linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/timer.h>
  29#include <linux/bug.h>
  30#include <linux/delay.h>
  31#include <linux/atomic.h>
  32#include <linux/prefetch.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/dmaengine.h>
  39#include <linux/workqueue.h>
  40#include <linux/dynamic_queue_limits.h>
  41
  42#include <linux/ethtool.h>
  43#include <net/net_namespace.h>
  44#include <net/dsa.h>
  45#ifdef CONFIG_DCB
  46#include <net/dcbnl.h>
  47#endif
  48#include <net/netprio_cgroup.h>
  49
  50#include <linux/netdev_features.h>
  51#include <linux/neighbour.h>
  52#include <uapi/linux/netdevice.h>
  53#include <uapi/linux/if_bonding.h>
  54
  55struct netpoll_info;
  56struct device;
  57struct phy_device;
  58/* 802.11 specific */
  59struct wireless_dev;
  60/* 802.15.4 specific */
  61struct wpan_dev;
  62struct mpls_dev;
  63
  64void netdev_set_default_ethtool_ops(struct net_device *dev,
  65                                    const struct ethtool_ops *ops);
  66
  67/* Backlog congestion levels */
  68#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  69#define NET_RX_DROP             1       /* packet dropped */
  70
  71/*
  72 * Transmit return codes: transmit return codes originate from three different
  73 * namespaces:
  74 *
  75 * - qdisc return codes
  76 * - driver transmit return codes
  77 * - errno values
  78 *
  79 * Drivers are allowed to return any one of those in their hard_start_xmit()
  80 * function. Real network devices commonly used with qdiscs should only return
  81 * the driver transmit return codes though - when qdiscs are used, the actual
  82 * transmission happens asynchronously, so the value is not propagated to
  83 * higher layers. Virtual network devices transmit synchronously, in this case
  84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
  85 * others are propagated to higher layers.
  86 */
  87
  88/* qdisc ->enqueue() return codes. */
  89#define NET_XMIT_SUCCESS        0x00
  90#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  91#define NET_XMIT_CN             0x02    /* congestion notification      */
  92#define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
  93#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  94
  95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  96 * indicates that the device will soon be dropping packets, or already drops
  97 * some packets of the same priority; prompting us to send less aggressively. */
  98#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
  99#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 100
 101/* Driver transmit return codes */
 102#define NETDEV_TX_MASK          0xf0
 103
 104enum netdev_tx {
 105        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 106        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 107        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 108        NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
 109};
 110typedef enum netdev_tx netdev_tx_t;
 111
 112/*
 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 115 */
 116static inline bool dev_xmit_complete(int rc)
 117{
 118        /*
 119         * Positive cases with an skb consumed by a driver:
 120         * - successful transmission (rc == NETDEV_TX_OK)
 121         * - error while transmitting (rc < 0)
 122         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 123         */
 124        if (likely(rc < NET_XMIT_MASK))
 125                return true;
 126
 127        return false;
 128}
 129
 130/*
 131 *      Compute the worst case header length according to the protocols
 132 *      used.
 133 */
 134
 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 136# if defined(CONFIG_MAC80211_MESH)
 137#  define LL_MAX_HEADER 128
 138# else
 139#  define LL_MAX_HEADER 96
 140# endif
 141#else
 142# define LL_MAX_HEADER 32
 143#endif
 144
 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 146    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 147#define MAX_HEADER LL_MAX_HEADER
 148#else
 149#define MAX_HEADER (LL_MAX_HEADER + 48)
 150#endif
 151
 152/*
 153 *      Old network device statistics. Fields are native words
 154 *      (unsigned long) so they can be read and written atomically.
 155 */
 156
 157struct net_device_stats {
 158        unsigned long   rx_packets;
 159        unsigned long   tx_packets;
 160        unsigned long   rx_bytes;
 161        unsigned long   tx_bytes;
 162        unsigned long   rx_errors;
 163        unsigned long   tx_errors;
 164        unsigned long   rx_dropped;
 165        unsigned long   tx_dropped;
 166        unsigned long   multicast;
 167        unsigned long   collisions;
 168        unsigned long   rx_length_errors;
 169        unsigned long   rx_over_errors;
 170        unsigned long   rx_crc_errors;
 171        unsigned long   rx_frame_errors;
 172        unsigned long   rx_fifo_errors;
 173        unsigned long   rx_missed_errors;
 174        unsigned long   tx_aborted_errors;
 175        unsigned long   tx_carrier_errors;
 176        unsigned long   tx_fifo_errors;
 177        unsigned long   tx_heartbeat_errors;
 178        unsigned long   tx_window_errors;
 179        unsigned long   rx_compressed;
 180        unsigned long   tx_compressed;
 181};
 182
 183
 184#include <linux/cache.h>
 185#include <linux/skbuff.h>
 186
 187#ifdef CONFIG_RPS
 188#include <linux/static_key.h>
 189extern struct static_key rps_needed;
 190#endif
 191
 192struct neighbour;
 193struct neigh_parms;
 194struct sk_buff;
 195
 196struct netdev_hw_addr {
 197        struct list_head        list;
 198        unsigned char           addr[MAX_ADDR_LEN];
 199        unsigned char           type;
 200#define NETDEV_HW_ADDR_T_LAN            1
 201#define NETDEV_HW_ADDR_T_SAN            2
 202#define NETDEV_HW_ADDR_T_SLAVE          3
 203#define NETDEV_HW_ADDR_T_UNICAST        4
 204#define NETDEV_HW_ADDR_T_MULTICAST      5
 205        bool                    global_use;
 206        int                     sync_cnt;
 207        int                     refcount;
 208        int                     synced;
 209        struct rcu_head         rcu_head;
 210};
 211
 212struct netdev_hw_addr_list {
 213        struct list_head        list;
 214        int                     count;
 215};
 216
 217#define netdev_hw_addr_list_count(l) ((l)->count)
 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 219#define netdev_hw_addr_list_for_each(ha, l) \
 220        list_for_each_entry(ha, &(l)->list, list)
 221
 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 224#define netdev_for_each_uc_addr(ha, dev) \
 225        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 226
 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 229#define netdev_for_each_mc_addr(ha, dev) \
 230        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 231
 232struct hh_cache {
 233        u16             hh_len;
 234        u16             __pad;
 235        seqlock_t       hh_lock;
 236
 237        /* cached hardware header; allow for machine alignment needs.        */
 238#define HH_DATA_MOD     16
 239#define HH_DATA_OFF(__len) \
 240        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 241#define HH_DATA_ALIGN(__len) \
 242        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 243        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 244};
 245
 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
 247 * Alternative is:
 248 *   dev->hard_header_len ? (dev->hard_header_len +
 249 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 250 *
 251 * We could use other alignment values, but we must maintain the
 252 * relationship HH alignment <= LL alignment.
 253 */
 254#define LL_RESERVED_SPACE(dev) \
 255        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 257        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 258
 259struct header_ops {
 260        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 261                           unsigned short type, const void *daddr,
 262                           const void *saddr, unsigned int len);
 263        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 264        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 265        void    (*cache_update)(struct hh_cache *hh,
 266                                const struct net_device *dev,
 267                                const unsigned char *haddr);
 268};
 269
 270/* These flag bits are private to the generic network queueing
 271 * layer, they may not be explicitly referenced by any other
 272 * code.
 273 */
 274
 275enum netdev_state_t {
 276        __LINK_STATE_START,
 277        __LINK_STATE_PRESENT,
 278        __LINK_STATE_NOCARRIER,
 279        __LINK_STATE_LINKWATCH_PENDING,
 280        __LINK_STATE_DORMANT,
 281};
 282
 283
 284/*
 285 * This structure holds at boot time configured netdevice settings. They
 286 * are then used in the device probing.
 287 */
 288struct netdev_boot_setup {
 289        char name[IFNAMSIZ];
 290        struct ifmap map;
 291};
 292#define NETDEV_BOOT_SETUP_MAX 8
 293
 294int __init netdev_boot_setup(char *str);
 295
 296/*
 297 * Structure for NAPI scheduling similar to tasklet but with weighting
 298 */
 299struct napi_struct {
 300        /* The poll_list must only be managed by the entity which
 301         * changes the state of the NAPI_STATE_SCHED bit.  This means
 302         * whoever atomically sets that bit can add this napi_struct
 303         * to the per-cpu poll_list, and whoever clears that bit
 304         * can remove from the list right before clearing the bit.
 305         */
 306        struct list_head        poll_list;
 307
 308        unsigned long           state;
 309        int                     weight;
 310        unsigned int            gro_count;
 311        int                     (*poll)(struct napi_struct *, int);
 312#ifdef CONFIG_NETPOLL
 313        spinlock_t              poll_lock;
 314        int                     poll_owner;
 315#endif
 316        struct net_device       *dev;
 317        struct sk_buff          *gro_list;
 318        struct sk_buff          *skb;
 319        struct hrtimer          timer;
 320        struct list_head        dev_list;
 321        struct hlist_node       napi_hash_node;
 322        unsigned int            napi_id;
 323};
 324
 325enum {
 326        NAPI_STATE_SCHED,       /* Poll is scheduled */
 327        NAPI_STATE_DISABLE,     /* Disable pending */
 328        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 329        NAPI_STATE_HASHED,      /* In NAPI hash */
 330};
 331
 332enum gro_result {
 333        GRO_MERGED,
 334        GRO_MERGED_FREE,
 335        GRO_HELD,
 336        GRO_NORMAL,
 337        GRO_DROP,
 338};
 339typedef enum gro_result gro_result_t;
 340
 341/*
 342 * enum rx_handler_result - Possible return values for rx_handlers.
 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 344 * further.
 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 346 * case skb->dev was changed by rx_handler.
 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
 349 *
 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 351 * special processing of the skb, prior to delivery to protocol handlers.
 352 *
 353 * Currently, a net_device can only have a single rx_handler registered. Trying
 354 * to register a second rx_handler will return -EBUSY.
 355 *
 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 357 * To unregister a rx_handler on a net_device, use
 358 * netdev_rx_handler_unregister().
 359 *
 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 361 * do with the skb.
 362 *
 363 * If the rx_handler consumed to skb in some way, it should return
 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 365 * the skb to be delivered in some other ways.
 366 *
 367 * If the rx_handler changed skb->dev, to divert the skb to another
 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 369 * new device will be called if it exists.
 370 *
 371 * If the rx_handler consider the skb should be ignored, it should return
 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 373 * are registered on exact device (ptype->dev == skb->dev).
 374 *
 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
 376 * delivered, it should return RX_HANDLER_PASS.
 377 *
 378 * A device without a registered rx_handler will behave as if rx_handler
 379 * returned RX_HANDLER_PASS.
 380 */
 381
 382enum rx_handler_result {
 383        RX_HANDLER_CONSUMED,
 384        RX_HANDLER_ANOTHER,
 385        RX_HANDLER_EXACT,
 386        RX_HANDLER_PASS,
 387};
 388typedef enum rx_handler_result rx_handler_result_t;
 389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 390
 391void __napi_schedule(struct napi_struct *n);
 392void __napi_schedule_irqoff(struct napi_struct *n);
 393
 394static inline bool napi_disable_pending(struct napi_struct *n)
 395{
 396        return test_bit(NAPI_STATE_DISABLE, &n->state);
 397}
 398
 399/**
 400 *      napi_schedule_prep - check if napi can be scheduled
 401 *      @n: napi context
 402 *
 403 * Test if NAPI routine is already running, and if not mark
 404 * it as running.  This is used as a condition variable
 405 * insure only one NAPI poll instance runs.  We also make
 406 * sure there is no pending NAPI disable.
 407 */
 408static inline bool napi_schedule_prep(struct napi_struct *n)
 409{
 410        return !napi_disable_pending(n) &&
 411                !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
 412}
 413
 414/**
 415 *      napi_schedule - schedule NAPI poll
 416 *      @n: napi context
 417 *
 418 * Schedule NAPI poll routine to be called if it is not already
 419 * running.
 420 */
 421static inline void napi_schedule(struct napi_struct *n)
 422{
 423        if (napi_schedule_prep(n))
 424                __napi_schedule(n);
 425}
 426
 427/**
 428 *      napi_schedule_irqoff - schedule NAPI poll
 429 *      @n: napi context
 430 *
 431 * Variant of napi_schedule(), assuming hard irqs are masked.
 432 */
 433static inline void napi_schedule_irqoff(struct napi_struct *n)
 434{
 435        if (napi_schedule_prep(n))
 436                __napi_schedule_irqoff(n);
 437}
 438
 439/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 440static inline bool napi_reschedule(struct napi_struct *napi)
 441{
 442        if (napi_schedule_prep(napi)) {
 443                __napi_schedule(napi);
 444                return true;
 445        }
 446        return false;
 447}
 448
 449void __napi_complete(struct napi_struct *n);
 450void napi_complete_done(struct napi_struct *n, int work_done);
 451/**
 452 *      napi_complete - NAPI processing complete
 453 *      @n: napi context
 454 *
 455 * Mark NAPI processing as complete.
 456 * Consider using napi_complete_done() instead.
 457 */
 458static inline void napi_complete(struct napi_struct *n)
 459{
 460        return napi_complete_done(n, 0);
 461}
 462
 463/**
 464 *      napi_by_id - lookup a NAPI by napi_id
 465 *      @napi_id: hashed napi_id
 466 *
 467 * lookup @napi_id in napi_hash table
 468 * must be called under rcu_read_lock()
 469 */
 470struct napi_struct *napi_by_id(unsigned int napi_id);
 471
 472/**
 473 *      napi_hash_add - add a NAPI to global hashtable
 474 *      @napi: napi context
 475 *
 476 * generate a new napi_id and store a @napi under it in napi_hash
 477 */
 478void napi_hash_add(struct napi_struct *napi);
 479
 480/**
 481 *      napi_hash_del - remove a NAPI from global table
 482 *      @napi: napi context
 483 *
 484 * Warning: caller must observe rcu grace period
 485 * before freeing memory containing @napi
 486 */
 487void napi_hash_del(struct napi_struct *napi);
 488
 489/**
 490 *      napi_disable - prevent NAPI from scheduling
 491 *      @n: napi context
 492 *
 493 * Stop NAPI from being scheduled on this context.
 494 * Waits till any outstanding processing completes.
 495 */
 496void napi_disable(struct napi_struct *n);
 497
 498/**
 499 *      napi_enable - enable NAPI scheduling
 500 *      @n: napi context
 501 *
 502 * Resume NAPI from being scheduled on this context.
 503 * Must be paired with napi_disable.
 504 */
 505static inline void napi_enable(struct napi_struct *n)
 506{
 507        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 508        smp_mb__before_atomic();
 509        clear_bit(NAPI_STATE_SCHED, &n->state);
 510        clear_bit(NAPI_STATE_NPSVC, &n->state);
 511}
 512
 513#ifdef CONFIG_SMP
 514/**
 515 *      napi_synchronize - wait until NAPI is not running
 516 *      @n: napi context
 517 *
 518 * Wait until NAPI is done being scheduled on this context.
 519 * Waits till any outstanding processing completes but
 520 * does not disable future activations.
 521 */
 522static inline void napi_synchronize(const struct napi_struct *n)
 523{
 524        while (test_bit(NAPI_STATE_SCHED, &n->state))
 525                msleep(1);
 526}
 527#else
 528# define napi_synchronize(n)    barrier()
 529#endif
 530
 531enum netdev_queue_state_t {
 532        __QUEUE_STATE_DRV_XOFF,
 533        __QUEUE_STATE_STACK_XOFF,
 534        __QUEUE_STATE_FROZEN,
 535};
 536
 537#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 538#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 539#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 540
 541#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 542#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 543                                        QUEUE_STATE_FROZEN)
 544#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 545                                        QUEUE_STATE_FROZEN)
 546
 547/*
 548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 549 * netif_tx_* functions below are used to manipulate this flag.  The
 550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 551 * queue independently.  The netif_xmit_*stopped functions below are called
 552 * to check if the queue has been stopped by the driver or stack (either
 553 * of the XOFF bits are set in the state).  Drivers should not need to call
 554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 555 */
 556
 557struct netdev_queue {
 558/*
 559 * read mostly part
 560 */
 561        struct net_device       *dev;
 562        struct Qdisc __rcu      *qdisc;
 563        struct Qdisc            *qdisc_sleeping;
 564#ifdef CONFIG_SYSFS
 565        struct kobject          kobj;
 566#endif
 567#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 568        int                     numa_node;
 569#endif
 570/*
 571 * write mostly part
 572 */
 573        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 574        int                     xmit_lock_owner;
 575        /*
 576         * please use this field instead of dev->trans_start
 577         */
 578        unsigned long           trans_start;
 579
 580        /*
 581         * Number of TX timeouts for this queue
 582         * (/sys/class/net/DEV/Q/trans_timeout)
 583         */
 584        unsigned long           trans_timeout;
 585
 586        unsigned long           state;
 587
 588#ifdef CONFIG_BQL
 589        struct dql              dql;
 590#endif
 591        unsigned long           tx_maxrate;
 592} ____cacheline_aligned_in_smp;
 593
 594static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 595{
 596#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 597        return q->numa_node;
 598#else
 599        return NUMA_NO_NODE;
 600#endif
 601}
 602
 603static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 604{
 605#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 606        q->numa_node = node;
 607#endif
 608}
 609
 610#ifdef CONFIG_RPS
 611/*
 612 * This structure holds an RPS map which can be of variable length.  The
 613 * map is an array of CPUs.
 614 */
 615struct rps_map {
 616        unsigned int len;
 617        struct rcu_head rcu;
 618        u16 cpus[0];
 619};
 620#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 621
 622/*
 623 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 624 * tail pointer for that CPU's input queue at the time of last enqueue, and
 625 * a hardware filter index.
 626 */
 627struct rps_dev_flow {
 628        u16 cpu;
 629        u16 filter;
 630        unsigned int last_qtail;
 631};
 632#define RPS_NO_FILTER 0xffff
 633
 634/*
 635 * The rps_dev_flow_table structure contains a table of flow mappings.
 636 */
 637struct rps_dev_flow_table {
 638        unsigned int mask;
 639        struct rcu_head rcu;
 640        struct rps_dev_flow flows[0];
 641};
 642#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 643    ((_num) * sizeof(struct rps_dev_flow)))
 644
 645/*
 646 * The rps_sock_flow_table contains mappings of flows to the last CPU
 647 * on which they were processed by the application (set in recvmsg).
 648 * Each entry is a 32bit value. Upper part is the high order bits
 649 * of flow hash, lower part is cpu number.
 650 * rps_cpu_mask is used to partition the space, depending on number of
 651 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 652 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
 653 * meaning we use 32-6=26 bits for the hash.
 654 */
 655struct rps_sock_flow_table {
 656        u32     mask;
 657
 658        u32     ents[0] ____cacheline_aligned_in_smp;
 659};
 660#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 661
 662#define RPS_NO_CPU 0xffff
 663
 664extern u32 rps_cpu_mask;
 665extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 666
 667static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 668                                        u32 hash)
 669{
 670        if (table && hash) {
 671                unsigned int index = hash & table->mask;
 672                u32 val = hash & ~rps_cpu_mask;
 673
 674                /* We only give a hint, preemption can change cpu under us */
 675                val |= raw_smp_processor_id();
 676
 677                if (table->ents[index] != val)
 678                        table->ents[index] = val;
 679        }
 680}
 681
 682#ifdef CONFIG_RFS_ACCEL
 683bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 684                         u16 filter_id);
 685#endif
 686#endif /* CONFIG_RPS */
 687
 688/* This structure contains an instance of an RX queue. */
 689struct netdev_rx_queue {
 690#ifdef CONFIG_RPS
 691        struct rps_map __rcu            *rps_map;
 692        struct rps_dev_flow_table __rcu *rps_flow_table;
 693#endif
 694        struct kobject                  kobj;
 695        struct net_device               *dev;
 696} ____cacheline_aligned_in_smp;
 697
 698/*
 699 * RX queue sysfs structures and functions.
 700 */
 701struct rx_queue_attribute {
 702        struct attribute attr;
 703        ssize_t (*show)(struct netdev_rx_queue *queue,
 704            struct rx_queue_attribute *attr, char *buf);
 705        ssize_t (*store)(struct netdev_rx_queue *queue,
 706            struct rx_queue_attribute *attr, const char *buf, size_t len);
 707};
 708
 709#ifdef CONFIG_XPS
 710/*
 711 * This structure holds an XPS map which can be of variable length.  The
 712 * map is an array of queues.
 713 */
 714struct xps_map {
 715        unsigned int len;
 716        unsigned int alloc_len;
 717        struct rcu_head rcu;
 718        u16 queues[0];
 719};
 720#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 721#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 722       - sizeof(struct xps_map)) / sizeof(u16))
 723
 724/*
 725 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 726 */
 727struct xps_dev_maps {
 728        struct rcu_head rcu;
 729        struct xps_map __rcu *cpu_map[0];
 730};
 731#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
 732    (nr_cpu_ids * sizeof(struct xps_map *)))
 733#endif /* CONFIG_XPS */
 734
 735#define TC_MAX_QUEUE    16
 736#define TC_BITMASK      15
 737/* HW offloaded queuing disciplines txq count and offset maps */
 738struct netdev_tc_txq {
 739        u16 count;
 740        u16 offset;
 741};
 742
 743#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 744/*
 745 * This structure is to hold information about the device
 746 * configured to run FCoE protocol stack.
 747 */
 748struct netdev_fcoe_hbainfo {
 749        char    manufacturer[64];
 750        char    serial_number[64];
 751        char    hardware_version[64];
 752        char    driver_version[64];
 753        char    optionrom_version[64];
 754        char    firmware_version[64];
 755        char    model[256];
 756        char    model_description[256];
 757};
 758#endif
 759
 760#define MAX_PHYS_ITEM_ID_LEN 32
 761
 762/* This structure holds a unique identifier to identify some
 763 * physical item (port for example) used by a netdevice.
 764 */
 765struct netdev_phys_item_id {
 766        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 767        unsigned char id_len;
 768};
 769
 770static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 771                                            struct netdev_phys_item_id *b)
 772{
 773        return a->id_len == b->id_len &&
 774               memcmp(a->id, b->id, a->id_len) == 0;
 775}
 776
 777typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 778                                       struct sk_buff *skb);
 779
 780/*
 781 * This structure defines the management hooks for network devices.
 782 * The following hooks can be defined; unless noted otherwise, they are
 783 * optional and can be filled with a null pointer.
 784 *
 785 * int (*ndo_init)(struct net_device *dev);
 786 *     This function is called once when network device is registered.
 787 *     The network device can use this to any late stage initializaton
 788 *     or semantic validattion. It can fail with an error code which will
 789 *     be propogated back to register_netdev
 790 *
 791 * void (*ndo_uninit)(struct net_device *dev);
 792 *     This function is called when device is unregistered or when registration
 793 *     fails. It is not called if init fails.
 794 *
 795 * int (*ndo_open)(struct net_device *dev);
 796 *     This function is called when network device transistions to the up
 797 *     state.
 798 *
 799 * int (*ndo_stop)(struct net_device *dev);
 800 *     This function is called when network device transistions to the down
 801 *     state.
 802 *
 803 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 804 *                               struct net_device *dev);
 805 *      Called when a packet needs to be transmitted.
 806 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 807 *      the queue before that can happen; it's for obsolete devices and weird
 808 *      corner cases, but the stack really does a non-trivial amount
 809 *      of useless work if you return NETDEV_TX_BUSY.
 810 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
 811 *      Required can not be NULL.
 812 *
 813 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 814 *                         void *accel_priv, select_queue_fallback_t fallback);
 815 *      Called to decide which queue to when device supports multiple
 816 *      transmit queues.
 817 *
 818 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 819 *      This function is called to allow device receiver to make
 820 *      changes to configuration when multicast or promiscious is enabled.
 821 *
 822 * void (*ndo_set_rx_mode)(struct net_device *dev);
 823 *      This function is called device changes address list filtering.
 824 *      If driver handles unicast address filtering, it should set
 825 *      IFF_UNICAST_FLT to its priv_flags.
 826 *
 827 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 828 *      This function  is called when the Media Access Control address
 829 *      needs to be changed. If this interface is not defined, the
 830 *      mac address can not be changed.
 831 *
 832 * int (*ndo_validate_addr)(struct net_device *dev);
 833 *      Test if Media Access Control address is valid for the device.
 834 *
 835 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 836 *      Called when a user request an ioctl which can't be handled by
 837 *      the generic interface code. If not defined ioctl's return
 838 *      not supported error code.
 839 *
 840 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 841 *      Used to set network devices bus interface parameters. This interface
 842 *      is retained for legacy reason, new devices should use the bus
 843 *      interface (PCI) for low level management.
 844 *
 845 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 846 *      Called when a user wants to change the Maximum Transfer Unit
 847 *      of a device. If not defined, any request to change MTU will
 848 *      will return an error.
 849 *
 850 * void (*ndo_tx_timeout)(struct net_device *dev);
 851 *      Callback uses when the transmitter has not made any progress
 852 *      for dev->watchdog ticks.
 853 *
 854 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 855 *                      struct rtnl_link_stats64 *storage);
 856 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 857 *      Called when a user wants to get the network device usage
 858 *      statistics. Drivers must do one of the following:
 859 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 860 *         rtnl_link_stats64 structure passed by the caller.
 861 *      2. Define @ndo_get_stats to update a net_device_stats structure
 862 *         (which should normally be dev->stats) and return a pointer to
 863 *         it. The structure may be changed asynchronously only if each
 864 *         field is written atomically.
 865 *      3. Update dev->stats asynchronously and atomically, and define
 866 *         neither operation.
 867 *
 868 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 869 *      If device support VLAN filtering this function is called when a
 870 *      VLAN id is registered.
 871 *
 872 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 873 *      If device support VLAN filtering this function is called when a
 874 *      VLAN id is unregistered.
 875 *
 876 * void (*ndo_poll_controller)(struct net_device *dev);
 877 *
 878 *      SR-IOV management functions.
 879 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 880 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 881 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 882 *                        int max_tx_rate);
 883 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 884 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
 885 * int (*ndo_get_vf_config)(struct net_device *dev,
 886 *                          int vf, struct ifla_vf_info *ivf);
 887 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 888 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 889 *                        struct nlattr *port[]);
 890 *
 891 *      Enable or disable the VF ability to query its RSS Redirection Table and
 892 *      Hash Key. This is needed since on some devices VF share this information
 893 *      with PF and querying it may adduce a theoretical security risk.
 894 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
 895 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 896 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 897 *      Called to setup 'tc' number of traffic classes in the net device. This
 898 *      is always called from the stack with the rtnl lock held and netif tx
 899 *      queues stopped. This allows the netdevice to perform queue management
 900 *      safely.
 901 *
 902 *      Fiber Channel over Ethernet (FCoE) offload functions.
 903 * int (*ndo_fcoe_enable)(struct net_device *dev);
 904 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
 905 *      so the underlying device can perform whatever needed configuration or
 906 *      initialization to support acceleration of FCoE traffic.
 907 *
 908 * int (*ndo_fcoe_disable)(struct net_device *dev);
 909 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
 910 *      so the underlying device can perform whatever needed clean-ups to
 911 *      stop supporting acceleration of FCoE traffic.
 912 *
 913 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 914 *                           struct scatterlist *sgl, unsigned int sgc);
 915 *      Called when the FCoE Initiator wants to initialize an I/O that
 916 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 917 *      perform necessary setup and returns 1 to indicate the device is set up
 918 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 919 *
 920 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 921 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
 922 *      indicated by the FC exchange id 'xid', so the underlying device can
 923 *      clean up and reuse resources for later DDP requests.
 924 *
 925 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 926 *                            struct scatterlist *sgl, unsigned int sgc);
 927 *      Called when the FCoE Target wants to initialize an I/O that
 928 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 929 *      perform necessary setup and returns 1 to indicate the device is set up
 930 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 931 *
 932 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
 933 *                             struct netdev_fcoe_hbainfo *hbainfo);
 934 *      Called when the FCoE Protocol stack wants information on the underlying
 935 *      device. This information is utilized by the FCoE protocol stack to
 936 *      register attributes with Fiber Channel management service as per the
 937 *      FC-GS Fabric Device Management Information(FDMI) specification.
 938 *
 939 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 940 *      Called when the underlying device wants to override default World Wide
 941 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
 942 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
 943 *      protocol stack to use.
 944 *
 945 *      RFS acceleration.
 946 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
 947 *                          u16 rxq_index, u32 flow_id);
 948 *      Set hardware filter for RFS.  rxq_index is the target queue index;
 949 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
 950 *      Return the filter ID on success, or a negative error code.
 951 *
 952 *      Slave management functions (for bridge, bonding, etc).
 953 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
 954 *      Called to make another netdev an underling.
 955 *
 956 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
 957 *      Called to release previously enslaved netdev.
 958 *
 959 *      Feature/offload setting functions.
 960 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
 961 *              netdev_features_t features);
 962 *      Adjusts the requested feature flags according to device-specific
 963 *      constraints, and returns the resulting flags. Must not modify
 964 *      the device state.
 965 *
 966 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
 967 *      Called to update device configuration to new features. Passed
 968 *      feature set might be less than what was returned by ndo_fix_features()).
 969 *      Must return >0 or -errno if it changed dev->features itself.
 970 *
 971 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
 972 *                    struct net_device *dev,
 973 *                    const unsigned char *addr, u16 vid, u16 flags)
 974 *      Adds an FDB entry to dev for addr.
 975 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
 976 *                    struct net_device *dev,
 977 *                    const unsigned char *addr, u16 vid)
 978 *      Deletes the FDB entry from dev coresponding to addr.
 979 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
 980 *                     struct net_device *dev, struct net_device *filter_dev,
 981 *                     int idx)
 982 *      Used to add FDB entries to dump requests. Implementers should add
 983 *      entries to skb and update idx with the number of entries.
 984 *
 985 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
 986 *                           u16 flags)
 987 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
 988 *                           struct net_device *dev, u32 filter_mask,
 989 *                           int nlflags)
 990 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
 991 *                           u16 flags);
 992 *
 993 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
 994 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
 995 *      which do not represent real hardware may define this to allow their
 996 *      userspace components to manage their virtual carrier state. Devices
 997 *      that determine carrier state from physical hardware properties (eg
 998 *      network cables) or protocol-dependent mechanisms (eg
 999 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1000 *
1001 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1002 *                             struct netdev_phys_item_id *ppid);
1003 *      Called to get ID of physical port of this device. If driver does
1004 *      not implement this, it is assumed that the hw is not able to have
1005 *      multiple net devices on single physical port.
1006 *
1007 * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1008 *                            sa_family_t sa_family, __be16 port);
1009 *      Called by vxlan to notiy a driver about the UDP port and socket
1010 *      address family that vxlan is listnening to. It is called only when
1011 *      a new port starts listening. The operation is protected by the
1012 *      vxlan_net->sock_lock.
1013 *
1014 * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1015 *                            sa_family_t sa_family, __be16 port);
1016 *      Called by vxlan to notify the driver about a UDP port and socket
1017 *      address family that vxlan is not listening to anymore. The operation
1018 *      is protected by the vxlan_net->sock_lock.
1019 *
1020 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1021 *                               struct net_device *dev)
1022 *      Called by upper layer devices to accelerate switching or other
1023 *      station functionality into hardware. 'pdev is the lowerdev
1024 *      to use for the offload and 'dev' is the net device that will
1025 *      back the offload. Returns a pointer to the private structure
1026 *      the upper layer will maintain.
1027 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1028 *      Called by upper layer device to delete the station created
1029 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1030 *      the station and priv is the structure returned by the add
1031 *      operation.
1032 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1033 *                                    struct net_device *dev,
1034 *                                    void *priv);
1035 *      Callback to use for xmit over the accelerated station. This
1036 *      is used in place of ndo_start_xmit on accelerated net
1037 *      devices.
1038 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1039 *                                          struct net_device *dev
1040 *                                          netdev_features_t features);
1041 *      Called by core transmit path to determine if device is capable of
1042 *      performing offload operations on a given packet. This is to give
1043 *      the device an opportunity to implement any restrictions that cannot
1044 *      be otherwise expressed by feature flags. The check is called with
1045 *      the set of features that the stack has calculated and it returns
1046 *      those the driver believes to be appropriate.
1047 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1048 *                           int queue_index, u32 maxrate);
1049 *      Called when a user wants to set a max-rate limitation of specific
1050 *      TX queue.
1051 * int (*ndo_get_iflink)(const struct net_device *dev);
1052 *      Called to get the iflink value of this device.
1053 * void (*ndo_change_proto_down)(struct net_device *dev,
1054 *                                bool proto_down);
1055 *      This function is used to pass protocol port error state information
1056 *      to the switch driver. The switch driver can react to the proto_down
1057 *      by doing a phys down on the associated switch port.
1058 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1059 *      This function is used to get egress tunnel information for given skb.
1060 *      This is useful for retrieving outer tunnel header parameters while
1061 *      sampling packet.
1062 *
1063 */
1064struct net_device_ops {
1065        int                     (*ndo_init)(struct net_device *dev);
1066        void                    (*ndo_uninit)(struct net_device *dev);
1067        int                     (*ndo_open)(struct net_device *dev);
1068        int                     (*ndo_stop)(struct net_device *dev);
1069        netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1070                                                   struct net_device *dev);
1071        u16                     (*ndo_select_queue)(struct net_device *dev,
1072                                                    struct sk_buff *skb,
1073                                                    void *accel_priv,
1074                                                    select_queue_fallback_t fallback);
1075        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1076                                                       int flags);
1077        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1078        int                     (*ndo_set_mac_address)(struct net_device *dev,
1079                                                       void *addr);
1080        int                     (*ndo_validate_addr)(struct net_device *dev);
1081        int                     (*ndo_do_ioctl)(struct net_device *dev,
1082                                                struct ifreq *ifr, int cmd);
1083        int                     (*ndo_set_config)(struct net_device *dev,
1084                                                  struct ifmap *map);
1085        int                     (*ndo_change_mtu)(struct net_device *dev,
1086                                                  int new_mtu);
1087        int                     (*ndo_neigh_setup)(struct net_device *dev,
1088                                                   struct neigh_parms *);
1089        void                    (*ndo_tx_timeout) (struct net_device *dev);
1090
1091        struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1092                                                     struct rtnl_link_stats64 *storage);
1093        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1094
1095        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1096                                                       __be16 proto, u16 vid);
1097        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1098                                                        __be16 proto, u16 vid);
1099#ifdef CONFIG_NET_POLL_CONTROLLER
1100        void                    (*ndo_poll_controller)(struct net_device *dev);
1101        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1102                                                     struct netpoll_info *info);
1103        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1104#endif
1105#ifdef CONFIG_NET_RX_BUSY_POLL
1106        int                     (*ndo_busy_poll)(struct napi_struct *dev);
1107#endif
1108        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1109                                                  int queue, u8 *mac);
1110        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1111                                                   int queue, u16 vlan, u8 qos);
1112        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1113                                                   int vf, int min_tx_rate,
1114                                                   int max_tx_rate);
1115        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1116                                                       int vf, bool setting);
1117        int                     (*ndo_set_vf_trust)(struct net_device *dev,
1118                                                    int vf, bool setting);
1119        int                     (*ndo_get_vf_config)(struct net_device *dev,
1120                                                     int vf,
1121                                                     struct ifla_vf_info *ivf);
1122        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1123                                                         int vf, int link_state);
1124        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1125                                                    int vf,
1126                                                    struct ifla_vf_stats
1127                                                    *vf_stats);
1128        int                     (*ndo_set_vf_port)(struct net_device *dev,
1129                                                   int vf,
1130                                                   struct nlattr *port[]);
1131        int                     (*ndo_get_vf_port)(struct net_device *dev,
1132                                                   int vf, struct sk_buff *skb);
1133        int                     (*ndo_set_vf_rss_query_en)(
1134                                                   struct net_device *dev,
1135                                                   int vf, bool setting);
1136        int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1137#if IS_ENABLED(CONFIG_FCOE)
1138        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1139        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1140        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1141                                                      u16 xid,
1142                                                      struct scatterlist *sgl,
1143                                                      unsigned int sgc);
1144        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1145                                                     u16 xid);
1146        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1147                                                       u16 xid,
1148                                                       struct scatterlist *sgl,
1149                                                       unsigned int sgc);
1150        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1151                                                        struct netdev_fcoe_hbainfo *hbainfo);
1152#endif
1153
1154#if IS_ENABLED(CONFIG_LIBFCOE)
1155#define NETDEV_FCOE_WWNN 0
1156#define NETDEV_FCOE_WWPN 1
1157        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1158                                                    u64 *wwn, int type);
1159#endif
1160
1161#ifdef CONFIG_RFS_ACCEL
1162        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1163                                                     const struct sk_buff *skb,
1164                                                     u16 rxq_index,
1165                                                     u32 flow_id);
1166#endif
1167        int                     (*ndo_add_slave)(struct net_device *dev,
1168                                                 struct net_device *slave_dev);
1169        int                     (*ndo_del_slave)(struct net_device *dev,
1170                                                 struct net_device *slave_dev);
1171        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1172                                                    netdev_features_t features);
1173        int                     (*ndo_set_features)(struct net_device *dev,
1174                                                    netdev_features_t features);
1175        int                     (*ndo_neigh_construct)(struct neighbour *n);
1176        void                    (*ndo_neigh_destroy)(struct neighbour *n);
1177
1178        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1179                                               struct nlattr *tb[],
1180                                               struct net_device *dev,
1181                                               const unsigned char *addr,
1182                                               u16 vid,
1183                                               u16 flags);
1184        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1185                                               struct nlattr *tb[],
1186                                               struct net_device *dev,
1187                                               const unsigned char *addr,
1188                                               u16 vid);
1189        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1190                                                struct netlink_callback *cb,
1191                                                struct net_device *dev,
1192                                                struct net_device *filter_dev,
1193                                                int idx);
1194
1195        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1196                                                      struct nlmsghdr *nlh,
1197                                                      u16 flags);
1198        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1199                                                      u32 pid, u32 seq,
1200                                                      struct net_device *dev,
1201                                                      u32 filter_mask,
1202                                                      int nlflags);
1203        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1204                                                      struct nlmsghdr *nlh,
1205                                                      u16 flags);
1206        int                     (*ndo_change_carrier)(struct net_device *dev,
1207                                                      bool new_carrier);
1208        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1209                                                        struct netdev_phys_item_id *ppid);
1210        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1211                                                          char *name, size_t len);
1212        void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1213                                                      sa_family_t sa_family,
1214                                                      __be16 port);
1215        void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1216                                                      sa_family_t sa_family,
1217                                                      __be16 port);
1218
1219        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1220                                                        struct net_device *dev);
1221        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1222                                                        void *priv);
1223
1224        netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1225                                                        struct net_device *dev,
1226                                                        void *priv);
1227        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1228        netdev_features_t       (*ndo_features_check) (struct sk_buff *skb,
1229                                                       struct net_device *dev,
1230                                                       netdev_features_t features);
1231        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1232                                                      int queue_index,
1233                                                      u32 maxrate);
1234        int                     (*ndo_get_iflink)(const struct net_device *dev);
1235        int                     (*ndo_change_proto_down)(struct net_device *dev,
1236                                                         bool proto_down);
1237        int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1238                                                       struct sk_buff *skb);
1239};
1240
1241/**
1242 * enum net_device_priv_flags - &struct net_device priv_flags
1243 *
1244 * These are the &struct net_device, they are only set internally
1245 * by drivers and used in the kernel. These flags are invisible to
1246 * userspace, this means that the order of these flags can change
1247 * during any kernel release.
1248 *
1249 * You should have a pretty good reason to be extending these flags.
1250 *
1251 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1252 * @IFF_EBRIDGE: Ethernet bridging device
1253 * @IFF_BONDING: bonding master or slave
1254 * @IFF_ISATAP: ISATAP interface (RFC4214)
1255 * @IFF_WAN_HDLC: WAN HDLC device
1256 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1257 *      release skb->dst
1258 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1259 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1260 * @IFF_MACVLAN_PORT: device used as macvlan port
1261 * @IFF_BRIDGE_PORT: device used as bridge port
1262 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1263 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1264 * @IFF_UNICAST_FLT: Supports unicast filtering
1265 * @IFF_TEAM_PORT: device used as team port
1266 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1267 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1268 *      change when it's running
1269 * @IFF_MACVLAN: Macvlan device
1270 * @IFF_L3MDEV_MASTER: device is an L3 master device
1271 * @IFF_NO_QUEUE: device can run without qdisc attached
1272 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1273 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1274 */
1275enum netdev_priv_flags {
1276        IFF_802_1Q_VLAN                 = 1<<0,
1277        IFF_EBRIDGE                     = 1<<1,
1278        IFF_BONDING                     = 1<<2,
1279        IFF_ISATAP                      = 1<<3,
1280        IFF_WAN_HDLC                    = 1<<4,
1281        IFF_XMIT_DST_RELEASE            = 1<<5,
1282        IFF_DONT_BRIDGE                 = 1<<6,
1283        IFF_DISABLE_NETPOLL             = 1<<7,
1284        IFF_MACVLAN_PORT                = 1<<8,
1285        IFF_BRIDGE_PORT                 = 1<<9,
1286        IFF_OVS_DATAPATH                = 1<<10,
1287        IFF_TX_SKB_SHARING              = 1<<11,
1288        IFF_UNICAST_FLT                 = 1<<12,
1289        IFF_TEAM_PORT                   = 1<<13,
1290        IFF_SUPP_NOFCS                  = 1<<14,
1291        IFF_LIVE_ADDR_CHANGE            = 1<<15,
1292        IFF_MACVLAN                     = 1<<16,
1293        IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1294        IFF_IPVLAN_MASTER               = 1<<18,
1295        IFF_IPVLAN_SLAVE                = 1<<19,
1296        IFF_L3MDEV_MASTER               = 1<<20,
1297        IFF_NO_QUEUE                    = 1<<21,
1298        IFF_OPENVSWITCH                 = 1<<22,
1299        IFF_L3MDEV_SLAVE                = 1<<23,
1300};
1301
1302#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1303#define IFF_EBRIDGE                     IFF_EBRIDGE
1304#define IFF_BONDING                     IFF_BONDING
1305#define IFF_ISATAP                      IFF_ISATAP
1306#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1307#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1308#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1309#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1310#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1311#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1312#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1313#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1314#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1315#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1316#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1317#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1318#define IFF_MACVLAN                     IFF_MACVLAN
1319#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1320#define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1321#define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1322#define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1323#define IFF_NO_QUEUE                    IFF_NO_QUEUE
1324#define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1325#define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1326
1327/**
1328 *      struct net_device - The DEVICE structure.
1329 *              Actually, this whole structure is a big mistake.  It mixes I/O
1330 *              data with strictly "high-level" data, and it has to know about
1331 *              almost every data structure used in the INET module.
1332 *
1333 *      @name:  This is the first field of the "visible" part of this structure
1334 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1335 *              of the interface.
1336 *
1337 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1338 *      @ifalias:       SNMP alias
1339 *      @mem_end:       Shared memory end
1340 *      @mem_start:     Shared memory start
1341 *      @base_addr:     Device I/O address
1342 *      @irq:           Device IRQ number
1343 *
1344 *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1345 *
1346 *      @state:         Generic network queuing layer state, see netdev_state_t
1347 *      @dev_list:      The global list of network devices
1348 *      @napi_list:     List entry, that is used for polling napi devices
1349 *      @unreg_list:    List entry, that is used, when we are unregistering the
1350 *                      device, see the function unregister_netdev
1351 *      @close_list:    List entry, that is used, when we are closing the device
1352 *
1353 *      @adj_list:      Directly linked devices, like slaves for bonding
1354 *      @all_adj_list:  All linked devices, *including* neighbours
1355 *      @features:      Currently active device features
1356 *      @hw_features:   User-changeable features
1357 *
1358 *      @wanted_features:       User-requested features
1359 *      @vlan_features:         Mask of features inheritable by VLAN devices
1360 *
1361 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1362 *                              This field indicates what encapsulation
1363 *                              offloads the hardware is capable of doing,
1364 *                              and drivers will need to set them appropriately.
1365 *
1366 *      @mpls_features: Mask of features inheritable by MPLS
1367 *
1368 *      @ifindex:       interface index
1369 *      @group:         The group, that the device belongs to
1370 *
1371 *      @stats:         Statistics struct, which was left as a legacy, use
1372 *                      rtnl_link_stats64 instead
1373 *
1374 *      @rx_dropped:    Dropped packets by core network,
1375 *                      do not use this in drivers
1376 *      @tx_dropped:    Dropped packets by core network,
1377 *                      do not use this in drivers
1378 *
1379 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1380 *                              instead of ioctl,
1381 *                              see <net/iw_handler.h> for details.
1382 *      @wireless_data: Instance data managed by the core of wireless extensions
1383 *
1384 *      @netdev_ops:    Includes several pointers to callbacks,
1385 *                      if one wants to override the ndo_*() functions
1386 *      @ethtool_ops:   Management operations
1387 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1388 *                      of Layer 2 headers.
1389 *
1390 *      @flags:         Interface flags (a la BSD)
1391 *      @priv_flags:    Like 'flags' but invisible to userspace,
1392 *                      see if.h for the definitions
1393 *      @gflags:        Global flags ( kept as legacy )
1394 *      @padded:        How much padding added by alloc_netdev()
1395 *      @operstate:     RFC2863 operstate
1396 *      @link_mode:     Mapping policy to operstate
1397 *      @if_port:       Selectable AUI, TP, ...
1398 *      @dma:           DMA channel
1399 *      @mtu:           Interface MTU value
1400 *      @type:          Interface hardware type
1401 *      @hard_header_len: Hardware header length, which means that this is the
1402 *                        minimum size of a packet.
1403 *
1404 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1405 *                        cases can this be guaranteed
1406 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1407 *                        cases can this be guaranteed. Some cases also use
1408 *                        LL_MAX_HEADER instead to allocate the skb
1409 *
1410 *      interface address info:
1411 *
1412 *      @perm_addr:             Permanent hw address
1413 *      @addr_assign_type:      Hw address assignment type
1414 *      @addr_len:              Hardware address length
1415 *      @neigh_priv_len;        Used in neigh_alloc(),
1416 *                              initialized only in atm/clip.c
1417 *      @dev_id:                Used to differentiate devices that share
1418 *                              the same link layer address
1419 *      @dev_port:              Used to differentiate devices that share
1420 *                              the same function
1421 *      @addr_list_lock:        XXX: need comments on this one
1422 *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1423 *                              has been enabled due to the need to listen to
1424 *                              additional unicast addresses in a device that
1425 *                              does not implement ndo_set_rx_mode()
1426 *      @uc:                    unicast mac addresses
1427 *      @mc:                    multicast mac addresses
1428 *      @dev_addrs:             list of device hw addresses
1429 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1430 *      @promiscuity:           Number of times, the NIC is told to work in
1431 *                              Promiscuous mode, if it becomes 0 the NIC will
1432 *                              exit from working in Promiscuous mode
1433 *      @allmulti:              Counter, enables or disables allmulticast mode
1434 *
1435 *      @vlan_info:     VLAN info
1436 *      @dsa_ptr:       dsa specific data
1437 *      @tipc_ptr:      TIPC specific data
1438 *      @atalk_ptr:     AppleTalk link
1439 *      @ip_ptr:        IPv4 specific data
1440 *      @dn_ptr:        DECnet specific data
1441 *      @ip6_ptr:       IPv6 specific data
1442 *      @ax25_ptr:      AX.25 specific data
1443 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1444 *
1445 *      @last_rx:       Time of last Rx
1446 *      @dev_addr:      Hw address (before bcast,
1447 *                      because most packets are unicast)
1448 *
1449 *      @_rx:                   Array of RX queues
1450 *      @num_rx_queues:         Number of RX queues
1451 *                              allocated at register_netdev() time
1452 *      @real_num_rx_queues:    Number of RX queues currently active in device
1453 *
1454 *      @rx_handler:            handler for received packets
1455 *      @rx_handler_data:       XXX: need comments on this one
1456 *      @ingress_queue:         XXX: need comments on this one
1457 *      @broadcast:             hw bcast address
1458 *
1459 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1460 *                      indexed by RX queue number. Assigned by driver.
1461 *                      This must only be set if the ndo_rx_flow_steer
1462 *                      operation is defined
1463 *      @index_hlist:           Device index hash chain
1464 *
1465 *      @_tx:                   Array of TX queues
1466 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1467 *      @real_num_tx_queues:    Number of TX queues currently active in device
1468 *      @qdisc:                 Root qdisc from userspace point of view
1469 *      @tx_queue_len:          Max frames per queue allowed
1470 *      @tx_global_lock:        XXX: need comments on this one
1471 *
1472 *      @xps_maps:      XXX: need comments on this one
1473 *
1474 *      @offload_fwd_mark:      Offload device fwding mark
1475 *
1476 *      @trans_start:           Time (in jiffies) of last Tx
1477 *      @watchdog_timeo:        Represents the timeout that is used by
1478 *                              the watchdog ( see dev_watchdog() )
1479 *      @watchdog_timer:        List of timers
1480 *
1481 *      @pcpu_refcnt:           Number of references to this device
1482 *      @todo_list:             Delayed register/unregister
1483 *      @link_watch_list:       XXX: need comments on this one
1484 *
1485 *      @reg_state:             Register/unregister state machine
1486 *      @dismantle:             Device is going to be freed
1487 *      @rtnl_link_state:       This enum represents the phases of creating
1488 *                              a new link
1489 *
1490 *      @destructor:            Called from unregister,
1491 *                              can be used to call free_netdev
1492 *      @npinfo:                XXX: need comments on this one
1493 *      @nd_net:                Network namespace this network device is inside
1494 *
1495 *      @ml_priv:       Mid-layer private
1496 *      @lstats:        Loopback statistics
1497 *      @tstats:        Tunnel statistics
1498 *      @dstats:        Dummy statistics
1499 *      @vstats:        Virtual ethernet statistics
1500 *
1501 *      @garp_port:     GARP
1502 *      @mrp_port:      MRP
1503 *
1504 *      @dev:           Class/net/name entry
1505 *      @sysfs_groups:  Space for optional device, statistics and wireless
1506 *                      sysfs groups
1507 *
1508 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1509 *      @rtnl_link_ops: Rtnl_link_ops
1510 *
1511 *      @gso_max_size:  Maximum size of generic segmentation offload
1512 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1513 *                      NIC for GSO
1514 *      @gso_min_segs:  Minimum number of segments that can be passed to the
1515 *                      NIC for GSO
1516 *
1517 *      @dcbnl_ops:     Data Center Bridging netlink ops
1518 *      @num_tc:        Number of traffic classes in the net device
1519 *      @tc_to_txq:     XXX: need comments on this one
1520 *      @prio_tc_map    XXX: need comments on this one
1521 *
1522 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1523 *
1524 *      @priomap:       XXX: need comments on this one
1525 *      @phydev:        Physical device may attach itself
1526 *                      for hardware timestamping
1527 *
1528 *      @qdisc_tx_busylock:     XXX: need comments on this one
1529 *
1530 *      @proto_down:    protocol port state information can be sent to the
1531 *                      switch driver and used to set the phys state of the
1532 *                      switch port.
1533 *
1534 *      FIXME: cleanup struct net_device such that network protocol info
1535 *      moves out.
1536 */
1537
1538struct net_device {
1539        char                    name[IFNAMSIZ];
1540        struct hlist_node       name_hlist;
1541        char                    *ifalias;
1542        /*
1543         *      I/O specific fields
1544         *      FIXME: Merge these and struct ifmap into one
1545         */
1546        unsigned long           mem_end;
1547        unsigned long           mem_start;
1548        unsigned long           base_addr;
1549        int                     irq;
1550
1551        atomic_t                carrier_changes;
1552
1553        /*
1554         *      Some hardware also needs these fields (state,dev_list,
1555         *      napi_list,unreg_list,close_list) but they are not
1556         *      part of the usual set specified in Space.c.
1557         */
1558
1559        unsigned long           state;
1560
1561        struct list_head        dev_list;
1562        struct list_head        napi_list;
1563        struct list_head        unreg_list;
1564        struct list_head        close_list;
1565        struct list_head        ptype_all;
1566        struct list_head        ptype_specific;
1567
1568        struct {
1569                struct list_head upper;
1570                struct list_head lower;
1571        } adj_list;
1572
1573        struct {
1574                struct list_head upper;
1575                struct list_head lower;
1576        } all_adj_list;
1577
1578        netdev_features_t       features;
1579        netdev_features_t       hw_features;
1580        netdev_features_t       wanted_features;
1581        netdev_features_t       vlan_features;
1582        netdev_features_t       hw_enc_features;
1583        netdev_features_t       mpls_features;
1584
1585        int                     ifindex;
1586        int                     group;
1587
1588        struct net_device_stats stats;
1589
1590        atomic_long_t           rx_dropped;
1591        atomic_long_t           tx_dropped;
1592
1593#ifdef CONFIG_WIRELESS_EXT
1594        const struct iw_handler_def *   wireless_handlers;
1595        struct iw_public_data * wireless_data;
1596#endif
1597        const struct net_device_ops *netdev_ops;
1598        const struct ethtool_ops *ethtool_ops;
1599#ifdef CONFIG_NET_SWITCHDEV
1600        const struct switchdev_ops *switchdev_ops;
1601#endif
1602#ifdef CONFIG_NET_L3_MASTER_DEV
1603        const struct l3mdev_ops *l3mdev_ops;
1604#endif
1605
1606        const struct header_ops *header_ops;
1607
1608        unsigned int            flags;
1609        unsigned int            priv_flags;
1610
1611        unsigned short          gflags;
1612        unsigned short          padded;
1613
1614        unsigned char           operstate;
1615        unsigned char           link_mode;
1616
1617        unsigned char           if_port;
1618        unsigned char           dma;
1619
1620        unsigned int            mtu;
1621        unsigned short          type;
1622        unsigned short          hard_header_len;
1623
1624        unsigned short          needed_headroom;
1625        unsigned short          needed_tailroom;
1626
1627        /* Interface address info. */
1628        unsigned char           perm_addr[MAX_ADDR_LEN];
1629        unsigned char           addr_assign_type;
1630        unsigned char           addr_len;
1631        unsigned short          neigh_priv_len;
1632        unsigned short          dev_id;
1633        unsigned short          dev_port;
1634        spinlock_t              addr_list_lock;
1635        unsigned char           name_assign_type;
1636        bool                    uc_promisc;
1637        struct netdev_hw_addr_list      uc;
1638        struct netdev_hw_addr_list      mc;
1639        struct netdev_hw_addr_list      dev_addrs;
1640
1641#ifdef CONFIG_SYSFS
1642        struct kset             *queues_kset;
1643#endif
1644        unsigned int            promiscuity;
1645        unsigned int            allmulti;
1646
1647
1648        /* Protocol specific pointers */
1649
1650#if IS_ENABLED(CONFIG_VLAN_8021Q)
1651        struct vlan_info __rcu  *vlan_info;
1652#endif
1653#if IS_ENABLED(CONFIG_NET_DSA)
1654        struct dsa_switch_tree  *dsa_ptr;
1655#endif
1656#if IS_ENABLED(CONFIG_TIPC)
1657        struct tipc_bearer __rcu *tipc_ptr;
1658#endif
1659        void                    *atalk_ptr;
1660        struct in_device __rcu  *ip_ptr;
1661        struct dn_dev __rcu     *dn_ptr;
1662        struct inet6_dev __rcu  *ip6_ptr;
1663        void                    *ax25_ptr;
1664        struct wireless_dev     *ieee80211_ptr;
1665        struct wpan_dev         *ieee802154_ptr;
1666#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1667        struct mpls_dev __rcu   *mpls_ptr;
1668#endif
1669
1670/*
1671 * Cache lines mostly used on receive path (including eth_type_trans())
1672 */
1673        unsigned long           last_rx;
1674
1675        /* Interface address info used in eth_type_trans() */
1676        unsigned char           *dev_addr;
1677
1678
1679#ifdef CONFIG_SYSFS
1680        struct netdev_rx_queue  *_rx;
1681
1682        unsigned int            num_rx_queues;
1683        unsigned int            real_num_rx_queues;
1684
1685#endif
1686
1687        unsigned long           gro_flush_timeout;
1688        rx_handler_func_t __rcu *rx_handler;
1689        void __rcu              *rx_handler_data;
1690
1691#ifdef CONFIG_NET_CLS_ACT
1692        struct tcf_proto __rcu  *ingress_cl_list;
1693#endif
1694        struct netdev_queue __rcu *ingress_queue;
1695#ifdef CONFIG_NETFILTER_INGRESS
1696        struct list_head        nf_hooks_ingress;
1697#endif
1698
1699        unsigned char           broadcast[MAX_ADDR_LEN];
1700#ifdef CONFIG_RFS_ACCEL
1701        struct cpu_rmap         *rx_cpu_rmap;
1702#endif
1703        struct hlist_node       index_hlist;
1704
1705/*
1706 * Cache lines mostly used on transmit path
1707 */
1708        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1709        unsigned int            num_tx_queues;
1710        unsigned int            real_num_tx_queues;
1711        struct Qdisc            *qdisc;
1712        unsigned long           tx_queue_len;
1713        spinlock_t              tx_global_lock;
1714        int                     watchdog_timeo;
1715
1716#ifdef CONFIG_XPS
1717        struct xps_dev_maps __rcu *xps_maps;
1718#endif
1719
1720#ifdef CONFIG_NET_SWITCHDEV
1721        u32                     offload_fwd_mark;
1722#endif
1723
1724        /* These may be needed for future network-power-down code. */
1725
1726        /*
1727         * trans_start here is expensive for high speed devices on SMP,
1728         * please use netdev_queue->trans_start instead.
1729         */
1730        unsigned long           trans_start;
1731
1732        struct timer_list       watchdog_timer;
1733
1734        int __percpu            *pcpu_refcnt;
1735        struct list_head        todo_list;
1736
1737        struct list_head        link_watch_list;
1738
1739        enum { NETREG_UNINITIALIZED=0,
1740               NETREG_REGISTERED,       /* completed register_netdevice */
1741               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1742               NETREG_UNREGISTERED,     /* completed unregister todo */
1743               NETREG_RELEASED,         /* called free_netdev */
1744               NETREG_DUMMY,            /* dummy device for NAPI poll */
1745        } reg_state:8;
1746
1747        bool dismantle;
1748
1749        enum {
1750                RTNL_LINK_INITIALIZED,
1751                RTNL_LINK_INITIALIZING,
1752        } rtnl_link_state:16;
1753
1754        void (*destructor)(struct net_device *dev);
1755
1756#ifdef CONFIG_NETPOLL
1757        struct netpoll_info __rcu       *npinfo;
1758#endif
1759
1760        possible_net_t                  nd_net;
1761
1762        /* mid-layer private */
1763        union {
1764                void                                    *ml_priv;
1765                struct pcpu_lstats __percpu             *lstats;
1766                struct pcpu_sw_netstats __percpu        *tstats;
1767                struct pcpu_dstats __percpu             *dstats;
1768                struct pcpu_vstats __percpu             *vstats;
1769        };
1770
1771        struct garp_port __rcu  *garp_port;
1772        struct mrp_port __rcu   *mrp_port;
1773
1774        struct device   dev;
1775        const struct attribute_group *sysfs_groups[4];
1776        const struct attribute_group *sysfs_rx_queue_group;
1777
1778        const struct rtnl_link_ops *rtnl_link_ops;
1779
1780        /* for setting kernel sock attribute on TCP connection setup */
1781#define GSO_MAX_SIZE            65536
1782        unsigned int            gso_max_size;
1783#define GSO_MAX_SEGS            65535
1784        u16                     gso_max_segs;
1785        u16                     gso_min_segs;
1786#ifdef CONFIG_DCB
1787        const struct dcbnl_rtnl_ops *dcbnl_ops;
1788#endif
1789        u8 num_tc;
1790        struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1791        u8 prio_tc_map[TC_BITMASK + 1];
1792
1793#if IS_ENABLED(CONFIG_FCOE)
1794        unsigned int            fcoe_ddp_xid;
1795#endif
1796#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1797        struct netprio_map __rcu *priomap;
1798#endif
1799        struct phy_device *phydev;
1800        struct lock_class_key *qdisc_tx_busylock;
1801        bool proto_down;
1802};
1803#define to_net_dev(d) container_of(d, struct net_device, dev)
1804
1805#define NETDEV_ALIGN            32
1806
1807static inline
1808int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1809{
1810        return dev->prio_tc_map[prio & TC_BITMASK];
1811}
1812
1813static inline
1814int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1815{
1816        if (tc >= dev->num_tc)
1817                return -EINVAL;
1818
1819        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1820        return 0;
1821}
1822
1823static inline
1824void netdev_reset_tc(struct net_device *dev)
1825{
1826        dev->num_tc = 0;
1827        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1828        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1829}
1830
1831static inline
1832int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1833{
1834        if (tc >= dev->num_tc)
1835                return -EINVAL;
1836
1837        dev->tc_to_txq[tc].count = count;
1838        dev->tc_to_txq[tc].offset = offset;
1839        return 0;
1840}
1841
1842static inline
1843int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1844{
1845        if (num_tc > TC_MAX_QUEUE)
1846                return -EINVAL;
1847
1848        dev->num_tc = num_tc;
1849        return 0;
1850}
1851
1852static inline
1853int netdev_get_num_tc(struct net_device *dev)
1854{
1855        return dev->num_tc;
1856}
1857
1858static inline
1859struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1860                                         unsigned int index)
1861{
1862        return &dev->_tx[index];
1863}
1864
1865static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1866                                                    const struct sk_buff *skb)
1867{
1868        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1869}
1870
1871static inline void netdev_for_each_tx_queue(struct net_device *dev,
1872                                            void (*f)(struct net_device *,
1873                                                      struct netdev_queue *,
1874                                                      void *),
1875                                            void *arg)
1876{
1877        unsigned int i;
1878
1879        for (i = 0; i < dev->num_tx_queues; i++)
1880                f(dev, &dev->_tx[i], arg);
1881}
1882
1883struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1884                                    struct sk_buff *skb,
1885                                    void *accel_priv);
1886
1887/*
1888 * Net namespace inlines
1889 */
1890static inline
1891struct net *dev_net(const struct net_device *dev)
1892{
1893        return read_pnet(&dev->nd_net);
1894}
1895
1896static inline
1897void dev_net_set(struct net_device *dev, struct net *net)
1898{
1899        write_pnet(&dev->nd_net, net);
1900}
1901
1902static inline bool netdev_uses_dsa(struct net_device *dev)
1903{
1904#if IS_ENABLED(CONFIG_NET_DSA)
1905        if (dev->dsa_ptr != NULL)
1906                return dsa_uses_tagged_protocol(dev->dsa_ptr);
1907#endif
1908        return false;
1909}
1910
1911/**
1912 *      netdev_priv - access network device private data
1913 *      @dev: network device
1914 *
1915 * Get network device private data
1916 */
1917static inline void *netdev_priv(const struct net_device *dev)
1918{
1919        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1920}
1921
1922/* Set the sysfs physical device reference for the network logical device
1923 * if set prior to registration will cause a symlink during initialization.
1924 */
1925#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1926
1927/* Set the sysfs device type for the network logical device to allow
1928 * fine-grained identification of different network device types. For
1929 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1930 */
1931#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1932
1933/* Default NAPI poll() weight
1934 * Device drivers are strongly advised to not use bigger value
1935 */
1936#define NAPI_POLL_WEIGHT 64
1937
1938/**
1939 *      netif_napi_add - initialize a napi context
1940 *      @dev:  network device
1941 *      @napi: napi context
1942 *      @poll: polling function
1943 *      @weight: default weight
1944 *
1945 * netif_napi_add() must be used to initialize a napi context prior to calling
1946 * *any* of the other napi related functions.
1947 */
1948void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1949                    int (*poll)(struct napi_struct *, int), int weight);
1950
1951/**
1952 *  netif_napi_del - remove a napi context
1953 *  @napi: napi context
1954 *
1955 *  netif_napi_del() removes a napi context from the network device napi list
1956 */
1957void netif_napi_del(struct napi_struct *napi);
1958
1959struct napi_gro_cb {
1960        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1961        void *frag0;
1962
1963        /* Length of frag0. */
1964        unsigned int frag0_len;
1965
1966        /* This indicates where we are processing relative to skb->data. */
1967        int data_offset;
1968
1969        /* This is non-zero if the packet cannot be merged with the new skb. */
1970        u16     flush;
1971
1972        /* Save the IP ID here and check when we get to the transport layer */
1973        u16     flush_id;
1974
1975        /* Number of segments aggregated. */
1976        u16     count;
1977
1978        /* Start offset for remote checksum offload */
1979        u16     gro_remcsum_start;
1980
1981        /* jiffies when first packet was created/queued */
1982        unsigned long age;
1983
1984        /* Used in ipv6_gro_receive() and foo-over-udp */
1985        u16     proto;
1986
1987        /* This is non-zero if the packet may be of the same flow. */
1988        u8      same_flow:1;
1989
1990        /* Used in udp_gro_receive */
1991        u8      udp_mark:1;
1992
1993        /* GRO checksum is valid */
1994        u8      csum_valid:1;
1995
1996        /* Number of checksums via CHECKSUM_UNNECESSARY */
1997        u8      csum_cnt:3;
1998
1999        /* Free the skb? */
2000        u8      free:2;
2001#define NAPI_GRO_FREE             1
2002#define NAPI_GRO_FREE_STOLEN_HEAD 2
2003
2004        /* Used in foo-over-udp, set in udp[46]_gro_receive */
2005        u8      is_ipv6:1;
2006
2007        /* 7 bit hole */
2008
2009        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2010        __wsum  csum;
2011
2012        /* used in skb_gro_receive() slow path */
2013        struct sk_buff *last;
2014};
2015
2016#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2017
2018struct packet_type {
2019        __be16                  type;   /* This is really htons(ether_type). */
2020        struct net_device       *dev;   /* NULL is wildcarded here           */
2021        int                     (*func) (struct sk_buff *,
2022                                         struct net_device *,
2023                                         struct packet_type *,
2024                                         struct net_device *);
2025        bool                    (*id_match)(struct packet_type *ptype,
2026                                            struct sock *sk);
2027        void                    *af_packet_priv;
2028        struct list_head        list;
2029};
2030
2031struct offload_callbacks {
2032        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2033                                                netdev_features_t features);
2034        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2035                                                 struct sk_buff *skb);
2036        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2037};
2038
2039struct packet_offload {
2040        __be16                   type;  /* This is really htons(ether_type). */
2041        u16                      priority;
2042        struct offload_callbacks callbacks;
2043        struct list_head         list;
2044};
2045
2046struct udp_offload;
2047
2048struct udp_offload_callbacks {
2049        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2050                                                 struct sk_buff *skb,
2051                                                 struct udp_offload *uoff);
2052        int                     (*gro_complete)(struct sk_buff *skb,
2053                                                int nhoff,
2054                                                struct udp_offload *uoff);
2055};
2056
2057struct udp_offload {
2058        __be16                   port;
2059        u8                       ipproto;
2060        struct udp_offload_callbacks callbacks;
2061};
2062
2063/* often modified stats are per cpu, other are shared (netdev->stats) */
2064struct pcpu_sw_netstats {
2065        u64     rx_packets;
2066        u64     rx_bytes;
2067        u64     tx_packets;
2068        u64     tx_bytes;
2069        struct u64_stats_sync   syncp;
2070};
2071
2072#define __netdev_alloc_pcpu_stats(type, gfp)                            \
2073({                                                                      \
2074        typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2075        if (pcpu_stats) {                                               \
2076                int __cpu;                                              \
2077                for_each_possible_cpu(__cpu) {                          \
2078                        typeof(type) *stat;                             \
2079                        stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2080                        u64_stats_init(&stat->syncp);                   \
2081                }                                                       \
2082        }                                                               \
2083        pcpu_stats;                                                     \
2084})
2085
2086#define netdev_alloc_pcpu_stats(type)                                   \
2087        __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2088
2089#include <linux/notifier.h>
2090
2091/* netdevice notifier chain. Please remember to update the rtnetlink
2092 * notification exclusion list in rtnetlink_event() when adding new
2093 * types.
2094 */
2095#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2096#define NETDEV_DOWN     0x0002
2097#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2098                                   detected a hardware crash and restarted
2099                                   - we can use this eg to kick tcp sessions
2100                                   once done */
2101#define NETDEV_CHANGE   0x0004  /* Notify device state change */
2102#define NETDEV_REGISTER 0x0005
2103#define NETDEV_UNREGISTER       0x0006
2104#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2105#define NETDEV_CHANGEADDR       0x0008
2106#define NETDEV_GOING_DOWN       0x0009
2107#define NETDEV_CHANGENAME       0x000A
2108#define NETDEV_FEAT_CHANGE      0x000B
2109#define NETDEV_BONDING_FAILOVER 0x000C
2110#define NETDEV_PRE_UP           0x000D
2111#define NETDEV_PRE_TYPE_CHANGE  0x000E
2112#define NETDEV_POST_TYPE_CHANGE 0x000F
2113#define NETDEV_POST_INIT        0x0010
2114#define NETDEV_UNREGISTER_FINAL 0x0011
2115#define NETDEV_RELEASE          0x0012
2116#define NETDEV_NOTIFY_PEERS     0x0013
2117#define NETDEV_JOIN             0x0014
2118#define NETDEV_CHANGEUPPER      0x0015
2119#define NETDEV_RESEND_IGMP      0x0016
2120#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2121#define NETDEV_CHANGEINFODATA   0x0018
2122#define NETDEV_BONDING_INFO     0x0019
2123#define NETDEV_PRECHANGEUPPER   0x001A
2124
2125int register_netdevice_notifier(struct notifier_block *nb);
2126int unregister_netdevice_notifier(struct notifier_block *nb);
2127
2128struct netdev_notifier_info {
2129        struct net_device *dev;
2130};
2131
2132struct netdev_notifier_change_info {
2133        struct netdev_notifier_info info; /* must be first */
2134        unsigned int flags_changed;
2135};
2136
2137struct netdev_notifier_changeupper_info {
2138        struct netdev_notifier_info info; /* must be first */
2139        struct net_device *upper_dev; /* new upper dev */
2140        bool master; /* is upper dev master */
2141        bool linking; /* is the nofication for link or unlink */
2142};
2143
2144static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2145                                             struct net_device *dev)
2146{
2147        info->dev = dev;
2148}
2149
2150static inline struct net_device *
2151netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2152{
2153        return info->dev;
2154}
2155
2156int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2157
2158
2159extern rwlock_t                         dev_base_lock;          /* Device list lock */
2160
2161#define for_each_netdev(net, d)         \
2162                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2163#define for_each_netdev_reverse(net, d) \
2164                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2165#define for_each_netdev_rcu(net, d)             \
2166                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2167#define for_each_netdev_safe(net, d, n) \
2168                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2169#define for_each_netdev_continue(net, d)                \
2170                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2171#define for_each_netdev_continue_rcu(net, d)            \
2172        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2173#define for_each_netdev_in_bond_rcu(bond, slave)        \
2174                for_each_netdev_rcu(&init_net, slave)   \
2175                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2176#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2177
2178static inline struct net_device *next_net_device(struct net_device *dev)
2179{
2180        struct list_head *lh;
2181        struct net *net;
2182
2183        net = dev_net(dev);
2184        lh = dev->dev_list.next;
2185        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2186}
2187
2188static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2189{
2190        struct list_head *lh;
2191        struct net *net;
2192
2193        net = dev_net(dev);
2194        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2195        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2196}
2197
2198static inline struct net_device *first_net_device(struct net *net)
2199{
2200        return list_empty(&net->dev_base_head) ? NULL :
2201                net_device_entry(net->dev_base_head.next);
2202}
2203
2204static inline struct net_device *first_net_device_rcu(struct net *net)
2205{
2206        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2207
2208        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2209}
2210
2211int netdev_boot_setup_check(struct net_device *dev);
2212unsigned long netdev_boot_base(const char *prefix, int unit);
2213struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2214                                       const char *hwaddr);
2215struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2216struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2217void dev_add_pack(struct packet_type *pt);
2218void dev_remove_pack(struct packet_type *pt);
2219void __dev_remove_pack(struct packet_type *pt);
2220void dev_add_offload(struct packet_offload *po);
2221void dev_remove_offload(struct packet_offload *po);
2222
2223int dev_get_iflink(const struct net_device *dev);
2224int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2225struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2226                                      unsigned short mask);
2227struct net_device *dev_get_by_name(struct net *net, const char *name);
2228struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2229struct net_device *__dev_get_by_name(struct net *net, const char *name);
2230int dev_alloc_name(struct net_device *dev, const char *name);
2231int dev_open(struct net_device *dev);
2232int dev_close(struct net_device *dev);
2233int dev_close_many(struct list_head *head, bool unlink);
2234void dev_disable_lro(struct net_device *dev);
2235int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2236int dev_queue_xmit(struct sk_buff *skb);
2237int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2238int register_netdevice(struct net_device *dev);
2239void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2240void unregister_netdevice_many(struct list_head *head);
2241static inline void unregister_netdevice(struct net_device *dev)
2242{
2243        unregister_netdevice_queue(dev, NULL);
2244}
2245
2246int netdev_refcnt_read(const struct net_device *dev);
2247void free_netdev(struct net_device *dev);
2248void netdev_freemem(struct net_device *dev);
2249void synchronize_net(void);
2250int init_dummy_netdev(struct net_device *dev);
2251
2252DECLARE_PER_CPU(int, xmit_recursion);
2253static inline int dev_recursion_level(void)
2254{
2255        return this_cpu_read(xmit_recursion);
2256}
2257
2258struct net_device *dev_get_by_index(struct net *net, int ifindex);
2259struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2260struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2261int netdev_get_name(struct net *net, char *name, int ifindex);
2262int dev_restart(struct net_device *dev);
2263int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2264
2265static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2266{
2267        return NAPI_GRO_CB(skb)->data_offset;
2268}
2269
2270static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2271{
2272        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2273}
2274
2275static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2276{
2277        NAPI_GRO_CB(skb)->data_offset += len;
2278}
2279
2280static inline void *skb_gro_header_fast(struct sk_buff *skb,
2281                                        unsigned int offset)
2282{
2283        return NAPI_GRO_CB(skb)->frag0 + offset;
2284}
2285
2286static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2287{
2288        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2289}
2290
2291static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2292                                        unsigned int offset)
2293{
2294        if (!pskb_may_pull(skb, hlen))
2295                return NULL;
2296
2297        NAPI_GRO_CB(skb)->frag0 = NULL;
2298        NAPI_GRO_CB(skb)->frag0_len = 0;
2299        return skb->data + offset;
2300}
2301
2302static inline void *skb_gro_network_header(struct sk_buff *skb)
2303{
2304        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2305               skb_network_offset(skb);
2306}
2307
2308static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2309                                        const void *start, unsigned int len)
2310{
2311        if (NAPI_GRO_CB(skb)->csum_valid)
2312                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2313                                                  csum_partial(start, len, 0));
2314}
2315
2316/* GRO checksum functions. These are logical equivalents of the normal
2317 * checksum functions (in skbuff.h) except that they operate on the GRO
2318 * offsets and fields in sk_buff.
2319 */
2320
2321__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2322
2323static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2324{
2325        return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2326}
2327
2328static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2329                                                      bool zero_okay,
2330                                                      __sum16 check)
2331{
2332        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2333                skb_checksum_start_offset(skb) <
2334                 skb_gro_offset(skb)) &&
2335                !skb_at_gro_remcsum_start(skb) &&
2336                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2337                (!zero_okay || check));
2338}
2339
2340static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2341                                                           __wsum psum)
2342{
2343        if (NAPI_GRO_CB(skb)->csum_valid &&
2344            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2345                return 0;
2346
2347        NAPI_GRO_CB(skb)->csum = psum;
2348
2349        return __skb_gro_checksum_complete(skb);
2350}
2351
2352static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2353{
2354        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2355                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2356                NAPI_GRO_CB(skb)->csum_cnt--;
2357        } else {
2358                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2359                 * verified a new top level checksum or an encapsulated one
2360                 * during GRO. This saves work if we fallback to normal path.
2361                 */
2362                __skb_incr_checksum_unnecessary(skb);
2363        }
2364}
2365
2366#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2367                                    compute_pseudo)                     \
2368({                                                                      \
2369        __sum16 __ret = 0;                                              \
2370        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2371                __ret = __skb_gro_checksum_validate_complete(skb,       \
2372                                compute_pseudo(skb, proto));            \
2373        if (__ret)                                                      \
2374                __skb_mark_checksum_bad(skb);                           \
2375        else                                                            \
2376                skb_gro_incr_csum_unnecessary(skb);                     \
2377        __ret;                                                          \
2378})
2379
2380#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2381        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2382
2383#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2384                                             compute_pseudo)            \
2385        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2386
2387#define skb_gro_checksum_simple_validate(skb)                           \
2388        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2389
2390static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2391{
2392        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2393                !NAPI_GRO_CB(skb)->csum_valid);
2394}
2395
2396static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2397                                              __sum16 check, __wsum pseudo)
2398{
2399        NAPI_GRO_CB(skb)->csum = ~pseudo;
2400        NAPI_GRO_CB(skb)->csum_valid = 1;
2401}
2402
2403#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2404do {                                                                    \
2405        if (__skb_gro_checksum_convert_check(skb))                      \
2406                __skb_gro_checksum_convert(skb, check,                  \
2407                                           compute_pseudo(skb, proto)); \
2408} while (0)
2409
2410struct gro_remcsum {
2411        int offset;
2412        __wsum delta;
2413};
2414
2415static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2416{
2417        grc->offset = 0;
2418        grc->delta = 0;
2419}
2420
2421static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2422                                            unsigned int off, size_t hdrlen,
2423                                            int start, int offset,
2424                                            struct gro_remcsum *grc,
2425                                            bool nopartial)
2426{
2427        __wsum delta;
2428        size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2429
2430        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2431
2432        if (!nopartial) {
2433                NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2434                return ptr;
2435        }
2436
2437        ptr = skb_gro_header_fast(skb, off);
2438        if (skb_gro_header_hard(skb, off + plen)) {
2439                ptr = skb_gro_header_slow(skb, off + plen, off);
2440                if (!ptr)
2441                        return NULL;
2442        }
2443
2444        delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2445                               start, offset);
2446
2447        /* Adjust skb->csum since we changed the packet */
2448        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2449
2450        grc->offset = off + hdrlen + offset;
2451        grc->delta = delta;
2452
2453        return ptr;
2454}
2455
2456static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2457                                           struct gro_remcsum *grc)
2458{
2459        void *ptr;
2460        size_t plen = grc->offset + sizeof(u16);
2461
2462        if (!grc->delta)
2463                return;
2464
2465        ptr = skb_gro_header_fast(skb, grc->offset);
2466        if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2467                ptr = skb_gro_header_slow(skb, plen, grc->offset);
2468                if (!ptr)
2469                        return;
2470        }
2471
2472        remcsum_unadjust((__sum16 *)ptr, grc->delta);
2473}
2474
2475static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2476                                  unsigned short type,
2477                                  const void *daddr, const void *saddr,
2478                                  unsigned int len)
2479{
2480        if (!dev->header_ops || !dev->header_ops->create)
2481                return 0;
2482
2483        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2484}
2485
2486static inline int dev_parse_header(const struct sk_buff *skb,
2487                                   unsigned char *haddr)
2488{
2489        const struct net_device *dev = skb->dev;
2490
2491        if (!dev->header_ops || !dev->header_ops->parse)
2492                return 0;
2493        return dev->header_ops->parse(skb, haddr);
2494}
2495
2496typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2497int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2498static inline int unregister_gifconf(unsigned int family)
2499{
2500        return register_gifconf(family, NULL);
2501}
2502
2503#ifdef CONFIG_NET_FLOW_LIMIT
2504#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2505struct sd_flow_limit {
2506        u64                     count;
2507        unsigned int            num_buckets;
2508        unsigned int            history_head;
2509        u16                     history[FLOW_LIMIT_HISTORY];
2510        u8                      buckets[];
2511};
2512
2513extern int netdev_flow_limit_table_len;
2514#endif /* CONFIG_NET_FLOW_LIMIT */
2515
2516/*
2517 * Incoming packets are placed on per-cpu queues
2518 */
2519struct softnet_data {
2520        struct list_head        poll_list;
2521        struct sk_buff_head     process_queue;
2522
2523        /* stats */
2524        unsigned int            processed;
2525        unsigned int            time_squeeze;
2526        unsigned int            cpu_collision;
2527        unsigned int            received_rps;
2528#ifdef CONFIG_RPS
2529        struct softnet_data     *rps_ipi_list;
2530#endif
2531#ifdef CONFIG_NET_FLOW_LIMIT
2532        struct sd_flow_limit __rcu *flow_limit;
2533#endif
2534        struct Qdisc            *output_queue;
2535        struct Qdisc            **output_queue_tailp;
2536        struct sk_buff          *completion_queue;
2537
2538#ifdef CONFIG_RPS
2539        /* Elements below can be accessed between CPUs for RPS */
2540        struct call_single_data csd ____cacheline_aligned_in_smp;
2541        struct softnet_data     *rps_ipi_next;
2542        unsigned int            cpu;
2543        unsigned int            input_queue_head;
2544        unsigned int            input_queue_tail;
2545#endif
2546        unsigned int            dropped;
2547        struct sk_buff_head     input_pkt_queue;
2548        struct napi_struct      backlog;
2549
2550};
2551
2552static inline void input_queue_head_incr(struct softnet_data *sd)
2553{
2554#ifdef CONFIG_RPS
2555        sd->input_queue_head++;
2556#endif
2557}
2558
2559static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2560                                              unsigned int *qtail)
2561{
2562#ifdef CONFIG_RPS
2563        *qtail = ++sd->input_queue_tail;
2564#endif
2565}
2566
2567DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2568
2569void __netif_schedule(struct Qdisc *q);
2570void netif_schedule_queue(struct netdev_queue *txq);
2571
2572static inline void netif_tx_schedule_all(struct net_device *dev)
2573{
2574        unsigned int i;
2575
2576        for (i = 0; i < dev->num_tx_queues; i++)
2577                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2578}
2579
2580static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2581{
2582        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2583}
2584
2585/**
2586 *      netif_start_queue - allow transmit
2587 *      @dev: network device
2588 *
2589 *      Allow upper layers to call the device hard_start_xmit routine.
2590 */
2591static inline void netif_start_queue(struct net_device *dev)
2592{
2593        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2594}
2595
2596static inline void netif_tx_start_all_queues(struct net_device *dev)
2597{
2598        unsigned int i;
2599
2600        for (i = 0; i < dev->num_tx_queues; i++) {
2601                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2602                netif_tx_start_queue(txq);
2603        }
2604}
2605
2606void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2607
2608/**
2609 *      netif_wake_queue - restart transmit
2610 *      @dev: network device
2611 *
2612 *      Allow upper layers to call the device hard_start_xmit routine.
2613 *      Used for flow control when transmit resources are available.
2614 */
2615static inline void netif_wake_queue(struct net_device *dev)
2616{
2617        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2618}
2619
2620static inline void netif_tx_wake_all_queues(struct net_device *dev)
2621{
2622        unsigned int i;
2623
2624        for (i = 0; i < dev->num_tx_queues; i++) {
2625                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2626                netif_tx_wake_queue(txq);
2627        }
2628}
2629
2630static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2631{
2632        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2633}
2634
2635/**
2636 *      netif_stop_queue - stop transmitted packets
2637 *      @dev: network device
2638 *
2639 *      Stop upper layers calling the device hard_start_xmit routine.
2640 *      Used for flow control when transmit resources are unavailable.
2641 */
2642static inline void netif_stop_queue(struct net_device *dev)
2643{
2644        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2645}
2646
2647void netif_tx_stop_all_queues(struct net_device *dev);
2648
2649static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2650{
2651        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2652}
2653
2654/**
2655 *      netif_queue_stopped - test if transmit queue is flowblocked
2656 *      @dev: network device
2657 *
2658 *      Test if transmit queue on device is currently unable to send.
2659 */
2660static inline bool netif_queue_stopped(const struct net_device *dev)
2661{
2662        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2663}
2664
2665static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2666{
2667        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2668}
2669
2670static inline bool
2671netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2672{
2673        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2674}
2675
2676static inline bool
2677netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2678{
2679        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2680}
2681
2682/**
2683 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2684 *      @dev_queue: pointer to transmit queue
2685 *
2686 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2687 * to give appropriate hint to the cpu.
2688 */
2689static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2690{
2691#ifdef CONFIG_BQL
2692        prefetchw(&dev_queue->dql.num_queued);
2693#endif
2694}
2695
2696/**
2697 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2698 *      @dev_queue: pointer to transmit queue
2699 *
2700 * BQL enabled drivers might use this helper in their TX completion path,
2701 * to give appropriate hint to the cpu.
2702 */
2703static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2704{
2705#ifdef CONFIG_BQL
2706        prefetchw(&dev_queue->dql.limit);
2707#endif
2708}
2709
2710static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2711                                        unsigned int bytes)
2712{
2713#ifdef CONFIG_BQL
2714        dql_queued(&dev_queue->dql, bytes);
2715
2716        if (likely(dql_avail(&dev_queue->dql) >= 0))
2717                return;
2718
2719        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2720
2721        /*
2722         * The XOFF flag must be set before checking the dql_avail below,
2723         * because in netdev_tx_completed_queue we update the dql_completed
2724         * before checking the XOFF flag.
2725         */
2726        smp_mb();
2727
2728        /* check again in case another CPU has just made room avail */
2729        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2730                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2731#endif
2732}
2733
2734/**
2735 *      netdev_sent_queue - report the number of bytes queued to hardware
2736 *      @dev: network device
2737 *      @bytes: number of bytes queued to the hardware device queue
2738 *
2739 *      Report the number of bytes queued for sending/completion to the network
2740 *      device hardware queue. @bytes should be a good approximation and should
2741 *      exactly match netdev_completed_queue() @bytes
2742 */
2743static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2744{
2745        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2746}
2747
2748static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2749                                             unsigned int pkts, unsigned int bytes)
2750{
2751#ifdef CONFIG_BQL
2752        if (unlikely(!bytes))
2753                return;
2754
2755        dql_completed(&dev_queue->dql, bytes);
2756
2757        /*
2758         * Without the memory barrier there is a small possiblity that
2759         * netdev_tx_sent_queue will miss the update and cause the queue to
2760         * be stopped forever
2761         */
2762        smp_mb();
2763
2764        if (dql_avail(&dev_queue->dql) < 0)
2765                return;
2766
2767        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2768                netif_schedule_queue(dev_queue);
2769#endif
2770}
2771
2772/**
2773 *      netdev_completed_queue - report bytes and packets completed by device
2774 *      @dev: network device
2775 *      @pkts: actual number of packets sent over the medium
2776 *      @bytes: actual number of bytes sent over the medium
2777 *
2778 *      Report the number of bytes and packets transmitted by the network device
2779 *      hardware queue over the physical medium, @bytes must exactly match the
2780 *      @bytes amount passed to netdev_sent_queue()
2781 */
2782static inline void netdev_completed_queue(struct net_device *dev,
2783                                          unsigned int pkts, unsigned int bytes)
2784{
2785        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2786}
2787
2788static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2789{
2790#ifdef CONFIG_BQL
2791        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2792        dql_reset(&q->dql);
2793#endif
2794}
2795
2796/**
2797 *      netdev_reset_queue - reset the packets and bytes count of a network device
2798 *      @dev_queue: network device
2799 *
2800 *      Reset the bytes and packet count of a network device and clear the
2801 *      software flow control OFF bit for this network device
2802 */
2803static inline void netdev_reset_queue(struct net_device *dev_queue)
2804{
2805        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2806}
2807
2808/**
2809 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2810 *      @dev: network device
2811 *      @queue_index: given tx queue index
2812 *
2813 *      Returns 0 if given tx queue index >= number of device tx queues,
2814 *      otherwise returns the originally passed tx queue index.
2815 */
2816static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2817{
2818        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2819                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2820                                     dev->name, queue_index,
2821                                     dev->real_num_tx_queues);
2822                return 0;
2823        }
2824
2825        return queue_index;
2826}
2827
2828/**
2829 *      netif_running - test if up
2830 *      @dev: network device
2831 *
2832 *      Test if the device has been brought up.
2833 */
2834static inline bool netif_running(const struct net_device *dev)
2835{
2836        return test_bit(__LINK_STATE_START, &dev->state);
2837}
2838
2839/*
2840 * Routines to manage the subqueues on a device.  We only need start
2841 * stop, and a check if it's stopped.  All other device management is
2842 * done at the overall netdevice level.
2843 * Also test the device if we're multiqueue.
2844 */
2845
2846/**
2847 *      netif_start_subqueue - allow sending packets on subqueue
2848 *      @dev: network device
2849 *      @queue_index: sub queue index
2850 *
2851 * Start individual transmit queue of a device with multiple transmit queues.
2852 */
2853static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2854{
2855        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2856
2857        netif_tx_start_queue(txq);
2858}
2859
2860/**
2861 *      netif_stop_subqueue - stop sending packets on subqueue
2862 *      @dev: network device
2863 *      @queue_index: sub queue index
2864 *
2865 * Stop individual transmit queue of a device with multiple transmit queues.
2866 */
2867static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2868{
2869        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2870        netif_tx_stop_queue(txq);
2871}
2872
2873/**
2874 *      netif_subqueue_stopped - test status of subqueue
2875 *      @dev: network device
2876 *      @queue_index: sub queue index
2877 *
2878 * Check individual transmit queue of a device with multiple transmit queues.
2879 */
2880static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2881                                            u16 queue_index)
2882{
2883        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2884
2885        return netif_tx_queue_stopped(txq);
2886}
2887
2888static inline bool netif_subqueue_stopped(const struct net_device *dev,
2889                                          struct sk_buff *skb)
2890{
2891        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2892}
2893
2894void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2895
2896#ifdef CONFIG_XPS
2897int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2898                        u16 index);
2899#else
2900static inline int netif_set_xps_queue(struct net_device *dev,
2901                                      const struct cpumask *mask,
2902                                      u16 index)
2903{
2904        return 0;
2905}
2906#endif
2907
2908u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2909                  unsigned int num_tx_queues);
2910
2911/*
2912 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2913 * as a distribution range limit for the returned value.
2914 */
2915static inline u16 skb_tx_hash(const struct net_device *dev,
2916                              struct sk_buff *skb)
2917{
2918        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2919}
2920
2921/**
2922 *      netif_is_multiqueue - test if device has multiple transmit queues
2923 *      @dev: network device
2924 *
2925 * Check if device has multiple transmit queues
2926 */
2927static inline bool netif_is_multiqueue(const struct net_device *dev)
2928{
2929        return dev->num_tx_queues > 1;
2930}
2931
2932int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2933
2934#ifdef CONFIG_SYSFS
2935int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2936#else
2937static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2938                                                unsigned int rxq)
2939{
2940        return 0;
2941}
2942#endif
2943
2944#ifdef CONFIG_SYSFS
2945static inline unsigned int get_netdev_rx_queue_index(
2946                struct netdev_rx_queue *queue)
2947{
2948        struct net_device *dev = queue->dev;
2949        int index = queue - dev->_rx;
2950
2951        BUG_ON(index >= dev->num_rx_queues);
2952        return index;
2953}
2954#endif
2955
2956#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2957int netif_get_num_default_rss_queues(void);
2958
2959enum skb_free_reason {
2960        SKB_REASON_CONSUMED,
2961        SKB_REASON_DROPPED,
2962};
2963
2964void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2965void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2966
2967/*
2968 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2969 * interrupt context or with hardware interrupts being disabled.
2970 * (in_irq() || irqs_disabled())
2971 *
2972 * We provide four helpers that can be used in following contexts :
2973 *
2974 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2975 *  replacing kfree_skb(skb)
2976 *
2977 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2978 *  Typically used in place of consume_skb(skb) in TX completion path
2979 *
2980 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2981 *  replacing kfree_skb(skb)
2982 *
2983 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2984 *  and consumed a packet. Used in place of consume_skb(skb)
2985 */
2986static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2987{
2988        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2989}
2990
2991static inline void dev_consume_skb_irq(struct sk_buff *skb)
2992{
2993        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2994}
2995
2996static inline void dev_kfree_skb_any(struct sk_buff *skb)
2997{
2998        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2999}
3000
3001static inline void dev_consume_skb_any(struct sk_buff *skb)
3002{
3003        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3004}
3005
3006int netif_rx(struct sk_buff *skb);
3007int netif_rx_ni(struct sk_buff *skb);
3008int netif_receive_skb(struct sk_buff *skb);
3009gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3010void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3011struct sk_buff *napi_get_frags(struct napi_struct *napi);
3012gro_result_t napi_gro_frags(struct napi_struct *napi);
3013struct packet_offload *gro_find_receive_by_type(__be16 type);
3014struct packet_offload *gro_find_complete_by_type(__be16 type);
3015
3016static inline void napi_free_frags(struct napi_struct *napi)
3017{
3018        kfree_skb(napi->skb);
3019        napi->skb = NULL;
3020}
3021
3022int netdev_rx_handler_register(struct net_device *dev,
3023                               rx_handler_func_t *rx_handler,
3024                               void *rx_handler_data);
3025void netdev_rx_handler_unregister(struct net_device *dev);
3026
3027bool dev_valid_name(const char *name);
3028int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3029int dev_ethtool(struct net *net, struct ifreq *);
3030unsigned int dev_get_flags(const struct net_device *);
3031int __dev_change_flags(struct net_device *, unsigned int flags);
3032int dev_change_flags(struct net_device *, unsigned int);
3033void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3034                        unsigned int gchanges);
3035int dev_change_name(struct net_device *, const char *);
3036int dev_set_alias(struct net_device *, const char *, size_t);
3037int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3038int dev_set_mtu(struct net_device *, int);
3039void dev_set_group(struct net_device *, int);
3040int dev_set_mac_address(struct net_device *, struct sockaddr *);
3041int dev_change_carrier(struct net_device *, bool new_carrier);
3042int dev_get_phys_port_id(struct net_device *dev,
3043                         struct netdev_phys_item_id *ppid);
3044int dev_get_phys_port_name(struct net_device *dev,
3045                           char *name, size_t len);
3046int dev_change_proto_down(struct net_device *dev, bool proto_down);
3047struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3048struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3049                                    struct netdev_queue *txq, int *ret);
3050int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3051int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3052bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3053
3054extern int              netdev_budget;
3055
3056/* Called by rtnetlink.c:rtnl_unlock() */
3057void netdev_run_todo(void);
3058
3059/**
3060 *      dev_put - release reference to device
3061 *      @dev: network device
3062 *
3063 * Release reference to device to allow it to be freed.
3064 */
3065static inline void dev_put(struct net_device *dev)
3066{
3067        this_cpu_dec(*dev->pcpu_refcnt);
3068}
3069
3070/**
3071 *      dev_hold - get reference to device
3072 *      @dev: network device
3073 *
3074 * Hold reference to device to keep it from being freed.
3075 */
3076static inline void dev_hold(struct net_device *dev)
3077{
3078        this_cpu_inc(*dev->pcpu_refcnt);
3079}
3080
3081/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3082 * and _off may be called from IRQ context, but it is caller
3083 * who is responsible for serialization of these calls.
3084 *
3085 * The name carrier is inappropriate, these functions should really be
3086 * called netif_lowerlayer_*() because they represent the state of any
3087 * kind of lower layer not just hardware media.
3088 */
3089
3090void linkwatch_init_dev(struct net_device *dev);
3091void linkwatch_fire_event(struct net_device *dev);
3092void linkwatch_forget_dev(struct net_device *dev);
3093
3094/**
3095 *      netif_carrier_ok - test if carrier present
3096 *      @dev: network device
3097 *
3098 * Check if carrier is present on device
3099 */
3100static inline bool netif_carrier_ok(const struct net_device *dev)
3101{
3102        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3103}
3104
3105unsigned long dev_trans_start(struct net_device *dev);
3106
3107void __netdev_watchdog_up(struct net_device *dev);
3108
3109void netif_carrier_on(struct net_device *dev);
3110
3111void netif_carrier_off(struct net_device *dev);
3112
3113/**
3114 *      netif_dormant_on - mark device as dormant.
3115 *      @dev: network device
3116 *
3117 * Mark device as dormant (as per RFC2863).
3118 *
3119 * The dormant state indicates that the relevant interface is not
3120 * actually in a condition to pass packets (i.e., it is not 'up') but is
3121 * in a "pending" state, waiting for some external event.  For "on-
3122 * demand" interfaces, this new state identifies the situation where the
3123 * interface is waiting for events to place it in the up state.
3124 *
3125 */
3126static inline void netif_dormant_on(struct net_device *dev)
3127{
3128        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3129                linkwatch_fire_event(dev);
3130}
3131
3132/**
3133 *      netif_dormant_off - set device as not dormant.
3134 *      @dev: network device
3135 *
3136 * Device is not in dormant state.
3137 */
3138static inline void netif_dormant_off(struct net_device *dev)
3139{
3140        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3141                linkwatch_fire_event(dev);
3142}
3143
3144/**
3145 *      netif_dormant - test if carrier present
3146 *      @dev: network device
3147 *
3148 * Check if carrier is present on device
3149 */
3150static inline bool netif_dormant(const struct net_device *dev)
3151{
3152        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3153}
3154
3155
3156/**
3157 *      netif_oper_up - test if device is operational
3158 *      @dev: network device
3159 *
3160 * Check if carrier is operational
3161 */
3162static inline bool netif_oper_up(const struct net_device *dev)
3163{
3164        return (dev->operstate == IF_OPER_UP ||
3165                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3166}
3167
3168/**
3169 *      netif_device_present - is device available or removed
3170 *      @dev: network device
3171 *
3172 * Check if device has not been removed from system.
3173 */
3174static inline bool netif_device_present(struct net_device *dev)
3175{
3176        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3177}
3178
3179void netif_device_detach(struct net_device *dev);
3180
3181void netif_device_attach(struct net_device *dev);
3182
3183/*
3184 * Network interface message level settings
3185 */
3186
3187enum {
3188        NETIF_MSG_DRV           = 0x0001,
3189        NETIF_MSG_PROBE         = 0x0002,
3190        NETIF_MSG_LINK          = 0x0004,
3191        NETIF_MSG_TIMER         = 0x0008,
3192        NETIF_MSG_IFDOWN        = 0x0010,
3193        NETIF_MSG_IFUP          = 0x0020,
3194        NETIF_MSG_RX_ERR        = 0x0040,
3195        NETIF_MSG_TX_ERR        = 0x0080,
3196        NETIF_MSG_TX_QUEUED     = 0x0100,
3197        NETIF_MSG_INTR          = 0x0200,
3198        NETIF_MSG_TX_DONE       = 0x0400,
3199        NETIF_MSG_RX_STATUS     = 0x0800,
3200        NETIF_MSG_PKTDATA       = 0x1000,
3201        NETIF_MSG_HW            = 0x2000,
3202        NETIF_MSG_WOL           = 0x4000,
3203};
3204
3205#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3206#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3207#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3208#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3209#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3210#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3211#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3212#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3213#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3214#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3215#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3216#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3217#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3218#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3219#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3220
3221static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3222{
3223        /* use default */
3224        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3225                return default_msg_enable_bits;
3226        if (debug_value == 0)   /* no output */
3227                return 0;
3228        /* set low N bits */
3229        return (1 << debug_value) - 1;
3230}
3231
3232static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3233{
3234        spin_lock(&txq->_xmit_lock);
3235        txq->xmit_lock_owner = cpu;
3236}
3237
3238static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3239{
3240        spin_lock_bh(&txq->_xmit_lock);
3241        txq->xmit_lock_owner = smp_processor_id();
3242}
3243
3244static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3245{
3246        bool ok = spin_trylock(&txq->_xmit_lock);
3247        if (likely(ok))
3248                txq->xmit_lock_owner = smp_processor_id();
3249        return ok;
3250}
3251
3252static inline void __netif_tx_unlock(struct netdev_queue *txq)
3253{
3254        txq->xmit_lock_owner = -1;
3255        spin_unlock(&txq->_xmit_lock);
3256}
3257
3258static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3259{
3260        txq->xmit_lock_owner = -1;
3261        spin_unlock_bh(&txq->_xmit_lock);
3262}
3263
3264static inline void txq_trans_update(struct netdev_queue *txq)
3265{
3266        if (txq->xmit_lock_owner != -1)
3267                txq->trans_start = jiffies;
3268}
3269
3270/**
3271 *      netif_tx_lock - grab network device transmit lock
3272 *      @dev: network device
3273 *
3274 * Get network device transmit lock
3275 */
3276static inline void netif_tx_lock(struct net_device *dev)
3277{
3278        unsigned int i;
3279        int cpu;
3280
3281        spin_lock(&dev->tx_global_lock);
3282        cpu = smp_processor_id();
3283        for (i = 0; i < dev->num_tx_queues; i++) {
3284                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3285
3286                /* We are the only thread of execution doing a
3287                 * freeze, but we have to grab the _xmit_lock in
3288                 * order to synchronize with threads which are in
3289                 * the ->hard_start_xmit() handler and already
3290                 * checked the frozen bit.
3291                 */
3292                __netif_tx_lock(txq, cpu);
3293                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3294                __netif_tx_unlock(txq);
3295        }
3296}
3297
3298static inline void netif_tx_lock_bh(struct net_device *dev)
3299{
3300        local_bh_disable();
3301        netif_tx_lock(dev);
3302}
3303
3304static inline void netif_tx_unlock(struct net_device *dev)
3305{
3306        unsigned int i;
3307
3308        for (i = 0; i < dev->num_tx_queues; i++) {
3309                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3310
3311                /* No need to grab the _xmit_lock here.  If the
3312                 * queue is not stopped for another reason, we
3313                 * force a schedule.
3314                 */
3315                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3316                netif_schedule_queue(txq);
3317        }
3318        spin_unlock(&dev->tx_global_lock);
3319}
3320
3321static inline void netif_tx_unlock_bh(struct net_device *dev)
3322{
3323        netif_tx_unlock(dev);
3324        local_bh_enable();
3325}
3326
3327#define HARD_TX_LOCK(dev, txq, cpu) {                   \
3328        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3329                __netif_tx_lock(txq, cpu);              \
3330        }                                               \
3331}
3332
3333#define HARD_TX_TRYLOCK(dev, txq)                       \
3334        (((dev->features & NETIF_F_LLTX) == 0) ?        \
3335                __netif_tx_trylock(txq) :               \
3336                true )
3337
3338#define HARD_TX_UNLOCK(dev, txq) {                      \
3339        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3340                __netif_tx_unlock(txq);                 \
3341        }                                               \
3342}
3343
3344static inline void netif_tx_disable(struct net_device *dev)
3345{
3346        unsigned int i;
3347        int cpu;
3348
3349        local_bh_disable();
3350        cpu = smp_processor_id();
3351        for (i = 0; i < dev->num_tx_queues; i++) {
3352                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3353
3354                __netif_tx_lock(txq, cpu);
3355                netif_tx_stop_queue(txq);
3356                __netif_tx_unlock(txq);
3357        }
3358        local_bh_enable();
3359}
3360
3361static inline void netif_addr_lock(struct net_device *dev)
3362{
3363        spin_lock(&dev->addr_list_lock);
3364}
3365
3366static inline void netif_addr_lock_nested(struct net_device *dev)
3367{
3368        int subclass = SINGLE_DEPTH_NESTING;
3369
3370        if (dev->netdev_ops->ndo_get_lock_subclass)
3371                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3372
3373        spin_lock_nested(&dev->addr_list_lock, subclass);
3374}
3375
3376static inline void netif_addr_lock_bh(struct net_device *dev)
3377{
3378        spin_lock_bh(&dev->addr_list_lock);
3379}
3380
3381static inline void netif_addr_unlock(struct net_device *dev)
3382{
3383        spin_unlock(&dev->addr_list_lock);
3384}
3385
3386static inline void netif_addr_unlock_bh(struct net_device *dev)
3387{
3388        spin_unlock_bh(&dev->addr_list_lock);
3389}
3390
3391/*
3392 * dev_addrs walker. Should be used only for read access. Call with
3393 * rcu_read_lock held.
3394 */
3395#define for_each_dev_addr(dev, ha) \
3396                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3397
3398/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3399
3400void ether_setup(struct net_device *dev);
3401
3402/* Support for loadable net-drivers */
3403struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3404                                    unsigned char name_assign_type,
3405                                    void (*setup)(struct net_device *),
3406                                    unsigned int txqs, unsigned int rxqs);
3407#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3408        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3409
3410#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3411        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3412                         count)
3413
3414int register_netdev(struct net_device *dev);
3415void unregister_netdev(struct net_device *dev);
3416
3417/* General hardware address lists handling functions */
3418int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3419                   struct netdev_hw_addr_list *from_list, int addr_len);
3420void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3421                      struct netdev_hw_addr_list *from_list, int addr_len);
3422int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3423                       struct net_device *dev,
3424                       int (*sync)(struct net_device *, const unsigned char *),
3425                       int (*unsync)(struct net_device *,
3426                                     const unsigned char *));
3427void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3428                          struct net_device *dev,
3429                          int (*unsync)(struct net_device *,
3430                                        const unsigned char *));
3431void __hw_addr_init(struct netdev_hw_addr_list *list);
3432
3433/* Functions used for device addresses handling */
3434int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3435                 unsigned char addr_type);
3436int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3437                 unsigned char addr_type);
3438void dev_addr_flush(struct net_device *dev);
3439int dev_addr_init(struct net_device *dev);
3440
3441/* Functions used for unicast addresses handling */
3442int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3443int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3444int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3445int dev_uc_sync(struct net_device *to, struct net_device *from);
3446int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3447void dev_uc_unsync(struct net_device *to, struct net_device *from);
3448void dev_uc_flush(struct net_device *dev);
3449void dev_uc_init(struct net_device *dev);
3450
3451/**
3452 *  __dev_uc_sync - Synchonize device's unicast list
3453 *  @dev:  device to sync
3454 *  @sync: function to call if address should be added
3455 *  @unsync: function to call if address should be removed
3456 *
3457 *  Add newly added addresses to the interface, and release
3458 *  addresses that have been deleted.
3459 **/
3460static inline int __dev_uc_sync(struct net_device *dev,
3461                                int (*sync)(struct net_device *,
3462                                            const unsigned char *),
3463                                int (*unsync)(struct net_device *,
3464                                              const unsigned char *))
3465{
3466        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3467}
3468
3469/**
3470 *  __dev_uc_unsync - Remove synchronized addresses from device
3471 *  @dev:  device to sync
3472 *  @unsync: function to call if address should be removed
3473 *
3474 *  Remove all addresses that were added to the device by dev_uc_sync().
3475 **/
3476static inline void __dev_uc_unsync(struct net_device *dev,
3477                                   int (*unsync)(struct net_device *,
3478                                                 const unsigned char *))
3479{
3480        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3481}
3482
3483/* Functions used for multicast addresses handling */
3484int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3485int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3486int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3487int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3488int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3489int dev_mc_sync(struct net_device *to, struct net_device *from);
3490int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3491void dev_mc_unsync(struct net_device *to, struct net_device *from);
3492void dev_mc_flush(struct net_device *dev);
3493void dev_mc_init(struct net_device *dev);
3494
3495/**
3496 *  __dev_mc_sync - Synchonize device's multicast list
3497 *  @dev:  device to sync
3498 *  @sync: function to call if address should be added
3499 *  @unsync: function to call if address should be removed
3500 *
3501 *  Add newly added addresses to the interface, and release
3502 *  addresses that have been deleted.
3503 **/
3504static inline int __dev_mc_sync(struct net_device *dev,
3505                                int (*sync)(struct net_device *,
3506                                            const unsigned char *),
3507                                int (*unsync)(struct net_device *,
3508                                              const unsigned char *))
3509{
3510        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3511}
3512
3513/**
3514 *  __dev_mc_unsync - Remove synchronized addresses from device
3515 *  @dev:  device to sync
3516 *  @unsync: function to call if address should be removed
3517 *
3518 *  Remove all addresses that were added to the device by dev_mc_sync().
3519 **/
3520static inline void __dev_mc_unsync(struct net_device *dev,
3521                                   int (*unsync)(struct net_device *,
3522                                                 const unsigned char *))
3523{
3524        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3525}
3526
3527/* Functions used for secondary unicast and multicast support */
3528void dev_set_rx_mode(struct net_device *dev);
3529void __dev_set_rx_mode(struct net_device *dev);
3530int dev_set_promiscuity(struct net_device *dev, int inc);
3531int dev_set_allmulti(struct net_device *dev, int inc);
3532void netdev_state_change(struct net_device *dev);
3533void netdev_notify_peers(struct net_device *dev);
3534void netdev_features_change(struct net_device *dev);
3535/* Load a device via the kmod */
3536void dev_load(struct net *net, const char *name);
3537struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3538                                        struct rtnl_link_stats64 *storage);
3539void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3540                             const struct net_device_stats *netdev_stats);
3541
3542extern int              netdev_max_backlog;
3543extern int              netdev_tstamp_prequeue;
3544extern int              weight_p;
3545extern int              bpf_jit_enable;
3546
3547bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3548struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3549                                                     struct list_head **iter);
3550struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3551                                                     struct list_head **iter);
3552
3553/* iterate through upper list, must be called under RCU read lock */
3554#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3555        for (iter = &(dev)->adj_list.upper, \
3556             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3557             updev; \
3558             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3559
3560/* iterate through upper list, must be called under RCU read lock */
3561#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3562        for (iter = &(dev)->all_adj_list.upper, \
3563             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3564             updev; \
3565             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3566
3567void *netdev_lower_get_next_private(struct net_device *dev,
3568                                    struct list_head **iter);
3569void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3570                                        struct list_head **iter);
3571
3572#define netdev_for_each_lower_private(dev, priv, iter) \
3573        for (iter = (dev)->adj_list.lower.next, \
3574             priv = netdev_lower_get_next_private(dev, &(iter)); \
3575             priv; \
3576             priv = netdev_lower_get_next_private(dev, &(iter)))
3577
3578#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3579        for (iter = &(dev)->adj_list.lower, \
3580             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3581             priv; \
3582             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3583
3584void *netdev_lower_get_next(struct net_device *dev,
3585                                struct list_head **iter);
3586#define netdev_for_each_lower_dev(dev, ldev, iter) \
3587        for (iter = &(dev)->adj_list.lower, \
3588             ldev = netdev_lower_get_next(dev, &(iter)); \
3589             ldev; \
3590             ldev = netdev_lower_get_next(dev, &(iter)))
3591
3592void *netdev_adjacent_get_private(struct list_head *adj_list);
3593void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3594struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3595struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3596int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3597int netdev_master_upper_dev_link(struct net_device *dev,
3598                                 struct net_device *upper_dev);
3599int netdev_master_upper_dev_link_private(struct net_device *dev,
3600                                         struct net_device *upper_dev,
3601                                         void *private);
3602void netdev_upper_dev_unlink(struct net_device *dev,
3603                             struct net_device *upper_dev);
3604void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3605void *netdev_lower_dev_get_private(struct net_device *dev,
3606                                   struct net_device *lower_dev);
3607
3608/* RSS keys are 40 or 52 bytes long */
3609#define NETDEV_RSS_KEY_LEN 52
3610extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3611void netdev_rss_key_fill(void *buffer, size_t len);
3612
3613int dev_get_nest_level(struct net_device *dev,
3614                       bool (*type_check)(struct net_device *dev));
3615int skb_checksum_help(struct sk_buff *skb);
3616struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3617                                  netdev_features_t features, bool tx_path);
3618struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3619                                    netdev_features_t features);
3620
3621struct netdev_bonding_info {
3622        ifslave slave;
3623        ifbond  master;
3624};
3625
3626struct netdev_notifier_bonding_info {
3627        struct netdev_notifier_info info; /* must be first */
3628        struct netdev_bonding_info  bonding_info;
3629};
3630
3631void netdev_bonding_info_change(struct net_device *dev,
3632                                struct netdev_bonding_info *bonding_info);
3633
3634static inline
3635struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3636{
3637        return __skb_gso_segment(skb, features, true);
3638}
3639__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3640
3641static inline bool can_checksum_protocol(netdev_features_t features,
3642                                         __be16 protocol)
3643{
3644        return ((features & NETIF_F_GEN_CSUM) ||
3645                ((features & NETIF_F_V4_CSUM) &&
3646                 protocol == htons(ETH_P_IP)) ||
3647                ((features & NETIF_F_V6_CSUM) &&
3648                 protocol == htons(ETH_P_IPV6)) ||
3649                ((features & NETIF_F_FCOE_CRC) &&
3650                 protocol == htons(ETH_P_FCOE)));
3651}
3652
3653#ifdef CONFIG_BUG
3654void netdev_rx_csum_fault(struct net_device *dev);
3655#else
3656static inline void netdev_rx_csum_fault(struct net_device *dev)
3657{
3658}
3659#endif
3660/* rx skb timestamps */
3661void net_enable_timestamp(void);
3662void net_disable_timestamp(void);
3663
3664#ifdef CONFIG_PROC_FS
3665int __init dev_proc_init(void);
3666#else
3667#define dev_proc_init() 0
3668#endif
3669
3670static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3671                                              struct sk_buff *skb, struct net_device *dev,
3672                                              bool more)
3673{
3674        skb->xmit_more = more ? 1 : 0;
3675        return ops->ndo_start_xmit(skb, dev);
3676}
3677
3678static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3679                                            struct netdev_queue *txq, bool more)
3680{
3681        const struct net_device_ops *ops = dev->netdev_ops;
3682        int rc;
3683
3684        rc = __netdev_start_xmit(ops, skb, dev, more);
3685        if (rc == NETDEV_TX_OK)
3686                txq_trans_update(txq);
3687
3688        return rc;
3689}
3690
3691int netdev_class_create_file_ns(struct class_attribute *class_attr,
3692                                const void *ns);
3693void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3694                                 const void *ns);
3695
3696static inline int netdev_class_create_file(struct class_attribute *class_attr)
3697{
3698        return netdev_class_create_file_ns(class_attr, NULL);
3699}
3700
3701static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3702{
3703        netdev_class_remove_file_ns(class_attr, NULL);
3704}
3705
3706extern struct kobj_ns_type_operations net_ns_type_operations;
3707
3708const char *netdev_drivername(const struct net_device *dev);
3709
3710void linkwatch_run_queue(void);
3711
3712static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3713                                                          netdev_features_t f2)
3714{
3715        if (f1 & NETIF_F_GEN_CSUM)
3716                f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3717        if (f2 & NETIF_F_GEN_CSUM)
3718                f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3719        f1 &= f2;
3720        if (f1 & NETIF_F_GEN_CSUM)
3721                f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3722
3723        return f1;
3724}
3725
3726static inline netdev_features_t netdev_get_wanted_features(
3727        struct net_device *dev)
3728{
3729        return (dev->features & ~dev->hw_features) | dev->wanted_features;
3730}
3731netdev_features_t netdev_increment_features(netdev_features_t all,
3732        netdev_features_t one, netdev_features_t mask);
3733
3734/* Allow TSO being used on stacked device :
3735 * Performing the GSO segmentation before last device
3736 * is a performance improvement.
3737 */
3738static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3739                                                        netdev_features_t mask)
3740{
3741        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3742}
3743
3744int __netdev_update_features(struct net_device *dev);
3745void netdev_update_features(struct net_device *dev);
3746void netdev_change_features(struct net_device *dev);
3747
3748void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3749                                        struct net_device *dev);
3750
3751netdev_features_t passthru_features_check(struct sk_buff *skb,
3752                                          struct net_device *dev,
3753                                          netdev_features_t features);
3754netdev_features_t netif_skb_features(struct sk_buff *skb);
3755
3756static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3757{
3758        netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3759
3760        /* check flags correspondence */
3761        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3762        BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3763        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3764        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3765        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3766        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3767        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3768        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3769        BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3770        BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3771        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3772        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3773        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3774
3775        return (features & feature) == feature;
3776}
3777
3778static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3779{
3780        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3781               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3782}
3783
3784static inline bool netif_needs_gso(struct sk_buff *skb,
3785                                   netdev_features_t features)
3786{
3787        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3788                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3789                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3790}
3791
3792static inline void netif_set_gso_max_size(struct net_device *dev,
3793                                          unsigned int size)
3794{
3795        dev->gso_max_size = size;
3796}
3797
3798static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3799                                        int pulled_hlen, u16 mac_offset,
3800                                        int mac_len)
3801{
3802        skb->protocol = protocol;
3803        skb->encapsulation = 1;
3804        skb_push(skb, pulled_hlen);
3805        skb_reset_transport_header(skb);
3806        skb->mac_header = mac_offset;
3807        skb->network_header = skb->mac_header + mac_len;
3808        skb->mac_len = mac_len;
3809}
3810
3811static inline bool netif_is_macvlan(struct net_device *dev)
3812{
3813        return dev->priv_flags & IFF_MACVLAN;
3814}
3815
3816static inline bool netif_is_macvlan_port(struct net_device *dev)
3817{
3818        return dev->priv_flags & IFF_MACVLAN_PORT;
3819}
3820
3821static inline bool netif_is_ipvlan(struct net_device *dev)
3822{
3823        return dev->priv_flags & IFF_IPVLAN_SLAVE;
3824}
3825
3826static inline bool netif_is_ipvlan_port(struct net_device *dev)
3827{
3828        return dev->priv_flags & IFF_IPVLAN_MASTER;
3829}
3830
3831static inline bool netif_is_bond_master(struct net_device *dev)
3832{
3833        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3834}
3835
3836static inline bool netif_is_bond_slave(struct net_device *dev)
3837{
3838        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3839}
3840
3841static inline bool netif_supports_nofcs(struct net_device *dev)
3842{
3843        return dev->priv_flags & IFF_SUPP_NOFCS;
3844}
3845
3846static inline bool netif_is_l3_master(const struct net_device *dev)
3847{
3848        return dev->priv_flags & IFF_L3MDEV_MASTER;
3849}
3850
3851static inline bool netif_is_l3_slave(const struct net_device *dev)
3852{
3853        return dev->priv_flags & IFF_L3MDEV_SLAVE;
3854}
3855
3856static inline bool netif_is_bridge_master(const struct net_device *dev)
3857{
3858        return dev->priv_flags & IFF_EBRIDGE;
3859}
3860
3861static inline bool netif_is_bridge_port(const struct net_device *dev)
3862{
3863        return dev->priv_flags & IFF_BRIDGE_PORT;
3864}
3865
3866static inline bool netif_is_ovs_master(const struct net_device *dev)
3867{
3868        return dev->priv_flags & IFF_OPENVSWITCH;
3869}
3870
3871/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3872static inline void netif_keep_dst(struct net_device *dev)
3873{
3874        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3875}
3876
3877extern struct pernet_operations __net_initdata loopback_net_ops;
3878
3879/* Logging, debugging and troubleshooting/diagnostic helpers. */
3880
3881/* netdev_printk helpers, similar to dev_printk */
3882
3883static inline const char *netdev_name(const struct net_device *dev)
3884{
3885        if (!dev->name[0] || strchr(dev->name, '%'))
3886                return "(unnamed net_device)";
3887        return dev->name;
3888}
3889
3890static inline const char *netdev_reg_state(const struct net_device *dev)
3891{
3892        switch (dev->reg_state) {
3893        case NETREG_UNINITIALIZED: return " (uninitialized)";
3894        case NETREG_REGISTERED: return "";
3895        case NETREG_UNREGISTERING: return " (unregistering)";
3896        case NETREG_UNREGISTERED: return " (unregistered)";
3897        case NETREG_RELEASED: return " (released)";
3898        case NETREG_DUMMY: return " (dummy)";
3899        }
3900
3901        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3902        return " (unknown)";
3903}
3904
3905__printf(3, 4)
3906void netdev_printk(const char *level, const struct net_device *dev,
3907                   const char *format, ...);
3908__printf(2, 3)
3909void netdev_emerg(const struct net_device *dev, const char *format, ...);
3910__printf(2, 3)
3911void netdev_alert(const struct net_device *dev, const char *format, ...);
3912__printf(2, 3)
3913void netdev_crit(const struct net_device *dev, const char *format, ...);
3914__printf(2, 3)
3915void netdev_err(const struct net_device *dev, const char *format, ...);
3916__printf(2, 3)
3917void netdev_warn(const struct net_device *dev, const char *format, ...);
3918__printf(2, 3)
3919void netdev_notice(const struct net_device *dev, const char *format, ...);
3920__printf(2, 3)
3921void netdev_info(const struct net_device *dev, const char *format, ...);
3922
3923#define MODULE_ALIAS_NETDEV(device) \
3924        MODULE_ALIAS("netdev-" device)
3925
3926#if defined(CONFIG_DYNAMIC_DEBUG)
3927#define netdev_dbg(__dev, format, args...)                      \
3928do {                                                            \
3929        dynamic_netdev_dbg(__dev, format, ##args);              \
3930} while (0)
3931#elif defined(DEBUG)
3932#define netdev_dbg(__dev, format, args...)                      \
3933        netdev_printk(KERN_DEBUG, __dev, format, ##args)
3934#else
3935#define netdev_dbg(__dev, format, args...)                      \
3936({                                                              \
3937        if (0)                                                  \
3938                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3939})
3940#endif
3941
3942#if defined(VERBOSE_DEBUG)
3943#define netdev_vdbg     netdev_dbg
3944#else
3945
3946#define netdev_vdbg(dev, format, args...)                       \
3947({                                                              \
3948        if (0)                                                  \
3949                netdev_printk(KERN_DEBUG, dev, format, ##args); \
3950        0;                                                      \
3951})
3952#endif
3953
3954/*
3955 * netdev_WARN() acts like dev_printk(), but with the key difference
3956 * of using a WARN/WARN_ON to get the message out, including the
3957 * file/line information and a backtrace.
3958 */
3959#define netdev_WARN(dev, format, args...)                       \
3960        WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3961             netdev_reg_state(dev), ##args)
3962
3963/* netif printk helpers, similar to netdev_printk */
3964
3965#define netif_printk(priv, type, level, dev, fmt, args...)      \
3966do {                                                            \
3967        if (netif_msg_##type(priv))                             \
3968                netdev_printk(level, (dev), fmt, ##args);       \
3969} while (0)
3970
3971#define netif_level(level, priv, type, dev, fmt, args...)       \
3972do {                                                            \
3973        if (netif_msg_##type(priv))                             \
3974                netdev_##level(dev, fmt, ##args);               \
3975} while (0)
3976
3977#define netif_emerg(priv, type, dev, fmt, args...)              \
3978        netif_level(emerg, priv, type, dev, fmt, ##args)
3979#define netif_alert(priv, type, dev, fmt, args...)              \
3980        netif_level(alert, priv, type, dev, fmt, ##args)
3981#define netif_crit(priv, type, dev, fmt, args...)               \
3982        netif_level(crit, priv, type, dev, fmt, ##args)
3983#define netif_err(priv, type, dev, fmt, args...)                \
3984        netif_level(err, priv, type, dev, fmt, ##args)
3985#define netif_warn(priv, type, dev, fmt, args...)               \
3986        netif_level(warn, priv, type, dev, fmt, ##args)
3987#define netif_notice(priv, type, dev, fmt, args...)             \
3988        netif_level(notice, priv, type, dev, fmt, ##args)
3989#define netif_info(priv, type, dev, fmt, args...)               \
3990        netif_level(info, priv, type, dev, fmt, ##args)
3991
3992#if defined(CONFIG_DYNAMIC_DEBUG)
3993#define netif_dbg(priv, type, netdev, format, args...)          \
3994do {                                                            \
3995        if (netif_msg_##type(priv))                             \
3996                dynamic_netdev_dbg(netdev, format, ##args);     \
3997} while (0)
3998#elif defined(DEBUG)
3999#define netif_dbg(priv, type, dev, format, args...)             \
4000        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4001#else
4002#define netif_dbg(priv, type, dev, format, args...)                     \
4003({                                                                      \
4004        if (0)                                                          \
4005                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4006        0;                                                              \
4007})
4008#endif
4009
4010#if defined(VERBOSE_DEBUG)
4011#define netif_vdbg      netif_dbg
4012#else
4013#define netif_vdbg(priv, type, dev, format, args...)            \
4014({                                                              \
4015        if (0)                                                  \
4016                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4017        0;                                                      \
4018})
4019#endif
4020
4021/*
4022 *      The list of packet types we will receive (as opposed to discard)
4023 *      and the routines to invoke.
4024 *
4025 *      Why 16. Because with 16 the only overlap we get on a hash of the
4026 *      low nibble of the protocol value is RARP/SNAP/X.25.
4027 *
4028 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4029 *             sure which should go first, but I bet it won't make much
4030 *             difference if we are running VLANs.  The good news is that
4031 *             this protocol won't be in the list unless compiled in, so
4032 *             the average user (w/out VLANs) will not be adversely affected.
4033 *             --BLG
4034 *
4035 *              0800    IP
4036 *              8100    802.1Q VLAN
4037 *              0001    802.3
4038 *              0002    AX.25
4039 *              0004    802.2
4040 *              8035    RARP
4041 *              0005    SNAP
4042 *              0805    X.25
4043 *              0806    ARP
4044 *              8137    IPX
4045 *              0009    Localtalk
4046 *              86DD    IPv6
4047 */
4048#define PTYPE_HASH_SIZE (16)
4049#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4050
4051#endif  /* _LINUX_NETDEVICE_H */
4052