linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/mmdebug.h>
   9#include <linux/gfp.h>
  10#include <linux/bug.h>
  11#include <linux/list.h>
  12#include <linux/mmzone.h>
  13#include <linux/rbtree.h>
  14#include <linux/atomic.h>
  15#include <linux/debug_locks.h>
  16#include <linux/mm_types.h>
  17#include <linux/range.h>
  18#include <linux/pfn.h>
  19#include <linux/bit_spinlock.h>
  20#include <linux/shrinker.h>
  21#include <linux/resource.h>
  22#include <linux/page_ext.h>
  23#include <linux/err.h>
  24
  25struct mempolicy;
  26struct anon_vma;
  27struct anon_vma_chain;
  28struct file_ra_state;
  29struct user_struct;
  30struct writeback_control;
  31struct bdi_writeback;
  32
  33#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  34extern unsigned long max_mapnr;
  35
  36static inline void set_max_mapnr(unsigned long limit)
  37{
  38        max_mapnr = limit;
  39}
  40#else
  41static inline void set_max_mapnr(unsigned long limit) { }
  42#endif
  43
  44extern unsigned long totalram_pages;
  45extern void * high_memory;
  46extern int page_cluster;
  47
  48#ifdef CONFIG_SYSCTL
  49extern int sysctl_legacy_va_layout;
  50#else
  51#define sysctl_legacy_va_layout 0
  52#endif
  53
  54#include <asm/page.h>
  55#include <asm/pgtable.h>
  56#include <asm/processor.h>
  57
  58#ifndef __pa_symbol
  59#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
  60#endif
  61
  62/*
  63 * To prevent common memory management code establishing
  64 * a zero page mapping on a read fault.
  65 * This macro should be defined within <asm/pgtable.h>.
  66 * s390 does this to prevent multiplexing of hardware bits
  67 * related to the physical page in case of virtualization.
  68 */
  69#ifndef mm_forbids_zeropage
  70#define mm_forbids_zeropage(X)  (0)
  71#endif
  72
  73extern unsigned long sysctl_user_reserve_kbytes;
  74extern unsigned long sysctl_admin_reserve_kbytes;
  75
  76extern int sysctl_overcommit_memory;
  77extern int sysctl_overcommit_ratio;
  78extern unsigned long sysctl_overcommit_kbytes;
  79
  80extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  81                                    size_t *, loff_t *);
  82extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  83                                    size_t *, loff_t *);
  84
  85#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  86
  87/* to align the pointer to the (next) page boundary */
  88#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  89
  90/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  91#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  92
  93/*
  94 * Linux kernel virtual memory manager primitives.
  95 * The idea being to have a "virtual" mm in the same way
  96 * we have a virtual fs - giving a cleaner interface to the
  97 * mm details, and allowing different kinds of memory mappings
  98 * (from shared memory to executable loading to arbitrary
  99 * mmap() functions).
 100 */
 101
 102extern struct kmem_cache *vm_area_cachep;
 103
 104#ifndef CONFIG_MMU
 105extern struct rb_root nommu_region_tree;
 106extern struct rw_semaphore nommu_region_sem;
 107
 108extern unsigned int kobjsize(const void *objp);
 109#endif
 110
 111/*
 112 * vm_flags in vm_area_struct, see mm_types.h.
 113 */
 114#define VM_NONE         0x00000000
 115
 116#define VM_READ         0x00000001      /* currently active flags */
 117#define VM_WRITE        0x00000002
 118#define VM_EXEC         0x00000004
 119#define VM_SHARED       0x00000008
 120
 121/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 122#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 123#define VM_MAYWRITE     0x00000020
 124#define VM_MAYEXEC      0x00000040
 125#define VM_MAYSHARE     0x00000080
 126
 127#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 128#define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
 129#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 130#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 131#define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
 132
 133#define VM_LOCKED       0x00002000
 134#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 135
 136                                        /* Used by sys_madvise() */
 137#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 138#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 139
 140#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 141#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 142#define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
 143#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 144#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 145#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 146#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 147#define VM_ARCH_2       0x02000000
 148#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 149
 150#ifdef CONFIG_MEM_SOFT_DIRTY
 151# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 152#else
 153# define VM_SOFTDIRTY   0
 154#endif
 155
 156#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 157#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 158#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 159#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 160
 161#if defined(CONFIG_X86)
 162# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 163#elif defined(CONFIG_PPC)
 164# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 165#elif defined(CONFIG_PARISC)
 166# define VM_GROWSUP     VM_ARCH_1
 167#elif defined(CONFIG_METAG)
 168# define VM_GROWSUP     VM_ARCH_1
 169#elif defined(CONFIG_IA64)
 170# define VM_GROWSUP     VM_ARCH_1
 171#elif !defined(CONFIG_MMU)
 172# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 173#endif
 174
 175#if defined(CONFIG_X86)
 176/* MPX specific bounds table or bounds directory */
 177# define VM_MPX         VM_ARCH_2
 178#endif
 179
 180#ifndef VM_GROWSUP
 181# define VM_GROWSUP     VM_NONE
 182#endif
 183
 184/* Bits set in the VMA until the stack is in its final location */
 185#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 186
 187#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 188#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 189#endif
 190
 191#ifdef CONFIG_STACK_GROWSUP
 192#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 193#else
 194#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 195#endif
 196
 197/*
 198 * Special vmas that are non-mergable, non-mlock()able.
 199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 200 */
 201#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 202
 203/* This mask defines which mm->def_flags a process can inherit its parent */
 204#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 205
 206/* This mask is used to clear all the VMA flags used by mlock */
 207#define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
 208
 209/*
 210 * mapping from the currently active vm_flags protection bits (the
 211 * low four bits) to a page protection mask..
 212 */
 213extern pgprot_t protection_map[16];
 214
 215#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 216#define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
 217#define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
 218#define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
 219#define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
 220#define FAULT_FLAG_TRIED        0x20    /* Second try */
 221#define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
 222
 223/*
 224 * vm_fault is filled by the the pagefault handler and passed to the vma's
 225 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 226 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 227 *
 228 * pgoff should be used in favour of virtual_address, if possible.
 229 */
 230struct vm_fault {
 231        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 232        pgoff_t pgoff;                  /* Logical page offset based on vma */
 233        void __user *virtual_address;   /* Faulting virtual address */
 234
 235        struct page *cow_page;          /* Handler may choose to COW */
 236        struct page *page;              /* ->fault handlers should return a
 237                                         * page here, unless VM_FAULT_NOPAGE
 238                                         * is set (which is also implied by
 239                                         * VM_FAULT_ERROR).
 240                                         */
 241        /* for ->map_pages() only */
 242        pgoff_t max_pgoff;              /* map pages for offset from pgoff till
 243                                         * max_pgoff inclusive */
 244        pte_t *pte;                     /* pte entry associated with ->pgoff */
 245};
 246
 247/*
 248 * These are the virtual MM functions - opening of an area, closing and
 249 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 250 * to the functions called when a no-page or a wp-page exception occurs. 
 251 */
 252struct vm_operations_struct {
 253        void (*open)(struct vm_area_struct * area);
 254        void (*close)(struct vm_area_struct * area);
 255        int (*mremap)(struct vm_area_struct * area);
 256        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 257        int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
 258                                                pmd_t *, unsigned int flags);
 259        void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
 260
 261        /* notification that a previously read-only page is about to become
 262         * writable, if an error is returned it will cause a SIGBUS */
 263        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 264
 265        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 266        int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 267
 268        /* called by access_process_vm when get_user_pages() fails, typically
 269         * for use by special VMAs that can switch between memory and hardware
 270         */
 271        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 272                      void *buf, int len, int write);
 273
 274        /* Called by the /proc/PID/maps code to ask the vma whether it
 275         * has a special name.  Returning non-NULL will also cause this
 276         * vma to be dumped unconditionally. */
 277        const char *(*name)(struct vm_area_struct *vma);
 278
 279#ifdef CONFIG_NUMA
 280        /*
 281         * set_policy() op must add a reference to any non-NULL @new mempolicy
 282         * to hold the policy upon return.  Caller should pass NULL @new to
 283         * remove a policy and fall back to surrounding context--i.e. do not
 284         * install a MPOL_DEFAULT policy, nor the task or system default
 285         * mempolicy.
 286         */
 287        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 288
 289        /*
 290         * get_policy() op must add reference [mpol_get()] to any policy at
 291         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 292         * in mm/mempolicy.c will do this automatically.
 293         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 294         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 295         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 296         * must return NULL--i.e., do not "fallback" to task or system default
 297         * policy.
 298         */
 299        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 300                                        unsigned long addr);
 301#endif
 302        /*
 303         * Called by vm_normal_page() for special PTEs to find the
 304         * page for @addr.  This is useful if the default behavior
 305         * (using pte_page()) would not find the correct page.
 306         */
 307        struct page *(*find_special_page)(struct vm_area_struct *vma,
 308                                          unsigned long addr);
 309};
 310
 311struct mmu_gather;
 312struct inode;
 313
 314#define page_private(page)              ((page)->private)
 315#define set_page_private(page, v)       ((page)->private = (v))
 316
 317/*
 318 * FIXME: take this include out, include page-flags.h in
 319 * files which need it (119 of them)
 320 */
 321#include <linux/page-flags.h>
 322#include <linux/huge_mm.h>
 323
 324/*
 325 * Methods to modify the page usage count.
 326 *
 327 * What counts for a page usage:
 328 * - cache mapping   (page->mapping)
 329 * - private data    (page->private)
 330 * - page mapped in a task's page tables, each mapping
 331 *   is counted separately
 332 *
 333 * Also, many kernel routines increase the page count before a critical
 334 * routine so they can be sure the page doesn't go away from under them.
 335 */
 336
 337/*
 338 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 339 */
 340static inline int put_page_testzero(struct page *page)
 341{
 342        VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
 343        return atomic_dec_and_test(&page->_count);
 344}
 345
 346/*
 347 * Try to grab a ref unless the page has a refcount of zero, return false if
 348 * that is the case.
 349 * This can be called when MMU is off so it must not access
 350 * any of the virtual mappings.
 351 */
 352static inline int get_page_unless_zero(struct page *page)
 353{
 354        return atomic_inc_not_zero(&page->_count);
 355}
 356
 357extern int page_is_ram(unsigned long pfn);
 358
 359enum {
 360        REGION_INTERSECTS,
 361        REGION_DISJOINT,
 362        REGION_MIXED,
 363};
 364
 365int region_intersects(resource_size_t offset, size_t size, const char *type);
 366
 367/* Support for virtually mapped pages */
 368struct page *vmalloc_to_page(const void *addr);
 369unsigned long vmalloc_to_pfn(const void *addr);
 370
 371/*
 372 * Determine if an address is within the vmalloc range
 373 *
 374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 375 * is no special casing required.
 376 */
 377static inline int is_vmalloc_addr(const void *x)
 378{
 379#ifdef CONFIG_MMU
 380        unsigned long addr = (unsigned long)x;
 381
 382        return addr >= VMALLOC_START && addr < VMALLOC_END;
 383#else
 384        return 0;
 385#endif
 386}
 387#ifdef CONFIG_MMU
 388extern int is_vmalloc_or_module_addr(const void *x);
 389#else
 390static inline int is_vmalloc_or_module_addr(const void *x)
 391{
 392        return 0;
 393}
 394#endif
 395
 396extern void kvfree(const void *addr);
 397
 398static inline void compound_lock(struct page *page)
 399{
 400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 401        VM_BUG_ON_PAGE(PageSlab(page), page);
 402        bit_spin_lock(PG_compound_lock, &page->flags);
 403#endif
 404}
 405
 406static inline void compound_unlock(struct page *page)
 407{
 408#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 409        VM_BUG_ON_PAGE(PageSlab(page), page);
 410        bit_spin_unlock(PG_compound_lock, &page->flags);
 411#endif
 412}
 413
 414static inline unsigned long compound_lock_irqsave(struct page *page)
 415{
 416        unsigned long uninitialized_var(flags);
 417#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 418        local_irq_save(flags);
 419        compound_lock(page);
 420#endif
 421        return flags;
 422}
 423
 424static inline void compound_unlock_irqrestore(struct page *page,
 425                                              unsigned long flags)
 426{
 427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 428        compound_unlock(page);
 429        local_irq_restore(flags);
 430#endif
 431}
 432
 433/*
 434 * The atomic page->_mapcount, starts from -1: so that transitions
 435 * both from it and to it can be tracked, using atomic_inc_and_test
 436 * and atomic_add_negative(-1).
 437 */
 438static inline void page_mapcount_reset(struct page *page)
 439{
 440        atomic_set(&(page)->_mapcount, -1);
 441}
 442
 443static inline int page_mapcount(struct page *page)
 444{
 445        VM_BUG_ON_PAGE(PageSlab(page), page);
 446        return atomic_read(&page->_mapcount) + 1;
 447}
 448
 449static inline int page_count(struct page *page)
 450{
 451        return atomic_read(&compound_head(page)->_count);
 452}
 453
 454static inline bool __compound_tail_refcounted(struct page *page)
 455{
 456        return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
 457}
 458
 459/*
 460 * This takes a head page as parameter and tells if the
 461 * tail page reference counting can be skipped.
 462 *
 463 * For this to be safe, PageSlab and PageHeadHuge must remain true on
 464 * any given page where they return true here, until all tail pins
 465 * have been released.
 466 */
 467static inline bool compound_tail_refcounted(struct page *page)
 468{
 469        VM_BUG_ON_PAGE(!PageHead(page), page);
 470        return __compound_tail_refcounted(page);
 471}
 472
 473static inline void get_huge_page_tail(struct page *page)
 474{
 475        /*
 476         * __split_huge_page_refcount() cannot run from under us.
 477         */
 478        VM_BUG_ON_PAGE(!PageTail(page), page);
 479        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 480        VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
 481        if (compound_tail_refcounted(compound_head(page)))
 482                atomic_inc(&page->_mapcount);
 483}
 484
 485extern bool __get_page_tail(struct page *page);
 486
 487static inline void get_page(struct page *page)
 488{
 489        if (unlikely(PageTail(page)))
 490                if (likely(__get_page_tail(page)))
 491                        return;
 492        /*
 493         * Getting a normal page or the head of a compound page
 494         * requires to already have an elevated page->_count.
 495         */
 496        VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
 497        atomic_inc(&page->_count);
 498}
 499
 500static inline struct page *virt_to_head_page(const void *x)
 501{
 502        struct page *page = virt_to_page(x);
 503
 504        return compound_head(page);
 505}
 506
 507/*
 508 * Setup the page count before being freed into the page allocator for
 509 * the first time (boot or memory hotplug)
 510 */
 511static inline void init_page_count(struct page *page)
 512{
 513        atomic_set(&page->_count, 1);
 514}
 515
 516void put_page(struct page *page);
 517void put_pages_list(struct list_head *pages);
 518
 519void split_page(struct page *page, unsigned int order);
 520int split_free_page(struct page *page);
 521
 522/*
 523 * Compound pages have a destructor function.  Provide a
 524 * prototype for that function and accessor functions.
 525 * These are _only_ valid on the head of a compound page.
 526 */
 527typedef void compound_page_dtor(struct page *);
 528
 529/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 530enum compound_dtor_id {
 531        NULL_COMPOUND_DTOR,
 532        COMPOUND_PAGE_DTOR,
 533#ifdef CONFIG_HUGETLB_PAGE
 534        HUGETLB_PAGE_DTOR,
 535#endif
 536        NR_COMPOUND_DTORS,
 537};
 538extern compound_page_dtor * const compound_page_dtors[];
 539
 540static inline void set_compound_page_dtor(struct page *page,
 541                enum compound_dtor_id compound_dtor)
 542{
 543        VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 544        page[1].compound_dtor = compound_dtor;
 545}
 546
 547static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 548{
 549        VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 550        return compound_page_dtors[page[1].compound_dtor];
 551}
 552
 553static inline unsigned int compound_order(struct page *page)
 554{
 555        if (!PageHead(page))
 556                return 0;
 557        return page[1].compound_order;
 558}
 559
 560static inline void set_compound_order(struct page *page, unsigned int order)
 561{
 562        page[1].compound_order = order;
 563}
 564
 565#ifdef CONFIG_MMU
 566/*
 567 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 568 * servicing faults for write access.  In the normal case, do always want
 569 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 570 * that do not have writing enabled, when used by access_process_vm.
 571 */
 572static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 573{
 574        if (likely(vma->vm_flags & VM_WRITE))
 575                pte = pte_mkwrite(pte);
 576        return pte;
 577}
 578
 579void do_set_pte(struct vm_area_struct *vma, unsigned long address,
 580                struct page *page, pte_t *pte, bool write, bool anon);
 581#endif
 582
 583/*
 584 * Multiple processes may "see" the same page. E.g. for untouched
 585 * mappings of /dev/null, all processes see the same page full of
 586 * zeroes, and text pages of executables and shared libraries have
 587 * only one copy in memory, at most, normally.
 588 *
 589 * For the non-reserved pages, page_count(page) denotes a reference count.
 590 *   page_count() == 0 means the page is free. page->lru is then used for
 591 *   freelist management in the buddy allocator.
 592 *   page_count() > 0  means the page has been allocated.
 593 *
 594 * Pages are allocated by the slab allocator in order to provide memory
 595 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 596 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 597 * unless a particular usage is carefully commented. (the responsibility of
 598 * freeing the kmalloc memory is the caller's, of course).
 599 *
 600 * A page may be used by anyone else who does a __get_free_page().
 601 * In this case, page_count still tracks the references, and should only
 602 * be used through the normal accessor functions. The top bits of page->flags
 603 * and page->virtual store page management information, but all other fields
 604 * are unused and could be used privately, carefully. The management of this
 605 * page is the responsibility of the one who allocated it, and those who have
 606 * subsequently been given references to it.
 607 *
 608 * The other pages (we may call them "pagecache pages") are completely
 609 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 610 * The following discussion applies only to them.
 611 *
 612 * A pagecache page contains an opaque `private' member, which belongs to the
 613 * page's address_space. Usually, this is the address of a circular list of
 614 * the page's disk buffers. PG_private must be set to tell the VM to call
 615 * into the filesystem to release these pages.
 616 *
 617 * A page may belong to an inode's memory mapping. In this case, page->mapping
 618 * is the pointer to the inode, and page->index is the file offset of the page,
 619 * in units of PAGE_CACHE_SIZE.
 620 *
 621 * If pagecache pages are not associated with an inode, they are said to be
 622 * anonymous pages. These may become associated with the swapcache, and in that
 623 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 624 *
 625 * In either case (swapcache or inode backed), the pagecache itself holds one
 626 * reference to the page. Setting PG_private should also increment the
 627 * refcount. The each user mapping also has a reference to the page.
 628 *
 629 * The pagecache pages are stored in a per-mapping radix tree, which is
 630 * rooted at mapping->page_tree, and indexed by offset.
 631 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 632 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 633 *
 634 * All pagecache pages may be subject to I/O:
 635 * - inode pages may need to be read from disk,
 636 * - inode pages which have been modified and are MAP_SHARED may need
 637 *   to be written back to the inode on disk,
 638 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 639 *   modified may need to be swapped out to swap space and (later) to be read
 640 *   back into memory.
 641 */
 642
 643/*
 644 * The zone field is never updated after free_area_init_core()
 645 * sets it, so none of the operations on it need to be atomic.
 646 */
 647
 648/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 649#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 650#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 651#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 652#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 653
 654/*
 655 * Define the bit shifts to access each section.  For non-existent
 656 * sections we define the shift as 0; that plus a 0 mask ensures
 657 * the compiler will optimise away reference to them.
 658 */
 659#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 660#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 661#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 662#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 663
 664/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 665#ifdef NODE_NOT_IN_PAGE_FLAGS
 666#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 667#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 668                                                SECTIONS_PGOFF : ZONES_PGOFF)
 669#else
 670#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 671#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 672                                                NODES_PGOFF : ZONES_PGOFF)
 673#endif
 674
 675#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 676
 677#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 678#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 679#endif
 680
 681#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 682#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 683#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 684#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 685#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 686
 687static inline enum zone_type page_zonenum(const struct page *page)
 688{
 689        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 690}
 691
 692#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 693#define SECTION_IN_PAGE_FLAGS
 694#endif
 695
 696/*
 697 * The identification function is mainly used by the buddy allocator for
 698 * determining if two pages could be buddies. We are not really identifying
 699 * the zone since we could be using the section number id if we do not have
 700 * node id available in page flags.
 701 * We only guarantee that it will return the same value for two combinable
 702 * pages in a zone.
 703 */
 704static inline int page_zone_id(struct page *page)
 705{
 706        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 707}
 708
 709static inline int zone_to_nid(struct zone *zone)
 710{
 711#ifdef CONFIG_NUMA
 712        return zone->node;
 713#else
 714        return 0;
 715#endif
 716}
 717
 718#ifdef NODE_NOT_IN_PAGE_FLAGS
 719extern int page_to_nid(const struct page *page);
 720#else
 721static inline int page_to_nid(const struct page *page)
 722{
 723        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 724}
 725#endif
 726
 727#ifdef CONFIG_NUMA_BALANCING
 728static inline int cpu_pid_to_cpupid(int cpu, int pid)
 729{
 730        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 731}
 732
 733static inline int cpupid_to_pid(int cpupid)
 734{
 735        return cpupid & LAST__PID_MASK;
 736}
 737
 738static inline int cpupid_to_cpu(int cpupid)
 739{
 740        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 741}
 742
 743static inline int cpupid_to_nid(int cpupid)
 744{
 745        return cpu_to_node(cpupid_to_cpu(cpupid));
 746}
 747
 748static inline bool cpupid_pid_unset(int cpupid)
 749{
 750        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 751}
 752
 753static inline bool cpupid_cpu_unset(int cpupid)
 754{
 755        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 756}
 757
 758static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 759{
 760        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 761}
 762
 763#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 764#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 765static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 766{
 767        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 768}
 769
 770static inline int page_cpupid_last(struct page *page)
 771{
 772        return page->_last_cpupid;
 773}
 774static inline void page_cpupid_reset_last(struct page *page)
 775{
 776        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 777}
 778#else
 779static inline int page_cpupid_last(struct page *page)
 780{
 781        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 782}
 783
 784extern int page_cpupid_xchg_last(struct page *page, int cpupid);
 785
 786static inline void page_cpupid_reset_last(struct page *page)
 787{
 788        int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
 789
 790        page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
 791        page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
 792}
 793#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 794#else /* !CONFIG_NUMA_BALANCING */
 795static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 796{
 797        return page_to_nid(page); /* XXX */
 798}
 799
 800static inline int page_cpupid_last(struct page *page)
 801{
 802        return page_to_nid(page); /* XXX */
 803}
 804
 805static inline int cpupid_to_nid(int cpupid)
 806{
 807        return -1;
 808}
 809
 810static inline int cpupid_to_pid(int cpupid)
 811{
 812        return -1;
 813}
 814
 815static inline int cpupid_to_cpu(int cpupid)
 816{
 817        return -1;
 818}
 819
 820static inline int cpu_pid_to_cpupid(int nid, int pid)
 821{
 822        return -1;
 823}
 824
 825static inline bool cpupid_pid_unset(int cpupid)
 826{
 827        return 1;
 828}
 829
 830static inline void page_cpupid_reset_last(struct page *page)
 831{
 832}
 833
 834static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 835{
 836        return false;
 837}
 838#endif /* CONFIG_NUMA_BALANCING */
 839
 840static inline struct zone *page_zone(const struct page *page)
 841{
 842        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 843}
 844
 845#ifdef SECTION_IN_PAGE_FLAGS
 846static inline void set_page_section(struct page *page, unsigned long section)
 847{
 848        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 849        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 850}
 851
 852static inline unsigned long page_to_section(const struct page *page)
 853{
 854        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 855}
 856#endif
 857
 858static inline void set_page_zone(struct page *page, enum zone_type zone)
 859{
 860        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 861        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 862}
 863
 864static inline void set_page_node(struct page *page, unsigned long node)
 865{
 866        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 867        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 868}
 869
 870static inline void set_page_links(struct page *page, enum zone_type zone,
 871        unsigned long node, unsigned long pfn)
 872{
 873        set_page_zone(page, zone);
 874        set_page_node(page, node);
 875#ifdef SECTION_IN_PAGE_FLAGS
 876        set_page_section(page, pfn_to_section_nr(pfn));
 877#endif
 878}
 879
 880#ifdef CONFIG_MEMCG
 881static inline struct mem_cgroup *page_memcg(struct page *page)
 882{
 883        return page->mem_cgroup;
 884}
 885
 886static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
 887{
 888        page->mem_cgroup = memcg;
 889}
 890#else
 891static inline struct mem_cgroup *page_memcg(struct page *page)
 892{
 893        return NULL;
 894}
 895
 896static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
 897{
 898}
 899#endif
 900
 901/*
 902 * Some inline functions in vmstat.h depend on page_zone()
 903 */
 904#include <linux/vmstat.h>
 905
 906static __always_inline void *lowmem_page_address(const struct page *page)
 907{
 908        return __va(PFN_PHYS(page_to_pfn(page)));
 909}
 910
 911#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 912#define HASHED_PAGE_VIRTUAL
 913#endif
 914
 915#if defined(WANT_PAGE_VIRTUAL)
 916static inline void *page_address(const struct page *page)
 917{
 918        return page->virtual;
 919}
 920static inline void set_page_address(struct page *page, void *address)
 921{
 922        page->virtual = address;
 923}
 924#define page_address_init()  do { } while(0)
 925#endif
 926
 927#if defined(HASHED_PAGE_VIRTUAL)
 928void *page_address(const struct page *page);
 929void set_page_address(struct page *page, void *virtual);
 930void page_address_init(void);
 931#endif
 932
 933#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 934#define page_address(page) lowmem_page_address(page)
 935#define set_page_address(page, address)  do { } while(0)
 936#define page_address_init()  do { } while(0)
 937#endif
 938
 939extern void *page_rmapping(struct page *page);
 940extern struct anon_vma *page_anon_vma(struct page *page);
 941extern struct address_space *page_mapping(struct page *page);
 942
 943extern struct address_space *__page_file_mapping(struct page *);
 944
 945static inline
 946struct address_space *page_file_mapping(struct page *page)
 947{
 948        if (unlikely(PageSwapCache(page)))
 949                return __page_file_mapping(page);
 950
 951        return page->mapping;
 952}
 953
 954/*
 955 * Return the pagecache index of the passed page.  Regular pagecache pages
 956 * use ->index whereas swapcache pages use ->private
 957 */
 958static inline pgoff_t page_index(struct page *page)
 959{
 960        if (unlikely(PageSwapCache(page)))
 961                return page_private(page);
 962        return page->index;
 963}
 964
 965extern pgoff_t __page_file_index(struct page *page);
 966
 967/*
 968 * Return the file index of the page. Regular pagecache pages use ->index
 969 * whereas swapcache pages use swp_offset(->private)
 970 */
 971static inline pgoff_t page_file_index(struct page *page)
 972{
 973        if (unlikely(PageSwapCache(page)))
 974                return __page_file_index(page);
 975
 976        return page->index;
 977}
 978
 979/*
 980 * Return true if this page is mapped into pagetables.
 981 */
 982static inline int page_mapped(struct page *page)
 983{
 984        return atomic_read(&(page)->_mapcount) >= 0;
 985}
 986
 987/*
 988 * Return true only if the page has been allocated with
 989 * ALLOC_NO_WATERMARKS and the low watermark was not
 990 * met implying that the system is under some pressure.
 991 */
 992static inline bool page_is_pfmemalloc(struct page *page)
 993{
 994        /*
 995         * Page index cannot be this large so this must be
 996         * a pfmemalloc page.
 997         */
 998        return page->index == -1UL;
 999}
1000
1001/*
1002 * Only to be called by the page allocator on a freshly allocated
1003 * page.
1004 */
1005static inline void set_page_pfmemalloc(struct page *page)
1006{
1007        page->index = -1UL;
1008}
1009
1010static inline void clear_page_pfmemalloc(struct page *page)
1011{
1012        page->index = 0;
1013}
1014
1015/*
1016 * Different kinds of faults, as returned by handle_mm_fault().
1017 * Used to decide whether a process gets delivered SIGBUS or
1018 * just gets major/minor fault counters bumped up.
1019 */
1020
1021#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1022
1023#define VM_FAULT_OOM    0x0001
1024#define VM_FAULT_SIGBUS 0x0002
1025#define VM_FAULT_MAJOR  0x0004
1026#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1027#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1028#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1029#define VM_FAULT_SIGSEGV 0x0040
1030
1031#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1032#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1033#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1034#define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1035
1036#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1037
1038#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1039                         VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1040                         VM_FAULT_FALLBACK)
1041
1042/* Encode hstate index for a hwpoisoned large page */
1043#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1044#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1045
1046/*
1047 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1048 */
1049extern void pagefault_out_of_memory(void);
1050
1051#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1052
1053/*
1054 * Flags passed to show_mem() and show_free_areas() to suppress output in
1055 * various contexts.
1056 */
1057#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1058
1059extern void show_free_areas(unsigned int flags);
1060extern bool skip_free_areas_node(unsigned int flags, int nid);
1061
1062int shmem_zero_setup(struct vm_area_struct *);
1063#ifdef CONFIG_SHMEM
1064bool shmem_mapping(struct address_space *mapping);
1065#else
1066static inline bool shmem_mapping(struct address_space *mapping)
1067{
1068        return false;
1069}
1070#endif
1071
1072extern int can_do_mlock(void);
1073extern int user_shm_lock(size_t, struct user_struct *);
1074extern void user_shm_unlock(size_t, struct user_struct *);
1075
1076/*
1077 * Parameter block passed down to zap_pte_range in exceptional cases.
1078 */
1079struct zap_details {
1080        struct address_space *check_mapping;    /* Check page->mapping if set */
1081        pgoff_t first_index;                    /* Lowest page->index to unmap */
1082        pgoff_t last_index;                     /* Highest page->index to unmap */
1083};
1084
1085struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1086                pte_t pte);
1087
1088int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1089                unsigned long size);
1090void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1091                unsigned long size, struct zap_details *);
1092void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1093                unsigned long start, unsigned long end);
1094
1095/**
1096 * mm_walk - callbacks for walk_page_range
1097 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1098 *             this handler is required to be able to handle
1099 *             pmd_trans_huge() pmds.  They may simply choose to
1100 *             split_huge_page() instead of handling it explicitly.
1101 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1102 * @pte_hole: if set, called for each hole at all levels
1103 * @hugetlb_entry: if set, called for each hugetlb entry
1104 * @test_walk: caller specific callback function to determine whether
1105 *             we walk over the current vma or not. A positive returned
1106 *             value means "do page table walk over the current vma,"
1107 *             and a negative one means "abort current page table walk
1108 *             right now." 0 means "skip the current vma."
1109 * @mm:        mm_struct representing the target process of page table walk
1110 * @vma:       vma currently walked (NULL if walking outside vmas)
1111 * @private:   private data for callbacks' usage
1112 *
1113 * (see the comment on walk_page_range() for more details)
1114 */
1115struct mm_walk {
1116        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1117                         unsigned long next, struct mm_walk *walk);
1118        int (*pte_entry)(pte_t *pte, unsigned long addr,
1119                         unsigned long next, struct mm_walk *walk);
1120        int (*pte_hole)(unsigned long addr, unsigned long next,
1121                        struct mm_walk *walk);
1122        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1123                             unsigned long addr, unsigned long next,
1124                             struct mm_walk *walk);
1125        int (*test_walk)(unsigned long addr, unsigned long next,
1126                        struct mm_walk *walk);
1127        struct mm_struct *mm;
1128        struct vm_area_struct *vma;
1129        void *private;
1130};
1131
1132int walk_page_range(unsigned long addr, unsigned long end,
1133                struct mm_walk *walk);
1134int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1135void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1136                unsigned long end, unsigned long floor, unsigned long ceiling);
1137int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1138                        struct vm_area_struct *vma);
1139void unmap_mapping_range(struct address_space *mapping,
1140                loff_t const holebegin, loff_t const holelen, int even_cows);
1141int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1142        unsigned long *pfn);
1143int follow_phys(struct vm_area_struct *vma, unsigned long address,
1144                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1145int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1146                        void *buf, int len, int write);
1147
1148static inline void unmap_shared_mapping_range(struct address_space *mapping,
1149                loff_t const holebegin, loff_t const holelen)
1150{
1151        unmap_mapping_range(mapping, holebegin, holelen, 0);
1152}
1153
1154extern void truncate_pagecache(struct inode *inode, loff_t new);
1155extern void truncate_setsize(struct inode *inode, loff_t newsize);
1156void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1157void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1158int truncate_inode_page(struct address_space *mapping, struct page *page);
1159int generic_error_remove_page(struct address_space *mapping, struct page *page);
1160int invalidate_inode_page(struct page *page);
1161
1162#ifdef CONFIG_MMU
1163extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1164                        unsigned long address, unsigned int flags);
1165extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1166                            unsigned long address, unsigned int fault_flags);
1167#else
1168static inline int handle_mm_fault(struct mm_struct *mm,
1169                        struct vm_area_struct *vma, unsigned long address,
1170                        unsigned int flags)
1171{
1172        /* should never happen if there's no MMU */
1173        BUG();
1174        return VM_FAULT_SIGBUS;
1175}
1176static inline int fixup_user_fault(struct task_struct *tsk,
1177                struct mm_struct *mm, unsigned long address,
1178                unsigned int fault_flags)
1179{
1180        /* should never happen if there's no MMU */
1181        BUG();
1182        return -EFAULT;
1183}
1184#endif
1185
1186extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1187extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1188                void *buf, int len, int write);
1189
1190long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1191                      unsigned long start, unsigned long nr_pages,
1192                      unsigned int foll_flags, struct page **pages,
1193                      struct vm_area_struct **vmas, int *nonblocking);
1194long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1195                    unsigned long start, unsigned long nr_pages,
1196                    int write, int force, struct page **pages,
1197                    struct vm_area_struct **vmas);
1198long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1199                    unsigned long start, unsigned long nr_pages,
1200                    int write, int force, struct page **pages,
1201                    int *locked);
1202long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1203                               unsigned long start, unsigned long nr_pages,
1204                               int write, int force, struct page **pages,
1205                               unsigned int gup_flags);
1206long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1207                    unsigned long start, unsigned long nr_pages,
1208                    int write, int force, struct page **pages);
1209int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1210                        struct page **pages);
1211
1212/* Container for pinned pfns / pages */
1213struct frame_vector {
1214        unsigned int nr_allocated;      /* Number of frames we have space for */
1215        unsigned int nr_frames; /* Number of frames stored in ptrs array */
1216        bool got_ref;           /* Did we pin pages by getting page ref? */
1217        bool is_pfns;           /* Does array contain pages or pfns? */
1218        void *ptrs[0];          /* Array of pinned pfns / pages. Use
1219                                 * pfns_vector_pages() or pfns_vector_pfns()
1220                                 * for access */
1221};
1222
1223struct frame_vector *frame_vector_create(unsigned int nr_frames);
1224void frame_vector_destroy(struct frame_vector *vec);
1225int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1226                     bool write, bool force, struct frame_vector *vec);
1227void put_vaddr_frames(struct frame_vector *vec);
1228int frame_vector_to_pages(struct frame_vector *vec);
1229void frame_vector_to_pfns(struct frame_vector *vec);
1230
1231static inline unsigned int frame_vector_count(struct frame_vector *vec)
1232{
1233        return vec->nr_frames;
1234}
1235
1236static inline struct page **frame_vector_pages(struct frame_vector *vec)
1237{
1238        if (vec->is_pfns) {
1239                int err = frame_vector_to_pages(vec);
1240
1241                if (err)
1242                        return ERR_PTR(err);
1243        }
1244        return (struct page **)(vec->ptrs);
1245}
1246
1247static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1248{
1249        if (!vec->is_pfns)
1250                frame_vector_to_pfns(vec);
1251        return (unsigned long *)(vec->ptrs);
1252}
1253
1254struct kvec;
1255int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1256                        struct page **pages);
1257int get_kernel_page(unsigned long start, int write, struct page **pages);
1258struct page *get_dump_page(unsigned long addr);
1259
1260extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1261extern void do_invalidatepage(struct page *page, unsigned int offset,
1262                              unsigned int length);
1263
1264int __set_page_dirty_nobuffers(struct page *page);
1265int __set_page_dirty_no_writeback(struct page *page);
1266int redirty_page_for_writepage(struct writeback_control *wbc,
1267                                struct page *page);
1268void account_page_dirtied(struct page *page, struct address_space *mapping,
1269                          struct mem_cgroup *memcg);
1270void account_page_cleaned(struct page *page, struct address_space *mapping,
1271                          struct mem_cgroup *memcg, struct bdi_writeback *wb);
1272int set_page_dirty(struct page *page);
1273int set_page_dirty_lock(struct page *page);
1274void cancel_dirty_page(struct page *page);
1275int clear_page_dirty_for_io(struct page *page);
1276
1277int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1278
1279/* Is the vma a continuation of the stack vma above it? */
1280static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1281{
1282        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1283}
1284
1285static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1286{
1287        return !vma->vm_ops;
1288}
1289
1290static inline int stack_guard_page_start(struct vm_area_struct *vma,
1291                                             unsigned long addr)
1292{
1293        return (vma->vm_flags & VM_GROWSDOWN) &&
1294                (vma->vm_start == addr) &&
1295                !vma_growsdown(vma->vm_prev, addr);
1296}
1297
1298/* Is the vma a continuation of the stack vma below it? */
1299static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1300{
1301        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1302}
1303
1304static inline int stack_guard_page_end(struct vm_area_struct *vma,
1305                                           unsigned long addr)
1306{
1307        return (vma->vm_flags & VM_GROWSUP) &&
1308                (vma->vm_end == addr) &&
1309                !vma_growsup(vma->vm_next, addr);
1310}
1311
1312extern struct task_struct *task_of_stack(struct task_struct *task,
1313                                struct vm_area_struct *vma, bool in_group);
1314
1315extern unsigned long move_page_tables(struct vm_area_struct *vma,
1316                unsigned long old_addr, struct vm_area_struct *new_vma,
1317                unsigned long new_addr, unsigned long len,
1318                bool need_rmap_locks);
1319extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1320                              unsigned long end, pgprot_t newprot,
1321                              int dirty_accountable, int prot_numa);
1322extern int mprotect_fixup(struct vm_area_struct *vma,
1323                          struct vm_area_struct **pprev, unsigned long start,
1324                          unsigned long end, unsigned long newflags);
1325
1326/*
1327 * doesn't attempt to fault and will return short.
1328 */
1329int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1330                          struct page **pages);
1331/*
1332 * per-process(per-mm_struct) statistics.
1333 */
1334static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1335{
1336        long val = atomic_long_read(&mm->rss_stat.count[member]);
1337
1338#ifdef SPLIT_RSS_COUNTING
1339        /*
1340         * counter is updated in asynchronous manner and may go to minus.
1341         * But it's never be expected number for users.
1342         */
1343        if (val < 0)
1344                val = 0;
1345#endif
1346        return (unsigned long)val;
1347}
1348
1349static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1350{
1351        atomic_long_add(value, &mm->rss_stat.count[member]);
1352}
1353
1354static inline void inc_mm_counter(struct mm_struct *mm, int member)
1355{
1356        atomic_long_inc(&mm->rss_stat.count[member]);
1357}
1358
1359static inline void dec_mm_counter(struct mm_struct *mm, int member)
1360{
1361        atomic_long_dec(&mm->rss_stat.count[member]);
1362}
1363
1364static inline unsigned long get_mm_rss(struct mm_struct *mm)
1365{
1366        return get_mm_counter(mm, MM_FILEPAGES) +
1367                get_mm_counter(mm, MM_ANONPAGES);
1368}
1369
1370static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1371{
1372        return max(mm->hiwater_rss, get_mm_rss(mm));
1373}
1374
1375static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1376{
1377        return max(mm->hiwater_vm, mm->total_vm);
1378}
1379
1380static inline void update_hiwater_rss(struct mm_struct *mm)
1381{
1382        unsigned long _rss = get_mm_rss(mm);
1383
1384        if ((mm)->hiwater_rss < _rss)
1385                (mm)->hiwater_rss = _rss;
1386}
1387
1388static inline void update_hiwater_vm(struct mm_struct *mm)
1389{
1390        if (mm->hiwater_vm < mm->total_vm)
1391                mm->hiwater_vm = mm->total_vm;
1392}
1393
1394static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1395{
1396        mm->hiwater_rss = get_mm_rss(mm);
1397}
1398
1399static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1400                                         struct mm_struct *mm)
1401{
1402        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1403
1404        if (*maxrss < hiwater_rss)
1405                *maxrss = hiwater_rss;
1406}
1407
1408#if defined(SPLIT_RSS_COUNTING)
1409void sync_mm_rss(struct mm_struct *mm);
1410#else
1411static inline void sync_mm_rss(struct mm_struct *mm)
1412{
1413}
1414#endif
1415
1416int vma_wants_writenotify(struct vm_area_struct *vma);
1417
1418extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1419                               spinlock_t **ptl);
1420static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421                                    spinlock_t **ptl)
1422{
1423        pte_t *ptep;
1424        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1425        return ptep;
1426}
1427
1428#ifdef __PAGETABLE_PUD_FOLDED
1429static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1430                                                unsigned long address)
1431{
1432        return 0;
1433}
1434#else
1435int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1436#endif
1437
1438#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1439static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1440                                                unsigned long address)
1441{
1442        return 0;
1443}
1444
1445static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1446
1447static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1448{
1449        return 0;
1450}
1451
1452static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1453static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1454
1455#else
1456int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1457
1458static inline void mm_nr_pmds_init(struct mm_struct *mm)
1459{
1460        atomic_long_set(&mm->nr_pmds, 0);
1461}
1462
1463static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1464{
1465        return atomic_long_read(&mm->nr_pmds);
1466}
1467
1468static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1469{
1470        atomic_long_inc(&mm->nr_pmds);
1471}
1472
1473static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1474{
1475        atomic_long_dec(&mm->nr_pmds);
1476}
1477#endif
1478
1479int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1480                pmd_t *pmd, unsigned long address);
1481int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1482
1483/*
1484 * The following ifdef needed to get the 4level-fixup.h header to work.
1485 * Remove it when 4level-fixup.h has been removed.
1486 */
1487#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1488static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1489{
1490        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1491                NULL: pud_offset(pgd, address);
1492}
1493
1494static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1495{
1496        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1497                NULL: pmd_offset(pud, address);
1498}
1499#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1500
1501#if USE_SPLIT_PTE_PTLOCKS
1502#if ALLOC_SPLIT_PTLOCKS
1503void __init ptlock_cache_init(void);
1504extern bool ptlock_alloc(struct page *page);
1505extern void ptlock_free(struct page *page);
1506
1507static inline spinlock_t *ptlock_ptr(struct page *page)
1508{
1509        return page->ptl;
1510}
1511#else /* ALLOC_SPLIT_PTLOCKS */
1512static inline void ptlock_cache_init(void)
1513{
1514}
1515
1516static inline bool ptlock_alloc(struct page *page)
1517{
1518        return true;
1519}
1520
1521static inline void ptlock_free(struct page *page)
1522{
1523}
1524
1525static inline spinlock_t *ptlock_ptr(struct page *page)
1526{
1527        return &page->ptl;
1528}
1529#endif /* ALLOC_SPLIT_PTLOCKS */
1530
1531static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1532{
1533        return ptlock_ptr(pmd_page(*pmd));
1534}
1535
1536static inline bool ptlock_init(struct page *page)
1537{
1538        /*
1539         * prep_new_page() initialize page->private (and therefore page->ptl)
1540         * with 0. Make sure nobody took it in use in between.
1541         *
1542         * It can happen if arch try to use slab for page table allocation:
1543         * slab code uses page->slab_cache, which share storage with page->ptl.
1544         */
1545        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1546        if (!ptlock_alloc(page))
1547                return false;
1548        spin_lock_init(ptlock_ptr(page));
1549        return true;
1550}
1551
1552/* Reset page->mapping so free_pages_check won't complain. */
1553static inline void pte_lock_deinit(struct page *page)
1554{
1555        page->mapping = NULL;
1556        ptlock_free(page);
1557}
1558
1559#else   /* !USE_SPLIT_PTE_PTLOCKS */
1560/*
1561 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1562 */
1563static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1564{
1565        return &mm->page_table_lock;
1566}
1567static inline void ptlock_cache_init(void) {}
1568static inline bool ptlock_init(struct page *page) { return true; }
1569static inline void pte_lock_deinit(struct page *page) {}
1570#endif /* USE_SPLIT_PTE_PTLOCKS */
1571
1572static inline void pgtable_init(void)
1573{
1574        ptlock_cache_init();
1575        pgtable_cache_init();
1576}
1577
1578static inline bool pgtable_page_ctor(struct page *page)
1579{
1580        if (!ptlock_init(page))
1581                return false;
1582        inc_zone_page_state(page, NR_PAGETABLE);
1583        return true;
1584}
1585
1586static inline void pgtable_page_dtor(struct page *page)
1587{
1588        pte_lock_deinit(page);
1589        dec_zone_page_state(page, NR_PAGETABLE);
1590}
1591
1592#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1593({                                                      \
1594        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1595        pte_t *__pte = pte_offset_map(pmd, address);    \
1596        *(ptlp) = __ptl;                                \
1597        spin_lock(__ptl);                               \
1598        __pte;                                          \
1599})
1600
1601#define pte_unmap_unlock(pte, ptl)      do {            \
1602        spin_unlock(ptl);                               \
1603        pte_unmap(pte);                                 \
1604} while (0)
1605
1606#define pte_alloc_map(mm, vma, pmd, address)                            \
1607        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1608                                                        pmd, address))? \
1609         NULL: pte_offset_map(pmd, address))
1610
1611#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1612        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1613                                                        pmd, address))? \
1614                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1615
1616#define pte_alloc_kernel(pmd, address)                  \
1617        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1618                NULL: pte_offset_kernel(pmd, address))
1619
1620#if USE_SPLIT_PMD_PTLOCKS
1621
1622static struct page *pmd_to_page(pmd_t *pmd)
1623{
1624        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1625        return virt_to_page((void *)((unsigned long) pmd & mask));
1626}
1627
1628static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1629{
1630        return ptlock_ptr(pmd_to_page(pmd));
1631}
1632
1633static inline bool pgtable_pmd_page_ctor(struct page *page)
1634{
1635#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1636        page->pmd_huge_pte = NULL;
1637#endif
1638        return ptlock_init(page);
1639}
1640
1641static inline void pgtable_pmd_page_dtor(struct page *page)
1642{
1643#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1644        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1645#endif
1646        ptlock_free(page);
1647}
1648
1649#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1650
1651#else
1652
1653static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1654{
1655        return &mm->page_table_lock;
1656}
1657
1658static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1659static inline void pgtable_pmd_page_dtor(struct page *page) {}
1660
1661#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1662
1663#endif
1664
1665static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1666{
1667        spinlock_t *ptl = pmd_lockptr(mm, pmd);
1668        spin_lock(ptl);
1669        return ptl;
1670}
1671
1672extern void free_area_init(unsigned long * zones_size);
1673extern void free_area_init_node(int nid, unsigned long * zones_size,
1674                unsigned long zone_start_pfn, unsigned long *zholes_size);
1675extern void free_initmem(void);
1676
1677/*
1678 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1679 * into the buddy system. The freed pages will be poisoned with pattern
1680 * "poison" if it's within range [0, UCHAR_MAX].
1681 * Return pages freed into the buddy system.
1682 */
1683extern unsigned long free_reserved_area(void *start, void *end,
1684                                        int poison, char *s);
1685
1686#ifdef  CONFIG_HIGHMEM
1687/*
1688 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1689 * and totalram_pages.
1690 */
1691extern void free_highmem_page(struct page *page);
1692#endif
1693
1694extern void adjust_managed_page_count(struct page *page, long count);
1695extern void mem_init_print_info(const char *str);
1696
1697extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1698
1699/* Free the reserved page into the buddy system, so it gets managed. */
1700static inline void __free_reserved_page(struct page *page)
1701{
1702        ClearPageReserved(page);
1703        init_page_count(page);
1704        __free_page(page);
1705}
1706
1707static inline void free_reserved_page(struct page *page)
1708{
1709        __free_reserved_page(page);
1710        adjust_managed_page_count(page, 1);
1711}
1712
1713static inline void mark_page_reserved(struct page *page)
1714{
1715        SetPageReserved(page);
1716        adjust_managed_page_count(page, -1);
1717}
1718
1719/*
1720 * Default method to free all the __init memory into the buddy system.
1721 * The freed pages will be poisoned with pattern "poison" if it's within
1722 * range [0, UCHAR_MAX].
1723 * Return pages freed into the buddy system.
1724 */
1725static inline unsigned long free_initmem_default(int poison)
1726{
1727        extern char __init_begin[], __init_end[];
1728
1729        return free_reserved_area(&__init_begin, &__init_end,
1730                                  poison, "unused kernel");
1731}
1732
1733static inline unsigned long get_num_physpages(void)
1734{
1735        int nid;
1736        unsigned long phys_pages = 0;
1737
1738        for_each_online_node(nid)
1739                phys_pages += node_present_pages(nid);
1740
1741        return phys_pages;
1742}
1743
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745/*
1746 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1747 * zones, allocate the backing mem_map and account for memory holes in a more
1748 * architecture independent manner. This is a substitute for creating the
1749 * zone_sizes[] and zholes_size[] arrays and passing them to
1750 * free_area_init_node()
1751 *
1752 * An architecture is expected to register range of page frames backed by
1753 * physical memory with memblock_add[_node]() before calling
1754 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1755 * usage, an architecture is expected to do something like
1756 *
1757 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1758 *                                                       max_highmem_pfn};
1759 * for_each_valid_physical_page_range()
1760 *      memblock_add_node(base, size, nid)
1761 * free_area_init_nodes(max_zone_pfns);
1762 *
1763 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1764 * registered physical page range.  Similarly
1765 * sparse_memory_present_with_active_regions() calls memory_present() for
1766 * each range when SPARSEMEM is enabled.
1767 *
1768 * See mm/page_alloc.c for more information on each function exposed by
1769 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1770 */
1771extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1772unsigned long node_map_pfn_alignment(void);
1773unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1774                                                unsigned long end_pfn);
1775extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1776                                                unsigned long end_pfn);
1777extern void get_pfn_range_for_nid(unsigned int nid,
1778                        unsigned long *start_pfn, unsigned long *end_pfn);
1779extern unsigned long find_min_pfn_with_active_regions(void);
1780extern void free_bootmem_with_active_regions(int nid,
1781                                                unsigned long max_low_pfn);
1782extern void sparse_memory_present_with_active_regions(int nid);
1783
1784#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1785
1786#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1787    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1788static inline int __early_pfn_to_nid(unsigned long pfn,
1789                                        struct mminit_pfnnid_cache *state)
1790{
1791        return 0;
1792}
1793#else
1794/* please see mm/page_alloc.c */
1795extern int __meminit early_pfn_to_nid(unsigned long pfn);
1796/* there is a per-arch backend function. */
1797extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1798                                        struct mminit_pfnnid_cache *state);
1799#endif
1800
1801extern void set_dma_reserve(unsigned long new_dma_reserve);
1802extern void memmap_init_zone(unsigned long, int, unsigned long,
1803                                unsigned long, enum memmap_context);
1804extern void setup_per_zone_wmarks(void);
1805extern int __meminit init_per_zone_wmark_min(void);
1806extern void mem_init(void);
1807extern void __init mmap_init(void);
1808extern void show_mem(unsigned int flags);
1809extern void si_meminfo(struct sysinfo * val);
1810extern void si_meminfo_node(struct sysinfo *val, int nid);
1811
1812extern __printf(3, 4)
1813void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1814                const char *fmt, ...);
1815
1816extern void setup_per_cpu_pageset(void);
1817
1818extern void zone_pcp_update(struct zone *zone);
1819extern void zone_pcp_reset(struct zone *zone);
1820
1821/* page_alloc.c */
1822extern int min_free_kbytes;
1823
1824/* nommu.c */
1825extern atomic_long_t mmap_pages_allocated;
1826extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1827
1828/* interval_tree.c */
1829void vma_interval_tree_insert(struct vm_area_struct *node,
1830                              struct rb_root *root);
1831void vma_interval_tree_insert_after(struct vm_area_struct *node,
1832                                    struct vm_area_struct *prev,
1833                                    struct rb_root *root);
1834void vma_interval_tree_remove(struct vm_area_struct *node,
1835                              struct rb_root *root);
1836struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1837                                unsigned long start, unsigned long last);
1838struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1839                                unsigned long start, unsigned long last);
1840
1841#define vma_interval_tree_foreach(vma, root, start, last)               \
1842        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1843             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1844
1845void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1846                                   struct rb_root *root);
1847void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1848                                   struct rb_root *root);
1849struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1850        struct rb_root *root, unsigned long start, unsigned long last);
1851struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1852        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1853#ifdef CONFIG_DEBUG_VM_RB
1854void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1855#endif
1856
1857#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1858        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1859             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1860
1861/* mmap.c */
1862extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1863extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1864        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1865extern struct vm_area_struct *vma_merge(struct mm_struct *,
1866        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1867        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1868        struct mempolicy *, struct vm_userfaultfd_ctx);
1869extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1870extern int split_vma(struct mm_struct *,
1871        struct vm_area_struct *, unsigned long addr, int new_below);
1872extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1873extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1874        struct rb_node **, struct rb_node *);
1875extern void unlink_file_vma(struct vm_area_struct *);
1876extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1877        unsigned long addr, unsigned long len, pgoff_t pgoff,
1878        bool *need_rmap_locks);
1879extern void exit_mmap(struct mm_struct *);
1880
1881static inline int check_data_rlimit(unsigned long rlim,
1882                                    unsigned long new,
1883                                    unsigned long start,
1884                                    unsigned long end_data,
1885                                    unsigned long start_data)
1886{
1887        if (rlim < RLIM_INFINITY) {
1888                if (((new - start) + (end_data - start_data)) > rlim)
1889                        return -ENOSPC;
1890        }
1891
1892        return 0;
1893}
1894
1895extern int mm_take_all_locks(struct mm_struct *mm);
1896extern void mm_drop_all_locks(struct mm_struct *mm);
1897
1898extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1899extern struct file *get_mm_exe_file(struct mm_struct *mm);
1900
1901extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1902extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1903                                   unsigned long addr, unsigned long len,
1904                                   unsigned long flags,
1905                                   const struct vm_special_mapping *spec);
1906/* This is an obsolete alternative to _install_special_mapping. */
1907extern int install_special_mapping(struct mm_struct *mm,
1908                                   unsigned long addr, unsigned long len,
1909                                   unsigned long flags, struct page **pages);
1910
1911extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1912
1913extern unsigned long mmap_region(struct file *file, unsigned long addr,
1914        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1915extern unsigned long do_mmap(struct file *file, unsigned long addr,
1916        unsigned long len, unsigned long prot, unsigned long flags,
1917        vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1918extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1919
1920static inline unsigned long
1921do_mmap_pgoff(struct file *file, unsigned long addr,
1922        unsigned long len, unsigned long prot, unsigned long flags,
1923        unsigned long pgoff, unsigned long *populate)
1924{
1925        return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1926}
1927
1928#ifdef CONFIG_MMU
1929extern int __mm_populate(unsigned long addr, unsigned long len,
1930                         int ignore_errors);
1931static inline void mm_populate(unsigned long addr, unsigned long len)
1932{
1933        /* Ignore errors */
1934        (void) __mm_populate(addr, len, 1);
1935}
1936#else
1937static inline void mm_populate(unsigned long addr, unsigned long len) {}
1938#endif
1939
1940/* These take the mm semaphore themselves */
1941extern unsigned long vm_brk(unsigned long, unsigned long);
1942extern int vm_munmap(unsigned long, size_t);
1943extern unsigned long vm_mmap(struct file *, unsigned long,
1944        unsigned long, unsigned long,
1945        unsigned long, unsigned long);
1946
1947struct vm_unmapped_area_info {
1948#define VM_UNMAPPED_AREA_TOPDOWN 1
1949        unsigned long flags;
1950        unsigned long length;
1951        unsigned long low_limit;
1952        unsigned long high_limit;
1953        unsigned long align_mask;
1954        unsigned long align_offset;
1955};
1956
1957extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1958extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1959
1960/*
1961 * Search for an unmapped address range.
1962 *
1963 * We are looking for a range that:
1964 * - does not intersect with any VMA;
1965 * - is contained within the [low_limit, high_limit) interval;
1966 * - is at least the desired size.
1967 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1968 */
1969static inline unsigned long
1970vm_unmapped_area(struct vm_unmapped_area_info *info)
1971{
1972        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1973                return unmapped_area_topdown(info);
1974        else
1975                return unmapped_area(info);
1976}
1977
1978/* truncate.c */
1979extern void truncate_inode_pages(struct address_space *, loff_t);
1980extern void truncate_inode_pages_range(struct address_space *,
1981                                       loff_t lstart, loff_t lend);
1982extern void truncate_inode_pages_final(struct address_space *);
1983
1984/* generic vm_area_ops exported for stackable file systems */
1985extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1986extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1987extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1988
1989/* mm/page-writeback.c */
1990int write_one_page(struct page *page, int wait);
1991void task_dirty_inc(struct task_struct *tsk);
1992
1993/* readahead.c */
1994#define VM_MAX_READAHEAD        128     /* kbytes */
1995#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1996
1997int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1998                        pgoff_t offset, unsigned long nr_to_read);
1999
2000void page_cache_sync_readahead(struct address_space *mapping,
2001                               struct file_ra_state *ra,
2002                               struct file *filp,
2003                               pgoff_t offset,
2004                               unsigned long size);
2005
2006void page_cache_async_readahead(struct address_space *mapping,
2007                                struct file_ra_state *ra,
2008                                struct file *filp,
2009                                struct page *pg,
2010                                pgoff_t offset,
2011                                unsigned long size);
2012
2013/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2014extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2015
2016/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2017extern int expand_downwards(struct vm_area_struct *vma,
2018                unsigned long address);
2019#if VM_GROWSUP
2020extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2021#else
2022  #define expand_upwards(vma, address) (0)
2023#endif
2024
2025/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2026extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2027extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2028                                             struct vm_area_struct **pprev);
2029
2030/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2031   NULL if none.  Assume start_addr < end_addr. */
2032static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2033{
2034        struct vm_area_struct * vma = find_vma(mm,start_addr);
2035
2036        if (vma && end_addr <= vma->vm_start)
2037                vma = NULL;
2038        return vma;
2039}
2040
2041static inline unsigned long vma_pages(struct vm_area_struct *vma)
2042{
2043        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2044}
2045
2046/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2047static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2048                                unsigned long vm_start, unsigned long vm_end)
2049{
2050        struct vm_area_struct *vma = find_vma(mm, vm_start);
2051
2052        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2053                vma = NULL;
2054
2055        return vma;
2056}
2057
2058#ifdef CONFIG_MMU
2059pgprot_t vm_get_page_prot(unsigned long vm_flags);
2060void vma_set_page_prot(struct vm_area_struct *vma);
2061#else
2062static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2063{
2064        return __pgprot(0);
2065}
2066static inline void vma_set_page_prot(struct vm_area_struct *vma)
2067{
2068        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2069}
2070#endif
2071
2072#ifdef CONFIG_NUMA_BALANCING
2073unsigned long change_prot_numa(struct vm_area_struct *vma,
2074                        unsigned long start, unsigned long end);
2075#endif
2076
2077struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2078int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2079                        unsigned long pfn, unsigned long size, pgprot_t);
2080int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2081int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2082                        unsigned long pfn);
2083int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2084                        unsigned long pfn);
2085int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2086
2087
2088struct page *follow_page_mask(struct vm_area_struct *vma,
2089                              unsigned long address, unsigned int foll_flags,
2090                              unsigned int *page_mask);
2091
2092static inline struct page *follow_page(struct vm_area_struct *vma,
2093                unsigned long address, unsigned int foll_flags)
2094{
2095        unsigned int unused_page_mask;
2096        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2097}
2098
2099#define FOLL_WRITE      0x01    /* check pte is writable */
2100#define FOLL_TOUCH      0x02    /* mark page accessed */
2101#define FOLL_GET        0x04    /* do get_page on page */
2102#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2103#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2104#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2105                                 * and return without waiting upon it */
2106#define FOLL_POPULATE   0x40    /* fault in page */
2107#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2108#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2109#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2110#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2111#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2112#define FOLL_MLOCK      0x1000  /* lock present pages */
2113
2114typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2115                        void *data);
2116extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2117                               unsigned long size, pte_fn_t fn, void *data);
2118
2119#ifdef CONFIG_PROC_FS
2120void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2121#else
2122static inline void vm_stat_account(struct mm_struct *mm,
2123                        unsigned long flags, struct file *file, long pages)
2124{
2125        mm->total_vm += pages;
2126}
2127#endif /* CONFIG_PROC_FS */
2128
2129#ifdef CONFIG_DEBUG_PAGEALLOC
2130extern bool _debug_pagealloc_enabled;
2131extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2132
2133static inline bool debug_pagealloc_enabled(void)
2134{
2135        return _debug_pagealloc_enabled;
2136}
2137
2138static inline void
2139kernel_map_pages(struct page *page, int numpages, int enable)
2140{
2141        if (!debug_pagealloc_enabled())
2142                return;
2143
2144        __kernel_map_pages(page, numpages, enable);
2145}
2146#ifdef CONFIG_HIBERNATION
2147extern bool kernel_page_present(struct page *page);
2148#endif /* CONFIG_HIBERNATION */
2149#else
2150static inline void
2151kernel_map_pages(struct page *page, int numpages, int enable) {}
2152#ifdef CONFIG_HIBERNATION
2153static inline bool kernel_page_present(struct page *page) { return true; }
2154#endif /* CONFIG_HIBERNATION */
2155#endif
2156
2157#ifdef __HAVE_ARCH_GATE_AREA
2158extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2159extern int in_gate_area_no_mm(unsigned long addr);
2160extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2161#else
2162static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2163{
2164        return NULL;
2165}
2166static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2167static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2168{
2169        return 0;
2170}
2171#endif  /* __HAVE_ARCH_GATE_AREA */
2172
2173#ifdef CONFIG_SYSCTL
2174extern int sysctl_drop_caches;
2175int drop_caches_sysctl_handler(struct ctl_table *, int,
2176                                        void __user *, size_t *, loff_t *);
2177#endif
2178
2179void drop_slab(void);
2180void drop_slab_node(int nid);
2181
2182#ifndef CONFIG_MMU
2183#define randomize_va_space 0
2184#else
2185extern int randomize_va_space;
2186#endif
2187
2188const char * arch_vma_name(struct vm_area_struct *vma);
2189void print_vma_addr(char *prefix, unsigned long rip);
2190
2191void sparse_mem_maps_populate_node(struct page **map_map,
2192                                   unsigned long pnum_begin,
2193                                   unsigned long pnum_end,
2194                                   unsigned long map_count,
2195                                   int nodeid);
2196
2197struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2198pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2199pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2200pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2201pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2202void *vmemmap_alloc_block(unsigned long size, int node);
2203void *vmemmap_alloc_block_buf(unsigned long size, int node);
2204void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2205int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2206                               int node);
2207int vmemmap_populate(unsigned long start, unsigned long end, int node);
2208void vmemmap_populate_print_last(void);
2209#ifdef CONFIG_MEMORY_HOTPLUG
2210void vmemmap_free(unsigned long start, unsigned long end);
2211#endif
2212void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2213                                  unsigned long size);
2214
2215enum mf_flags {
2216        MF_COUNT_INCREASED = 1 << 0,
2217        MF_ACTION_REQUIRED = 1 << 1,
2218        MF_MUST_KILL = 1 << 2,
2219        MF_SOFT_OFFLINE = 1 << 3,
2220};
2221extern int memory_failure(unsigned long pfn, int trapno, int flags);
2222extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2223extern int unpoison_memory(unsigned long pfn);
2224extern int get_hwpoison_page(struct page *page);
2225extern void put_hwpoison_page(struct page *page);
2226extern int sysctl_memory_failure_early_kill;
2227extern int sysctl_memory_failure_recovery;
2228extern void shake_page(struct page *p, int access);
2229extern atomic_long_t num_poisoned_pages;
2230extern int soft_offline_page(struct page *page, int flags);
2231
2232
2233/*
2234 * Error handlers for various types of pages.
2235 */
2236enum mf_result {
2237        MF_IGNORED,     /* Error: cannot be handled */
2238        MF_FAILED,      /* Error: handling failed */
2239        MF_DELAYED,     /* Will be handled later */
2240        MF_RECOVERED,   /* Successfully recovered */
2241};
2242
2243enum mf_action_page_type {
2244        MF_MSG_KERNEL,
2245        MF_MSG_KERNEL_HIGH_ORDER,
2246        MF_MSG_SLAB,
2247        MF_MSG_DIFFERENT_COMPOUND,
2248        MF_MSG_POISONED_HUGE,
2249        MF_MSG_HUGE,
2250        MF_MSG_FREE_HUGE,
2251        MF_MSG_UNMAP_FAILED,
2252        MF_MSG_DIRTY_SWAPCACHE,
2253        MF_MSG_CLEAN_SWAPCACHE,
2254        MF_MSG_DIRTY_MLOCKED_LRU,
2255        MF_MSG_CLEAN_MLOCKED_LRU,
2256        MF_MSG_DIRTY_UNEVICTABLE_LRU,
2257        MF_MSG_CLEAN_UNEVICTABLE_LRU,
2258        MF_MSG_DIRTY_LRU,
2259        MF_MSG_CLEAN_LRU,
2260        MF_MSG_TRUNCATED_LRU,
2261        MF_MSG_BUDDY,
2262        MF_MSG_BUDDY_2ND,
2263        MF_MSG_UNKNOWN,
2264};
2265
2266#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2267extern void clear_huge_page(struct page *page,
2268                            unsigned long addr,
2269                            unsigned int pages_per_huge_page);
2270extern void copy_user_huge_page(struct page *dst, struct page *src,
2271                                unsigned long addr, struct vm_area_struct *vma,
2272                                unsigned int pages_per_huge_page);
2273#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2274
2275extern struct page_ext_operations debug_guardpage_ops;
2276extern struct page_ext_operations page_poisoning_ops;
2277
2278#ifdef CONFIG_DEBUG_PAGEALLOC
2279extern unsigned int _debug_guardpage_minorder;
2280extern bool _debug_guardpage_enabled;
2281
2282static inline unsigned int debug_guardpage_minorder(void)
2283{
2284        return _debug_guardpage_minorder;
2285}
2286
2287static inline bool debug_guardpage_enabled(void)
2288{
2289        return _debug_guardpage_enabled;
2290}
2291
2292static inline bool page_is_guard(struct page *page)
2293{
2294        struct page_ext *page_ext;
2295
2296        if (!debug_guardpage_enabled())
2297                return false;
2298
2299        page_ext = lookup_page_ext(page);
2300        return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2301}
2302#else
2303static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2304static inline bool debug_guardpage_enabled(void) { return false; }
2305static inline bool page_is_guard(struct page *page) { return false; }
2306#endif /* CONFIG_DEBUG_PAGEALLOC */
2307
2308#if MAX_NUMNODES > 1
2309void __init setup_nr_node_ids(void);
2310#else
2311static inline void setup_nr_node_ids(void) {}
2312#endif
2313
2314#endif /* __KERNEL__ */
2315#endif /* _LINUX_MM_H */
2316