogroup_show, NULL);
1468        if (!ret) {
1469                struct seq_file *m = filp->private_data;
1470
1471                m->private = inode;
1472        }
1473        return ret;
1474}
1475
1476static const struct file_operations proc_pid_sched_autogroup_operations = {
1477        .open           = sched_autogroup_open,
1478        .read           = seq_read,
1479        .write          = sched_autogroup_write,
1480        .llseek         = seq_lseek,
1481        .release        = single_release,
1482};
1483
1484#endif /* CONFIG_SCHED_AUTOGROUP */
1485
1486static ssize_t comm_write(struct file *file, const char __user *buf,
1487                                size_t count, loff_t *offset)
1488{
1489        struct inode *inode = file_inode(file);
1490        struct task_struct *p;
1491        char buffer[TASK_COMM_LEN];
1492        const size_t maxlen = sizeof(buffer) - 1;
1493
1494        memset(buffer, 0, sizeof(buffer));
1495        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1496                return -EFAULT;
1497
1498        p = get_proc_task(inode);
1499        if (!p)
1500                return -ESRCH;
1501
1502        if (same_thread_group(current, p))
1503                set_task_comm(p, buffer);
1504        else
1505                count = -EINVAL;
1506
1507        put_task_struct(p);
1508
1509        return count;
1510}
1511
1512static int comm_show(struct seq_file *m, void *v)
1513{
1514        struct inode *inode = m->private;
1515        struct task_struct *p;
1516
1517        p = get_proc_task(inode);
1518        if (!p)
1519                return -ESRCH;
1520
1521        task_lock(p);
1522        seq_printf(m, "%s\n", p->comm);
1523        task_unlock(p);
1524
1525        put_task_struct(p);
1526
1527        return 0;
1528}
1529
1530static int comm_open(struct inode *inode, struct file *filp)
1531{
1532        return single_open(filp, comm_show, inode);
1533}
1534
1535static const struct file_operations proc_pid_set_comm_operations = {
1536        .open           = comm_open,
1537        .read           = seq_read,
1538        .write          = comm_write,
1539        .llseek         = seq_lseek,
1540        .release        = single_release,
1541};
1542
1543static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1544{
1545        struct task_struct *task;
1546        struct mm_struct *mm;
1547        struct file *exe_file;
1548
1549        task = get_proc_task(d_inode(dentry));
1550        if (!task)
1551                return -ENOENT;
1552        mm = get_task_mm(task);
1553        put_task_struct(task);
1554        if (!mm)
1555                return -ENOENT;
1556        exe_file = get_mm_exe_file(mm);
1557        mmput(mm);
1558        if (exe_file) {
1559                *exe_path = exe_file->f_path;
1560                path_get(&exe_file->f_path);
1561                fput(exe_file);
1562                return 0;
1563        } else
1564                return -ENOENT;
1565}
1566
1567static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1568{
1569        struct inode *inode = d_inode(dentry);
1570        struct path path;
1571        int error = -EACCES;
1572
1573        /* Are we allowed to snoop on the tasks file descriptors? */
1574        if (!proc_fd_access_allowed(inode))
1575                goto out;
1576
1577        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1578        if (error)
1579                goto out;
1580
1581        nd_jump_link(&path);
1582        return NULL;
1583out:
1584        return ERR_PTR(error);
1585}
1586
1587static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1588{
1589        char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1590        char *pathname;
1591        int len;
1592
1593        if (!tmp)
1594                return -ENOMEM;
1595
1596        pathname = d_path(path, tmp, PAGE_SIZE);
1597        len = PTR_ERR(pathname);
1598        if (IS_ERR(pathname))
1599                goto out;
1600        len = tmp + PAGE_SIZE - 1 - pathname;
1601
1602        if (len > buflen)
1603                len = buflen;
1604        if (copy_to_user(buffer, pathname, len))
1605                len = -EFAULT;
1606 out:
1607        free_page((unsigned long)tmp);
1608        return len;
1609}
1610
1611static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1612{
1613        int error = -EACCES;
1614        struct inode *inode = d_inode(dentry);
1615        struct path path;
1616
1617        /* Are we allowed to snoop on the tasks file descriptors? */
1618        if (!proc_fd_access_allowed(inode))
1619                goto out;
1620
1621        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1622        if (error)
1623                goto out;
1624
1625        error = do_proc_readlink(&path, buffer, buflen);
1626        path_put(&path);
1627out:
1628        return error;
1629}
1630
1631const struct inode_operations proc_pid_link_inode_operations = {
1632        .readlink       = proc_pid_readlink,
1633        .follow_link    = proc_pid_follow_link,
1634        .setattr        = proc_setattr,
1635};
1636
1637
1638/* building an inode */
1639
1640struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1641{
1642        struct inode * inode;
1643        struct proc_inode *ei;
1644        const struct cred *cred;
1645
1646        /* We need a new inode */
1647
1648        inode = new_inode(sb);
1649        if (!inode)
1650                goto out;
1651
1652        /* Common stuff */
1653        ei = PROC_I(inode);
1654        inode->i_ino = get_next_ino();
1655        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1656        inode->i_op = &proc_def_inode_operations;
1657
1658        /*
1659         * grab the reference to task.
1660         */
1661        ei->pid = get_task_pid(task, PIDTYPE_PID);
1662        if (!ei->pid)
1663                goto out_unlock;
1664
1665        if (task_dumpable(task)) {
1666                rcu_read_lock();
1667                cred = __task_cred(task);
1668                inode->i_uid = cred->euid;
1669                inode->i_gid = cred->egid;
1670                rcu_read_unlock();
1671        }
1672        security_task_to_inode(task, inode);
1673
1674out:
1675        return inode;
1676
1677out_unlock:
1678        iput(inode);
1679        return NULL;
1680}
1681
1682int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1683{
1684        struct inode *inode = d_inode(dentry);
1685        struct task_struct *task;
1686        const struct cred *cred;
1687        struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1688
1689        generic_fillattr(inode, stat);
1690
1691        rcu_read_lock();
1692        stat->uid = GLOBAL_ROOT_UID;
1693        stat->gid = GLOBAL_ROOT_GID;
1694        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1695        if (task) {
1696                if (!has_pid_permissions(pid, task, 2)) {
1697                        rcu_read_unlock();
1698                        /*
1699                         * This doesn't prevent learning whether PID exists,
1700                         * it only makes getattr() consistent with readdir().
1701                         */
1702                        return -ENOENT;
1703                }
1704                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1705                    task_dumpable(task)) {
1706                        cred = __task_cred(task);
1707                        stat->uid = cred->euid;
1708                        stat->gid = cred->egid;
1709                }
1710        }
1711        rcu_read_unlock();
1712        return 0;
1713}
1714
1715/* dentry stuff */
1716
1717/*
1718 *      Exceptional case: normally we are not allowed to unhash a busy
1719 * directory. In this case, however, we can do it - no aliasing problems
1720 * due to the way we treat inodes.
1721 *
1722 * Rewrite the inode's ownerships here because the owning task may have
1723 * performed a setuid(), etc.
1724 *
1725 * Before the /proc/pid/status file was created the only way to read
1726 * the effective uid of a /process was to stat /proc/pid.  Reading
1727 * /proc/pid/status is slow enough that procps and other packages
1728 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1729 * made this apply to all per process world readable and executable
1730 * directories.
1731 */
1732int pid_revalidate(struct dentry *dentry, unsigned int flags)
1733{
1734        struct inode *inode;
1735        struct task_struct *task;
1736        const struct cred *cred;
1737
1738        if (flags & LOOKUP_RCU)
1739                return -ECHILD;
1740
1741        inode = d_inode(dentry);
1742        task = get_proc_task(inode);
1743
1744        if (task) {
1745                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1746                    task_dumpable(task)) {
1747                        rcu_read_lock();
1748                        cred = __task_cred(task);
1749                        inode->i_uid = cred->euid;
1750                        inode->i_gid = cred->egid;
1751                        rcu_read_unlock();
1752                } else {
1753                        inode->i_uid = GLOBAL_ROOT_UID;
1754                        inode->i_gid = GLOBAL_ROOT_GID;
1755                }
1756                inode->i_mode &= ~(S_ISUID | S_ISGID);
1757                security_task_to_inode(task, inode);
1758                put_task_struct(task);
1759                return 1;
1760        }
1761        return 0;
1762}
1763
1764static inline bool proc_inode_is_dead(struct inode *inode)
1765{
1766        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1767}
1768
1769int pid_delete_dentry(const struct dentry *dentry)
1770{
1771        /* Is the task we represent dead?
1772         * If so, then don't put the dentry on the lru list,
1773         * kill it immediately.
1774         */
1775        return proc_inode_is_dead(d_inode(dentry));
1776}
1777
1778const struct dentry_operations pid_dentry_operations =
1779{
1780        .d_revalidate   = pid_revalidate,
1781        .d_delete       = pid_delete_dentry,
1782};
1783
1784/* Lookups */
1785
1786/*
1787 * Fill a directory entry.
1788 *
1789 * If possible create the dcache entry and derive our inode number and
1790 * file type from dcache entry.
1791 *
1792 * Since all of the proc inode numbers are dynamically generated, the inode
1793 * numbers do not exist until the inode is cache.  This means creating the
1794 * the dcache entry in readdir is necessary to keep the inode numbers
1795 * reported by readdir in sync with the inode numbers reported
1796 * by stat.
1797 */
1798bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1799        const char *name, int len,
1800        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1801{
1802        struct dentry *child, *dir = file->f_path.dentry;
1803        struct qstr qname = QSTR_INIT(name, len);
1804        struct inode *inode;
1805        unsigned type;
1806        ino_t ino;
1807
1808        child = d_hash_and_lookup(dir, &qname);
1809        if (!child) {
1810                child = d_alloc(dir, &qname);
1811                if (!child)
1812                        goto end_instantiate;
1813                if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1814                        dput(child);
1815                        goto end_instantiate;
1816                }
1817        }
1818        inode = d_inode(child);
1819        ino = inode->i_ino;
1820        type = inode->i_mode >> 12;
1821        dput(child);
1822        return dir_emit(ctx, name, len, ino, type);
1823
1824end_instantiate:
1825        return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1826}
1827
1828/*
1829 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1830 * which represent vma start and end addresses.
1831 */
1832static int dname_to_vma_addr(struct dentry *dentry,
1833                             unsigned long *start, unsigned long *end)
1834{
1835        if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1836                return -EINVAL;
1837
1838        return 0;
1839}
1840
1841static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1842{
1843        unsigned long vm_start, vm_end;
1844        bool exact_vma_exists = false;
1845        struct mm_struct *mm = NULL;
1846        struct task_struct *task;
1847        const struct cred *cred;
1848        struct inode *inode;
1849        int status = 0;
1850
1851        if (flags & LOOKUP_RCU)
1852                return -ECHILD;
1853
1854        inode = d_inode(dentry);
1855        task = get_proc_task(inode);
1856        if (!task)
1857                goto out_notask;
1858
1859        mm = mm_access(task, PTRACE_MODE_READ);
1860        if (IS_ERR_OR_NULL(mm))
1861                goto out;
1862
1863        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1864                down_read(&mm->mmap_sem);
1865                exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1866                up_read(&mm->mmap_sem);
1867        }
1868
1869        mmput(mm);
1870
1871        if (exact_vma_exists) {
1872                if (task_dumpable(task)) {
1873                        rcu_read_lock();
1874                        cred = __task_cred(task);
1875                        inode->i_uid = cred->euid;
1876                        inode->i_gid = cred->egid;
1877                        rcu_read_unlock();
1878                } else {
1879                        inode->i_uid = GLOBAL_ROOT_UID;
1880                        inode->i_gid = GLOBAL_ROOT_GID;
1881                }
1882                security_task_to_inode(task, inode);
1883                status = 1;
1884        }
1885
1886out:
1887        put_task_struct(task);
1888
1889out_notask:
1890        return status;
1891}
1892
1893static const struct dentry_operations tid_map_files_dentry_operations = {
1894        .d_revalidate   = map_files_d_revalidate,
1895        .d_delete       = pid_delete_dentry,
1896};
1897
1898static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1899{
1900        unsigned long vm_start, vm_end;
1901        struct vm_area_struct *vma;
1902        struct task_struct *task;
1903        struct mm_struct *mm;
1904        int rc;
1905
1906        rc = -ENOENT;
1907        task = get_proc_task(d_inode(dentry));
1908        if (!task)
1909                goto out;
1910
1911        mm = get_task_mm(task);
1912        put_task_struct(task);
1913        if (!mm)
1914                goto out;
1915
1916        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1917        if (rc)
1918                goto out_mmput;
1919
1920        rc = -ENOENT;
1921        down_read(&mm->mmap_sem);
1922        vma = find_exact_vma(mm, vm_start, vm_end);
1923        if (vma && vma->vm_file) {
1924                *path = vma->vm_file->f_path;
1925                path_get(path);
1926                rc = 0;
1927        }
1928        up_read(&mm->mmap_sem);
1929
1930out_mmput:
1931        mmput(mm);
1932out:
1933        return rc;
1934}
1935
1936struct map_files_info {
1937        fmode_t         mode;
1938        unsigned long   len;
1939        unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1940};
1941
1942/*
1943 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1944 * symlinks may be used to bypass permissions on ancestor directories in the
1945 * path to the file in question.
1946 */
1947static const char *
1948proc_map_files_follow_link(struct dentry *dentry, void **cookie)
1949{
1950        if (!capable(CAP_SYS_ADMIN))
1951                return ERR_PTR(-EPERM);
1952
1953        return proc_pid_follow_link(dentry, NULL);
1954}
1955
1956/*
1957 * Identical to proc_pid_link_inode_operations except for follow_link()
1958 */
1959static const struct inode_operations proc_map_files_link_inode_operations = {
1960        .readlink       = proc_pid_readlink,
1961        .follow_link    = proc_map_files_follow_link,
1962        .setattr        = proc_setattr,
1963};
1964
1965static int
1966proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1967                           struct task_struct *task, const void *ptr)
1968{
1969        fmode_t mode = (fmode_t)(unsigned long)ptr;
1970        struct proc_inode *ei;
1971        struct inode *inode;
1972
1973        inode = proc_pid_make_inode(dir->i_sb, task);
1974        if (!inode)
1975                return -ENOENT;
1976
1977        ei = PROC_I(inode);
1978        ei->op.proc_get_link = proc_map_files_get_link;
1979
1980        inode->i_op = &proc_map_files_link_inode_operations;
1981        inode->i_size = 64;
1982        inode->i_mode = S_IFLNK;
1983
1984        if (mode & FMODE_READ)
1985                inode->i_mode |= S_IRUSR;
1986        if (mode & FMODE_WRITE)
1987                inode->i_mode |= S_IWUSR;
1988
1989        d_set_d_op(dentry, &tid_map_files_dentry_operations);
1990        d_add(dentry, inode);
1991
1992        return 0;
1993}
1994
1995static struct dentry *proc_map_files_lookup(struct inode *dir,
1996                struct dentry *dentry, unsigned int flags)
1997{
1998        unsigned long vm_start, vm_end;
1999        struct vm_area_struct *vma;
2000        struct task_struct *task;
2001        int result;
2002        struct mm_struct *mm;
2003
2004        result = -ENOENT;
2005        task = get_proc_task(dir);
2006        if (!task)
2007                goto out;
2008
2009        result = -EACCES;
2010        if (!ptrace_may_access(task, PTRACE_MODE_READ))
2011                goto out_put_task;
2012
2013        result = -ENOENT;
2014        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2015                goto out_put_task;
2016
2017        mm = get_task_mm(task);
2018        if (!mm)
2019                goto out_put_task;
2020
2021        down_read(&mm->mmap_sem);
2022        vma = find_exact_vma(mm, vm_start, vm_end);
2023        if (!vma)
2024                goto out_no_vma;
2025
2026        if (vma->vm_file)
2027                result = proc_map_files_instantiate(dir, dentry, task,
2028                                (void *)(unsigned long)vma->vm_file->f_mode);
2029
2030out_no_vma:
2031        up_read(&mm->mmap_sem);
2032        mmput(mm);
2033out_put_task:
2034        put_task_struct(task);
2035out:
2036        return ERR_PTR(result);
2037}
2038
2039static const struct inode_operations proc_map_files_inode_operations = {
2040        .lookup         = proc_map_files_lookup,
2041        .permission     = proc_fd_permission,
2042        .setattr        = proc_setattr,
2043};
2044
2045static int
2046proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2047{
2048        struct vm_area_struct *vma;
2049        struct task_struct *task;
2050        struct mm_struct *mm;
2051        unsigned long nr_files, pos, i;
2052        struct flex_array *fa = NULL;
2053        struct map_files_info info;
2054        struct map_files_info *p;
2055        int ret;
2056
2057        ret = -ENOENT;
2058        task = get_proc_task(file_inode(file));
2059        if (!task)
2060                goto out;
2061
2062        ret = -EACCES;
2063        if (!ptrace_may_access(task, PTRACE_MODE_READ))
2064                goto out_put_task;
2065
2066        ret = 0;
2067        if (!dir_emit_dots(file, ctx))
2068                goto out_put_task;
2069
2070        mm = get_task_mm(task);
2071        if (!mm)
2072                goto out_put_task;
2073        down_read(&mm->mmap_sem);
2074
2075        nr_files = 0;
2076
2077        /*
2078         * We need two passes here:
2079         *
2080         *  1) Collect vmas of mapped files with mmap_sem taken
2081         *  2) Release mmap_sem and instantiate entries
2082         *
2083         * otherwise we get lockdep complained, since filldir()
2084         * routine might require mmap_sem taken in might_fault().
2085         */
2086
2087        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2088                if (vma->vm_file && ++pos > ctx->pos)
2089                        nr_files++;
2090        }
2091
2092        if (nr_files) {
2093                fa = flex_array_alloc(sizeof(info), nr_files,
2094                                        GFP_KERNEL);
2095                if (!fa || flex_array_prealloc(fa, 0, nr_files,
2096                                                GFP_KERNEL)) {
2097                        ret = -ENOMEM;
2098                        if (fa)
2099                                flex_array_free(fa);
2100                        up_read(&mm->mmap_sem);
2101                        mmput(mm);
2102                        goto out_put_task;
2103                }
2104                for (i = 0, vma = mm->mmap, pos = 2; vma;
2105                                vma = vma->vm_next) {
2106                        if (!vma->vm_file)
2107                                continue;
2108                        if (++pos <= ctx->pos)
2109                                continue;
2110
2111                        info.mode = vma->vm_file->f_mode;
2112                        info.len = snprintf(info.name,
2113                                        sizeof(info.name), "%lx-%lx",
2114                                        vma->vm_start, vma->vm_end);
2115                        if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2116                                BUG();
2117                }
2118        }
2119        up_read(&mm->mmap_sem);
2120
2121        for (i = 0; i < nr_files; i++) {
2122                p = flex_array_get(fa, i);
2123                if (!proc_fill_cache(file, ctx,
2124                                      p->name, p->len,
2125                                      proc_map_files_instantiate,
2126                                      task,
2127                                      (void *)(unsigned long)p->mode))
2128                        break;
2129                ctx->pos++;
2130        }
2131        if (fa)
2132                flex_array_free(fa);
2133        mmput(mm);
2134
2135out_put_task:
2136        put_task_struct(task);
2137out:
2138        return ret;
2139}
2140
2141static const struct file_operations proc_map_files_operations = {
2142        .read           = generic_read_dir,
2143        .iterate        = proc_map_files_readdir,
2144        .llseek         = default_llseek,
2145};
2146
2147struct timers_private {
2148        struct pid *pid;
2149        struct task_struct *task;
2150        struct sighand_struct *sighand;
2151        struct pid_namespace *ns;
2152        unsigned long flags;
2153};
2154
2155static void *timers_start(struct seq_file *m, loff_t *pos)
2156{
2157        struct timers_private *tp = m->private;
2158
2159        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2160        if (!tp->task)
2161                return ERR_PTR(-ESRCH);
2162
2163        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2164        if (!tp->sighand)
2165                return ERR_PTR(-ESRCH);
2166
2167        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2168}
2169
2170static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2171{
2172        struct timers_private *tp = m->private;
2173        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2174}
2175
2176static void timers_stop(struct seq_file *m, void *v)
2177{
2178        struct timers_private *tp = m->private;
2179
2180        if (tp->sighand) {
2181                unlock_task_sighand(tp->task, &tp->flags);
2182                tp->sighand = NULL;
2183        }
2184
2185        if (tp->task) {
2186                put_task_struct(tp->task);
2187                tp->task = NULL;
2188        }
2189}
2190
2191static int show_timer(struct seq_file *m, void *v)
2192{
2193        struct k_itimer *timer;
2194        struct timers_private *tp = m->private;
2195        int notify;
2196        static const char * const nstr[] = {
2197                [SIGEV_SIGNAL] = "signal",
2198                [SIGEV_NONE] = "none",
2199                [SIGEV_THREAD] = "thread",
2200        };
2201
2202        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2203        notify = timer->it_sigev_notify;
2204
2205        seq_printf(m, "ID: %d\n", timer->it_id);
2206        seq_printf(m, "signal: %d/%p\n",
2207                   timer->sigq->info.si_signo,
2208                   timer->sigq->info.si_value.sival_ptr);
2209        seq_printf(m, "notify: %s/%s.%d\n",
2210                   nstr[notify & ~SIGEV_THREAD_ID],
2211                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2212                   pid_nr_ns(timer->it_pid, tp->ns));
2213        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2214
2215        return 0;
2216}
2217
2218static const struct seq_operations proc_timers_seq_ops = {
2219        .start  = timers_start,
2220        .next   = timers_next,
2221        .stop   = timers_stop,
2222        .show   = show_timer,
2223};
2224
2225static int proc_timers_open(struct inode *inode, struct file *file)
2226{
2227        struct timers_private *tp;
2228
2229        tp = __seq_open_private(file, &proc_timers_seq_ops,
2230                        sizeof(struct timers_private));
2231        if (!tp)
2232                return -ENOMEM;
2233
2234        tp->pid = proc_pid(inode);
2235        tp->ns = inode->i_sb->s_fs_info;
2236        return 0;
2237}
2238
2239static const struct file_operations proc_timers_operations = {
2240        .open           = proc_timers_open,
2241        .read           = seq_read,
2242        .llseek         = seq_lseek,
2243        .release        = seq_release_private,
2244};
2245
2246static int proc_pident_instantiate(struct inode *dir,
2247        struct dentry *dentry, struct task_struct *task, const void *ptr)
2248{
2249        const struct pid_entry *p = ptr;
2250        struct inode *inode;
2251        struct proc_inode *ei;
2252
2253        inode = proc_pid_make_inode(dir->i_sb, task);
2254        if (!inode)
2255                goto out;
2256
2257        ei = PROC_I(inode);
2258        inode->i_mode = p->mode;
2259        if (S_ISDIR(inode->i_mode))
2260                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2261        if (p->iop)
2262                inode->i_op = p->iop;
2263        if (p->fop)
2264                inode->i_fop = p->fop;
2265        ei->op = p->op;
2266        d_set_d_op(dentry, &pid_dentry_operations);
2267        d_add(dentry, inode);
2268        /* Close the race of the process dying before we return the dentry */
2269        if (pid_revalidate(dentry, 0))
2270                return 0;
2271out:
2272        return -ENOENT;
2273}
2274
2275static struct dentry *proc_pident_lookup(struct inode *dir, 
2276                                         struct dentry *dentry,
2277                                         const struct pid_entry *ents,
2278                                         unsigned int nents)
2279{
2280        int error;
2281        struct task_struct *task = get_proc_task(dir);
2282        const struct pid_entry *p, *last;
2283
2284        error = -ENOENT;
2285
2286        if (!task)
2287                goto out_no_task;
2288
2289        /*
2290         * Yes, it does not scale. And it should not. Don't add
2291         * new entries into /proc/<tgid>/ without very good reasons.
2292         */
2293        last = &ents[nents - 1];
2294        for (p = ents; p <= last; p++) {
2295                if (p->len != dentry->d_name.len)
2296                        continue;
2297                if (!memcmp(dentry->d_name.name, p->name, p->len))
2298                        break;
2299        }
2300        if (p > last)
2301                goto out;
2302
2303        error = proc_pident_instantiate(dir, dentry, task, p);
2304out:
2305        put_task_struct(task);
2306out_no_task:
2307        return ERR_PTR(error);
2308}
2309
2310static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2311                const struct pid_entry *ents, unsigned int nents)
2312{
2313        struct task_struct *task = get_proc_task(file_inode(file));
2314        const struct pid_entry *p;
2315
2316        if (!task)
2317                return -ENOENT;
2318
2319        if (!dir_emit_dots(file, ctx))
2320                goto out;
2321
2322        if (ctx->pos >= nents + 2)
2323                goto out;
2324
2325        for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2326                if (!proc_fill_cache(file, ctx, p->name, p->len,
2327                                proc_pident_instantiate, task, p))
2328                        break;
2329                ctx->pos++;
2330        }
2331out:
2332        put_task_struct(task);
2333        return 0;
2334}
2335
2336#ifdef CONFIG_SECURITY
2337static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2338                                  size_t count, loff_t *ppos)
2339{
2340        struct inode * inode = file_inode(file);
2341        char *p = NULL;
2342        ssize_t length;
2343        struct task_struct *task = get_proc_task(inode);
2344
2345        if (!task)
2346                return -ESRCH;
2347
2348        length = security_getprocattr(task,
2349                                      (char*)file->f_path.dentry->d_name.name,
2350                                      &p);
2351        put_task_struct(task);
2352        if (length > 0)
2353                length = simple_read_from_buffer(buf, count, ppos, p, length);
2354        kfree(p);
2355        return length;
2356}
2357
2358static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2359                                   size_t count, loff_t *ppos)
2360{
2361        struct inode * inode = file_inode(file);
2362        char *page;
2363        ssize_t length;
2364        struct task_struct *task = get_proc_task(inode);
2365
2366        length = -ESRCH;
2367        if (!task)
2368                goto out_no_task;
2369        if (count > PAGE_SIZE)
2370                count = PAGE_SIZE;
2371
2372        /* No partial writes. */
2373        length = -EINVAL;
2374        if (*ppos != 0)
2375                goto out;
2376
2377        length = -ENOMEM;
2378        page = (char*)__get_free_page(GFP_TEMPORARY);
2379        if (!page)
2380                goto out;
2381
2382        length = -EFAULT;
2383        if (copy_from_user(page, buf, count))
2384                goto out_free;
2385
2386        /* Guard against adverse ptrace interaction */
2387        length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2388        if (length < 0)
2389                goto out_free;
2390
2391        length = security_setprocattr(task,
2392                                      (char*)file->f_path.dentry->d_name.name,
2393                                      (void*)page, count);
2394        mutex_unlock(&task->signal->cred_guard_mutex);
2395out_free:
2396        free_page((unsigned long) page);
2397out:
2398        put_task_struct(task);
2399out_no_task:
2400        return length;
2401}
2402
2403static const struct file_operations proc_pid_attr_operations = {
2404        .read           = proc_pid_attr_read,
2405        .write          = proc_pid_attr_write,
2406        .llseek         = generic_file_llseek,
2407};
2408
2409static const struct pid_entry attr_dir_stuff[] = {
2410        REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2411        REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2412        REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2413        REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2414        REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2415        REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2416};
2417
2418static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2419{
2420        return proc_pident_readdir(file, ctx, 
2421                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2422}
2423
2424static const struct file_operations proc_attr_dir_operations = {
2425        .read           = generic_read_dir,
2426        .iterate        = proc_attr_dir_readdir,
2427        .llseek         = default_llseek,
2428};
2429
2430static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2431                                struct dentry *dentry, unsigned int flags)
2432{
2433        return proc_pident_lookup(dir, dentry,
2434                                  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2435}
2436
2437static const struct inode_operations proc_attr_dir_inode_operations = {
2438        .lookup         = proc_attr_dir_lookup,
2439        .getattr        = pid_getattr,
2440        .setattr        = proc_setattr,
2441};
2442
2443#endif
2444
2445#ifdef CONFIG_ELF_CORE
2446static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2447                                         size_t count, loff_t *ppos)
2448{
2449        struct task_struct *task = get_proc_task(file_inode(file));
2450        struct mm_struct *mm;
2451        char buffer[PROC_NUMBUF];
2452        size_t len;
2453        int ret;
2454
2455        if (!task)
2456                return -ESRCH;
2457
2458        ret = 0;
2459        mm = get_task_mm(task);
2460        if (mm) {
2461                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2462                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2463                                MMF_DUMP_FILTER_SHIFT));
2464                mmput(mm);
2465                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2466        }
2467
2468        put_task_struct(task);
2469
2470        return ret;
2471}
2472
2473static ssize_t proc_coredump_filter_write(struct file *file,
2474                                          const char __user *buf,
2475                                          size_t count,
2476                                          loff_t *ppos)
2477{
2478        struct task_struct *task;
2479        struct mm_struct *mm;
2480        unsigned int val;
2481        int ret;
2482        int i;
2483        unsigned long mask;
2484
2485        ret = kstrtouint_from_user(buf, count, 0, &val);
2486        if (ret < 0)
2487                return ret;
2488
2489        ret = -ESRCH;
2490        task = get_proc_task(file_inode(file));
2491        if (!task)
2492                goto out_no_task;
2493
2494        mm = get_task_mm(task);
2495        if (!mm)
2496                goto out_no_mm;
2497        ret = 0;
2498
2499        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2500                if (val & mask)
2501                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2502                else
2503                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2504        }
2505
2506        mmput(mm);
2507 out_no_mm:
2508        put_task_struct(task);
2509 out_no_task:
2510        if (ret < 0)
2511                return ret;
2512        return count;
2513}
2514
2515static const struct file_operations proc_coredump_filter_operations = {
2516        .read           = proc_coredump_filter_read,
2517        .write          = proc_coredump_filter_write,
2518        .llseek         = generic_file_llseek,
2519};
2520#endif
2521
2522#ifdef CONFIG_TASK_IO_ACCOUNTING
2523static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2524{
2525        struct task_io_accounting acct = task->ioac;
2526        unsigned long flags;
2527        int result;
2528
2529        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2530        if (result)
2531                return result;
2532
2533        if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2534                result = -EACCES;
2535                goto out_unlock;
2536        }
2537
2538        if (whole && lock_task_sighand(task, &flags)) {
2539                struct task_struct *t = task;
2540
2541                task_io_accounting_add(&acct, &task->signal->ioac);
2542                while_each_thread(task, t)
2543                        task_io_accounting_add(&acct, &t->ioac);
2544
2545                unlock_task_sighand(task, &flags);
2546        }
2547        seq_printf(m,
2548                   "rchar: %llu\n"
2549                   "wchar: %llu\n"
2550                   "syscr: %llu\n"
2551                   "syscw: %llu\n"
2552                   "read_bytes: %llu\n"
2553                   "write_bytes: %llu\n"
2554                   "cancelled_write_bytes: %llu\n",
2555                   (unsigned long long)acct.rchar,
2556                   (unsigned long long)acct.wchar,
2557                   (unsigned long long)acct.syscr,
2558                   (unsigned long long)acct.syscw,
2559                   (unsigned long long)acct.read_bytes,
2560                   (unsigned long long)acct.write_bytes,
2561                   (unsigned long long)acct.cancelled_write_bytes);
2562        result = 0;
2563
2564out_unlock:
2565        mutex_unlock(&task->signal->cred_guard_mutex);
2566        return result;
2567}
2568
2569static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2570                                  struct pid *pid, struct task_struct *task)
2571{
2572        return do_io_accounting(task, m, 0);
2573}
2574
2575static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2576                                   struct pid *pid, struct task_struct *task)
2577{
2578        return do_io_accounting(task, m, 1);
2579}
2580#endif /* CONFIG_TASK_IO_ACCOUNTING */
2581
2582#ifdef CONFIG_USER_NS
2583static int proc_id_map_open(struct inode *inode, struct file *file,
2584        const struct seq_operations *seq_ops)
2585{
2586        struct user_namespace *ns = NULL;
2587        struct task_struct *task;
2588        struct seq_file *seq;
2589        int ret = -EINVAL;
2590
2591        task = get_proc_task(inode);
2592        if (task) {
2593                rcu_read_lock();
2594                ns = get_user_ns(task_cred_xxx(task, user_ns));
2595                rcu_read_unlock();
2596                put_task_struct(task);
2597        }
2598        if (!ns)
2599                goto err;
2600
2601        ret = seq_open(file, seq_ops);
2602        if (ret)
2603                goto err_put_ns;
2604
2605        seq = file->private_data;
2606        seq->private = ns;
2607
2608        return 0;
2609err_put_ns:
2610        put_user_ns(ns);
2611err:
2612        return ret;
2613}
2614
2615static int proc_id_map_release(struct inode *inode, struct file *file)
2616{
2617        struct seq_file *seq = file->private_data;
2618        struct user_namespace *ns = seq->private;
2619        put_user_ns(ns);
2620        return seq_release(inode, file);
2621}
2622
2623static int proc_uid_map_open(struct inode *inode, struct file *file)
2624{
2625        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2626}
2627
2628static int proc_gid_map_open(struct inode *inode, struct file *file)
2629{
2630        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2631}
2632
2633static int proc_projid_map_open(struct inode *inode, struct file *file)
2634{
2635        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2636}
2637
2638static const struct file_operations proc_uid_map_operations = {
2639        .open           = proc_uid_map_open,
2640        .write          = proc_uid_map_write,
2641        .read           = seq_read,
2642        .llseek         = seq_lseek,
2643        .release        = proc_id_map_release,
2644};
2645
2646static const struct file_operations proc_gid_map_operations = {
2647        .open           = proc_gid_map_open,
2648        .write          = proc_gid_map_write,
2649        .read           = seq_read,
2650        .llseek         = seq_lseek,
2651        .release        = proc_id_map_release,
2652};
2653
2654static const struct file_operations proc_projid_map_operations = {
2655        .open           = proc_projid_map_open,
2656        .write          = proc_projid_map_write,
2657        .read           = seq_read,
2658        .llseek         = seq_lseek,
2659        .release        = proc_id_map_release,
2660};
2661
2662static int proc_setgroups_open(struct inode *inode, struct file *file)
2663{
2664        struct user_namespace *ns = NULL;
2665        struct task_struct *task;
2666        int ret;
2667
2668        ret = -ESRCH;
2669        task = get_proc_task(inode);
2670        if (task) {
2671                rcu_read_lock();
2672                ns = get_user_ns(task_cred_xxx(task, user_ns));
2673                rcu_read_unlock();
2674                put_task_struct(task);
2675        }
2676        if (!ns)
2677                goto err;
2678
2679        if (file->f_mode & FMODE_WRITE) {
2680                ret = -EACCES;
2681                if (!ns_capable(ns, CAP_SYS_ADMIN))
2682                        goto err_put_ns;
2683        }
2684
2685        ret = single_open(file, &proc_setgroups_show, ns);
2686        if (ret)
2687                goto err_put_ns;
2688
2689        return 0;
2690err_put_ns:
2691        put_user_ns(ns);
2692err:
2693        return ret;
2694}
2695
2696static int proc_setgroups_release(struct inode *inode, struct file *file)
2697{
2698        struct seq_file *seq = file->private_data;
2699        struct user_namespace *ns = seq->private;
2700        int ret = single_release(inode, file);
2701        put_user_ns(ns);
2702        return ret;
2703}
2704
2705static const struct file_operations proc_setgroups_operations = {
2706        .open           = proc_setgroups_open,
2707        .write          = proc_setgroups_write,
2708        .read           = seq_read,
2709        .llseek         = seq_lseek,
2710        .release        = proc_setgroups_release,
2711};
2712#endif /* CONFIG_USER_NS */
2713
2714static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2715                                struct pid *pid, struct task_struct *task)
2716{
2717        int err = lock_trace(task);
2718        if (!err) {
2719                seq_printf(m, "%08x\n", task->personality);
2720                unlock_trace(task);
2721        }
2722        return err;
2723}
2724
2725/*
2726 * Thread groups
2727 */
2728static const struct file_operations proc_task_operations;
2729static const struct inode_operations proc_task_inode_operations;
2730
2731static const struct pid_entry tgid_base_stuff[] = {
2732        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2733        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2734        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2735        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2736        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2737#ifdef CONFIG_NET
2738        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2739#endif
2740        REG("environ",    S_IRUSR, proc_environ_operations),
2741        ONE("auxv",       S_IRUSR, proc_pid_auxv),
2742        ONE("status",     S_IRUGO, proc_pid_status),
2743        ONE("personality", S_IRUSR, proc_pid_personality),
2744        ONE("limits",     S_IRUGO, proc_pid_limits),
2745#ifdef CONFIG_SCHED_DEBUG
2746        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2747#endif
2748#ifdef CONFIG_SCHED_AUTOGROUP
2749        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2750#endif
2751        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2752#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2753        ONE("syscall",    S_IRUSR, proc_pid_syscall),
2754#endif
2755        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2756        ONE("stat",       S_IRUGO, proc_tgid_stat),
2757        ONE("statm",      S_IRUGO, proc_pid_statm),
2758        REG("maps",       S_IRUGO, proc_pid_maps_operations),
2759#ifdef CONFIG_NUMA
2760        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2761#endif
2762        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2763        LNK("cwd",        proc_cwd_link),
2764        LNK("root",       proc_root_link),
2765        LNK("exe",        proc_exe_link),
2766        REG("mounts",     S_IRUGO, proc_mounts_operations),
2767        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2768        REG("mountstats", S_IRUSR, proc_mountstats_operations),
2769#ifdef CONFIG_PROC_PAGE_MONITOR
2770        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2771        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2772        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2773#endif
2774#ifdef CONFIG_SECURITY
2775        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2776#endif
2777#ifdef CONFIG_KALLSYMS
2778        ONE("wchan",      S_IRUGO, proc_pid_wchan),
2779#endif
2780#ifdef CONFIG_STACKTRACE
2781        ONE("stack",      S_IRUSR, proc_pid_stack),
2782#endif
2783#ifdef CONFIG_SCHED_INFO
2784        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2785#endif
2786#ifdef CONFIG_LATENCYTOP
2787        REG("latency",  S_IRUGO, proc_lstats_operations),
2788#endif
2789#ifdef CONFIG_PROC_PID_CPUSET
2790        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2791#endif
2792#ifdef CONFIG_CGROUPS
2793        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2794#endif
2795        ONE("oom_score",  S_IRUGO, proc_oom_score),
2796        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2797        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2798#ifdef CONFIG_AUDITSYSCALL
2799        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2800        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2801#endif
2802#ifdef CONFIG_FAULT_INJECTION
2803        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2804#endif
2805#ifdef CONFIG_ELF_CORE
2806        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2807#endif
2808#ifdef CONFIG_TASK_IO_ACCOUNTING
2809        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
2810#endif
2811#ifdef CONFIG_HARDWALL
2812        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2813#endif
2814#ifdef CONFIG_USER_NS
2815        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2816        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2817        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2818        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2819#endif
2820#ifdef CONFIG_CHECKPOINT_RESTORE
2821        REG("timers",     S_IRUGO, proc_timers_operations),
2822#endif
2823};
2824
2825static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2826{
2827        return proc_pident_readdir(file, ctx,
2828                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2829}
2830
2831static const struct file_operations proc_tgid_base_operations = {
2832        .read           = generic_read_dir,
2833        .iterate        = proc_tgid_base_readdir,
2834        .llseek         = default_llseek,
2835};
2836
2837static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2838{
2839        return proc_pident_lookup(dir, dentry,
2840                                  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2841}
2842
2843static const struct inode_operations proc_tgid_base_inode_operations = {
2844        .lookup         = proc_tgid_base_lookup,
2845        .getattr        = pid_getattr,
2846        .setattr        = proc_setattr,
2847        .permission     = proc_pid_permission,
2848};
2849
2850static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2851{
2852        struct dentry *dentry, *leader, *dir;
2853        char buf[PROC_NUMBUF];
2854        struct qstr name;
2855
2856        name.name = buf;
2857        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2858        /* no ->d_hash() rejects on procfs */
2859        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2860        if (dentry) {
2861                d_invalidate(dentry);
2862                dput(dentry);
2863        }
2864
2865        if (pid == tgid)
2866                return;
2867
2868        name.name = buf;
2869        name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2870        leader = d_hash_and_lookup(mnt->mnt_root, &name);
2871        if (!leader)
2872                goto out;
2873
2874        name.name = "task";
2875        name.len = strlen(name.name);
2876        dir = d_hash_and_lookup(leader, &name);
2877        if (!dir)
2878                goto out_put_leader;
2879
2880        name.name = buf;
2881        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2882        dentry = d_hash_and_lookup(dir, &name);
2883        if (dentry) {
2884                d_invalidate(dentry);
2885                dput(dentry);
2886        }
2887
2888        dput(dir);
2889out_put_leader:
2890        dput(leader);
2891out:
2892        return;
2893}
2894
2895/**
2896 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2897 * @task: task that should be flushed.
2898 *
2899 * When flushing dentries from proc, one needs to flush them from global
2900 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2901 * in. This call is supposed to do all of this job.
2902 *
2903 * Looks in the dcache for
2904 * /proc/@pid
2905 * /proc/@tgid/task/@pid
2906 * if either directory is present flushes it and all of it'ts children
2907 * from the dcache.
2908 *
2909 * It is safe and reasonable to cache /proc entries for a task until
2910 * that task exits.  After that they just clog up the dcache with
2911 * useless entries, possibly causing useful dcache entries to be
2912 * flushed instead.  This routine is proved to flush those useless
2913 * dcache entries at process exit time.
2914 *
2915 * NOTE: This routine is just an optimization so it does not guarantee
2916 *       that no dcache entries will exist at process exit time it
2917 *       just makes it very unlikely that any will persist.
2918 */
2919
2920void proc_flush_task(struct task_struct *task)
2921{
2922        int i;
2923        struct pid *pid, *tgid;
2924        struct upid *upid;
2925
2926        pid = task_pid(task);
2927        tgid = task_tgid(task);
2928
2929        for (i = 0; i <= pid->level; i++) {
2930                upid = &pid->numbers[i];
2931                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2932                                        tgid->numbers[i].nr);
2933        }
2934}
2935
2936static int proc_pid_instantiate(struct inode *dir,
2937                                   struct dentry * dentry,
2938                                   struct task_struct *task, const void *ptr)
2939{
2940        struct inode *inode;
2941
2942        inode = proc_pid_make_inode(dir->i_sb, task);
2943        if (!inode)
2944                goto out;
2945
2946        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2947        inode->i_op = &proc_tgid_base_inode_operations;
2948        inode->i_fop = &proc_tgid_base_operations;
2949        inode->i_flags|=S_IMMUTABLE;
2950
2951        set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2952                                                  ARRAY_SIZE(tgid_base_stuff)));
2953
2954        d_set_d_op(dentry, &pid_dentry_operations);
2955
2956        d_add(dentry, inode);
2957        /* Close the race of the process dying before we return the dentry */
2958        if (pid_revalidate(dentry, 0))
2959                return 0;
2960out:
2961        return -ENOENT;
2962}
2963
2964struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2965{
2966        int result = -ENOENT;
2967        struct task_struct *task;
2968        unsigned tgid;
2969        struct pid_namespace *ns;
2970
2971        tgid = name_to_int(&dentry->d_name);
2972        if (tgid == ~0U)
2973                goto out;
2974
2975        ns = dentry->d_sb->s_fs_info;
2976        rcu_read_lock();
2977        task = find_task_by_pid_ns(tgid, ns);
2978        if (task)
2979                get_task_struct(task);
2980        rcu_read_unlock();
2981        if (!task)
2982                goto out;
2983
2984        result = proc_pid_instantiate(dir, dentry, task, NULL);
2985        put_task_struct(task);
2986out:
2987        return ERR_PTR(result);
2988}
2989
2990/*
2991 * Find the first task with tgid >= tgid
2992 *
2993 */
2994struct tgid_iter {
2995        unsigned int tgid;
2996        struct task_struct *task;
2997};
2998static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2999{
3000        struct pid *pid;
3001
3002        if (iter.task)
3003                put_task_struct(iter.task);
3004        rcu_read_lock();
3005retry:
3006        iter.task = NULL;
3007        pid = find_ge_pid(iter.tgid, ns);
3008        if (pid) {
3009                iter.tgid = pid_nr_ns(pid, ns);
3010                iter.task = pid_task(pid, PIDTYPE_PID);
3011                /* What we to know is if the pid we have find is the
3012                 * pid of a thread_group_leader.  Testing for task
3013                 * being a thread_group_leader is the obvious thing
3014                 * todo but there is a window when it fails, due to
3015                 * the pid transfer logic in de_thread.
3016                 *
3017                 * So we perform the straight forward test of seeing
3018                 * if the pid we have found is the pid of a thread
3019                 * group leader, and don't worry if the task we have
3020                 * found doesn't happen to be a thread group leader.
3021                 * As we don't care in the case of readdir.
3022                 */
3023                if (!iter.task || !has_group_leader_pid(iter.task)) {
3024                        iter.tgid += 1;
3025                        goto retry;
3026                }
3027                get_task_struct(iter.task);
3028        }
3029        rcu_read_unlock();
3030        return iter;
3031}
3032
3033#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3034
3035/* for the /proc/ directory itself, after non-process stuff has been done */
3036int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3037{
3038        struct tgid_iter iter;
3039        struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3040        loff_t pos = ctx->pos;
3041
3042        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3043                return 0;
3044
3045        if (pos == TGID_OFFSET - 2) {
3046                struct inode *inode = d_inode(ns->proc_self);
3047                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3048                        return 0;
3049                ctx->pos = pos = pos + 1;
3050        }
3051        if (pos == TGID_OFFSET - 1) {
3052                struct inode *inode = d_inode(ns->proc_thread_self);
3053                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3054                        return 0;
3055                ctx->pos = pos = pos + 1;
3056        }
3057        iter.tgid = pos - TGID_OFFSET;
3058        iter.task = NULL;
3059        for (iter = next_tgid(ns, iter);
3060             iter.task;
3061             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3062                char name[PROC_NUMBUF];
3063                int len;
3064                if (!has_pid_permissions(ns, iter.task, 2))
3065                        continue;
3066
3067                len = snprintf(name, sizeof(name), "%d", iter.tgid);
3068                ctx->pos = iter.tgid + TGID_OFFSET;
3069                if (!proc_fill_cache(file, ctx, name, len,
3070                                     proc_pid_instantiate, iter.task, NULL)) {
3071                        put_task_struct(iter.task);
3072                        return 0;
3073                }
3074        }
3075        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3076        return 0;
3077}
3078
3079/*
3080 * Tasks
3081 */
3082static const struct pid_entry tid_base_stuff[] = {
3083        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3084        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3085        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3086#ifdef CONFIG_NET
3087        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3088#endif
3089        REG("environ",   S_IRUSR, proc_environ_operations),
3090        ONE("auxv",      S_IRUSR, proc_pid_auxv),
3091        ONE("status",    S_IRUGO, proc_pid_status),
3092        ONE("personality", S_IRUSR, proc_pid_personality),
3093        ONE("limits",    S_IRUGO, proc_pid_limits),
3094#ifdef CONFIG_SCHED_DEBUG
3095        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3096#endif
3097        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3098#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3099        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3100#endif
3101        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3102        ONE("stat",      S_IRUGO, proc_tid_stat),
3103        ONE("statm",     S_IRUGO, proc_pid_statm),
3104        REG("maps",      S_IRUGO, proc_tid_maps_operations),
3105#ifdef CONFIG_PROC_CHILDREN
3106        REG("children",  S_IRUGO, proc_tid_children_operations),
3107#endif
3108#ifdef CONFIG_NUMA
3109        REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3110#endif
3111        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3112        LNK("cwd",       proc_cwd_link),
3113        LNK("root",      proc_root_link),
3114        LNK("exe",       proc_exe_link),
3115        REG("mounts",    S_IRUGO, proc_mounts_operations),
3116        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3117#ifdef CONFIG_PROC_PAGE_MONITOR
3118        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3119        REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3120        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3121#endif
3122#ifdef CONFIG_SECURITY
3123        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3124#endif
3125#ifdef CONFIG_KALLSYMS
3126        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3127#endif
3128#ifdef CONFIG_STACKTRACE
3129        ONE("stack",      S_IRUSR, proc_pid_stack),
3130#endif
3131#ifdef CONFIG_SCHED_INFO
3132        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3133#endif
3134#ifdef CONFIG_LATENCYTOP
3135        REG("latency",  S_IRUGO, proc_lstats_operations),
3136#endif
3137#ifdef CONFIG_PROC_PID_CPUSET
3138        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3139#endif
3140#ifdef CONFIG_CGROUPS
3141        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3142#endif
3143        ONE("oom_score", S_IRUGO, proc_oom_score),
3144        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3145        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3146#ifdef CONFIG_AUDITSYSCALL
3147        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3148        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3149#endif
3150#ifdef CONFIG_FAULT_INJECTION
3151        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3152#endif
3153#ifdef CONFIG_TASK_IO_ACCOUNTING
3154        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3155#endif
3156#ifdef CONFIG_HARDWALL
3157        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3158#endif
3159#ifdef CONFIG_USER_NS
3160        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3161        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3162        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3163        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3164#endif
3165};
3166
3167static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3168{
3169        return proc_pident_readdir(file, ctx,
3170                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3171}
3172
3173static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3174{
3175        return proc_pident_lookup(dir, dentry,
3176                                  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3177}
3178
3179static const struct file_operations proc_tid_base_operations = {
3180        .read           = generic_read_dir,
3181        .iterate        = proc_tid_base_readdir,
3182        .llseek         = default_llseek,
3183};
3184
3185static const struct inode_operations proc_tid_base_inode_operations = {
3186        .lookup         = proc_tid_base_lookup,
3187        .getattr        = pid_getattr,
3188        .setattr        = proc_setattr,
3189};
3190
3191static int proc_task_instantiate(struct inode *dir,
3192        struct dentry *dentry, struct task_struct *task, const void *ptr)
3193{
3194        struct inode *inode;
3195        inode = proc_pid_make_inode(dir->i_sb, task);
3196
3197        if (!inode)
3198                goto out;
3199        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3200        inode->i_op = &proc_tid_base_inode_operations;
3201        inode->i_fop = &proc_tid_base_operations;
3202        inode->i_flags|=S_IMMUTABLE;
3203
3204        set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3205                                                  ARRAY_SIZE(tid_base_stuff)));
3206
3207        d_set_d_op(dentry, &pid_dentry_operations);
3208
3209        d_add(dentry, inode);
3210        /* Close the race of the process dying before we return the dentry */
3211        if (pid_revalidate(dentry, 0))
3212                return 0;
3213out:
3214        return -ENOENT;
3215}
3216
3217static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3218{
3219        int result = -ENOENT;
3220        struct task_struct *task;
3221        struct task_struct *leader = get_proc_task(dir);
3222        unsigned tid;
3223        struct pid_namespace *ns;
3224
3225        if (!leader)
3226                goto out_no_task;
3227
3228        tid = name_to_int(&dentry->d_name);
3229        if (tid == ~0U)
3230                goto out;
3231
3232        ns = dentry->d_sb->s_fs_info;
3233        rcu_read_lock();
3234        task = find_task_by_pid_ns(tid, ns);
3235        if (task)
3236                get_task_struct(task);
3237        rcu_read_unlock();
3238        if (!task)
3239                goto out;
3240        if (!same_thread_group(leader, task))
3241                goto out_drop_task;
3242
3243        result = proc_task_instantiate(dir, dentry, task, NULL);
3244out_drop_task:
3245        put_task_struct(task);
3246out:
3247        put_task_struct(leader);
3248out_no_task:
3249        return ERR_PTR(result);
3250}
3251
3252/*
3253 * Find the first tid of a thread group to return to user space.
3254 *
3255 * Usually this is just the thread group leader, but if the users
3256 * buffer was too small or there was a seek into the middle of the
3257 * directory we have more work todo.
3258 *
3259 * In the case of a short read we start with find_task_by_pid.
3260 *
3261 * In the case of a seek we start with the leader and walk nr
3262 * threads past it.
3263 */
3264static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3265                                        struct pid_namespace *ns)
3266{
3267        struct task_struct *pos, *task;
3268        unsigned long nr = f_pos;
3269
3270        if (nr != f_pos)        /* 32bit overflow? */
3271                return NULL;
3272
3273        rcu_read_lock();
3274        task = pid_task(pid, PIDTYPE_PID);
3275        if (!task)
3276                goto fail;
3277
3278        /* Attempt to start with the tid of a thread */
3279        if (tid && nr) {
3280                pos = find_task_by_pid_ns(tid, ns);
3281                if (pos && same_thread_group(pos, task))
3282                        goto found;
3283        }
3284
3285        /* If nr exceeds the number of threads there is nothing todo */
3286        if (nr >= get_nr_threads(task))
3287                goto fail;
3288
3289        /* If we haven't found our starting place yet start
3290         * with the leader and walk nr threads forward.
3291         */
3292        pos = task = task->group_leader;
3293        do {
3294                if (!nr--)
3295                        goto found;
3296        } while_each_thread(task, pos);
3297fail:
3298        pos = NULL;
3299        goto out;
3300found:
3301        get_task_struct(pos);
3302out:
3303        rcu_read_unlock();
3304        return pos;
3305}
3306
3307/*
3308 * Find the next thread in the thread list.
3309 * Return NULL if there is an error or no next thread.
3310 *
3311 * The reference to the input task_struct is released.
3312 */
3313static struct task_struct *next_tid(struct task_struct *start)
3314{
3315        struct task_struct *pos = NULL;
3316        rcu_read_lock();
3317        if (pid_alive(start)) {
3318                pos = next_thread(start);
3319                if (thread_group_leader(pos))
3320                        pos = NULL;
3321                else
3322                        get_task_struct(pos);
3323        }
3324        rcu_read_unlock();
3325        put_task_struct(start);
3326        return pos;
3327}
3328
3329/* for the /proc/TGID/task/ directories */
3330static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3331{
3332        struct inode *inode = file_inode(file);
3333        struct task_struct *task;
3334        struct pid_namespace *ns;
3335        int tid;
3336
3337        if (proc_inode_is_dead(inode))
3338                return -ENOENT;
3339
3340        if (!dir_emit_dots(file, ctx))
3341                return 0;
3342
3343        /* f_version caches the tgid value that the last readdir call couldn't
3344         * return. lseek aka telldir automagically resets f_version to 0.
3345         */
3346        ns = inode->i_sb->s_fs_info;
3347        tid = (int)file->f_version;
3348        file->f_version = 0;
3349        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3350             task;
3351             task = next_tid(task), ctx->pos++) {
3352                char name[PROC_NUMBUF];
3353                int len;
3354                tid = task_pid_nr_ns(task, ns);
3355                len = snprintf(name, sizeof(name), "%d", tid);
3356                if (!proc_fill_cache(file, ctx, name, len,
3357                                proc_task_instantiate, task, NULL)) {
3358                        /* returning this tgid failed, save it as the first
3359                         * pid for the next readir call */
3360                        file->f_version = (u64)tid;
3361                        put_task_struct(task);
3362                        break;
3363                }
3364        }
3365
3366        return 0;
3367}
3368
3369static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3370{
3371        struct inode *inode = d_inode(dentry);
3372        struct task_struct *p = get_proc_task(inode);
3373        generic_fillattr(inode, stat);
3374
3375        if (p) {
3376                stat->nlink += get_nr_threads(p);
3377                put_task_struct(p);
3378        }
3379
3380        return 0;
3381}
3382
3383static const struct inode_operations proc_task_inode_operations = {
3384        .lookup         = proc_task_lookup,
3385        .getattr        = proc_task_getattr,
3386        .setattr        = proc_setattr,
3387        .permission     = proc_pid_permission,
3388};
3389
3390static const struct file_operations proc_task_operations = {
3391        .read           = generic_read_dir,
3392        .iterate        = proc_task_readdir,
3393        .llseek         = default_llseek,
3394};
3395