linux/fs/userfaultfd.c
<<
>>
Prefs
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
  15#include <linux/hashtable.h>
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/seq_file.h>
  21#include <linux/file.h>
  22#include <linux/bug.h>
  23#include <linux/anon_inodes.h>
  24#include <linux/syscalls.h>
  25#include <linux/userfaultfd_k.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ioctl.h>
  28#include <linux/security.h>
  29
  30static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  31
  32enum userfaultfd_state {
  33        UFFD_STATE_WAIT_API,
  34        UFFD_STATE_RUNNING,
  35};
  36
  37/*
  38 * Start with fault_pending_wqh and fault_wqh so they're more likely
  39 * to be in the same cacheline.
  40 */
  41struct userfaultfd_ctx {
  42        /* waitqueue head for the pending (i.e. not read) userfaults */
  43        wait_queue_head_t fault_pending_wqh;
  44        /* waitqueue head for the userfaults */
  45        wait_queue_head_t fault_wqh;
  46        /* waitqueue head for the pseudo fd to wakeup poll/read */
  47        wait_queue_head_t fd_wqh;
  48        /* a refile sequence protected by fault_pending_wqh lock */
  49        struct seqcount refile_seq;
  50        /* pseudo fd refcounting */
  51        atomic_t refcount;
  52        /* userfaultfd syscall flags */
  53        unsigned int flags;
  54        /* state machine */
  55        enum userfaultfd_state state;
  56        /* released */
  57        bool released;
  58        /* mm with one ore more vmas attached to this userfaultfd_ctx */
  59        struct mm_struct *mm;
  60};
  61
  62struct userfaultfd_wait_queue {
  63        struct uffd_msg msg;
  64        wait_queue_t wq;
  65        struct userfaultfd_ctx *ctx;
  66};
  67
  68struct userfaultfd_wake_range {
  69        unsigned long start;
  70        unsigned long len;
  71};
  72
  73static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
  74                                     int wake_flags, void *key)
  75{
  76        struct userfaultfd_wake_range *range = key;
  77        int ret;
  78        struct userfaultfd_wait_queue *uwq;
  79        unsigned long start, len;
  80
  81        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
  82        ret = 0;
  83        /* len == 0 means wake all */
  84        start = range->start;
  85        len = range->len;
  86        if (len && (start > uwq->msg.arg.pagefault.address ||
  87                    start + len <= uwq->msg.arg.pagefault.address))
  88                goto out;
  89        ret = wake_up_state(wq->private, mode);
  90        if (ret)
  91                /*
  92                 * Wake only once, autoremove behavior.
  93                 *
  94                 * After the effect of list_del_init is visible to the
  95                 * other CPUs, the waitqueue may disappear from under
  96                 * us, see the !list_empty_careful() in
  97                 * handle_userfault(). try_to_wake_up() has an
  98                 * implicit smp_mb__before_spinlock, and the
  99                 * wq->private is read before calling the extern
 100                 * function "wake_up_state" (which in turns calls
 101                 * try_to_wake_up). While the spin_lock;spin_unlock;
 102                 * wouldn't be enough, the smp_mb__before_spinlock is
 103                 * enough to avoid an explicit smp_mb() here.
 104                 */
 105                list_del_init(&wq->task_list);
 106out:
 107        return ret;
 108}
 109
 110/**
 111 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 112 * context.
 113 * @ctx: [in] Pointer to the userfaultfd context.
 114 *
 115 * Returns: In case of success, returns not zero.
 116 */
 117static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 118{
 119        if (!atomic_inc_not_zero(&ctx->refcount))
 120                BUG();
 121}
 122
 123/**
 124 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 125 * context.
 126 * @ctx: [in] Pointer to userfaultfd context.
 127 *
 128 * The userfaultfd context reference must have been previously acquired either
 129 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 130 */
 131static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 132{
 133        if (atomic_dec_and_test(&ctx->refcount)) {
 134                VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 135                VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 136                VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 137                VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 138                VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 139                VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 140                mmput(ctx->mm);
 141                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 142        }
 143}
 144
 145static inline void msg_init(struct uffd_msg *msg)
 146{
 147        BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 148        /*
 149         * Must use memset to zero out the paddings or kernel data is
 150         * leaked to userland.
 151         */
 152        memset(msg, 0, sizeof(struct uffd_msg));
 153}
 154
 155static inline struct uffd_msg userfault_msg(unsigned long address,
 156                                            unsigned int flags,
 157                                            unsigned long reason)
 158{
 159        struct uffd_msg msg;
 160        msg_init(&msg);
 161        msg.event = UFFD_EVENT_PAGEFAULT;
 162        msg.arg.pagefault.address = address;
 163        if (flags & FAULT_FLAG_WRITE)
 164                /*
 165                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
 166                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 167                 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 168                 * was a read fault, otherwise if set it means it's
 169                 * a write fault.
 170                 */
 171                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 172        if (reason & VM_UFFD_WP)
 173                /*
 174                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 175                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 176                 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 177                 * a missing fault, otherwise if set it means it's a
 178                 * write protect fault.
 179                 */
 180                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 181        return msg;
 182}
 183
 184/*
 185 * Verify the pagetables are still not ok after having reigstered into
 186 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 187 * userfault that has already been resolved, if userfaultfd_read and
 188 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 189 * threads.
 190 */
 191static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 192                                         unsigned long address,
 193                                         unsigned long flags,
 194                                         unsigned long reason)
 195{
 196        struct mm_struct *mm = ctx->mm;
 197        pgd_t *pgd;
 198        pud_t *pud;
 199        pmd_t *pmd, _pmd;
 200        pte_t *pte;
 201        bool ret = true;
 202
 203        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 204
 205        pgd = pgd_offset(mm, address);
 206        if (!pgd_present(*pgd))
 207                goto out;
 208        pud = pud_offset(pgd, address);
 209        if (!pud_present(*pud))
 210                goto out;
 211        pmd = pmd_offset(pud, address);
 212        /*
 213         * READ_ONCE must function as a barrier with narrower scope
 214         * and it must be equivalent to:
 215         *      _pmd = *pmd; barrier();
 216         *
 217         * This is to deal with the instability (as in
 218         * pmd_trans_unstable) of the pmd.
 219         */
 220        _pmd = READ_ONCE(*pmd);
 221        if (!pmd_present(_pmd))
 222                goto out;
 223
 224        ret = false;
 225        if (pmd_trans_huge(_pmd))
 226                goto out;
 227
 228        /*
 229         * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 230         * and use the standard pte_offset_map() instead of parsing _pmd.
 231         */
 232        pte = pte_offset_map(pmd, address);
 233        /*
 234         * Lockless access: we're in a wait_event so it's ok if it
 235         * changes under us.
 236         */
 237        if (pte_none(*pte))
 238                ret = true;
 239        pte_unmap(pte);
 240
 241out:
 242        return ret;
 243}
 244
 245/*
 246 * The locking rules involved in returning VM_FAULT_RETRY depending on
 247 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 248 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 249 * recommendation in __lock_page_or_retry is not an understatement.
 250 *
 251 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 252 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 253 * not set.
 254 *
 255 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 256 * set, VM_FAULT_RETRY can still be returned if and only if there are
 257 * fatal_signal_pending()s, and the mmap_sem must be released before
 258 * returning it.
 259 */
 260int handle_userfault(struct vm_area_struct *vma, unsigned long address,
 261                     unsigned int flags, unsigned long reason)
 262{
 263        struct mm_struct *mm = vma->vm_mm;
 264        struct userfaultfd_ctx *ctx;
 265        struct userfaultfd_wait_queue uwq;
 266        int ret;
 267        bool must_wait, return_to_userland;
 268
 269        BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 270
 271        ret = VM_FAULT_SIGBUS;
 272        ctx = vma->vm_userfaultfd_ctx.ctx;
 273        if (!ctx)
 274                goto out;
 275
 276        BUG_ON(ctx->mm != mm);
 277
 278        VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 279        VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 280
 281        /*
 282         * If it's already released don't get it. This avoids to loop
 283         * in __get_user_pages if userfaultfd_release waits on the
 284         * caller of handle_userfault to release the mmap_sem.
 285         */
 286        if (unlikely(ACCESS_ONCE(ctx->released)))
 287                goto out;
 288
 289        /*
 290         * Check that we can return VM_FAULT_RETRY.
 291         *
 292         * NOTE: it should become possible to return VM_FAULT_RETRY
 293         * even if FAULT_FLAG_TRIED is set without leading to gup()
 294         * -EBUSY failures, if the userfaultfd is to be extended for
 295         * VM_UFFD_WP tracking and we intend to arm the userfault
 296         * without first stopping userland access to the memory. For
 297         * VM_UFFD_MISSING userfaults this is enough for now.
 298         */
 299        if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
 300                /*
 301                 * Validate the invariant that nowait must allow retry
 302                 * to be sure not to return SIGBUS erroneously on
 303                 * nowait invocations.
 304                 */
 305                BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
 306#ifdef CONFIG_DEBUG_VM
 307                if (printk_ratelimit()) {
 308                        printk(KERN_WARNING
 309                               "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
 310                        dump_stack();
 311                }
 312#endif
 313                goto out;
 314        }
 315
 316        /*
 317         * Handle nowait, not much to do other than tell it to retry
 318         * and wait.
 319         */
 320        ret = VM_FAULT_RETRY;
 321        if (flags & FAULT_FLAG_RETRY_NOWAIT)
 322                goto out;
 323
 324        /* take the reference before dropping the mmap_sem */
 325        userfaultfd_ctx_get(ctx);
 326
 327        init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 328        uwq.wq.private = current;
 329        uwq.msg = userfault_msg(address, flags, reason);
 330        uwq.ctx = ctx;
 331
 332        return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
 333                (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
 334
 335        spin_lock(&ctx->fault_pending_wqh.lock);
 336        /*
 337         * After the __add_wait_queue the uwq is visible to userland
 338         * through poll/read().
 339         */
 340        __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 341        /*
 342         * The smp_mb() after __set_current_state prevents the reads
 343         * following the spin_unlock to happen before the list_add in
 344         * __add_wait_queue.
 345         */
 346        set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
 347                          TASK_KILLABLE);
 348        spin_unlock(&ctx->fault_pending_wqh.lock);
 349
 350        must_wait = userfaultfd_must_wait(ctx, address, flags, reason);
 351        up_read(&mm->mmap_sem);
 352
 353        if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
 354                   (return_to_userland ? !signal_pending(current) :
 355                    !fatal_signal_pending(current)))) {
 356                wake_up_poll(&ctx->fd_wqh, POLLIN);
 357                schedule();
 358                ret |= VM_FAULT_MAJOR;
 359        }
 360
 361        __set_current_state(TASK_RUNNING);
 362
 363        if (return_to_userland) {
 364                if (signal_pending(current) &&
 365                    !fatal_signal_pending(current)) {
 366                        /*
 367                         * If we got a SIGSTOP or SIGCONT and this is
 368                         * a normal userland page fault, just let
 369                         * userland return so the signal will be
 370                         * handled and gdb debugging works.  The page
 371                         * fault code immediately after we return from
 372                         * this function is going to release the
 373                         * mmap_sem and it's not depending on it
 374                         * (unlike gup would if we were not to return
 375                         * VM_FAULT_RETRY).
 376                         *
 377                         * If a fatal signal is pending we still take
 378                         * the streamlined VM_FAULT_RETRY failure path
 379                         * and there's no need to retake the mmap_sem
 380                         * in such case.
 381                         */
 382                        down_read(&mm->mmap_sem);
 383                        ret = 0;
 384                }
 385        }
 386
 387        /*
 388         * Here we race with the list_del; list_add in
 389         * userfaultfd_ctx_read(), however because we don't ever run
 390         * list_del_init() to refile across the two lists, the prev
 391         * and next pointers will never point to self. list_add also
 392         * would never let any of the two pointers to point to
 393         * self. So list_empty_careful won't risk to see both pointers
 394         * pointing to self at any time during the list refile. The
 395         * only case where list_del_init() is called is the full
 396         * removal in the wake function and there we don't re-list_add
 397         * and it's fine not to block on the spinlock. The uwq on this
 398         * kernel stack can be released after the list_del_init.
 399         */
 400        if (!list_empty_careful(&uwq.wq.task_list)) {
 401                spin_lock(&ctx->fault_pending_wqh.lock);
 402                /*
 403                 * No need of list_del_init(), the uwq on the stack
 404                 * will be freed shortly anyway.
 405                 */
 406                list_del(&uwq.wq.task_list);
 407                spin_unlock(&ctx->fault_pending_wqh.lock);
 408        }
 409
 410        /*
 411         * ctx may go away after this if the userfault pseudo fd is
 412         * already released.
 413         */
 414        userfaultfd_ctx_put(ctx);
 415
 416out:
 417        return ret;
 418}
 419
 420static int userfaultfd_release(struct inode *inode, struct file *file)
 421{
 422        struct userfaultfd_ctx *ctx = file->private_data;
 423        struct mm_struct *mm = ctx->mm;
 424        struct vm_area_struct *vma, *prev;
 425        /* len == 0 means wake all */
 426        struct userfaultfd_wake_range range = { .len = 0, };
 427        unsigned long new_flags;
 428
 429        ACCESS_ONCE(ctx->released) = true;
 430
 431        /*
 432         * Flush page faults out of all CPUs. NOTE: all page faults
 433         * must be retried without returning VM_FAULT_SIGBUS if
 434         * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 435         * changes while handle_userfault released the mmap_sem. So
 436         * it's critical that released is set to true (above), before
 437         * taking the mmap_sem for writing.
 438         */
 439        down_write(&mm->mmap_sem);
 440        prev = NULL;
 441        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 442                cond_resched();
 443                BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 444                       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 445                if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 446                        prev = vma;
 447                        continue;
 448                }
 449                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 450                prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 451                                 new_flags, vma->anon_vma,
 452                                 vma->vm_file, vma->vm_pgoff,
 453                                 vma_policy(vma),
 454                                 NULL_VM_UFFD_CTX);
 455                if (prev)
 456                        vma = prev;
 457                else
 458                        prev = vma;
 459                vma->vm_flags = new_flags;
 460                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 461        }
 462        up_write(&mm->mmap_sem);
 463
 464        /*
 465         * After no new page faults can wait on this fault_*wqh, flush
 466         * the last page faults that may have been already waiting on
 467         * the fault_*wqh.
 468         */
 469        spin_lock(&ctx->fault_pending_wqh.lock);
 470        __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 471        __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 472        spin_unlock(&ctx->fault_pending_wqh.lock);
 473
 474        wake_up_poll(&ctx->fd_wqh, POLLHUP);
 475        userfaultfd_ctx_put(ctx);
 476        return 0;
 477}
 478
 479/* fault_pending_wqh.lock must be hold by the caller */
 480static inline struct userfaultfd_wait_queue *find_userfault(
 481        struct userfaultfd_ctx *ctx)
 482{
 483        wait_queue_t *wq;
 484        struct userfaultfd_wait_queue *uwq;
 485
 486        VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
 487
 488        uwq = NULL;
 489        if (!waitqueue_active(&ctx->fault_pending_wqh))
 490                goto out;
 491        /* walk in reverse to provide FIFO behavior to read userfaults */
 492        wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
 493                             typeof(*wq), task_list);
 494        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 495out:
 496        return uwq;
 497}
 498
 499static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
 500{
 501        struct userfaultfd_ctx *ctx = file->private_data;
 502        unsigned int ret;
 503
 504        poll_wait(file, &ctx->fd_wqh, wait);
 505
 506        switch (ctx->state) {
 507        case UFFD_STATE_WAIT_API:
 508                return POLLERR;
 509        case UFFD_STATE_RUNNING:
 510                /*
 511                 * poll() never guarantees that read won't block.
 512                 * userfaults can be waken before they're read().
 513                 */
 514                if (unlikely(!(file->f_flags & O_NONBLOCK)))
 515                        return POLLERR;
 516                /*
 517                 * lockless access to see if there are pending faults
 518                 * __pollwait last action is the add_wait_queue but
 519                 * the spin_unlock would allow the waitqueue_active to
 520                 * pass above the actual list_add inside
 521                 * add_wait_queue critical section. So use a full
 522                 * memory barrier to serialize the list_add write of
 523                 * add_wait_queue() with the waitqueue_active read
 524                 * below.
 525                 */
 526                ret = 0;
 527                smp_mb();
 528                if (waitqueue_active(&ctx->fault_pending_wqh))
 529                        ret = POLLIN;
 530                return ret;
 531        default:
 532                BUG();
 533        }
 534}
 535
 536static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 537                                    struct uffd_msg *msg)
 538{
 539        ssize_t ret;
 540        DECLARE_WAITQUEUE(wait, current);
 541        struct userfaultfd_wait_queue *uwq;
 542
 543        /* always take the fd_wqh lock before the fault_pending_wqh lock */
 544        spin_lock(&ctx->fd_wqh.lock);
 545        __add_wait_queue(&ctx->fd_wqh, &wait);
 546        for (;;) {
 547                set_current_state(TASK_INTERRUPTIBLE);
 548                spin_lock(&ctx->fault_pending_wqh.lock);
 549                uwq = find_userfault(ctx);
 550                if (uwq) {
 551                        /*
 552                         * Use a seqcount to repeat the lockless check
 553                         * in wake_userfault() to avoid missing
 554                         * wakeups because during the refile both
 555                         * waitqueue could become empty if this is the
 556                         * only userfault.
 557                         */
 558                        write_seqcount_begin(&ctx->refile_seq);
 559
 560                        /*
 561                         * The fault_pending_wqh.lock prevents the uwq
 562                         * to disappear from under us.
 563                         *
 564                         * Refile this userfault from
 565                         * fault_pending_wqh to fault_wqh, it's not
 566                         * pending anymore after we read it.
 567                         *
 568                         * Use list_del() by hand (as
 569                         * userfaultfd_wake_function also uses
 570                         * list_del_init() by hand) to be sure nobody
 571                         * changes __remove_wait_queue() to use
 572                         * list_del_init() in turn breaking the
 573                         * !list_empty_careful() check in
 574                         * handle_userfault(). The uwq->wq.task_list
 575                         * must never be empty at any time during the
 576                         * refile, or the waitqueue could disappear
 577                         * from under us. The "wait_queue_head_t"
 578                         * parameter of __remove_wait_queue() is unused
 579                         * anyway.
 580                         */
 581                        list_del(&uwq->wq.task_list);
 582                        __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
 583
 584                        write_seqcount_end(&ctx->refile_seq);
 585
 586                        /* careful to always initialize msg if ret == 0 */
 587                        *msg = uwq->msg;
 588                        spin_unlock(&ctx->fault_pending_wqh.lock);
 589                        ret = 0;
 590                        break;
 591                }
 592                spin_unlock(&ctx->fault_pending_wqh.lock);
 593                if (signal_pending(current)) {
 594                        ret = -ERESTARTSYS;
 595                        break;
 596                }
 597                if (no_wait) {
 598                        ret = -EAGAIN;
 599                        break;
 600                }
 601                spin_unlock(&ctx->fd_wqh.lock);
 602                schedule();
 603                spin_lock(&ctx->fd_wqh.lock);
 604        }
 605        __remove_wait_queue(&ctx->fd_wqh, &wait);
 606        __set_current_state(TASK_RUNNING);
 607        spin_unlock(&ctx->fd_wqh.lock);
 608
 609        return ret;
 610}
 611
 612static ssize_t userfaultfd_read(struct file *file, char __user *buf,
 613                                size_t count, loff_t *ppos)
 614{
 615        struct userfaultfd_ctx *ctx = file->private_data;
 616        ssize_t _ret, ret = 0;
 617        struct uffd_msg msg;
 618        int no_wait = file->f_flags & O_NONBLOCK;
 619
 620        if (ctx->state == UFFD_STATE_WAIT_API)
 621                return -EINVAL;
 622
 623        for (;;) {
 624                if (count < sizeof(msg))
 625                        return ret ? ret : -EINVAL;
 626                _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
 627                if (_ret < 0)
 628                        return ret ? ret : _ret;
 629                if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
 630                        return ret ? ret : -EFAULT;
 631                ret += sizeof(msg);
 632                buf += sizeof(msg);
 633                count -= sizeof(msg);
 634                /*
 635                 * Allow to read more than one fault at time but only
 636                 * block if waiting for the very first one.
 637                 */
 638                no_wait = O_NONBLOCK;
 639        }
 640}
 641
 642static void __wake_userfault(struct userfaultfd_ctx *ctx,
 643                             struct userfaultfd_wake_range *range)
 644{
 645        unsigned long start, end;
 646
 647        start = range->start;
 648        end = range->start + range->len;
 649
 650        spin_lock(&ctx->fault_pending_wqh.lock);
 651        /* wake all in the range and autoremove */
 652        if (waitqueue_active(&ctx->fault_pending_wqh))
 653                __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
 654                                     range);
 655        if (waitqueue_active(&ctx->fault_wqh))
 656                __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
 657        spin_unlock(&ctx->fault_pending_wqh.lock);
 658}
 659
 660static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
 661                                           struct userfaultfd_wake_range *range)
 662{
 663        unsigned seq;
 664        bool need_wakeup;
 665
 666        /*
 667         * To be sure waitqueue_active() is not reordered by the CPU
 668         * before the pagetable update, use an explicit SMP memory
 669         * barrier here. PT lock release or up_read(mmap_sem) still
 670         * have release semantics that can allow the
 671         * waitqueue_active() to be reordered before the pte update.
 672         */
 673        smp_mb();
 674
 675        /*
 676         * Use waitqueue_active because it's very frequent to
 677         * change the address space atomically even if there are no
 678         * userfaults yet. So we take the spinlock only when we're
 679         * sure we've userfaults to wake.
 680         */
 681        do {
 682                seq = read_seqcount_begin(&ctx->refile_seq);
 683                need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
 684                        waitqueue_active(&ctx->fault_wqh);
 685                cond_resched();
 686        } while (read_seqcount_retry(&ctx->refile_seq, seq));
 687        if (need_wakeup)
 688                __wake_userfault(ctx, range);
 689}
 690
 691static __always_inline int validate_range(struct mm_struct *mm,
 692                                          __u64 start, __u64 len)
 693{
 694        __u64 task_size = mm->task_size;
 695
 696        if (start & ~PAGE_MASK)
 697                return -EINVAL;
 698        if (len & ~PAGE_MASK)
 699                return -EINVAL;
 700        if (!len)
 701                return -EINVAL;
 702        if (start < mmap_min_addr)
 703                return -EINVAL;
 704        if (start >= task_size)
 705                return -EINVAL;
 706        if (len > task_size - start)
 707                return -EINVAL;
 708        return 0;
 709}
 710
 711static int userfaultfd_register(struct userfaultfd_ctx *ctx,
 712                                unsigned long arg)
 713{
 714        struct mm_struct *mm = ctx->mm;
 715        struct vm_area_struct *vma, *prev, *cur;
 716        int ret;
 717        struct uffdio_register uffdio_register;
 718        struct uffdio_register __user *user_uffdio_register;
 719        unsigned long vm_flags, new_flags;
 720        bool found;
 721        unsigned long start, end, vma_end;
 722
 723        user_uffdio_register = (struct uffdio_register __user *) arg;
 724
 725        ret = -EFAULT;
 726        if (copy_from_user(&uffdio_register, user_uffdio_register,
 727                           sizeof(uffdio_register)-sizeof(__u64)))
 728                goto out;
 729
 730        ret = -EINVAL;
 731        if (!uffdio_register.mode)
 732                goto out;
 733        if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
 734                                     UFFDIO_REGISTER_MODE_WP))
 735                goto out;
 736        vm_flags = 0;
 737        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
 738                vm_flags |= VM_UFFD_MISSING;
 739        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
 740                vm_flags |= VM_UFFD_WP;
 741                /*
 742                 * FIXME: remove the below error constraint by
 743                 * implementing the wprotect tracking mode.
 744                 */
 745                ret = -EINVAL;
 746                goto out;
 747        }
 748
 749        ret = validate_range(mm, uffdio_register.range.start,
 750                             uffdio_register.range.len);
 751        if (ret)
 752                goto out;
 753
 754        start = uffdio_register.range.start;
 755        end = start + uffdio_register.range.len;
 756
 757        down_write(&mm->mmap_sem);
 758        vma = find_vma_prev(mm, start, &prev);
 759
 760        ret = -ENOMEM;
 761        if (!vma)
 762                goto out_unlock;
 763
 764        /* check that there's at least one vma in the range */
 765        ret = -EINVAL;
 766        if (vma->vm_start >= end)
 767                goto out_unlock;
 768
 769        /*
 770         * Search for not compatible vmas.
 771         *
 772         * FIXME: this shall be relaxed later so that it doesn't fail
 773         * on tmpfs backed vmas (in addition to the current allowance
 774         * on anonymous vmas).
 775         */
 776        found = false;
 777        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 778                cond_resched();
 779
 780                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 781                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 782
 783                /* check not compatible vmas */
 784                ret = -EINVAL;
 785                if (cur->vm_ops)
 786                        goto out_unlock;
 787
 788                /*
 789                 * Check that this vma isn't already owned by a
 790                 * different userfaultfd. We can't allow more than one
 791                 * userfaultfd to own a single vma simultaneously or we
 792                 * wouldn't know which one to deliver the userfaults to.
 793                 */
 794                ret = -EBUSY;
 795                if (cur->vm_userfaultfd_ctx.ctx &&
 796                    cur->vm_userfaultfd_ctx.ctx != ctx)
 797                        goto out_unlock;
 798
 799                found = true;
 800        }
 801        BUG_ON(!found);
 802
 803        if (vma->vm_start < start)
 804                prev = vma;
 805
 806        ret = 0;
 807        do {
 808                cond_resched();
 809
 810                BUG_ON(vma->vm_ops);
 811                BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
 812                       vma->vm_userfaultfd_ctx.ctx != ctx);
 813
 814                /*
 815                 * Nothing to do: this vma is already registered into this
 816                 * userfaultfd and with the right tracking mode too.
 817                 */
 818                if (vma->vm_userfaultfd_ctx.ctx == ctx &&
 819                    (vma->vm_flags & vm_flags) == vm_flags)
 820                        goto skip;
 821
 822                if (vma->vm_start > start)
 823                        start = vma->vm_start;
 824                vma_end = min(end, vma->vm_end);
 825
 826                new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
 827                prev = vma_merge(mm, prev, start, vma_end, new_flags,
 828                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 829                                 vma_policy(vma),
 830                                 ((struct vm_userfaultfd_ctx){ ctx }));
 831                if (prev) {
 832                        vma = prev;
 833                        goto next;
 834                }
 835                if (vma->vm_start < start) {
 836                        ret = split_vma(mm, vma, start, 1);
 837                        if (ret)
 838                                break;
 839                }
 840                if (vma->vm_end > end) {
 841                        ret = split_vma(mm, vma, end, 0);
 842                        if (ret)
 843                                break;
 844                }
 845        next:
 846                /*
 847                 * In the vma_merge() successful mprotect-like case 8:
 848                 * the next vma was merged into the current one and
 849                 * the current one has not been updated yet.
 850                 */
 851                vma->vm_flags = new_flags;
 852                vma->vm_userfaultfd_ctx.ctx = ctx;
 853
 854        skip:
 855                prev = vma;
 856                start = vma->vm_end;
 857                vma = vma->vm_next;
 858        } while (vma && vma->vm_start < end);
 859out_unlock:
 860        up_write(&mm->mmap_sem);
 861        if (!ret) {
 862                /*
 863                 * Now that we scanned all vmas we can already tell
 864                 * userland which ioctls methods are guaranteed to
 865                 * succeed on this range.
 866                 */
 867                if (put_user(UFFD_API_RANGE_IOCTLS,
 868                             &user_uffdio_register->ioctls))
 869                        ret = -EFAULT;
 870        }
 871out:
 872        return ret;
 873}
 874
 875static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
 876                                  unsigned long arg)
 877{
 878        struct mm_struct *mm = ctx->mm;
 879        struct vm_area_struct *vma, *prev, *cur;
 880        int ret;
 881        struct uffdio_range uffdio_unregister;
 882        unsigned long new_flags;
 883        bool found;
 884        unsigned long start, end, vma_end;
 885        const void __user *buf = (void __user *)arg;
 886
 887        ret = -EFAULT;
 888        if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
 889                goto out;
 890
 891        ret = validate_range(mm, uffdio_unregister.start,
 892                             uffdio_unregister.len);
 893        if (ret)
 894                goto out;
 895
 896        start = uffdio_unregister.start;
 897        end = start + uffdio_unregister.len;
 898
 899        down_write(&mm->mmap_sem);
 900        vma = find_vma_prev(mm, start, &prev);
 901
 902        ret = -ENOMEM;
 903        if (!vma)
 904                goto out_unlock;
 905
 906        /* check that there's at least one vma in the range */
 907        ret = -EINVAL;
 908        if (vma->vm_start >= end)
 909                goto out_unlock;
 910
 911        /*
 912         * Search for not compatible vmas.
 913         *
 914         * FIXME: this shall be relaxed later so that it doesn't fail
 915         * on tmpfs backed vmas (in addition to the current allowance
 916         * on anonymous vmas).
 917         */
 918        found = false;
 919        ret = -EINVAL;
 920        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 921                cond_resched();
 922
 923                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 924                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 925
 926                /*
 927                 * Check not compatible vmas, not strictly required
 928                 * here as not compatible vmas cannot have an
 929                 * userfaultfd_ctx registered on them, but this
 930                 * provides for more strict behavior to notice
 931                 * unregistration errors.
 932                 */
 933                if (cur->vm_ops)
 934                        goto out_unlock;
 935
 936                found = true;
 937        }
 938        BUG_ON(!found);
 939
 940        if (vma->vm_start < start)
 941                prev = vma;
 942
 943        ret = 0;
 944        do {
 945                cond_resched();
 946
 947                BUG_ON(vma->vm_ops);
 948
 949                /*
 950                 * Nothing to do: this vma is already registered into this
 951                 * userfaultfd and with the right tracking mode too.
 952                 */
 953                if (!vma->vm_userfaultfd_ctx.ctx)
 954                        goto skip;
 955
 956                if (vma->vm_start > start)
 957                        start = vma->vm_start;
 958                vma_end = min(end, vma->vm_end);
 959
 960                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 961                prev = vma_merge(mm, prev, start, vma_end, new_flags,
 962                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 963                                 vma_policy(vma),
 964                                 NULL_VM_UFFD_CTX);
 965                if (prev) {
 966                        vma = prev;
 967                        goto next;
 968                }
 969                if (vma->vm_start < start) {
 970                        ret = split_vma(mm, vma, start, 1);
 971                        if (ret)
 972                                break;
 973                }
 974                if (vma->vm_end > end) {
 975                        ret = split_vma(mm, vma, end, 0);
 976                        if (ret)
 977                                break;
 978                }
 979        next:
 980                /*
 981                 * In the vma_merge() successful mprotect-like case 8:
 982                 * the next vma was merged into the current one and
 983                 * the current one has not been updated yet.
 984                 */
 985                vma->vm_flags = new_flags;
 986                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 987
 988        skip:
 989                prev = vma;
 990                start = vma->vm_end;
 991                vma = vma->vm_next;
 992        } while (vma && vma->vm_start < end);
 993out_unlock:
 994        up_write(&mm->mmap_sem);
 995out:
 996        return ret;
 997}
 998
 999/*
1000 * userfaultfd_wake may be used in combination with the
1001 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1002 */
1003static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1004                            unsigned long arg)
1005{
1006        int ret;
1007        struct uffdio_range uffdio_wake;
1008        struct userfaultfd_wake_range range;
1009        const void __user *buf = (void __user *)arg;
1010
1011        ret = -EFAULT;
1012        if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1013                goto out;
1014
1015        ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1016        if (ret)
1017                goto out;
1018
1019        range.start = uffdio_wake.start;
1020        range.len = uffdio_wake.len;
1021
1022        /*
1023         * len == 0 means wake all and we don't want to wake all here,
1024         * so check it again to be sure.
1025         */
1026        VM_BUG_ON(!range.len);
1027
1028        wake_userfault(ctx, &range);
1029        ret = 0;
1030
1031out:
1032        return ret;
1033}
1034
1035static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1036                            unsigned long arg)
1037{
1038        __s64 ret;
1039        struct uffdio_copy uffdio_copy;
1040        struct uffdio_copy __user *user_uffdio_copy;
1041        struct userfaultfd_wake_range range;
1042
1043        user_uffdio_copy = (struct uffdio_copy __user *) arg;
1044
1045        ret = -EFAULT;
1046        if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1047                           /* don't copy "copy" last field */
1048                           sizeof(uffdio_copy)-sizeof(__s64)))
1049                goto out;
1050
1051        ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1052        if (ret)
1053                goto out;
1054        /*
1055         * double check for wraparound just in case. copy_from_user()
1056         * will later check uffdio_copy.src + uffdio_copy.len to fit
1057         * in the userland range.
1058         */
1059        ret = -EINVAL;
1060        if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1061                goto out;
1062        if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1063                goto out;
1064
1065        ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1066                           uffdio_copy.len);
1067        if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1068                return -EFAULT;
1069        if (ret < 0)
1070                goto out;
1071        BUG_ON(!ret);
1072        /* len == 0 would wake all */
1073        range.len = ret;
1074        if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1075                range.start = uffdio_copy.dst;
1076                wake_userfault(ctx, &range);
1077        }
1078        ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1079out:
1080        return ret;
1081}
1082
1083static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1084                                unsigned long arg)
1085{
1086        __s64 ret;
1087        struct uffdio_zeropage uffdio_zeropage;
1088        struct uffdio_zeropage __user *user_uffdio_zeropage;
1089        struct userfaultfd_wake_range range;
1090
1091        user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1092
1093        ret = -EFAULT;
1094        if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1095                           /* don't copy "zeropage" last field */
1096                           sizeof(uffdio_zeropage)-sizeof(__s64)))
1097                goto out;
1098
1099        ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1100                             uffdio_zeropage.range.len);
1101        if (ret)
1102                goto out;
1103        ret = -EINVAL;
1104        if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1105                goto out;
1106
1107        ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1108                             uffdio_zeropage.range.len);
1109        if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1110                return -EFAULT;
1111        if (ret < 0)
1112                goto out;
1113        /* len == 0 would wake all */
1114        BUG_ON(!ret);
1115        range.len = ret;
1116        if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1117                range.start = uffdio_zeropage.range.start;
1118                wake_userfault(ctx, &range);
1119        }
1120        ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1121out:
1122        return ret;
1123}
1124
1125/*
1126 * userland asks for a certain API version and we return which bits
1127 * and ioctl commands are implemented in this kernel for such API
1128 * version or -EINVAL if unknown.
1129 */
1130static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1131                           unsigned long arg)
1132{
1133        struct uffdio_api uffdio_api;
1134        void __user *buf = (void __user *)arg;
1135        int ret;
1136
1137        ret = -EINVAL;
1138        if (ctx->state != UFFD_STATE_WAIT_API)
1139                goto out;
1140        ret = -EFAULT;
1141        if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1142                goto out;
1143        if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1144                memset(&uffdio_api, 0, sizeof(uffdio_api));
1145                if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1146                        goto out;
1147                ret = -EINVAL;
1148                goto out;
1149        }
1150        uffdio_api.features = UFFD_API_FEATURES;
1151        uffdio_api.ioctls = UFFD_API_IOCTLS;
1152        ret = -EFAULT;
1153        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1154                goto out;
1155        ctx->state = UFFD_STATE_RUNNING;
1156        ret = 0;
1157out:
1158        return ret;
1159}
1160
1161static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1162                              unsigned long arg)
1163{
1164        int ret = -EINVAL;
1165        struct userfaultfd_ctx *ctx = file->private_data;
1166
1167        if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1168                return -EINVAL;
1169
1170        switch(cmd) {
1171        case UFFDIO_API:
1172                ret = userfaultfd_api(ctx, arg);
1173                break;
1174        case UFFDIO_REGISTER:
1175                ret = userfaultfd_register(ctx, arg);
1176                break;
1177        case UFFDIO_UNREGISTER:
1178                ret = userfaultfd_unregister(ctx, arg);
1179                break;
1180        case UFFDIO_WAKE:
1181                ret = userfaultfd_wake(ctx, arg);
1182                break;
1183        case UFFDIO_COPY:
1184                ret = userfaultfd_copy(ctx, arg);
1185                break;
1186        case UFFDIO_ZEROPAGE:
1187                ret = userfaultfd_zeropage(ctx, arg);
1188                break;
1189        }
1190        return ret;
1191}
1192
1193#ifdef CONFIG_PROC_FS
1194static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1195{
1196        struct userfaultfd_ctx *ctx = f->private_data;
1197        wait_queue_t *wq;
1198        struct userfaultfd_wait_queue *uwq;
1199        unsigned long pending = 0, total = 0;
1200
1201        spin_lock(&ctx->fault_pending_wqh.lock);
1202        list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1203                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1204                pending++;
1205                total++;
1206        }
1207        list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1208                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1209                total++;
1210        }
1211        spin_unlock(&ctx->fault_pending_wqh.lock);
1212
1213        /*
1214         * If more protocols will be added, there will be all shown
1215         * separated by a space. Like this:
1216         *      protocols: aa:... bb:...
1217         */
1218        seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1219                   pending, total, UFFD_API, UFFD_API_FEATURES,
1220                   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1221}
1222#endif
1223
1224static const struct file_operations userfaultfd_fops = {
1225#ifdef CONFIG_PROC_FS
1226        .show_fdinfo    = userfaultfd_show_fdinfo,
1227#endif
1228        .release        = userfaultfd_release,
1229        .poll           = userfaultfd_poll,
1230        .read           = userfaultfd_read,
1231        .unlocked_ioctl = userfaultfd_ioctl,
1232        .compat_ioctl   = userfaultfd_ioctl,
1233        .llseek         = noop_llseek,
1234};
1235
1236static void init_once_userfaultfd_ctx(void *mem)
1237{
1238        struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1239
1240        init_waitqueue_head(&ctx->fault_pending_wqh);
1241        init_waitqueue_head(&ctx->fault_wqh);
1242        init_waitqueue_head(&ctx->fd_wqh);
1243        seqcount_init(&ctx->refile_seq);
1244}
1245
1246/**
1247 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1248 * @flags: Flags for the userfaultfd file.
1249 *
1250 * This function creates an userfaultfd file pointer, w/out installing
1251 * it into the fd table. This is useful when the userfaultfd file is
1252 * used during the initialization of data structures that require
1253 * extra setup after the userfaultfd creation. So the userfaultfd
1254 * creation is split into the file pointer creation phase, and the
1255 * file descriptor installation phase.  In this way races with
1256 * userspace closing the newly installed file descriptor can be
1257 * avoided.  Returns an userfaultfd file pointer, or a proper error
1258 * pointer.
1259 */
1260static struct file *userfaultfd_file_create(int flags)
1261{
1262        struct file *file;
1263        struct userfaultfd_ctx *ctx;
1264
1265        BUG_ON(!current->mm);
1266
1267        /* Check the UFFD_* constants for consistency.  */
1268        BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1269        BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1270
1271        file = ERR_PTR(-EINVAL);
1272        if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1273                goto out;
1274
1275        file = ERR_PTR(-ENOMEM);
1276        ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1277        if (!ctx)
1278                goto out;
1279
1280        atomic_set(&ctx->refcount, 1);
1281        ctx->flags = flags;
1282        ctx->state = UFFD_STATE_WAIT_API;
1283        ctx->released = false;
1284        ctx->mm = current->mm;
1285        /* prevent the mm struct to be freed */
1286        atomic_inc(&ctx->mm->mm_users);
1287
1288        file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1289                                  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1290        if (IS_ERR(file)) {
1291                mmput(ctx->mm);
1292                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1293        }
1294out:
1295        return file;
1296}
1297
1298SYSCALL_DEFINE1(userfaultfd, int, flags)
1299{
1300        int fd, error;
1301        struct file *file;
1302
1303        error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1304        if (error < 0)
1305                return error;
1306        fd = error;
1307
1308        file = userfaultfd_file_create(flags);
1309        if (IS_ERR(file)) {
1310                error = PTR_ERR(file);
1311                goto err_put_unused_fd;
1312        }
1313        fd_install(fd, file);
1314
1315        return fd;
1316
1317err_put_unused_fd:
1318        put_unused_fd(fd);
1319
1320        return error;
1321}
1322
1323static int __init userfaultfd_init(void)
1324{
1325        userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1326                                                sizeof(struct userfaultfd_ctx),
1327                                                0,
1328                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1329                                                init_once_userfaultfd_ctx);
1330        return 0;
1331}
1332__initcall(userfaultfd_init);
1333