linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/*
   2 * Symmetric key ciphers.
   3 * 
   4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_SKCIPHER_H
  14#define _CRYPTO_SKCIPHER_H
  15
  16#include <linux/crypto.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19
  20/**
  21 *      struct skcipher_request - Symmetric key cipher request
  22 *      @cryptlen: Number of bytes to encrypt or decrypt
  23 *      @iv: Initialisation Vector
  24 *      @src: Source SG list
  25 *      @dst: Destination SG list
  26 *      @base: Underlying async request request
  27 *      @__ctx: Start of private context data
  28 */
  29struct skcipher_request {
  30        unsigned int cryptlen;
  31
  32        u8 *iv;
  33
  34        struct scatterlist *src;
  35        struct scatterlist *dst;
  36
  37        struct crypto_async_request base;
  38
  39        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  40};
  41
  42/**
  43 *      struct skcipher_givcrypt_request - Crypto request with IV generation
  44 *      @seq: Sequence number for IV generation
  45 *      @giv: Space for generated IV
  46 *      @creq: The crypto request itself
  47 */
  48struct skcipher_givcrypt_request {
  49        u64 seq;
  50        u8 *giv;
  51
  52        struct ablkcipher_request creq;
  53};
  54
  55struct crypto_skcipher {
  56        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  57                      unsigned int keylen);
  58        int (*encrypt)(struct skcipher_request *req);
  59        int (*decrypt)(struct skcipher_request *req);
  60
  61        unsigned int ivsize;
  62        unsigned int reqsize;
  63
  64        struct crypto_tfm base;
  65};
  66
  67#define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
  68        char __##name##_desc[sizeof(struct skcipher_request) + \
  69                crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
  70        struct skcipher_request *name = (void *)__##name##_desc
  71
  72static inline struct crypto_ablkcipher *skcipher_givcrypt_reqtfm(
  73        struct skcipher_givcrypt_request *req)
  74{
  75        return crypto_ablkcipher_reqtfm(&req->creq);
  76}
  77
  78static inline int crypto_skcipher_givencrypt(
  79        struct skcipher_givcrypt_request *req)
  80{
  81        struct ablkcipher_tfm *crt =
  82                crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
  83        return crt->givencrypt(req);
  84};
  85
  86static inline int crypto_skcipher_givdecrypt(
  87        struct skcipher_givcrypt_request *req)
  88{
  89        struct ablkcipher_tfm *crt =
  90                crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
  91        return crt->givdecrypt(req);
  92};
  93
  94static inline void skcipher_givcrypt_set_tfm(
  95        struct skcipher_givcrypt_request *req, struct crypto_ablkcipher *tfm)
  96{
  97        req->creq.base.tfm = crypto_ablkcipher_tfm(tfm);
  98}
  99
 100static inline struct skcipher_givcrypt_request *skcipher_givcrypt_cast(
 101        struct crypto_async_request *req)
 102{
 103        return container_of(ablkcipher_request_cast(req),
 104                            struct skcipher_givcrypt_request, creq);
 105}
 106
 107static inline struct skcipher_givcrypt_request *skcipher_givcrypt_alloc(
 108        struct crypto_ablkcipher *tfm, gfp_t gfp)
 109{
 110        struct skcipher_givcrypt_request *req;
 111
 112        req = kmalloc(sizeof(struct skcipher_givcrypt_request) +
 113                      crypto_ablkcipher_reqsize(tfm), gfp);
 114
 115        if (likely(req))
 116                skcipher_givcrypt_set_tfm(req, tfm);
 117
 118        return req;
 119}
 120
 121static inline void skcipher_givcrypt_free(struct skcipher_givcrypt_request *req)
 122{
 123        kfree(req);
 124}
 125
 126static inline void skcipher_givcrypt_set_callback(
 127        struct skcipher_givcrypt_request *req, u32 flags,
 128        crypto_completion_t compl, void *data)
 129{
 130        ablkcipher_request_set_callback(&req->creq, flags, compl, data);
 131}
 132
 133static inline void skcipher_givcrypt_set_crypt(
 134        struct skcipher_givcrypt_request *req,
 135        struct scatterlist *src, struct scatterlist *dst,
 136        unsigned int nbytes, void *iv)
 137{
 138        ablkcipher_request_set_crypt(&req->creq, src, dst, nbytes, iv);
 139}
 140
 141static inline void skcipher_givcrypt_set_giv(
 142        struct skcipher_givcrypt_request *req, u8 *giv, u64 seq)
 143{
 144        req->giv = giv;
 145        req->seq = seq;
 146}
 147
 148/**
 149 * DOC: Symmetric Key Cipher API
 150 *
 151 * Symmetric key cipher API is used with the ciphers of type
 152 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 153 *
 154 * Asynchronous cipher operations imply that the function invocation for a
 155 * cipher request returns immediately before the completion of the operation.
 156 * The cipher request is scheduled as a separate kernel thread and therefore
 157 * load-balanced on the different CPUs via the process scheduler. To allow
 158 * the kernel crypto API to inform the caller about the completion of a cipher
 159 * request, the caller must provide a callback function. That function is
 160 * invoked with the cipher handle when the request completes.
 161 *
 162 * To support the asynchronous operation, additional information than just the
 163 * cipher handle must be supplied to the kernel crypto API. That additional
 164 * information is given by filling in the skcipher_request data structure.
 165 *
 166 * For the symmetric key cipher API, the state is maintained with the tfm
 167 * cipher handle. A single tfm can be used across multiple calls and in
 168 * parallel. For asynchronous block cipher calls, context data supplied and
 169 * only used by the caller can be referenced the request data structure in
 170 * addition to the IV used for the cipher request. The maintenance of such
 171 * state information would be important for a crypto driver implementer to
 172 * have, because when calling the callback function upon completion of the
 173 * cipher operation, that callback function may need some information about
 174 * which operation just finished if it invoked multiple in parallel. This
 175 * state information is unused by the kernel crypto API.
 176 */
 177
 178static inline struct crypto_skcipher *__crypto_skcipher_cast(
 179        struct crypto_tfm *tfm)
 180{
 181        return container_of(tfm, struct crypto_skcipher, base);
 182}
 183
 184/**
 185 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 186 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 187 *            skcipher cipher
 188 * @type: specifies the type of the cipher
 189 * @mask: specifies the mask for the cipher
 190 *
 191 * Allocate a cipher handle for an skcipher. The returned struct
 192 * crypto_skcipher is the cipher handle that is required for any subsequent
 193 * API invocation for that skcipher.
 194 *
 195 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 196 *         of an error, PTR_ERR() returns the error code.
 197 */
 198struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 199                                              u32 type, u32 mask);
 200
 201static inline struct crypto_tfm *crypto_skcipher_tfm(
 202        struct crypto_skcipher *tfm)
 203{
 204        return &tfm->base;
 205}
 206
 207/**
 208 * crypto_free_skcipher() - zeroize and free cipher handle
 209 * @tfm: cipher handle to be freed
 210 */
 211static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 212{
 213        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 214}
 215
 216/**
 217 * crypto_has_skcipher() - Search for the availability of an skcipher.
 218 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 219 *            skcipher
 220 * @type: specifies the type of the cipher
 221 * @mask: specifies the mask for the cipher
 222 *
 223 * Return: true when the skcipher is known to the kernel crypto API; false
 224 *         otherwise
 225 */
 226static inline int crypto_has_skcipher(const char *alg_name, u32 type,
 227                                        u32 mask)
 228{
 229        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 230                              crypto_skcipher_mask(mask));
 231}
 232
 233/**
 234 * crypto_skcipher_ivsize() - obtain IV size
 235 * @tfm: cipher handle
 236 *
 237 * The size of the IV for the skcipher referenced by the cipher handle is
 238 * returned. This IV size may be zero if the cipher does not need an IV.
 239 *
 240 * Return: IV size in bytes
 241 */
 242static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 243{
 244        return tfm->ivsize;
 245}
 246
 247/**
 248 * crypto_skcipher_blocksize() - obtain block size of cipher
 249 * @tfm: cipher handle
 250 *
 251 * The block size for the skcipher referenced with the cipher handle is
 252 * returned. The caller may use that information to allocate appropriate
 253 * memory for the data returned by the encryption or decryption operation
 254 *
 255 * Return: block size of cipher
 256 */
 257static inline unsigned int crypto_skcipher_blocksize(
 258        struct crypto_skcipher *tfm)
 259{
 260        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 261}
 262
 263static inline unsigned int crypto_skcipher_alignmask(
 264        struct crypto_skcipher *tfm)
 265{
 266        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 267}
 268
 269static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 270{
 271        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 272}
 273
 274static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 275                                               u32 flags)
 276{
 277        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 278}
 279
 280static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 281                                                 u32 flags)
 282{
 283        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 284}
 285
 286/**
 287 * crypto_skcipher_setkey() - set key for cipher
 288 * @tfm: cipher handle
 289 * @key: buffer holding the key
 290 * @keylen: length of the key in bytes
 291 *
 292 * The caller provided key is set for the skcipher referenced by the cipher
 293 * handle.
 294 *
 295 * Note, the key length determines the cipher type. Many block ciphers implement
 296 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 297 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 298 * is performed.
 299 *
 300 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 301 */
 302static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 303                                         const u8 *key, unsigned int keylen)
 304{
 305        return tfm->setkey(tfm, key, keylen);
 306}
 307
 308/**
 309 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 310 * @req: skcipher_request out of which the cipher handle is to be obtained
 311 *
 312 * Return the crypto_skcipher handle when furnishing an skcipher_request
 313 * data structure.
 314 *
 315 * Return: crypto_skcipher handle
 316 */
 317static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 318        struct skcipher_request *req)
 319{
 320        return __crypto_skcipher_cast(req->base.tfm);
 321}
 322
 323/**
 324 * crypto_skcipher_encrypt() - encrypt plaintext
 325 * @req: reference to the skcipher_request handle that holds all information
 326 *       needed to perform the cipher operation
 327 *
 328 * Encrypt plaintext data using the skcipher_request handle. That data
 329 * structure and how it is filled with data is discussed with the
 330 * skcipher_request_* functions.
 331 *
 332 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 333 */
 334static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
 335{
 336        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 337
 338        return tfm->encrypt(req);
 339}
 340
 341/**
 342 * crypto_skcipher_decrypt() - decrypt ciphertext
 343 * @req: reference to the skcipher_request handle that holds all information
 344 *       needed to perform the cipher operation
 345 *
 346 * Decrypt ciphertext data using the skcipher_request handle. That data
 347 * structure and how it is filled with data is discussed with the
 348 * skcipher_request_* functions.
 349 *
 350 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 351 */
 352static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
 353{
 354        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 355
 356        return tfm->decrypt(req);
 357}
 358
 359/**
 360 * DOC: Symmetric Key Cipher Request Handle
 361 *
 362 * The skcipher_request data structure contains all pointers to data
 363 * required for the symmetric key cipher operation. This includes the cipher
 364 * handle (which can be used by multiple skcipher_request instances), pointer
 365 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 366 * as a handle to the skcipher_request_* API calls in a similar way as
 367 * skcipher handle to the crypto_skcipher_* API calls.
 368 */
 369
 370/**
 371 * crypto_skcipher_reqsize() - obtain size of the request data structure
 372 * @tfm: cipher handle
 373 *
 374 * Return: number of bytes
 375 */
 376static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 377{
 378        return tfm->reqsize;
 379}
 380
 381/**
 382 * skcipher_request_set_tfm() - update cipher handle reference in request
 383 * @req: request handle to be modified
 384 * @tfm: cipher handle that shall be added to the request handle
 385 *
 386 * Allow the caller to replace the existing skcipher handle in the request
 387 * data structure with a different one.
 388 */
 389static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 390                                            struct crypto_skcipher *tfm)
 391{
 392        req->base.tfm = crypto_skcipher_tfm(tfm);
 393}
 394
 395static inline struct skcipher_request *skcipher_request_cast(
 396        struct crypto_async_request *req)
 397{
 398        return container_of(req, struct skcipher_request, base);
 399}
 400
 401/**
 402 * skcipher_request_alloc() - allocate request data structure
 403 * @tfm: cipher handle to be registered with the request
 404 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 405 *
 406 * Allocate the request data structure that must be used with the skcipher
 407 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 408 * handle is registered in the request data structure.
 409 *
 410 * Return: allocated request handle in case of success; IS_ERR() is true in case
 411 *         of an error, PTR_ERR() returns the error code.
 412 */
 413static inline struct skcipher_request *skcipher_request_alloc(
 414        struct crypto_skcipher *tfm, gfp_t gfp)
 415{
 416        struct skcipher_request *req;
 417
 418        req = kmalloc(sizeof(struct skcipher_request) +
 419                      crypto_skcipher_reqsize(tfm), gfp);
 420
 421        if (likely(req))
 422                skcipher_request_set_tfm(req, tfm);
 423
 424        return req;
 425}
 426
 427/**
 428 * skcipher_request_free() - zeroize and free request data structure
 429 * @req: request data structure cipher handle to be freed
 430 */
 431static inline void skcipher_request_free(struct skcipher_request *req)
 432{
 433        kzfree(req);
 434}
 435
 436/**
 437 * skcipher_request_set_callback() - set asynchronous callback function
 438 * @req: request handle
 439 * @flags: specify zero or an ORing of the flags
 440 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 441 *         increase the wait queue beyond the initial maximum size;
 442 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 443 * @compl: callback function pointer to be registered with the request handle
 444 * @data: The data pointer refers to memory that is not used by the kernel
 445 *        crypto API, but provided to the callback function for it to use. Here,
 446 *        the caller can provide a reference to memory the callback function can
 447 *        operate on. As the callback function is invoked asynchronously to the
 448 *        related functionality, it may need to access data structures of the
 449 *        related functionality which can be referenced using this pointer. The
 450 *        callback function can access the memory via the "data" field in the
 451 *        crypto_async_request data structure provided to the callback function.
 452 *
 453 * This function allows setting the callback function that is triggered once the
 454 * cipher operation completes.
 455 *
 456 * The callback function is registered with the skcipher_request handle and
 457 * must comply with the following template
 458 *
 459 *      void callback_function(struct crypto_async_request *req, int error)
 460 */
 461static inline void skcipher_request_set_callback(struct skcipher_request *req,
 462                                                 u32 flags,
 463                                                 crypto_completion_t compl,
 464                                                 void *data)
 465{
 466        req->base.complete = compl;
 467        req->base.data = data;
 468        req->base.flags = flags;
 469}
 470
 471/**
 472 * skcipher_request_set_crypt() - set data buffers
 473 * @req: request handle
 474 * @src: source scatter / gather list
 475 * @dst: destination scatter / gather list
 476 * @cryptlen: number of bytes to process from @src
 477 * @iv: IV for the cipher operation which must comply with the IV size defined
 478 *      by crypto_skcipher_ivsize
 479 *
 480 * This function allows setting of the source data and destination data
 481 * scatter / gather lists.
 482 *
 483 * For encryption, the source is treated as the plaintext and the
 484 * destination is the ciphertext. For a decryption operation, the use is
 485 * reversed - the source is the ciphertext and the destination is the plaintext.
 486 */
 487static inline void skcipher_request_set_crypt(
 488        struct skcipher_request *req,
 489        struct scatterlist *src, struct scatterlist *dst,
 490        unsigned int cryptlen, void *iv)
 491{
 492        req->src = src;
 493        req->dst = dst;
 494        req->cryptlen = cryptlen;
 495        req->iv = iv;
 496}
 497
 498#endif  /* _CRYPTO_SKCIPHER_H */
 499
 500