linux/include/crypto/hash.h
<<
>>
Prefs
   1/*
   2 * Hash: Hash algorithms under the crypto API
   3 * 
   4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_HASH_H
  14#define _CRYPTO_HASH_H
  15
  16#include <linux/crypto.h>
  17
  18struct crypto_ahash;
  19
  20/**
  21 * DOC: Message Digest Algorithm Definitions
  22 *
  23 * These data structures define modular message digest algorithm
  24 * implementations, managed via crypto_register_ahash(),
  25 * crypto_register_shash(), crypto_unregister_ahash() and
  26 * crypto_unregister_shash().
  27 */
  28
  29/**
  30 * struct hash_alg_common - define properties of message digest
  31 * @digestsize: Size of the result of the transformation. A buffer of this size
  32 *              must be available to the @final and @finup calls, so they can
  33 *              store the resulting hash into it. For various predefined sizes,
  34 *              search include/crypto/ using
  35 *              git grep _DIGEST_SIZE include/crypto.
  36 * @statesize: Size of the block for partial state of the transformation. A
  37 *             buffer of this size must be passed to the @export function as it
  38 *             will save the partial state of the transformation into it. On the
  39 *             other side, the @import function will load the state from a
  40 *             buffer of this size as well.
  41 * @base: Start of data structure of cipher algorithm. The common data
  42 *        structure of crypto_alg contains information common to all ciphers.
  43 *        The hash_alg_common data structure now adds the hash-specific
  44 *        information.
  45 */
  46struct hash_alg_common {
  47        unsigned int digestsize;
  48        unsigned int statesize;
  49
  50        struct crypto_alg base;
  51};
  52
  53struct ahash_request {
  54        struct crypto_async_request base;
  55
  56        unsigned int nbytes;
  57        struct scatterlist *src;
  58        u8 *result;
  59
  60        /* This field may only be used by the ahash API code. */
  61        void *priv;
  62
  63        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  64};
  65
  66#define AHASH_REQUEST_ON_STACK(name, ahash) \
  67        char __##name##_desc[sizeof(struct ahash_request) + \
  68                crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
  69        struct ahash_request *name = (void *)__##name##_desc
  70
  71/**
  72 * struct ahash_alg - asynchronous message digest definition
  73 * @init: Initialize the transformation context. Intended only to initialize the
  74 *        state of the HASH transformation at the beginning. This shall fill in
  75 *        the internal structures used during the entire duration of the whole
  76 *        transformation. No data processing happens at this point.
  77 * @update: Push a chunk of data into the driver for transformation. This
  78 *         function actually pushes blocks of data from upper layers into the
  79 *         driver, which then passes those to the hardware as seen fit. This
  80 *         function must not finalize the HASH transformation by calculating the
  81 *         final message digest as this only adds more data into the
  82 *         transformation. This function shall not modify the transformation
  83 *         context, as this function may be called in parallel with the same
  84 *         transformation object. Data processing can happen synchronously
  85 *         [SHASH] or asynchronously [AHASH] at this point.
  86 * @final: Retrieve result from the driver. This function finalizes the
  87 *         transformation and retrieves the resulting hash from the driver and
  88 *         pushes it back to upper layers. No data processing happens at this
  89 *         point.
  90 * @finup: Combination of @update and @final. This function is effectively a
  91 *         combination of @update and @final calls issued in sequence. As some
  92 *         hardware cannot do @update and @final separately, this callback was
  93 *         added to allow such hardware to be used at least by IPsec. Data
  94 *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
  95 *         at this point.
  96 * @digest: Combination of @init and @update and @final. This function
  97 *          effectively behaves as the entire chain of operations, @init,
  98 *          @update and @final issued in sequence. Just like @finup, this was
  99 *          added for hardware which cannot do even the @finup, but can only do
 100 *          the whole transformation in one run. Data processing can happen
 101 *          synchronously [SHASH] or asynchronously [AHASH] at this point.
 102 * @setkey: Set optional key used by the hashing algorithm. Intended to push
 103 *          optional key used by the hashing algorithm from upper layers into
 104 *          the driver. This function can store the key in the transformation
 105 *          context or can outright program it into the hardware. In the former
 106 *          case, one must be careful to program the key into the hardware at
 107 *          appropriate time and one must be careful that .setkey() can be
 108 *          called multiple times during the existence of the transformation
 109 *          object. Not  all hashing algorithms do implement this function as it
 110 *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
 111 *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
 112 *          this function. This function must be called before any other of the
 113 *          @init, @update, @final, @finup, @digest is called. No data
 114 *          processing happens at this point.
 115 * @export: Export partial state of the transformation. This function dumps the
 116 *          entire state of the ongoing transformation into a provided block of
 117 *          data so it can be @import 'ed back later on. This is useful in case
 118 *          you want to save partial result of the transformation after
 119 *          processing certain amount of data and reload this partial result
 120 *          multiple times later on for multiple re-use. No data processing
 121 *          happens at this point.
 122 * @import: Import partial state of the transformation. This function loads the
 123 *          entire state of the ongoing transformation from a provided block of
 124 *          data so the transformation can continue from this point onward. No
 125 *          data processing happens at this point.
 126 * @halg: see struct hash_alg_common
 127 */
 128struct ahash_alg {
 129        int (*init)(struct ahash_request *req);
 130        int (*update)(struct ahash_request *req);
 131        int (*final)(struct ahash_request *req);
 132        int (*finup)(struct ahash_request *req);
 133        int (*digest)(struct ahash_request *req);
 134        int (*export)(struct ahash_request *req, void *out);
 135        int (*import)(struct ahash_request *req, const void *in);
 136        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 137                      unsigned int keylen);
 138
 139        struct hash_alg_common halg;
 140};
 141
 142struct shash_desc {
 143        struct crypto_shash *tfm;
 144        u32 flags;
 145
 146        void *__ctx[] CRYPTO_MINALIGN_ATTR;
 147};
 148
 149#define SHASH_DESC_ON_STACK(shash, ctx)                           \
 150        char __##shash##_desc[sizeof(struct shash_desc) +         \
 151                crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
 152        struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
 153
 154/**
 155 * struct shash_alg - synchronous message digest definition
 156 * @init: see struct ahash_alg
 157 * @update: see struct ahash_alg
 158 * @final: see struct ahash_alg
 159 * @finup: see struct ahash_alg
 160 * @digest: see struct ahash_alg
 161 * @export: see struct ahash_alg
 162 * @import: see struct ahash_alg
 163 * @setkey: see struct ahash_alg
 164 * @digestsize: see struct ahash_alg
 165 * @statesize: see struct ahash_alg
 166 * @descsize: Size of the operational state for the message digest. This state
 167 *            size is the memory size that needs to be allocated for
 168 *            shash_desc.__ctx
 169 * @base: internally used
 170 */
 171struct shash_alg {
 172        int (*init)(struct shash_desc *desc);
 173        int (*update)(struct shash_desc *desc, const u8 *data,
 174                      unsigned int len);
 175        int (*final)(struct shash_desc *desc, u8 *out);
 176        int (*finup)(struct shash_desc *desc, const u8 *data,
 177                     unsigned int len, u8 *out);
 178        int (*digest)(struct shash_desc *desc, const u8 *data,
 179                      unsigned int len, u8 *out);
 180        int (*export)(struct shash_desc *desc, void *out);
 181        int (*import)(struct shash_desc *desc, const void *in);
 182        int (*setkey)(struct crypto_shash *tfm, const u8 *key,
 183                      unsigned int keylen);
 184
 185        unsigned int descsize;
 186
 187        /* These fields must match hash_alg_common. */
 188        unsigned int digestsize
 189                __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
 190        unsigned int statesize;
 191
 192        struct crypto_alg base;
 193};
 194
 195struct crypto_ahash {
 196        int (*init)(struct ahash_request *req);
 197        int (*update)(struct ahash_request *req);
 198        int (*final)(struct ahash_request *req);
 199        int (*finup)(struct ahash_request *req);
 200        int (*digest)(struct ahash_request *req);
 201        int (*export)(struct ahash_request *req, void *out);
 202        int (*import)(struct ahash_request *req, const void *in);
 203        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 204                      unsigned int keylen);
 205
 206        unsigned int reqsize;
 207        struct crypto_tfm base;
 208};
 209
 210struct crypto_shash {
 211        unsigned int descsize;
 212        struct crypto_tfm base;
 213};
 214
 215/**
 216 * DOC: Asynchronous Message Digest API
 217 *
 218 * The asynchronous message digest API is used with the ciphers of type
 219 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
 220 *
 221 * The asynchronous cipher operation discussion provided for the
 222 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
 223 */
 224
 225static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
 226{
 227        return container_of(tfm, struct crypto_ahash, base);
 228}
 229
 230/**
 231 * crypto_alloc_ahash() - allocate ahash cipher handle
 232 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 233 *            ahash cipher
 234 * @type: specifies the type of the cipher
 235 * @mask: specifies the mask for the cipher
 236 *
 237 * Allocate a cipher handle for an ahash. The returned struct
 238 * crypto_ahash is the cipher handle that is required for any subsequent
 239 * API invocation for that ahash.
 240 *
 241 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 242 *         of an error, PTR_ERR() returns the error code.
 243 */
 244struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
 245                                        u32 mask);
 246
 247static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
 248{
 249        return &tfm->base;
 250}
 251
 252/**
 253 * crypto_free_ahash() - zeroize and free the ahash handle
 254 * @tfm: cipher handle to be freed
 255 */
 256static inline void crypto_free_ahash(struct crypto_ahash *tfm)
 257{
 258        crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
 259}
 260
 261static inline unsigned int crypto_ahash_alignmask(
 262        struct crypto_ahash *tfm)
 263{
 264        return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
 265}
 266
 267/**
 268 * crypto_ahash_blocksize() - obtain block size for cipher
 269 * @tfm: cipher handle
 270 *
 271 * The block size for the message digest cipher referenced with the cipher
 272 * handle is returned.
 273 *
 274 * Return: block size of cipher
 275 */
 276static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
 277{
 278        return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 279}
 280
 281static inline struct hash_alg_common *__crypto_hash_alg_common(
 282        struct crypto_alg *alg)
 283{
 284        return container_of(alg, struct hash_alg_common, base);
 285}
 286
 287static inline struct hash_alg_common *crypto_hash_alg_common(
 288        struct crypto_ahash *tfm)
 289{
 290        return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
 291}
 292
 293/**
 294 * crypto_ahash_digestsize() - obtain message digest size
 295 * @tfm: cipher handle
 296 *
 297 * The size for the message digest created by the message digest cipher
 298 * referenced with the cipher handle is returned.
 299 *
 300 *
 301 * Return: message digest size of cipher
 302 */
 303static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
 304{
 305        return crypto_hash_alg_common(tfm)->digestsize;
 306}
 307
 308static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
 309{
 310        return crypto_hash_alg_common(tfm)->statesize;
 311}
 312
 313static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
 314{
 315        return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
 316}
 317
 318static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
 319{
 320        crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
 321}
 322
 323static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
 324{
 325        crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
 326}
 327
 328/**
 329 * crypto_ahash_reqtfm() - obtain cipher handle from request
 330 * @req: asynchronous request handle that contains the reference to the ahash
 331 *       cipher handle
 332 *
 333 * Return the ahash cipher handle that is registered with the asynchronous
 334 * request handle ahash_request.
 335 *
 336 * Return: ahash cipher handle
 337 */
 338static inline struct crypto_ahash *crypto_ahash_reqtfm(
 339        struct ahash_request *req)
 340{
 341        return __crypto_ahash_cast(req->base.tfm);
 342}
 343
 344/**
 345 * crypto_ahash_reqsize() - obtain size of the request data structure
 346 * @tfm: cipher handle
 347 *
 348 * Return the size of the ahash state size. With the crypto_ahash_export
 349 * function, the caller can export the state into a buffer whose size is
 350 * defined with this function.
 351 *
 352 * Return: size of the ahash state
 353 */
 354static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
 355{
 356        return tfm->reqsize;
 357}
 358
 359static inline void *ahash_request_ctx(struct ahash_request *req)
 360{
 361        return req->__ctx;
 362}
 363
 364/**
 365 * crypto_ahash_setkey - set key for cipher handle
 366 * @tfm: cipher handle
 367 * @key: buffer holding the key
 368 * @keylen: length of the key in bytes
 369 *
 370 * The caller provided key is set for the ahash cipher. The cipher
 371 * handle must point to a keyed hash in order for this function to succeed.
 372 *
 373 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 374 */
 375int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
 376                        unsigned int keylen);
 377
 378/**
 379 * crypto_ahash_finup() - update and finalize message digest
 380 * @req: reference to the ahash_request handle that holds all information
 381 *       needed to perform the cipher operation
 382 *
 383 * This function is a "short-hand" for the function calls of
 384 * crypto_ahash_update and crypto_shash_final. The parameters have the same
 385 * meaning as discussed for those separate functions.
 386 *
 387 * Return: 0 if the message digest creation was successful; < 0 if an error
 388 *         occurred
 389 */
 390int crypto_ahash_finup(struct ahash_request *req);
 391
 392/**
 393 * crypto_ahash_final() - calculate message digest
 394 * @req: reference to the ahash_request handle that holds all information
 395 *       needed to perform the cipher operation
 396 *
 397 * Finalize the message digest operation and create the message digest
 398 * based on all data added to the cipher handle. The message digest is placed
 399 * into the output buffer registered with the ahash_request handle.
 400 *
 401 * Return: 0 if the message digest creation was successful; < 0 if an error
 402 *         occurred
 403 */
 404int crypto_ahash_final(struct ahash_request *req);
 405
 406/**
 407 * crypto_ahash_digest() - calculate message digest for a buffer
 408 * @req: reference to the ahash_request handle that holds all information
 409 *       needed to perform the cipher operation
 410 *
 411 * This function is a "short-hand" for the function calls of crypto_ahash_init,
 412 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 413 * meaning as discussed for those separate three functions.
 414 *
 415 * Return: 0 if the message digest creation was successful; < 0 if an error
 416 *         occurred
 417 */
 418int crypto_ahash_digest(struct ahash_request *req);
 419
 420/**
 421 * crypto_ahash_export() - extract current message digest state
 422 * @req: reference to the ahash_request handle whose state is exported
 423 * @out: output buffer of sufficient size that can hold the hash state
 424 *
 425 * This function exports the hash state of the ahash_request handle into the
 426 * caller-allocated output buffer out which must have sufficient size (e.g. by
 427 * calling crypto_ahash_reqsize).
 428 *
 429 * Return: 0 if the export was successful; < 0 if an error occurred
 430 */
 431static inline int crypto_ahash_export(struct ahash_request *req, void *out)
 432{
 433        return crypto_ahash_reqtfm(req)->export(req, out);
 434}
 435
 436/**
 437 * crypto_ahash_import() - import message digest state
 438 * @req: reference to ahash_request handle the state is imported into
 439 * @in: buffer holding the state
 440 *
 441 * This function imports the hash state into the ahash_request handle from the
 442 * input buffer. That buffer should have been generated with the
 443 * crypto_ahash_export function.
 444 *
 445 * Return: 0 if the import was successful; < 0 if an error occurred
 446 */
 447static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
 448{
 449        return crypto_ahash_reqtfm(req)->import(req, in);
 450}
 451
 452/**
 453 * crypto_ahash_init() - (re)initialize message digest handle
 454 * @req: ahash_request handle that already is initialized with all necessary
 455 *       data using the ahash_request_* API functions
 456 *
 457 * The call (re-)initializes the message digest referenced by the ahash_request
 458 * handle. Any potentially existing state created by previous operations is
 459 * discarded.
 460 *
 461 * Return: 0 if the message digest initialization was successful; < 0 if an
 462 *         error occurred
 463 */
 464static inline int crypto_ahash_init(struct ahash_request *req)
 465{
 466        return crypto_ahash_reqtfm(req)->init(req);
 467}
 468
 469/**
 470 * crypto_ahash_update() - add data to message digest for processing
 471 * @req: ahash_request handle that was previously initialized with the
 472 *       crypto_ahash_init call.
 473 *
 474 * Updates the message digest state of the &ahash_request handle. The input data
 475 * is pointed to by the scatter/gather list registered in the &ahash_request
 476 * handle
 477 *
 478 * Return: 0 if the message digest update was successful; < 0 if an error
 479 *         occurred
 480 */
 481static inline int crypto_ahash_update(struct ahash_request *req)
 482{
 483        return crypto_ahash_reqtfm(req)->update(req);
 484}
 485
 486/**
 487 * DOC: Asynchronous Hash Request Handle
 488 *
 489 * The &ahash_request data structure contains all pointers to data
 490 * required for the asynchronous cipher operation. This includes the cipher
 491 * handle (which can be used by multiple &ahash_request instances), pointer
 492 * to plaintext and the message digest output buffer, asynchronous callback
 493 * function, etc. It acts as a handle to the ahash_request_* API calls in a
 494 * similar way as ahash handle to the crypto_ahash_* API calls.
 495 */
 496
 497/**
 498 * ahash_request_set_tfm() - update cipher handle reference in request
 499 * @req: request handle to be modified
 500 * @tfm: cipher handle that shall be added to the request handle
 501 *
 502 * Allow the caller to replace the existing ahash handle in the request
 503 * data structure with a different one.
 504 */
 505static inline void ahash_request_set_tfm(struct ahash_request *req,
 506                                         struct crypto_ahash *tfm)
 507{
 508        req->base.tfm = crypto_ahash_tfm(tfm);
 509}
 510
 511/**
 512 * ahash_request_alloc() - allocate request data structure
 513 * @tfm: cipher handle to be registered with the request
 514 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 515 *
 516 * Allocate the request data structure that must be used with the ahash
 517 * message digest API calls. During
 518 * the allocation, the provided ahash handle
 519 * is registered in the request data structure.
 520 *
 521 * Return: allocated request handle in case of success; IS_ERR() is true in case
 522 *         of an error, PTR_ERR() returns the error code.
 523 */
 524static inline struct ahash_request *ahash_request_alloc(
 525        struct crypto_ahash *tfm, gfp_t gfp)
 526{
 527        struct ahash_request *req;
 528
 529        req = kmalloc(sizeof(struct ahash_request) +
 530                      crypto_ahash_reqsize(tfm), gfp);
 531
 532        if (likely(req))
 533                ahash_request_set_tfm(req, tfm);
 534
 535        return req;
 536}
 537
 538/**
 539 * ahash_request_free() - zeroize and free the request data structure
 540 * @req: request data structure cipher handle to be freed
 541 */
 542static inline void ahash_request_free(struct ahash_request *req)
 543{
 544        kzfree(req);
 545}
 546
 547static inline struct ahash_request *ahash_request_cast(
 548        struct crypto_async_request *req)
 549{
 550        return container_of(req, struct ahash_request, base);
 551}
 552
 553/**
 554 * ahash_request_set_callback() - set asynchronous callback function
 555 * @req: request handle
 556 * @flags: specify zero or an ORing of the flags
 557 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 558 *         increase the wait queue beyond the initial maximum size;
 559 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 560 * @compl: callback function pointer to be registered with the request handle
 561 * @data: The data pointer refers to memory that is not used by the kernel
 562 *        crypto API, but provided to the callback function for it to use. Here,
 563 *        the caller can provide a reference to memory the callback function can
 564 *        operate on. As the callback function is invoked asynchronously to the
 565 *        related functionality, it may need to access data structures of the
 566 *        related functionality which can be referenced using this pointer. The
 567 *        callback function can access the memory via the "data" field in the
 568 *        &crypto_async_request data structure provided to the callback function.
 569 *
 570 * This function allows setting the callback function that is triggered once
 571 * the cipher operation completes.
 572 *
 573 * The callback function is registered with the &ahash_request handle and
 574 * must comply with the following template
 575 *
 576 *      void callback_function(struct crypto_async_request *req, int error)
 577 */
 578static inline void ahash_request_set_callback(struct ahash_request *req,
 579                                              u32 flags,
 580                                              crypto_completion_t compl,
 581                                              void *data)
 582{
 583        req->base.complete = compl;
 584        req->base.data = data;
 585        req->base.flags = flags;
 586}
 587
 588/**
 589 * ahash_request_set_crypt() - set data buffers
 590 * @req: ahash_request handle to be updated
 591 * @src: source scatter/gather list
 592 * @result: buffer that is filled with the message digest -- the caller must
 593 *          ensure that the buffer has sufficient space by, for example, calling
 594 *          crypto_ahash_digestsize()
 595 * @nbytes: number of bytes to process from the source scatter/gather list
 596 *
 597 * By using this call, the caller references the source scatter/gather list.
 598 * The source scatter/gather list points to the data the message digest is to
 599 * be calculated for.
 600 */
 601static inline void ahash_request_set_crypt(struct ahash_request *req,
 602                                           struct scatterlist *src, u8 *result,
 603                                           unsigned int nbytes)
 604{
 605        req->src = src;
 606        req->nbytes = nbytes;
 607        req->result = result;
 608}
 609
 610/**
 611 * DOC: Synchronous Message Digest API
 612 *
 613 * The synchronous message digest API is used with the ciphers of type
 614 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
 615 *
 616 * The message digest API is able to maintain state information for the
 617 * caller.
 618 *
 619 * The synchronous message digest API can store user-related context in in its
 620 * shash_desc request data structure.
 621 */
 622
 623/**
 624 * crypto_alloc_shash() - allocate message digest handle
 625 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 626 *            message digest cipher
 627 * @type: specifies the type of the cipher
 628 * @mask: specifies the mask for the cipher
 629 *
 630 * Allocate a cipher handle for a message digest. The returned &struct
 631 * crypto_shash is the cipher handle that is required for any subsequent
 632 * API invocation for that message digest.
 633 *
 634 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 635 *         of an error, PTR_ERR() returns the error code.
 636 */
 637struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
 638                                        u32 mask);
 639
 640static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
 641{
 642        return &tfm->base;
 643}
 644
 645/**
 646 * crypto_free_shash() - zeroize and free the message digest handle
 647 * @tfm: cipher handle to be freed
 648 */
 649static inline void crypto_free_shash(struct crypto_shash *tfm)
 650{
 651        crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
 652}
 653
 654static inline unsigned int crypto_shash_alignmask(
 655        struct crypto_shash *tfm)
 656{
 657        return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
 658}
 659
 660/**
 661 * crypto_shash_blocksize() - obtain block size for cipher
 662 * @tfm: cipher handle
 663 *
 664 * The block size for the message digest cipher referenced with the cipher
 665 * handle is returned.
 666 *
 667 * Return: block size of cipher
 668 */
 669static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
 670{
 671        return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
 672}
 673
 674static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
 675{
 676        return container_of(alg, struct shash_alg, base);
 677}
 678
 679static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
 680{
 681        return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
 682}
 683
 684/**
 685 * crypto_shash_digestsize() - obtain message digest size
 686 * @tfm: cipher handle
 687 *
 688 * The size for the message digest created by the message digest cipher
 689 * referenced with the cipher handle is returned.
 690 *
 691 * Return: digest size of cipher
 692 */
 693static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
 694{
 695        return crypto_shash_alg(tfm)->digestsize;
 696}
 697
 698static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
 699{
 700        return crypto_shash_alg(tfm)->statesize;
 701}
 702
 703static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
 704{
 705        return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
 706}
 707
 708static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
 709{
 710        crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
 711}
 712
 713static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
 714{
 715        crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
 716}
 717
 718/**
 719 * crypto_shash_descsize() - obtain the operational state size
 720 * @tfm: cipher handle
 721 *
 722 * The size of the operational state the cipher needs during operation is
 723 * returned for the hash referenced with the cipher handle. This size is
 724 * required to calculate the memory requirements to allow the caller allocating
 725 * sufficient memory for operational state.
 726 *
 727 * The operational state is defined with struct shash_desc where the size of
 728 * that data structure is to be calculated as
 729 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
 730 *
 731 * Return: size of the operational state
 732 */
 733static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
 734{
 735        return tfm->descsize;
 736}
 737
 738static inline void *shash_desc_ctx(struct shash_desc *desc)
 739{
 740        return desc->__ctx;
 741}
 742
 743/**
 744 * crypto_shash_setkey() - set key for message digest
 745 * @tfm: cipher handle
 746 * @key: buffer holding the key
 747 * @keylen: length of the key in bytes
 748 *
 749 * The caller provided key is set for the keyed message digest cipher. The
 750 * cipher handle must point to a keyed message digest cipher in order for this
 751 * function to succeed.
 752 *
 753 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 754 */
 755int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
 756                        unsigned int keylen);
 757
 758/**
 759 * crypto_shash_digest() - calculate message digest for buffer
 760 * @desc: see crypto_shash_final()
 761 * @data: see crypto_shash_update()
 762 * @len: see crypto_shash_update()
 763 * @out: see crypto_shash_final()
 764 *
 765 * This function is a "short-hand" for the function calls of crypto_shash_init,
 766 * crypto_shash_update and crypto_shash_final. The parameters have the same
 767 * meaning as discussed for those separate three functions.
 768 *
 769 * Return: 0 if the message digest creation was successful; < 0 if an error
 770 *         occurred
 771 */
 772int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
 773                        unsigned int len, u8 *out);
 774
 775/**
 776 * crypto_shash_export() - extract operational state for message digest
 777 * @desc: reference to the operational state handle whose state is exported
 778 * @out: output buffer of sufficient size that can hold the hash state
 779 *
 780 * This function exports the hash state of the operational state handle into the
 781 * caller-allocated output buffer out which must have sufficient size (e.g. by
 782 * calling crypto_shash_descsize).
 783 *
 784 * Return: 0 if the export creation was successful; < 0 if an error occurred
 785 */
 786static inline int crypto_shash_export(struct shash_desc *desc, void *out)
 787{
 788        return crypto_shash_alg(desc->tfm)->export(desc, out);
 789}
 790
 791/**
 792 * crypto_shash_import() - import operational state
 793 * @desc: reference to the operational state handle the state imported into
 794 * @in: buffer holding the state
 795 *
 796 * This function imports the hash state into the operational state handle from
 797 * the input buffer. That buffer should have been generated with the
 798 * crypto_ahash_export function.
 799 *
 800 * Return: 0 if the import was successful; < 0 if an error occurred
 801 */
 802static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
 803{
 804        return crypto_shash_alg(desc->tfm)->import(desc, in);
 805}
 806
 807/**
 808 * crypto_shash_init() - (re)initialize message digest
 809 * @desc: operational state handle that is already filled
 810 *
 811 * The call (re-)initializes the message digest referenced by the
 812 * operational state handle. Any potentially existing state created by
 813 * previous operations is discarded.
 814 *
 815 * Return: 0 if the message digest initialization was successful; < 0 if an
 816 *         error occurred
 817 */
 818static inline int crypto_shash_init(struct shash_desc *desc)
 819{
 820        return crypto_shash_alg(desc->tfm)->init(desc);
 821}
 822
 823/**
 824 * crypto_shash_update() - add data to message digest for processing
 825 * @desc: operational state handle that is already initialized
 826 * @data: input data to be added to the message digest
 827 * @len: length of the input data
 828 *
 829 * Updates the message digest state of the operational state handle.
 830 *
 831 * Return: 0 if the message digest update was successful; < 0 if an error
 832 *         occurred
 833 */
 834int crypto_shash_update(struct shash_desc *desc, const u8 *data,
 835                        unsigned int len);
 836
 837/**
 838 * crypto_shash_final() - calculate message digest
 839 * @desc: operational state handle that is already filled with data
 840 * @out: output buffer filled with the message digest
 841 *
 842 * Finalize the message digest operation and create the message digest
 843 * based on all data added to the cipher handle. The message digest is placed
 844 * into the output buffer. The caller must ensure that the output buffer is
 845 * large enough by using crypto_shash_digestsize.
 846 *
 847 * Return: 0 if the message digest creation was successful; < 0 if an error
 848 *         occurred
 849 */
 850int crypto_shash_final(struct shash_desc *desc, u8 *out);
 851
 852/**
 853 * crypto_shash_finup() - calculate message digest of buffer
 854 * @desc: see crypto_shash_final()
 855 * @data: see crypto_shash_update()
 856 * @len: see crypto_shash_update()
 857 * @out: see crypto_shash_final()
 858 *
 859 * This function is a "short-hand" for the function calls of
 860 * crypto_shash_update and crypto_shash_final. The parameters have the same
 861 * meaning as discussed for those separate functions.
 862 *
 863 * Return: 0 if the message digest creation was successful; < 0 if an error
 864 *         occurred
 865 */
 866int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
 867                       unsigned int len, u8 *out);
 868
 869#endif  /* _CRYPTO_HASH_H */
 870