linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/bug.h>
  22#include <linux/cache.h>
  23#include <linux/rbtree.h>
  24#include <linux/socket.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/types.h>
  28#include <linux/spinlock.h>
  29#include <linux/net.h>
  30#include <linux/textsearch.h>
  31#include <net/checksum.h>
  32#include <linux/rcupdate.h>
  33#include <linux/hrtimer.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/netdev_features.h>
  36#include <linux/sched.h>
  37#include <net/flow_dissector.h>
  38#include <linux/splice.h>
  39#include <linux/in6.h>
  40#include <net/flow.h>
  41
  42/* A. Checksumming of received packets by device.
  43 *
  44 * CHECKSUM_NONE:
  45 *
  46 *   Device failed to checksum this packet e.g. due to lack of capabilities.
  47 *   The packet contains full (though not verified) checksum in packet but
  48 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  49 *
  50 * CHECKSUM_UNNECESSARY:
  51 *
  52 *   The hardware you're dealing with doesn't calculate the full checksum
  53 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  54 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
  55 *   if their checksums are okay. skb->csum is still undefined in this case
  56 *   though. It is a bad option, but, unfortunately, nowadays most vendors do
  57 *   this. Apparently with the secret goal to sell you new devices, when you
  58 *   will add new protocol to your host, f.e. IPv6 8)
  59 *
  60 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
  61 *     TCP: IPv6 and IPv4.
  62 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
  63 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
  64 *       may perform further validation in this case.
  65 *     GRE: only if the checksum is present in the header.
  66 *     SCTP: indicates the CRC in SCTP header has been validated.
  67 *
  68 *   skb->csum_level indicates the number of consecutive checksums found in
  69 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
  70 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
  71 *   and a device is able to verify the checksums for UDP (possibly zero),
  72 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
  73 *   two. If the device were only able to verify the UDP checksum and not
  74 *   GRE, either because it doesn't support GRE checksum of because GRE
  75 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
  76 *   not considered in this case).
  77 *
  78 * CHECKSUM_COMPLETE:
  79 *
  80 *   This is the most generic way. The device supplied checksum of the _whole_
  81 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  82 *   hardware doesn't need to parse L3/L4 headers to implement this.
  83 *
  84 *   Note: Even if device supports only some protocols, but is able to produce
  85 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  86 *
  87 * CHECKSUM_PARTIAL:
  88 *
  89 *   A checksum is set up to be offloaded to a device as described in the
  90 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
  91 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
  92 *   on the same host, or it may be set in the input path in GRO or remote
  93 *   checksum offload. For the purposes of checksum verification, the checksum
  94 *   referred to by skb->csum_start + skb->csum_offset and any preceding
  95 *   checksums in the packet are considered verified. Any checksums in the
  96 *   packet that are after the checksum being offloaded are not considered to
  97 *   be verified.
  98 *
  99 * B. Checksumming on output.
 100 *
 101 * CHECKSUM_NONE:
 102 *
 103 *   The skb was already checksummed by the protocol, or a checksum is not
 104 *   required.
 105 *
 106 * CHECKSUM_PARTIAL:
 107 *
 108 *   The device is required to checksum the packet as seen by hard_start_xmit()
 109 *   from skb->csum_start up to the end, and to record/write the checksum at
 110 *   offset skb->csum_start + skb->csum_offset.
 111 *
 112 *   The device must show its capabilities in dev->features, set up at device
 113 *   setup time, e.g. netdev_features.h:
 114 *
 115 *      NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
 116 *      NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
 117 *                        IPv4. Sigh. Vendors like this way for an unknown reason.
 118 *                        Though, see comment above about CHECKSUM_UNNECESSARY. 8)
 119 *      NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
 120 *      NETIF_F_...     - Well, you get the picture.
 121 *
 122 * CHECKSUM_UNNECESSARY:
 123 *
 124 *   Normally, the device will do per protocol specific checksumming. Protocol
 125 *   implementations that do not want the NIC to perform the checksum
 126 *   calculation should use this flag in their outgoing skbs.
 127 *
 128 *      NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
 129 *                         offload. Correspondingly, the FCoE protocol driver
 130 *                         stack should use CHECKSUM_UNNECESSARY.
 131 *
 132 * Any questions? No questions, good.           --ANK
 133 */
 134
 135/* Don't change this without changing skb_csum_unnecessary! */
 136#define CHECKSUM_NONE           0
 137#define CHECKSUM_UNNECESSARY    1
 138#define CHECKSUM_COMPLETE       2
 139#define CHECKSUM_PARTIAL        3
 140
 141/* Maximum value in skb->csum_level */
 142#define SKB_MAX_CSUM_LEVEL      3
 143
 144#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 145#define SKB_WITH_OVERHEAD(X)    \
 146        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 147#define SKB_MAX_ORDER(X, ORDER) \
 148        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 149#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 150#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 151
 152/* return minimum truesize of one skb containing X bytes of data */
 153#define SKB_TRUESIZE(X) ((X) +                                          \
 154                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 155                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 156
 157struct net_device;
 158struct scatterlist;
 159struct pipe_inode_info;
 160struct iov_iter;
 161struct napi_struct;
 162
 163#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 164struct nf_conntrack {
 165        atomic_t use;
 166};
 167#endif
 168
 169#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 170struct nf_bridge_info {
 171        atomic_t                use;
 172        enum {
 173                BRNF_PROTO_UNCHANGED,
 174                BRNF_PROTO_8021Q,
 175                BRNF_PROTO_PPPOE
 176        } orig_proto:8;
 177        u8                      pkt_otherhost:1;
 178        u8                      in_prerouting:1;
 179        u8                      bridged_dnat:1;
 180        __u16                   frag_max_size;
 181        struct net_device       *physindev;
 182
 183        /* always valid & non-NULL from FORWARD on, for physdev match */
 184        struct net_device       *physoutdev;
 185        union {
 186                /* prerouting: detect dnat in orig/reply direction */
 187                __be32          ipv4_daddr;
 188                struct in6_addr ipv6_daddr;
 189
 190                /* after prerouting + nat detected: store original source
 191                 * mac since neigh resolution overwrites it, only used while
 192                 * skb is out in neigh layer.
 193                 */
 194                char neigh_header[8];
 195        };
 196};
 197#endif
 198
 199struct sk_buff_head {
 200        /* These two members must be first. */
 201        struct sk_buff  *next;
 202        struct sk_buff  *prev;
 203
 204        __u32           qlen;
 205        spinlock_t      lock;
 206};
 207
 208struct sk_buff;
 209
 210/* To allow 64K frame to be packed as single skb without frag_list we
 211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 212 * buffers which do not start on a page boundary.
 213 *
 214 * Since GRO uses frags we allocate at least 16 regardless of page
 215 * size.
 216 */
 217#if (65536/PAGE_SIZE + 1) < 16
 218#define MAX_SKB_FRAGS 16UL
 219#else
 220#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 221#endif
 222
 223typedef struct skb_frag_struct skb_frag_t;
 224
 225struct skb_frag_struct {
 226        struct {
 227                struct page *p;
 228        } page;
 229#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 230        __u32 page_offset;
 231        __u32 size;
 232#else
 233        __u16 page_offset;
 234        __u16 size;
 235#endif
 236};
 237
 238static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 239{
 240        return frag->size;
 241}
 242
 243static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 244{
 245        frag->size = size;
 246}
 247
 248static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 249{
 250        frag->size += delta;
 251}
 252
 253static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 254{
 255        frag->size -= delta;
 256}
 257
 258#define HAVE_HW_TIME_STAMP
 259
 260/**
 261 * struct skb_shared_hwtstamps - hardware time stamps
 262 * @hwtstamp:   hardware time stamp transformed into duration
 263 *              since arbitrary point in time
 264 *
 265 * Software time stamps generated by ktime_get_real() are stored in
 266 * skb->tstamp.
 267 *
 268 * hwtstamps can only be compared against other hwtstamps from
 269 * the same device.
 270 *
 271 * This structure is attached to packets as part of the
 272 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 273 */
 274struct skb_shared_hwtstamps {
 275        ktime_t hwtstamp;
 276};
 277
 278/* Definitions for tx_flags in struct skb_shared_info */
 279enum {
 280        /* generate hardware time stamp */
 281        SKBTX_HW_TSTAMP = 1 << 0,
 282
 283        /* generate software time stamp when queueing packet to NIC */
 284        SKBTX_SW_TSTAMP = 1 << 1,
 285
 286        /* device driver is going to provide hardware time stamp */
 287        SKBTX_IN_PROGRESS = 1 << 2,
 288
 289        /* device driver supports TX zero-copy buffers */
 290        SKBTX_DEV_ZEROCOPY = 1 << 3,
 291
 292        /* generate wifi status information (where possible) */
 293        SKBTX_WIFI_STATUS = 1 << 4,
 294
 295        /* This indicates at least one fragment might be overwritten
 296         * (as in vmsplice(), sendfile() ...)
 297         * If we need to compute a TX checksum, we'll need to copy
 298         * all frags to avoid possible bad checksum
 299         */
 300        SKBTX_SHARED_FRAG = 1 << 5,
 301
 302        /* generate software time stamp when entering packet scheduling */
 303        SKBTX_SCHED_TSTAMP = 1 << 6,
 304
 305        /* generate software timestamp on peer data acknowledgment */
 306        SKBTX_ACK_TSTAMP = 1 << 7,
 307};
 308
 309#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 310                                 SKBTX_SCHED_TSTAMP | \
 311                                 SKBTX_ACK_TSTAMP)
 312#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 313
 314/*
 315 * The callback notifies userspace to release buffers when skb DMA is done in
 316 * lower device, the skb last reference should be 0 when calling this.
 317 * The zerocopy_success argument is true if zero copy transmit occurred,
 318 * false on data copy or out of memory error caused by data copy attempt.
 319 * The ctx field is used to track device context.
 320 * The desc field is used to track userspace buffer index.
 321 */
 322struct ubuf_info {
 323        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 324        void *ctx;
 325        unsigned long desc;
 326};
 327
 328/* This data is invariant across clones and lives at
 329 * the end of the header data, ie. at skb->end.
 330 */
 331struct skb_shared_info {
 332        unsigned char   nr_frags;
 333        __u8            tx_flags;
 334        unsigned short  gso_size;
 335        /* Warning: this field is not always filled in (UFO)! */
 336        unsigned short  gso_segs;
 337        unsigned short  gso_type;
 338        struct sk_buff  *frag_list;
 339        struct skb_shared_hwtstamps hwtstamps;
 340        u32             tskey;
 341        __be32          ip6_frag_id;
 342
 343        /*
 344         * Warning : all fields before dataref are cleared in __alloc_skb()
 345         */
 346        atomic_t        dataref;
 347
 348        /* Intermediate layers must ensure that destructor_arg
 349         * remains valid until skb destructor */
 350        void *          destructor_arg;
 351
 352        /* must be last field, see pskb_expand_head() */
 353        skb_frag_t      frags[MAX_SKB_FRAGS];
 354};
 355
 356/* We divide dataref into two halves.  The higher 16 bits hold references
 357 * to the payload part of skb->data.  The lower 16 bits hold references to
 358 * the entire skb->data.  A clone of a headerless skb holds the length of
 359 * the header in skb->hdr_len.
 360 *
 361 * All users must obey the rule that the skb->data reference count must be
 362 * greater than or equal to the payload reference count.
 363 *
 364 * Holding a reference to the payload part means that the user does not
 365 * care about modifications to the header part of skb->data.
 366 */
 367#define SKB_DATAREF_SHIFT 16
 368#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 369
 370
 371enum {
 372        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 373        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 374        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 375};
 376
 377enum {
 378        SKB_GSO_TCPV4 = 1 << 0,
 379        SKB_GSO_UDP = 1 << 1,
 380
 381        /* This indicates the skb is from an untrusted source. */
 382        SKB_GSO_DODGY = 1 << 2,
 383
 384        /* This indicates the tcp segment has CWR set. */
 385        SKB_GSO_TCP_ECN = 1 << 3,
 386
 387        SKB_GSO_TCPV6 = 1 << 4,
 388
 389        SKB_GSO_FCOE = 1 << 5,
 390
 391        SKB_GSO_GRE = 1 << 6,
 392
 393        SKB_GSO_GRE_CSUM = 1 << 7,
 394
 395        SKB_GSO_IPIP = 1 << 8,
 396
 397        SKB_GSO_SIT = 1 << 9,
 398
 399        SKB_GSO_UDP_TUNNEL = 1 << 10,
 400
 401        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 402
 403        SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
 404};
 405
 406#if BITS_PER_LONG > 32
 407#define NET_SKBUFF_DATA_USES_OFFSET 1
 408#endif
 409
 410#ifdef NET_SKBUFF_DATA_USES_OFFSET
 411typedef unsigned int sk_buff_data_t;
 412#else
 413typedef unsigned char *sk_buff_data_t;
 414#endif
 415
 416/**
 417 * struct skb_mstamp - multi resolution time stamps
 418 * @stamp_us: timestamp in us resolution
 419 * @stamp_jiffies: timestamp in jiffies
 420 */
 421struct skb_mstamp {
 422        union {
 423                u64             v64;
 424                struct {
 425                        u32     stamp_us;
 426                        u32     stamp_jiffies;
 427                };
 428        };
 429};
 430
 431/**
 432 * skb_mstamp_get - get current timestamp
 433 * @cl: place to store timestamps
 434 */
 435static inline void skb_mstamp_get(struct skb_mstamp *cl)
 436{
 437        u64 val = local_clock();
 438
 439        do_div(val, NSEC_PER_USEC);
 440        cl->stamp_us = (u32)val;
 441        cl->stamp_jiffies = (u32)jiffies;
 442}
 443
 444/**
 445 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 446 * @t1: pointer to newest sample
 447 * @t0: pointer to oldest sample
 448 */
 449static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
 450                                      const struct skb_mstamp *t0)
 451{
 452        s32 delta_us = t1->stamp_us - t0->stamp_us;
 453        u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
 454
 455        /* If delta_us is negative, this might be because interval is too big,
 456         * or local_clock() drift is too big : fallback using jiffies.
 457         */
 458        if (delta_us <= 0 ||
 459            delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
 460
 461                delta_us = jiffies_to_usecs(delta_jiffies);
 462
 463        return delta_us;
 464}
 465
 466static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
 467                                    const struct skb_mstamp *t0)
 468{
 469        s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
 470
 471        if (!diff)
 472                diff = t1->stamp_us - t0->stamp_us;
 473        return diff > 0;
 474}
 475
 476/** 
 477 *      struct sk_buff - socket buffer
 478 *      @next: Next buffer in list
 479 *      @prev: Previous buffer in list
 480 *      @tstamp: Time we arrived/left
 481 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 482 *      @sk: Socket we are owned by
 483 *      @dev: Device we arrived on/are leaving by
 484 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 485 *      @_skb_refdst: destination entry (with norefcount bit)
 486 *      @sp: the security path, used for xfrm
 487 *      @len: Length of actual data
 488 *      @data_len: Data length
 489 *      @mac_len: Length of link layer header
 490 *      @hdr_len: writable header length of cloned skb
 491 *      @csum: Checksum (must include start/offset pair)
 492 *      @csum_start: Offset from skb->head where checksumming should start
 493 *      @csum_offset: Offset from csum_start where checksum should be stored
 494 *      @priority: Packet queueing priority
 495 *      @ignore_df: allow local fragmentation
 496 *      @cloned: Head may be cloned (check refcnt to be sure)
 497 *      @ip_summed: Driver fed us an IP checksum
 498 *      @nohdr: Payload reference only, must not modify header
 499 *      @nfctinfo: Relationship of this skb to the connection
 500 *      @pkt_type: Packet class
 501 *      @fclone: skbuff clone status
 502 *      @ipvs_property: skbuff is owned by ipvs
 503 *      @peeked: this packet has been seen already, so stats have been
 504 *              done for it, don't do them again
 505 *      @nf_trace: netfilter packet trace flag
 506 *      @protocol: Packet protocol from driver
 507 *      @destructor: Destruct function
 508 *      @nfct: Associated connection, if any
 509 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 510 *      @skb_iif: ifindex of device we arrived on
 511 *      @tc_index: Traffic control index
 512 *      @tc_verd: traffic control verdict
 513 *      @hash: the packet hash
 514 *      @queue_mapping: Queue mapping for multiqueue devices
 515 *      @xmit_more: More SKBs are pending for this queue
 516 *      @ndisc_nodetype: router type (from link layer)
 517 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 518 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 519 *              ports.
 520 *      @sw_hash: indicates hash was computed in software stack
 521 *      @wifi_acked_valid: wifi_acked was set
 522 *      @wifi_acked: whether frame was acked on wifi or not
 523 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 524  *     @napi_id: id of the NAPI struct this skb came from
 525 *      @secmark: security marking
 526 *      @offload_fwd_mark: fwding offload mark
 527 *      @mark: Generic packet mark
 528 *      @vlan_proto: vlan encapsulation protocol
 529 *      @vlan_tci: vlan tag control information
 530 *      @inner_protocol: Protocol (encapsulation)
 531 *      @inner_transport_header: Inner transport layer header (encapsulation)
 532 *      @inner_network_header: Network layer header (encapsulation)
 533 *      @inner_mac_header: Link layer header (encapsulation)
 534 *      @transport_header: Transport layer header
 535 *      @network_header: Network layer header
 536 *      @mac_header: Link layer header
 537 *      @tail: Tail pointer
 538 *      @end: End pointer
 539 *      @head: Head of buffer
 540 *      @data: Data head pointer
 541 *      @truesize: Buffer size
 542 *      @users: User count - see {datagram,tcp}.c
 543 */
 544
 545struct sk_buff {
 546        union {
 547                struct {
 548                        /* These two members must be first. */
 549                        struct sk_buff          *next;
 550                        struct sk_buff          *prev;
 551
 552                        union {
 553                                ktime_t         tstamp;
 554                                struct skb_mstamp skb_mstamp;
 555                        };
 556                };
 557                struct rb_node  rbnode; /* used in netem & tcp stack */
 558        };
 559        struct sock             *sk;
 560        struct net_device       *dev;
 561
 562        /*
 563         * This is the control buffer. It is free to use for every
 564         * layer. Please put your private variables there. If you
 565         * want to keep them across layers you have to do a skb_clone()
 566         * first. This is owned by whoever has the skb queued ATM.
 567         */
 568        char                    cb[48] __aligned(8);
 569
 570        unsigned long           _skb_refdst;
 571        void                    (*destructor)(struct sk_buff *skb);
 572#ifdef CONFIG_XFRM
 573        struct  sec_path        *sp;
 574#endif
 575#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 576        struct nf_conntrack     *nfct;
 577#endif
 578#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 579        struct nf_bridge_info   *nf_bridge;
 580#endif
 581        unsigned int            len,
 582                                data_len;
 583        __u16                   mac_len,
 584                                hdr_len;
 585
 586        /* Following fields are _not_ copied in __copy_skb_header()
 587         * Note that queue_mapping is here mostly to fill a hole.
 588         */
 589        kmemcheck_bitfield_begin(flags1);
 590        __u16                   queue_mapping;
 591        __u8                    cloned:1,
 592                                nohdr:1,
 593                                fclone:2,
 594                                peeked:1,
 595                                head_frag:1,
 596                                xmit_more:1;
 597        /* one bit hole */
 598        kmemcheck_bitfield_end(flags1);
 599
 600        /* fields enclosed in headers_start/headers_end are copied
 601         * using a single memcpy() in __copy_skb_header()
 602         */
 603        /* private: */
 604        __u32                   headers_start[0];
 605        /* public: */
 606
 607/* if you move pkt_type around you also must adapt those constants */
 608#ifdef __BIG_ENDIAN_BITFIELD
 609#define PKT_TYPE_MAX    (7 << 5)
 610#else
 611#define PKT_TYPE_MAX    7
 612#endif
 613#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 614
 615        __u8                    __pkt_type_offset[0];
 616        __u8                    pkt_type:3;
 617        __u8                    pfmemalloc:1;
 618        __u8                    ignore_df:1;
 619        __u8                    nfctinfo:3;
 620
 621        __u8                    nf_trace:1;
 622        __u8                    ip_summed:2;
 623        __u8                    ooo_okay:1;
 624        __u8                    l4_hash:1;
 625        __u8                    sw_hash:1;
 626        __u8                    wifi_acked_valid:1;
 627        __u8                    wifi_acked:1;
 628
 629        __u8                    no_fcs:1;
 630        /* Indicates the inner headers are valid in the skbuff. */
 631        __u8                    encapsulation:1;
 632        __u8                    encap_hdr_csum:1;
 633        __u8                    csum_valid:1;
 634        __u8                    csum_complete_sw:1;
 635        __u8                    csum_level:2;
 636        __u8                    csum_bad:1;
 637
 638#ifdef CONFIG_IPV6_NDISC_NODETYPE
 639        __u8                    ndisc_nodetype:2;
 640#endif
 641        __u8                    ipvs_property:1;
 642        __u8                    inner_protocol_type:1;
 643        __u8                    remcsum_offload:1;
 644        /* 3 or 5 bit hole */
 645
 646#ifdef CONFIG_NET_SCHED
 647        __u16                   tc_index;       /* traffic control index */
 648#ifdef CONFIG_NET_CLS_ACT
 649        __u16                   tc_verd;        /* traffic control verdict */
 650#endif
 651#endif
 652
 653        union {
 654                __wsum          csum;
 655                struct {
 656                        __u16   csum_start;
 657                        __u16   csum_offset;
 658                };
 659        };
 660        __u32                   priority;
 661        int                     skb_iif;
 662        __u32                   hash;
 663        __be16                  vlan_proto;
 664        __u16                   vlan_tci;
 665#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 666        union {
 667                unsigned int    napi_id;
 668                unsigned int    sender_cpu;
 669        };
 670#endif
 671        union {
 672#ifdef CONFIG_NETWORK_SECMARK
 673                __u32           secmark;
 674#endif
 675#ifdef CONFIG_NET_SWITCHDEV
 676                __u32           offload_fwd_mark;
 677#endif
 678        };
 679
 680        union {
 681                __u32           mark;
 682                __u32           reserved_tailroom;
 683        };
 684
 685        union {
 686                __be16          inner_protocol;
 687                __u8            inner_ipproto;
 688        };
 689
 690        __u16                   inner_transport_header;
 691        __u16                   inner_network_header;
 692        __u16                   inner_mac_header;
 693
 694        __be16                  protocol;
 695        __u16                   transport_header;
 696        __u16                   network_header;
 697        __u16                   mac_header;
 698
 699        /* private: */
 700        __u32                   headers_end[0];
 701        /* public: */
 702
 703        /* These elements must be at the end, see alloc_skb() for details.  */
 704        sk_buff_data_t          tail;
 705        sk_buff_data_t          end;
 706        unsigned char           *head,
 707                                *data;
 708        unsigned int            truesize;
 709        atomic_t                users;
 710};
 711
 712#ifdef __KERNEL__
 713/*
 714 *      Handling routines are only of interest to the kernel
 715 */
 716#include <linux/slab.h>
 717
 718
 719#define SKB_ALLOC_FCLONE        0x01
 720#define SKB_ALLOC_RX            0x02
 721#define SKB_ALLOC_NAPI          0x04
 722
 723/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 724static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 725{
 726        return unlikely(skb->pfmemalloc);
 727}
 728
 729/*
 730 * skb might have a dst pointer attached, refcounted or not.
 731 * _skb_refdst low order bit is set if refcount was _not_ taken
 732 */
 733#define SKB_DST_NOREF   1UL
 734#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 735
 736/**
 737 * skb_dst - returns skb dst_entry
 738 * @skb: buffer
 739 *
 740 * Returns skb dst_entry, regardless of reference taken or not.
 741 */
 742static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 743{
 744        /* If refdst was not refcounted, check we still are in a 
 745         * rcu_read_lock section
 746         */
 747        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 748                !rcu_read_lock_held() &&
 749                !rcu_read_lock_bh_held());
 750        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 751}
 752
 753/**
 754 * skb_dst_set - sets skb dst
 755 * @skb: buffer
 756 * @dst: dst entry
 757 *
 758 * Sets skb dst, assuming a reference was taken on dst and should
 759 * be released by skb_dst_drop()
 760 */
 761static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 762{
 763        skb->_skb_refdst = (unsigned long)dst;
 764}
 765
 766/**
 767 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 768 * @skb: buffer
 769 * @dst: dst entry
 770 *
 771 * Sets skb dst, assuming a reference was not taken on dst.
 772 * If dst entry is cached, we do not take reference and dst_release
 773 * will be avoided by refdst_drop. If dst entry is not cached, we take
 774 * reference, so that last dst_release can destroy the dst immediately.
 775 */
 776static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 777{
 778        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 779        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 780}
 781
 782/**
 783 * skb_dst_is_noref - Test if skb dst isn't refcounted
 784 * @skb: buffer
 785 */
 786static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 787{
 788        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 789}
 790
 791static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 792{
 793        return (struct rtable *)skb_dst(skb);
 794}
 795
 796void kfree_skb(struct sk_buff *skb);
 797void kfree_skb_list(struct sk_buff *segs);
 798void skb_tx_error(struct sk_buff *skb);
 799void consume_skb(struct sk_buff *skb);
 800void  __kfree_skb(struct sk_buff *skb);
 801extern struct kmem_cache *skbuff_head_cache;
 802
 803void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 804bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 805                      bool *fragstolen, int *delta_truesize);
 806
 807struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 808                            int node);
 809struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 810struct sk_buff *build_skb(void *data, unsigned int frag_size);
 811static inline struct sk_buff *alloc_skb(unsigned int size,
 812                                        gfp_t priority)
 813{
 814        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 815}
 816
 817struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 818                                     unsigned long data_len,
 819                                     int max_page_order,
 820                                     int *errcode,
 821                                     gfp_t gfp_mask);
 822
 823/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 824struct sk_buff_fclones {
 825        struct sk_buff  skb1;
 826
 827        struct sk_buff  skb2;
 828
 829        atomic_t        fclone_ref;
 830};
 831
 832/**
 833 *      skb_fclone_busy - check if fclone is busy
 834 *      @skb: buffer
 835 *
 836 * Returns true is skb is a fast clone, and its clone is not freed.
 837 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 838 * so we also check that this didnt happen.
 839 */
 840static inline bool skb_fclone_busy(const struct sock *sk,
 841                                   const struct sk_buff *skb)
 842{
 843        const struct sk_buff_fclones *fclones;
 844
 845        fclones = container_of(skb, struct sk_buff_fclones, skb1);
 846
 847        return skb->fclone == SKB_FCLONE_ORIG &&
 848               atomic_read(&fclones->fclone_ref) > 1 &&
 849               fclones->skb2.sk == sk;
 850}
 851
 852static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 853                                               gfp_t priority)
 854{
 855        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
 856}
 857
 858struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
 859static inline struct sk_buff *alloc_skb_head(gfp_t priority)
 860{
 861        return __alloc_skb_head(priority, -1);
 862}
 863
 864struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 865int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 866struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
 867struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
 868struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
 869                                   gfp_t gfp_mask, bool fclone);
 870static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
 871                                          gfp_t gfp_mask)
 872{
 873        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
 874}
 875
 876int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
 877struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 878                                     unsigned int headroom);
 879struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
 880                                int newtailroom, gfp_t priority);
 881int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
 882                        int offset, int len);
 883int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
 884                 int len);
 885int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
 886int skb_pad(struct sk_buff *skb, int pad);
 887#define dev_kfree_skb(a)        consume_skb(a)
 888
 889int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 890                            int getfrag(void *from, char *to, int offset,
 891                                        int len, int odd, struct sk_buff *skb),
 892                            void *from, int length);
 893
 894int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
 895                         int offset, size_t size);
 896
 897struct skb_seq_state {
 898        __u32           lower_offset;
 899        __u32           upper_offset;
 900        __u32           frag_idx;
 901        __u32           stepped_offset;
 902        struct sk_buff  *root_skb;
 903        struct sk_buff  *cur_skb;
 904        __u8            *frag_data;
 905};
 906
 907void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
 908                          unsigned int to, struct skb_seq_state *st);
 909unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
 910                          struct skb_seq_state *st);
 911void skb_abort_seq_read(struct skb_seq_state *st);
 912
 913unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
 914                           unsigned int to, struct ts_config *config);
 915
 916/*
 917 * Packet hash types specify the type of hash in skb_set_hash.
 918 *
 919 * Hash types refer to the protocol layer addresses which are used to
 920 * construct a packet's hash. The hashes are used to differentiate or identify
 921 * flows of the protocol layer for the hash type. Hash types are either
 922 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 923 *
 924 * Properties of hashes:
 925 *
 926 * 1) Two packets in different flows have different hash values
 927 * 2) Two packets in the same flow should have the same hash value
 928 *
 929 * A hash at a higher layer is considered to be more specific. A driver should
 930 * set the most specific hash possible.
 931 *
 932 * A driver cannot indicate a more specific hash than the layer at which a hash
 933 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 934 *
 935 * A driver may indicate a hash level which is less specific than the
 936 * actual layer the hash was computed on. For instance, a hash computed
 937 * at L4 may be considered an L3 hash. This should only be done if the
 938 * driver can't unambiguously determine that the HW computed the hash at
 939 * the higher layer. Note that the "should" in the second property above
 940 * permits this.
 941 */
 942enum pkt_hash_types {
 943        PKT_HASH_TYPE_NONE,     /* Undefined type */
 944        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
 945        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
 946        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
 947};
 948
 949static inline void skb_clear_hash(struct sk_buff *skb)
 950{
 951        skb->hash = 0;
 952        skb->sw_hash = 0;
 953        skb->l4_hash = 0;
 954}
 955
 956static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
 957{
 958        if (!skb->l4_hash)
 959                skb_clear_hash(skb);
 960}
 961
 962static inline void
 963__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
 964{
 965        skb->l4_hash = is_l4;
 966        skb->sw_hash = is_sw;
 967        skb->hash = hash;
 968}
 969
 970static inline void
 971skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
 972{
 973        /* Used by drivers to set hash from HW */
 974        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
 975}
 976
 977static inline void
 978__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
 979{
 980        __skb_set_hash(skb, hash, true, is_l4);
 981}
 982
 983void __skb_get_hash(struct sk_buff *skb);
 984u32 skb_get_poff(const struct sk_buff *skb);
 985u32 __skb_get_poff(const struct sk_buff *skb, void *data,
 986                   const struct flow_keys *keys, int hlen);
 987__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
 988                            void *data, int hlen_proto);
 989
 990static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
 991                                        int thoff, u8 ip_proto)
 992{
 993        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
 994}
 995
 996void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
 997                             const struct flow_dissector_key *key,
 998                             unsigned int key_count);
 999
1000bool __skb_flow_dissect(const struct sk_buff *skb,
1001                        struct flow_dissector *flow_dissector,
1002                        void *target_container,
1003                        void *data, __be16 proto, int nhoff, int hlen,
1004                        unsigned int flags);
1005
1006static inline bool skb_flow_dissect(const struct sk_buff *skb,
1007                                    struct flow_dissector *flow_dissector,
1008                                    void *target_container, unsigned int flags)
1009{
1010        return __skb_flow_dissect(skb, flow_dissector, target_container,
1011                                  NULL, 0, 0, 0, flags);
1012}
1013
1014static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1015                                              struct flow_keys *flow,
1016                                              unsigned int flags)
1017{
1018        memset(flow, 0, sizeof(*flow));
1019        return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1020                                  NULL, 0, 0, 0, flags);
1021}
1022
1023static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1024                                                  void *data, __be16 proto,
1025                                                  int nhoff, int hlen,
1026                                                  unsigned int flags)
1027{
1028        memset(flow, 0, sizeof(*flow));
1029        return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1030                                  data, proto, nhoff, hlen, flags);
1031}
1032
1033static inline __u32 skb_get_hash(struct sk_buff *skb)
1034{
1035        if (!skb->l4_hash && !skb->sw_hash)
1036                __skb_get_hash(skb);
1037
1038        return skb->hash;
1039}
1040
1041__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1042
1043static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1044{
1045        if (!skb->l4_hash && !skb->sw_hash) {
1046                struct flow_keys keys;
1047                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1048
1049                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1050        }
1051
1052        return skb->hash;
1053}
1054
1055__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1056
1057static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1058{
1059        if (!skb->l4_hash && !skb->sw_hash) {
1060                struct flow_keys keys;
1061                __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1062
1063                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1064        }
1065
1066        return skb->hash;
1067}
1068
1069__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1070
1071static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1072{
1073        return skb->hash;
1074}
1075
1076static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1077{
1078        to->hash = from->hash;
1079        to->sw_hash = from->sw_hash;
1080        to->l4_hash = from->l4_hash;
1081};
1082
1083static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1084{
1085#ifdef CONFIG_XPS
1086        skb->sender_cpu = 0;
1087#endif
1088}
1089
1090#ifdef NET_SKBUFF_DATA_USES_OFFSET
1091static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1092{
1093        return skb->head + skb->end;
1094}
1095
1096static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1097{
1098        return skb->end;
1099}
1100#else
1101static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1102{
1103        return skb->end;
1104}
1105
1106static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1107{
1108        return skb->end - skb->head;
1109}
1110#endif
1111
1112/* Internal */
1113#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1114
1115static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1116{
1117        return &skb_shinfo(skb)->hwtstamps;
1118}
1119
1120/**
1121 *      skb_queue_empty - check if a queue is empty
1122 *      @list: queue head
1123 *
1124 *      Returns true if the queue is empty, false otherwise.
1125 */
1126static inline int skb_queue_empty(const struct sk_buff_head *list)
1127{
1128        return list->next == (const struct sk_buff *) list;
1129}
1130
1131/**
1132 *      skb_queue_is_last - check if skb is the last entry in the queue
1133 *      @list: queue head
1134 *      @skb: buffer
1135 *
1136 *      Returns true if @skb is the last buffer on the list.
1137 */
1138static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1139                                     const struct sk_buff *skb)
1140{
1141        return skb->next == (const struct sk_buff *) list;
1142}
1143
1144/**
1145 *      skb_queue_is_first - check if skb is the first entry in the queue
1146 *      @list: queue head
1147 *      @skb: buffer
1148 *
1149 *      Returns true if @skb is the first buffer on the list.
1150 */
1151static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1152                                      const struct sk_buff *skb)
1153{
1154        return skb->prev == (const struct sk_buff *) list;
1155}
1156
1157/**
1158 *      skb_queue_next - return the next packet in the queue
1159 *      @list: queue head
1160 *      @skb: current buffer
1161 *
1162 *      Return the next packet in @list after @skb.  It is only valid to
1163 *      call this if skb_queue_is_last() evaluates to false.
1164 */
1165static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1166                                             const struct sk_buff *skb)
1167{
1168        /* This BUG_ON may seem severe, but if we just return then we
1169         * are going to dereference garbage.
1170         */
1171        BUG_ON(skb_queue_is_last(list, skb));
1172        return skb->next;
1173}
1174
1175/**
1176 *      skb_queue_prev - return the prev packet in the queue
1177 *      @list: queue head
1178 *      @skb: current buffer
1179 *
1180 *      Return the prev packet in @list before @skb.  It is only valid to
1181 *      call this if skb_queue_is_first() evaluates to false.
1182 */
1183static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1184                                             const struct sk_buff *skb)
1185{
1186        /* This BUG_ON may seem severe, but if we just return then we
1187         * are going to dereference garbage.
1188         */
1189        BUG_ON(skb_queue_is_first(list, skb));
1190        return skb->prev;
1191}
1192
1193/**
1194 *      skb_get - reference buffer
1195 *      @skb: buffer to reference
1196 *
1197 *      Makes another reference to a socket buffer and returns a pointer
1198 *      to the buffer.
1199 */
1200static inline struct sk_buff *skb_get(struct sk_buff *skb)
1201{
1202        atomic_inc(&skb->users);
1203        return skb;
1204}
1205
1206/*
1207 * If users == 1, we are the only owner and are can avoid redundant
1208 * atomic change.
1209 */
1210
1211/**
1212 *      skb_cloned - is the buffer a clone
1213 *      @skb: buffer to check
1214 *
1215 *      Returns true if the buffer was generated with skb_clone() and is
1216 *      one of multiple shared copies of the buffer. Cloned buffers are
1217 *      shared data so must not be written to under normal circumstances.
1218 */
1219static inline int skb_cloned(const struct sk_buff *skb)
1220{
1221        return skb->cloned &&
1222               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1223}
1224
1225static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1226{
1227        might_sleep_if(gfpflags_allow_blocking(pri));
1228
1229        if (skb_cloned(skb))
1230                return pskb_expand_head(skb, 0, 0, pri);
1231
1232        return 0;
1233}
1234
1235/**
1236 *      skb_header_cloned - is the header a clone
1237 *      @skb: buffer to check
1238 *
1239 *      Returns true if modifying the header part of the buffer requires
1240 *      the data to be copied.
1241 */
1242static inline int skb_header_cloned(const struct sk_buff *skb)
1243{
1244        int dataref;
1245
1246        if (!skb->cloned)
1247                return 0;
1248
1249        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1250        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1251        return dataref != 1;
1252}
1253
1254/**
1255 *      skb_header_release - release reference to header
1256 *      @skb: buffer to operate on
1257 *
1258 *      Drop a reference to the header part of the buffer.  This is done
1259 *      by acquiring a payload reference.  You must not read from the header
1260 *      part of skb->data after this.
1261 *      Note : Check if you can use __skb_header_release() instead.
1262 */
1263static inline void skb_header_release(struct sk_buff *skb)
1264{
1265        BUG_ON(skb->nohdr);
1266        skb->nohdr = 1;
1267        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1268}
1269
1270/**
1271 *      __skb_header_release - release reference to header
1272 *      @skb: buffer to operate on
1273 *
1274 *      Variant of skb_header_release() assuming skb is private to caller.
1275 *      We can avoid one atomic operation.
1276 */
1277static inline void __skb_header_release(struct sk_buff *skb)
1278{
1279        skb->nohdr = 1;
1280        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1281}
1282
1283
1284/**
1285 *      skb_shared - is the buffer shared
1286 *      @skb: buffer to check
1287 *
1288 *      Returns true if more than one person has a reference to this
1289 *      buffer.
1290 */
1291static inline int skb_shared(const struct sk_buff *skb)
1292{
1293        return atomic_read(&skb->users) != 1;
1294}
1295
1296/**
1297 *      skb_share_check - check if buffer is shared and if so clone it
1298 *      @skb: buffer to check
1299 *      @pri: priority for memory allocation
1300 *
1301 *      If the buffer is shared the buffer is cloned and the old copy
1302 *      drops a reference. A new clone with a single reference is returned.
1303 *      If the buffer is not shared the original buffer is returned. When
1304 *      being called from interrupt status or with spinlocks held pri must
1305 *      be GFP_ATOMIC.
1306 *
1307 *      NULL is returned on a memory allocation failure.
1308 */
1309static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1310{
1311        might_sleep_if(gfpflags_allow_blocking(pri));
1312        if (skb_shared(skb)) {
1313                struct sk_buff *nskb = skb_clone(skb, pri);
1314
1315                if (likely(nskb))
1316                        consume_skb(skb);
1317                else
1318                        kfree_skb(skb);
1319                skb = nskb;
1320        }
1321        return skb;
1322}
1323
1324/*
1325 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1326 *      packets to handle cases where we have a local reader and forward
1327 *      and a couple of other messy ones. The normal one is tcpdumping
1328 *      a packet thats being forwarded.
1329 */
1330
1331/**
1332 *      skb_unshare - make a copy of a shared buffer
1333 *      @skb: buffer to check
1334 *      @pri: priority for memory allocation
1335 *
1336 *      If the socket buffer is a clone then this function creates a new
1337 *      copy of the data, drops a reference count on the old copy and returns
1338 *      the new copy with the reference count at 1. If the buffer is not a clone
1339 *      the original buffer is returned. When called with a spinlock held or
1340 *      from interrupt state @pri must be %GFP_ATOMIC
1341 *
1342 *      %NULL is returned on a memory allocation failure.
1343 */
1344static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1345                                          gfp_t pri)
1346{
1347        might_sleep_if(gfpflags_allow_blocking(pri));
1348        if (skb_cloned(skb)) {
1349                struct sk_buff *nskb = skb_copy(skb, pri);
1350
1351                /* Free our shared copy */
1352                if (likely(nskb))
1353                        consume_skb(skb);
1354                else
1355                        kfree_skb(skb);
1356                skb = nskb;
1357        }
1358        return skb;
1359}
1360
1361/**
1362 *      skb_peek - peek at the head of an &sk_buff_head
1363 *      @list_: list to peek at
1364 *
1365 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1366 *      be careful with this one. A peek leaves the buffer on the
1367 *      list and someone else may run off with it. You must hold
1368 *      the appropriate locks or have a private queue to do this.
1369 *
1370 *      Returns %NULL for an empty list or a pointer to the head element.
1371 *      The reference count is not incremented and the reference is therefore
1372 *      volatile. Use with caution.
1373 */
1374static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1375{
1376        struct sk_buff *skb = list_->next;
1377
1378        if (skb == (struct sk_buff *)list_)
1379                skb = NULL;
1380        return skb;
1381}
1382
1383/**
1384 *      skb_peek_next - peek skb following the given one from a queue
1385 *      @skb: skb to start from
1386 *      @list_: list to peek at
1387 *
1388 *      Returns %NULL when the end of the list is met or a pointer to the
1389 *      next element. The reference count is not incremented and the
1390 *      reference is therefore volatile. Use with caution.
1391 */
1392static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1393                const struct sk_buff_head *list_)
1394{
1395        struct sk_buff *next = skb->next;
1396
1397        if (next == (struct sk_buff *)list_)
1398                next = NULL;
1399        return next;
1400}
1401
1402/**
1403 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1404 *      @list_: list to peek at
1405 *
1406 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1407 *      be careful with this one. A peek leaves the buffer on the
1408 *      list and someone else may run off with it. You must hold
1409 *      the appropriate locks or have a private queue to do this.
1410 *
1411 *      Returns %NULL for an empty list or a pointer to the tail element.
1412 *      The reference count is not incremented and the reference is therefore
1413 *      volatile. Use with caution.
1414 */
1415static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1416{
1417        struct sk_buff *skb = list_->prev;
1418
1419        if (skb == (struct sk_buff *)list_)
1420                skb = NULL;
1421        return skb;
1422
1423}
1424
1425/**
1426 *      skb_queue_len   - get queue length
1427 *      @list_: list to measure
1428 *
1429 *      Return the length of an &sk_buff queue.
1430 */
1431static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1432{
1433        return list_->qlen;
1434}
1435
1436/**
1437 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1438 *      @list: queue to initialize
1439 *
1440 *      This initializes only the list and queue length aspects of
1441 *      an sk_buff_head object.  This allows to initialize the list
1442 *      aspects of an sk_buff_head without reinitializing things like
1443 *      the spinlock.  It can also be used for on-stack sk_buff_head
1444 *      objects where the spinlock is known to not be used.
1445 */
1446static inline void __skb_queue_head_init(struct sk_buff_head *list)
1447{
1448        list->prev = list->next = (struct sk_buff *)list;
1449        list->qlen = 0;
1450}
1451
1452/*
1453 * This function creates a split out lock class for each invocation;
1454 * this is needed for now since a whole lot of users of the skb-queue
1455 * infrastructure in drivers have different locking usage (in hardirq)
1456 * than the networking core (in softirq only). In the long run either the
1457 * network layer or drivers should need annotation to consolidate the
1458 * main types of usage into 3 classes.
1459 */
1460static inline void skb_queue_head_init(struct sk_buff_head *list)
1461{
1462        spin_lock_init(&list->lock);
1463        __skb_queue_head_init(list);
1464}
1465
1466static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1467                struct lock_class_key *class)
1468{
1469        skb_queue_head_init(list);
1470        lockdep_set_class(&list->lock, class);
1471}
1472
1473/*
1474 *      Insert an sk_buff on a list.
1475 *
1476 *      The "__skb_xxxx()" functions are the non-atomic ones that
1477 *      can only be called with interrupts disabled.
1478 */
1479void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1480                struct sk_buff_head *list);
1481static inline void __skb_insert(struct sk_buff *newsk,
1482                                struct sk_buff *prev, struct sk_buff *next,
1483                                struct sk_buff_head *list)
1484{
1485        newsk->next = next;
1486        newsk->prev = prev;
1487        next->prev  = prev->next = newsk;
1488        list->qlen++;
1489}
1490
1491static inline void __skb_queue_splice(const struct sk_buff_head *list,
1492                                      struct sk_buff *prev,
1493                                      struct sk_buff *next)
1494{
1495        struct sk_buff *first = list->next;
1496        struct sk_buff *last = list->prev;
1497
1498        first->prev = prev;
1499        prev->next = first;
1500
1501        last->next = next;
1502        next->prev = last;
1503}
1504
1505/**
1506 *      skb_queue_splice - join two skb lists, this is designed for stacks
1507 *      @list: the new list to add
1508 *      @head: the place to add it in the first list
1509 */
1510static inline void skb_queue_splice(const struct sk_buff_head *list,
1511                                    struct sk_buff_head *head)
1512{
1513        if (!skb_queue_empty(list)) {
1514                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1515                head->qlen += list->qlen;
1516        }
1517}
1518
1519/**
1520 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1521 *      @list: the new list to add
1522 *      @head: the place to add it in the first list
1523 *
1524 *      The list at @list is reinitialised
1525 */
1526static inline void skb_queue_splice_init(struct sk_buff_head *list,
1527                                         struct sk_buff_head *head)
1528{
1529        if (!skb_queue_empty(list)) {
1530                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1531                head->qlen += list->qlen;
1532                __skb_queue_head_init(list);
1533        }
1534}
1535
1536/**
1537 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1538 *      @list: the new list to add
1539 *      @head: the place to add it in the first list
1540 */
1541static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1542                                         struct sk_buff_head *head)
1543{
1544        if (!skb_queue_empty(list)) {
1545                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1546                head->qlen += list->qlen;
1547        }
1548}
1549
1550/**
1551 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1552 *      @list: the new list to add
1553 *      @head: the place to add it in the first list
1554 *
1555 *      Each of the lists is a queue.
1556 *      The list at @list is reinitialised
1557 */
1558static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1559                                              struct sk_buff_head *head)
1560{
1561        if (!skb_queue_empty(list)) {
1562                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1563                head->qlen += list->qlen;
1564                __skb_queue_head_init(list);
1565        }
1566}
1567
1568/**
1569 *      __skb_queue_after - queue a buffer at the list head
1570 *      @list: list to use
1571 *      @prev: place after this buffer
1572 *      @newsk: buffer to queue
1573 *
1574 *      Queue a buffer int the middle of a list. This function takes no locks
1575 *      and you must therefore hold required locks before calling it.
1576 *
1577 *      A buffer cannot be placed on two lists at the same time.
1578 */
1579static inline void __skb_queue_after(struct sk_buff_head *list,
1580                                     struct sk_buff *prev,
1581                                     struct sk_buff *newsk)
1582{
1583        __skb_insert(newsk, prev, prev->next, list);
1584}
1585
1586void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1587                struct sk_buff_head *list);
1588
1589static inline void __skb_queue_before(struct sk_buff_head *list,
1590                                      struct sk_buff *next,
1591                                      struct sk_buff *newsk)
1592{
1593        __skb_insert(newsk, next->prev, next, list);
1594}
1595
1596/**
1597 *      __skb_queue_head - queue a buffer at the list head
1598 *      @list: list to use
1599 *      @newsk: buffer to queue
1600 *
1601 *      Queue a buffer at the start of a list. This function takes no locks
1602 *      and you must therefore hold required locks before calling it.
1603 *
1604 *      A buffer cannot be placed on two lists at the same time.
1605 */
1606void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1607static inline void __skb_queue_head(struct sk_buff_head *list,
1608                                    struct sk_buff *newsk)
1609{
1610        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1611}
1612
1613/**
1614 *      __skb_queue_tail - queue a buffer at the list tail
1615 *      @list: list to use
1616 *      @newsk: buffer to queue
1617 *
1618 *      Queue a buffer at the end of a list. This function takes no locks
1619 *      and you must therefore hold required locks before calling it.
1620 *
1621 *      A buffer cannot be placed on two lists at the same time.
1622 */
1623void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1624static inline void __skb_queue_tail(struct sk_buff_head *list,
1625                                   struct sk_buff *newsk)
1626{
1627        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1628}
1629
1630/*
1631 * remove sk_buff from list. _Must_ be called atomically, and with
1632 * the list known..
1633 */
1634void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1635static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1636{
1637        struct sk_buff *next, *prev;
1638
1639        list->qlen--;
1640        next       = skb->next;
1641        prev       = skb->prev;
1642        skb->next  = skb->prev = NULL;
1643        next->prev = prev;
1644        prev->next = next;
1645}
1646
1647/**
1648 *      __skb_dequeue - remove from the head of the queue
1649 *      @list: list to dequeue from
1650 *
1651 *      Remove the head of the list. This function does not take any locks
1652 *      so must be used with appropriate locks held only. The head item is
1653 *      returned or %NULL if the list is empty.
1654 */
1655struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1656static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1657{
1658        struct sk_buff *skb = skb_peek(list);
1659        if (skb)
1660                __skb_unlink(skb, list);
1661        return skb;
1662}
1663
1664/**
1665 *      __skb_dequeue_tail - remove from the tail of the queue
1666 *      @list: list to dequeue from
1667 *
1668 *      Remove the tail of the list. This function does not take any locks
1669 *      so must be used with appropriate locks held only. The tail item is
1670 *      returned or %NULL if the list is empty.
1671 */
1672struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1673static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1674{
1675        struct sk_buff *skb = skb_peek_tail(list);
1676        if (skb)
1677                __skb_unlink(skb, list);
1678        return skb;
1679}
1680
1681
1682static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1683{
1684        return skb->data_len;
1685}
1686
1687static inline unsigned int skb_headlen(const struct sk_buff *skb)
1688{
1689        return skb->len - skb->data_len;
1690}
1691
1692static inline int skb_pagelen(const struct sk_buff *skb)
1693{
1694        int i, len = 0;
1695
1696        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1697                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1698        return len + skb_headlen(skb);
1699}
1700
1701/**
1702 * __skb_fill_page_desc - initialise a paged fragment in an skb
1703 * @skb: buffer containing fragment to be initialised
1704 * @i: paged fragment index to initialise
1705 * @page: the page to use for this fragment
1706 * @off: the offset to the data with @page
1707 * @size: the length of the data
1708 *
1709 * Initialises the @i'th fragment of @skb to point to &size bytes at
1710 * offset @off within @page.
1711 *
1712 * Does not take any additional reference on the fragment.
1713 */
1714static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1715                                        struct page *page, int off, int size)
1716{
1717        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1718
1719        /*
1720         * Propagate page pfmemalloc to the skb if we can. The problem is
1721         * that not all callers have unique ownership of the page but rely
1722         * on page_is_pfmemalloc doing the right thing(tm).
1723         */
1724        frag->page.p              = page;
1725        frag->page_offset         = off;
1726        skb_frag_size_set(frag, size);
1727
1728        page = compound_head(page);
1729        if (page_is_pfmemalloc(page))
1730                skb->pfmemalloc = true;
1731}
1732
1733/**
1734 * skb_fill_page_desc - initialise a paged fragment in an skb
1735 * @skb: buffer containing fragment to be initialised
1736 * @i: paged fragment index to initialise
1737 * @page: the page to use for this fragment
1738 * @off: the offset to the data with @page
1739 * @size: the length of the data
1740 *
1741 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1742 * @skb to point to @size bytes at offset @off within @page. In
1743 * addition updates @skb such that @i is the last fragment.
1744 *
1745 * Does not take any additional reference on the fragment.
1746 */
1747static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1748                                      struct page *page, int off, int size)
1749{
1750        __skb_fill_page_desc(skb, i, page, off, size);
1751        skb_shinfo(skb)->nr_frags = i + 1;
1752}
1753
1754void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1755                     int size, unsigned int truesize);
1756
1757void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1758                          unsigned int truesize);
1759
1760#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1761#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1762#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1763
1764#ifdef NET_SKBUFF_DATA_USES_OFFSET
1765static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1766{
1767        return skb->head + skb->tail;
1768}
1769
1770static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1771{
1772        skb->tail = skb->data - skb->head;
1773}
1774
1775static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1776{
1777        skb_reset_tail_pointer(skb);
1778        skb->tail += offset;
1779}
1780
1781#else /* NET_SKBUFF_DATA_USES_OFFSET */
1782static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1783{
1784        return skb->tail;
1785}
1786
1787static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1788{
1789        skb->tail = skb->data;
1790}
1791
1792static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1793{
1794        skb->tail = skb->data + offset;
1795}
1796
1797#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1798
1799/*
1800 *      Add data to an sk_buff
1801 */
1802unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1803unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1804static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1805{
1806        unsigned char *tmp = skb_tail_pointer(skb);
1807        SKB_LINEAR_ASSERT(skb);
1808        skb->tail += len;
1809        skb->len  += len;
1810        return tmp;
1811}
1812
1813unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1814static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1815{
1816        skb->data -= len;
1817        skb->len  += len;
1818        return skb->data;
1819}
1820
1821unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1822static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1823{
1824        skb->len -= len;
1825        BUG_ON(skb->len < skb->data_len);
1826        return skb->data += len;
1827}
1828
1829static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1830{
1831        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1832}
1833
1834unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1835
1836static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1837{
1838        if (len > skb_headlen(skb) &&
1839            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1840                return NULL;
1841        skb->len -= len;
1842        return skb->data += len;
1843}
1844
1845static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1846{
1847        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1848}
1849
1850static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1851{
1852        if (likely(len <= skb_headlen(skb)))
1853                return 1;
1854        if (unlikely(len > skb->len))
1855                return 0;
1856        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1857}
1858
1859/**
1860 *      skb_headroom - bytes at buffer head
1861 *      @skb: buffer to check
1862 *
1863 *      Return the number of bytes of free space at the head of an &sk_buff.
1864 */
1865static inline unsigned int skb_headroom(const struct sk_buff *skb)
1866{
1867        return skb->data - skb->head;
1868}
1869
1870/**
1871 *      skb_tailroom - bytes at buffer end
1872 *      @skb: buffer to check
1873 *
1874 *      Return the number of bytes of free space at the tail of an sk_buff
1875 */
1876static inline int skb_tailroom(const struct sk_buff *skb)
1877{
1878        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1879}
1880
1881/**
1882 *      skb_availroom - bytes at buffer end
1883 *      @skb: buffer to check
1884 *
1885 *      Return the number of bytes of free space at the tail of an sk_buff
1886 *      allocated by sk_stream_alloc()
1887 */
1888static inline int skb_availroom(const struct sk_buff *skb)
1889{
1890        if (skb_is_nonlinear(skb))
1891                return 0;
1892
1893        return skb->end - skb->tail - skb->reserved_tailroom;
1894}
1895
1896/**
1897 *      skb_reserve - adjust headroom
1898 *      @skb: buffer to alter
1899 *      @len: bytes to move
1900 *
1901 *      Increase the headroom of an empty &sk_buff by reducing the tail
1902 *      room. This is only allowed for an empty buffer.
1903 */
1904static inline void skb_reserve(struct sk_buff *skb, int len)
1905{
1906        skb->data += len;
1907        skb->tail += len;
1908}
1909
1910#define ENCAP_TYPE_ETHER        0
1911#define ENCAP_TYPE_IPPROTO      1
1912
1913static inline void skb_set_inner_protocol(struct sk_buff *skb,
1914                                          __be16 protocol)
1915{
1916        skb->inner_protocol = protocol;
1917        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1918}
1919
1920static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1921                                         __u8 ipproto)
1922{
1923        skb->inner_ipproto = ipproto;
1924        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1925}
1926
1927static inline void skb_reset_inner_headers(struct sk_buff *skb)
1928{
1929        skb->inner_mac_header = skb->mac_header;
1930        skb->inner_network_header = skb->network_header;
1931        skb->inner_transport_header = skb->transport_header;
1932}
1933
1934static inline void skb_reset_mac_len(struct sk_buff *skb)
1935{
1936        skb->mac_len = skb->network_header - skb->mac_header;
1937}
1938
1939static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1940                                                        *skb)
1941{
1942        return skb->head + skb->inner_transport_header;
1943}
1944
1945static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1946{
1947        skb->inner_transport_header = skb->data - skb->head;
1948}
1949
1950static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1951                                                   const int offset)
1952{
1953        skb_reset_inner_transport_header(skb);
1954        skb->inner_transport_header += offset;
1955}
1956
1957static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1958{
1959        return skb->head + skb->inner_network_header;
1960}
1961
1962static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1963{
1964        skb->inner_network_header = skb->data - skb->head;
1965}
1966
1967static inline void skb_set_inner_network_header(struct sk_buff *skb,
1968                                                const int offset)
1969{
1970        skb_reset_inner_network_header(skb);
1971        skb->inner_network_header += offset;
1972}
1973
1974static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1975{
1976        return skb->head + skb->inner_mac_header;
1977}
1978
1979static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1980{
1981        skb->inner_mac_header = skb->data - skb->head;
1982}
1983
1984static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1985                                            const int offset)
1986{
1987        skb_reset_inner_mac_header(skb);
1988        skb->inner_mac_header += offset;
1989}
1990static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1991{
1992        return skb->transport_header != (typeof(skb->transport_header))~0U;
1993}
1994
1995static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1996{
1997        return skb->head + skb->transport_header;
1998}
1999
2000static inline void skb_reset_transport_header(struct sk_buff *skb)
2001{
2002        skb->transport_header = skb->data - skb->head;
2003}
2004
2005static inline void skb_set_transport_header(struct sk_buff *skb,
2006                                            const int offset)
2007{
2008        skb_reset_transport_header(skb);
2009        skb->transport_header += offset;
2010}
2011
2012static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2013{
2014        return skb->head + skb->network_header;
2015}
2016
2017static inline void skb_reset_network_header(struct sk_buff *skb)
2018{
2019        skb->network_header = skb->data - skb->head;
2020}
2021
2022static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2023{
2024        skb_reset_network_header(skb);
2025        skb->network_header += offset;
2026}
2027
2028static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2029{
2030        return skb->head + skb->mac_header;
2031}
2032
2033static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2034{
2035        return skb->mac_header != (typeof(skb->mac_header))~0U;
2036}
2037
2038static inline void skb_reset_mac_header(struct sk_buff *skb)
2039{
2040        skb->mac_header = skb->data - skb->head;
2041}
2042
2043static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2044{
2045        skb_reset_mac_header(skb);
2046        skb->mac_header += offset;
2047}
2048
2049static inline void skb_pop_mac_header(struct sk_buff *skb)
2050{
2051        skb->mac_header = skb->network_header;
2052}
2053
2054static inline void skb_probe_transport_header(struct sk_buff *skb,
2055                                              const int offset_hint)
2056{
2057        struct flow_keys keys;
2058
2059        if (skb_transport_header_was_set(skb))
2060                return;
2061        else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2062                skb_set_transport_header(skb, keys.control.thoff);
2063        else
2064                skb_set_transport_header(skb, offset_hint);
2065}
2066
2067static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2068{
2069        if (skb_mac_header_was_set(skb)) {
2070                const unsigned char *old_mac = skb_mac_header(skb);
2071
2072                skb_set_mac_header(skb, -skb->mac_len);
2073                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2074        }
2075}
2076
2077static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2078{
2079        return skb->csum_start - skb_headroom(skb);
2080}
2081
2082static inline int skb_transport_offset(const struct sk_buff *skb)
2083{
2084        return skb_transport_header(skb) - skb->data;
2085}
2086
2087static inline u32 skb_network_header_len(const struct sk_buff *skb)
2088{
2089        return skb->transport_header - skb->network_header;
2090}
2091
2092static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2093{
2094        return skb->inner_transport_header - skb->inner_network_header;
2095}
2096
2097static inline int skb_network_offset(const struct sk_buff *skb)
2098{
2099        return skb_network_header(skb) - skb->data;
2100}
2101
2102static inline int skb_inner_network_offset(const struct sk_buff *skb)
2103{
2104        return skb_inner_network_header(skb) - skb->data;
2105}
2106
2107static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2108{
2109        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2110}
2111
2112/*
2113 * CPUs often take a performance hit when accessing unaligned memory
2114 * locations. The actual performance hit varies, it can be small if the
2115 * hardware handles it or large if we have to take an exception and fix it
2116 * in software.
2117 *
2118 * Since an ethernet header is 14 bytes network drivers often end up with
2119 * the IP header at an unaligned offset. The IP header can be aligned by
2120 * shifting the start of the packet by 2 bytes. Drivers should do this
2121 * with:
2122 *
2123 * skb_reserve(skb, NET_IP_ALIGN);
2124 *
2125 * The downside to this alignment of the IP header is that the DMA is now
2126 * unaligned. On some architectures the cost of an unaligned DMA is high
2127 * and this cost outweighs the gains made by aligning the IP header.
2128 *
2129 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2130 * to be overridden.
2131 */
2132#ifndef NET_IP_ALIGN
2133#define NET_IP_ALIGN    2
2134#endif
2135
2136/*
2137 * The networking layer reserves some headroom in skb data (via
2138 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2139 * the header has to grow. In the default case, if the header has to grow
2140 * 32 bytes or less we avoid the reallocation.
2141 *
2142 * Unfortunately this headroom changes the DMA alignment of the resulting
2143 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2144 * on some architectures. An architecture can override this value,
2145 * perhaps setting it to a cacheline in size (since that will maintain
2146 * cacheline alignment of the DMA). It must be a power of 2.
2147 *
2148 * Various parts of the networking layer expect at least 32 bytes of
2149 * headroom, you should not reduce this.
2150 *
2151 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2152 * to reduce average number of cache lines per packet.
2153 * get_rps_cpus() for example only access one 64 bytes aligned block :
2154 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2155 */
2156#ifndef NET_SKB_PAD
2157#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2158#endif
2159
2160int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2161
2162static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2163{
2164        if (unlikely(skb_is_nonlinear(skb))) {
2165                WARN_ON(1);
2166                return;
2167        }
2168        skb->len = len;
2169        skb_set_tail_pointer(skb, len);
2170}
2171
2172void skb_trim(struct sk_buff *skb, unsigned int len);
2173
2174static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2175{
2176        if (skb->data_len)
2177                return ___pskb_trim(skb, len);
2178        __skb_trim(skb, len);
2179        return 0;
2180}
2181
2182static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2183{
2184        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2185}
2186
2187/**
2188 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2189 *      @skb: buffer to alter
2190 *      @len: new length
2191 *
2192 *      This is identical to pskb_trim except that the caller knows that
2193 *      the skb is not cloned so we should never get an error due to out-
2194 *      of-memory.
2195 */
2196static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2197{
2198        int err = pskb_trim(skb, len);
2199        BUG_ON(err);
2200}
2201
2202/**
2203 *      skb_orphan - orphan a buffer
2204 *      @skb: buffer to orphan
2205 *
2206 *      If a buffer currently has an owner then we call the owner's
2207 *      destructor function and make the @skb unowned. The buffer continues
2208 *      to exist but is no longer charged to its former owner.
2209 */
2210static inline void skb_orphan(struct sk_buff *skb)
2211{
2212        if (skb->destructor) {
2213                skb->destructor(skb);
2214                skb->destructor = NULL;
2215                skb->sk         = NULL;
2216        } else {
2217                BUG_ON(skb->sk);
2218        }
2219}
2220
2221/**
2222 *      skb_orphan_frags - orphan the frags contained in a buffer
2223 *      @skb: buffer to orphan frags from
2224 *      @gfp_mask: allocation mask for replacement pages
2225 *
2226 *      For each frag in the SKB which needs a destructor (i.e. has an
2227 *      owner) create a copy of that frag and release the original
2228 *      page by calling the destructor.
2229 */
2230static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2231{
2232        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2233                return 0;
2234        return skb_copy_ubufs(skb, gfp_mask);
2235}
2236
2237/**
2238 *      __skb_queue_purge - empty a list
2239 *      @list: list to empty
2240 *
2241 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2242 *      the list and one reference dropped. This function does not take the
2243 *      list lock and the caller must hold the relevant locks to use it.
2244 */
2245void skb_queue_purge(struct sk_buff_head *list);
2246static inline void __skb_queue_purge(struct sk_buff_head *list)
2247{
2248        struct sk_buff *skb;
2249        while ((skb = __skb_dequeue(list)) != NULL)
2250                kfree_skb(skb);
2251}
2252
2253void *netdev_alloc_frag(unsigned int fragsz);
2254
2255struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2256                                   gfp_t gfp_mask);
2257
2258/**
2259 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2260 *      @dev: network device to receive on
2261 *      @length: length to allocate
2262 *
2263 *      Allocate a new &sk_buff and assign it a usage count of one. The
2264 *      buffer has unspecified headroom built in. Users should allocate
2265 *      the headroom they think they need without accounting for the
2266 *      built in space. The built in space is used for optimisations.
2267 *
2268 *      %NULL is returned if there is no free memory. Although this function
2269 *      allocates memory it can be called from an interrupt.
2270 */
2271static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2272                                               unsigned int length)
2273{
2274        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2275}
2276
2277/* legacy helper around __netdev_alloc_skb() */
2278static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2279                                              gfp_t gfp_mask)
2280{
2281        return __netdev_alloc_skb(NULL, length, gfp_mask);
2282}
2283
2284/* legacy helper around netdev_alloc_skb() */
2285static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2286{
2287        return netdev_alloc_skb(NULL, length);
2288}
2289
2290
2291static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2292                unsigned int length, gfp_t gfp)
2293{
2294        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2295
2296        if (NET_IP_ALIGN && skb)
2297                skb_reserve(skb, NET_IP_ALIGN);
2298        return skb;
2299}
2300
2301static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2302                unsigned int length)
2303{
2304        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2305}
2306
2307static inline void skb_free_frag(void *addr)
2308{
2309        __free_page_frag(addr);
2310}
2311
2312void *napi_alloc_frag(unsigned int fragsz);
2313struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2314                                 unsigned int length, gfp_t gfp_mask);
2315static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2316                                             unsigned int length)
2317{
2318        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2319}
2320
2321/**
2322 * __dev_alloc_pages - allocate page for network Rx
2323 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2324 * @order: size of the allocation
2325 *
2326 * Allocate a new page.
2327 *
2328 * %NULL is returned if there is no free memory.
2329*/
2330static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2331                                             unsigned int order)
2332{
2333        /* This piece of code contains several assumptions.
2334         * 1.  This is for device Rx, therefor a cold page is preferred.
2335         * 2.  The expectation is the user wants a compound page.
2336         * 3.  If requesting a order 0 page it will not be compound
2337         *     due to the check to see if order has a value in prep_new_page
2338         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2339         *     code in gfp_to_alloc_flags that should be enforcing this.
2340         */
2341        gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2342
2343        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2344}
2345
2346static inline struct page *dev_alloc_pages(unsigned int order)
2347{
2348        return __dev_alloc_pages(GFP_ATOMIC, order);
2349}
2350
2351/**
2352 * __dev_alloc_page - allocate a page for network Rx
2353 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2354 *
2355 * Allocate a new page.
2356 *
2357 * %NULL is returned if there is no free memory.
2358 */
2359static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2360{
2361        return __dev_alloc_pages(gfp_mask, 0);
2362}
2363
2364static inline struct page *dev_alloc_page(void)
2365{
2366        return __dev_alloc_page(GFP_ATOMIC);
2367}
2368
2369/**
2370 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2371 *      @page: The page that was allocated from skb_alloc_page
2372 *      @skb: The skb that may need pfmemalloc set
2373 */
2374static inline void skb_propagate_pfmemalloc(struct page *page,
2375                                             struct sk_buff *skb)
2376{
2377        if (page_is_pfmemalloc(page))
2378                skb->pfmemalloc = true;
2379}
2380
2381/**
2382 * skb_frag_page - retrieve the page referred to by a paged fragment
2383 * @frag: the paged fragment
2384 *
2385 * Returns the &struct page associated with @frag.
2386 */
2387static inline struct page *skb_frag_page(const skb_frag_t *frag)
2388{
2389        return frag->page.p;
2390}
2391
2392/**
2393 * __skb_frag_ref - take an addition reference on a paged fragment.
2394 * @frag: the paged fragment
2395 *
2396 * Takes an additional reference on the paged fragment @frag.
2397 */
2398static inline void __skb_frag_ref(skb_frag_t *frag)
2399{
2400        get_page(skb_frag_page(frag));
2401}
2402
2403/**
2404 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2405 * @skb: the buffer
2406 * @f: the fragment offset.
2407 *
2408 * Takes an additional reference on the @f'th paged fragment of @skb.
2409 */
2410static inline void skb_frag_ref(struct sk_buff *skb, int f)
2411{
2412        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2413}
2414
2415/**
2416 * __skb_frag_unref - release a reference on a paged fragment.
2417 * @frag: the paged fragment
2418 *
2419 * Releases a reference on the paged fragment @frag.
2420 */
2421static inline void __skb_frag_unref(skb_frag_t *frag)
2422{
2423        put_page(skb_frag_page(frag));
2424}
2425
2426/**
2427 * skb_frag_unref - release a reference on a paged fragment of an skb.
2428 * @skb: the buffer
2429 * @f: the fragment offset
2430 *
2431 * Releases a reference on the @f'th paged fragment of @skb.
2432 */
2433static inline void skb_frag_unref(struct sk_buff *skb, int f)
2434{
2435        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2436}
2437
2438/**
2439 * skb_frag_address - gets the address of the data contained in a paged fragment
2440 * @frag: the paged fragment buffer
2441 *
2442 * Returns the address of the data within @frag. The page must already
2443 * be mapped.
2444 */
2445static inline void *skb_frag_address(const skb_frag_t *frag)
2446{
2447        return page_address(skb_frag_page(frag)) + frag->page_offset;
2448}
2449
2450/**
2451 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2452 * @frag: the paged fragment buffer
2453 *
2454 * Returns the address of the data within @frag. Checks that the page
2455 * is mapped and returns %NULL otherwise.
2456 */
2457static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2458{
2459        void *ptr = page_address(skb_frag_page(frag));
2460        if (unlikely(!ptr))
2461                return NULL;
2462
2463        return ptr + frag->page_offset;
2464}
2465
2466/**
2467 * __skb_frag_set_page - sets the page contained in a paged fragment
2468 * @frag: the paged fragment
2469 * @page: the page to set
2470 *
2471 * Sets the fragment @frag to contain @page.
2472 */
2473static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2474{
2475        frag->page.p = page;
2476}
2477
2478/**
2479 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2480 * @skb: the buffer
2481 * @f: the fragment offset
2482 * @page: the page to set
2483 *
2484 * Sets the @f'th fragment of @skb to contain @page.
2485 */
2486static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2487                                     struct page *page)
2488{
2489        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2490}
2491
2492bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2493
2494/**
2495 * skb_frag_dma_map - maps a paged fragment via the DMA API
2496 * @dev: the device to map the fragment to
2497 * @frag: the paged fragment to map
2498 * @offset: the offset within the fragment (starting at the
2499 *          fragment's own offset)
2500 * @size: the number of bytes to map
2501 * @dir: the direction of the mapping (%PCI_DMA_*)
2502 *
2503 * Maps the page associated with @frag to @device.
2504 */
2505static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2506                                          const skb_frag_t *frag,
2507                                          size_t offset, size_t size,
2508                                          enum dma_data_direction dir)
2509{
2510        return dma_map_page(dev, skb_frag_page(frag),
2511                            frag->page_offset + offset, size, dir);
2512}
2513
2514static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2515                                        gfp_t gfp_mask)
2516{
2517        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2518}
2519
2520
2521static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2522                                                  gfp_t gfp_mask)
2523{
2524        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2525}
2526
2527
2528/**
2529 *      skb_clone_writable - is the header of a clone writable
2530 *      @skb: buffer to check
2531 *      @len: length up to which to write
2532 *
2533 *      Returns true if modifying the header part of the cloned buffer
2534 *      does not requires the data to be copied.
2535 */
2536static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2537{
2538        return !skb_header_cloned(skb) &&
2539               skb_headroom(skb) + len <= skb->hdr_len;
2540}
2541
2542static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2543                            int cloned)
2544{
2545        int delta = 0;
2546
2547        if (headroom > skb_headroom(skb))
2548                delta = headroom - skb_headroom(skb);
2549
2550        if (delta || cloned)
2551                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2552                                        GFP_ATOMIC);
2553        return 0;
2554}
2555
2556/**
2557 *      skb_cow - copy header of skb when it is required
2558 *      @skb: buffer to cow
2559 *      @headroom: needed headroom
2560 *
2561 *      If the skb passed lacks sufficient headroom or its data part
2562 *      is shared, data is reallocated. If reallocation fails, an error
2563 *      is returned and original skb is not changed.
2564 *
2565 *      The result is skb with writable area skb->head...skb->tail
2566 *      and at least @headroom of space at head.
2567 */
2568static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2569{
2570        return __skb_cow(skb, headroom, skb_cloned(skb));
2571}
2572
2573/**
2574 *      skb_cow_head - skb_cow but only making the head writable
2575 *      @skb: buffer to cow
2576 *      @headroom: needed headroom
2577 *
2578 *      This function is identical to skb_cow except that we replace the
2579 *      skb_cloned check by skb_header_cloned.  It should be used when
2580 *      you only need to push on some header and do not need to modify
2581 *      the data.
2582 */
2583static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2584{
2585        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2586}
2587
2588/**
2589 *      skb_padto       - pad an skbuff up to a minimal size
2590 *      @skb: buffer to pad
2591 *      @len: minimal length
2592 *
2593 *      Pads up a buffer to ensure the trailing bytes exist and are
2594 *      blanked. If the buffer already contains sufficient data it
2595 *      is untouched. Otherwise it is extended. Returns zero on
2596 *      success. The skb is freed on error.
2597 */
2598static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2599{
2600        unsigned int size = skb->len;
2601        if (likely(size >= len))
2602                return 0;
2603        return skb_pad(skb, len - size);
2604}
2605
2606/**
2607 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2608 *      @skb: buffer to pad
2609 *      @len: minimal length
2610 *
2611 *      Pads up a buffer to ensure the trailing bytes exist and are
2612 *      blanked. If the buffer already contains sufficient data it
2613 *      is untouched. Otherwise it is extended. Returns zero on
2614 *      success. The skb is freed on error.
2615 */
2616static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2617{
2618        unsigned int size = skb->len;
2619
2620        if (unlikely(size < len)) {
2621                len -= size;
2622                if (skb_pad(skb, len))
2623                        return -ENOMEM;
2624                __skb_put(skb, len);
2625        }
2626        return 0;
2627}
2628
2629static inline int skb_add_data(struct sk_buff *skb,
2630                               struct iov_iter *from, int copy)
2631{
2632        const int off = skb->len;
2633
2634        if (skb->ip_summed == CHECKSUM_NONE) {
2635                __wsum csum = 0;
2636                if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2637                                            &csum, from) == copy) {
2638                        skb->csum = csum_block_add(skb->csum, csum, off);
2639                        return 0;
2640                }
2641        } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2642                return 0;
2643
2644        __skb_trim(skb, off);
2645        return -EFAULT;
2646}
2647
2648static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2649                                    const struct page *page, int off)
2650{
2651        if (i) {
2652                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2653
2654                return page == skb_frag_page(frag) &&
2655                       off == frag->page_offset + skb_frag_size(frag);
2656        }
2657        return false;
2658}
2659
2660static inline int __skb_linearize(struct sk_buff *skb)
2661{
2662        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2663}
2664
2665/**
2666 *      skb_linearize - convert paged skb to linear one
2667 *      @skb: buffer to linarize
2668 *
2669 *      If there is no free memory -ENOMEM is returned, otherwise zero
2670 *      is returned and the old skb data released.
2671 */
2672static inline int skb_linearize(struct sk_buff *skb)
2673{
2674        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2675}
2676
2677/**
2678 * skb_has_shared_frag - can any frag be overwritten
2679 * @skb: buffer to test
2680 *
2681 * Return true if the skb has at least one frag that might be modified
2682 * by an external entity (as in vmsplice()/sendfile())
2683 */
2684static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2685{
2686        return skb_is_nonlinear(skb) &&
2687               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2688}
2689
2690/**
2691 *      skb_linearize_cow - make sure skb is linear and writable
2692 *      @skb: buffer to process
2693 *
2694 *      If there is no free memory -ENOMEM is returned, otherwise zero
2695 *      is returned and the old skb data released.
2696 */
2697static inline int skb_linearize_cow(struct sk_buff *skb)
2698{
2699        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2700               __skb_linearize(skb) : 0;
2701}
2702
2703/**
2704 *      skb_postpull_rcsum - update checksum for received skb after pull
2705 *      @skb: buffer to update
2706 *      @start: start of data before pull
2707 *      @len: length of data pulled
2708 *
2709 *      After doing a pull on a received packet, you need to call this to
2710 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2711 *      CHECKSUM_NONE so that it can be recomputed from scratch.
2712 */
2713
2714static inline void skb_postpull_rcsum(struct sk_buff *skb,
2715                                      const void *start, unsigned int len)
2716{
2717        if (skb->ip_summed == CHECKSUM_COMPLETE)
2718                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2719        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2720                 skb_checksum_start_offset(skb) < 0)
2721                skb->ip_summed = CHECKSUM_NONE;
2722}
2723
2724unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2725
2726/**
2727 *      pskb_trim_rcsum - trim received skb and update checksum
2728 *      @skb: buffer to trim
2729 *      @len: new length
2730 *
2731 *      This is exactly the same as pskb_trim except that it ensures the
2732 *      checksum of received packets are still valid after the operation.
2733 */
2734
2735static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2736{
2737        if (likely(len >= skb->len))
2738                return 0;
2739        if (skb->ip_summed == CHECKSUM_COMPLETE)
2740                skb->ip_summed = CHECKSUM_NONE;
2741        return __pskb_trim(skb, len);
2742}
2743
2744#define skb_queue_walk(queue, skb) \
2745                for (skb = (queue)->next;                                       \
2746                     skb != (struct sk_buff *)(queue);                          \
2747                     skb = skb->next)
2748
2749#define skb_queue_walk_safe(queue, skb, tmp)                                    \
2750                for (skb = (queue)->next, tmp = skb->next;                      \
2751                     skb != (struct sk_buff *)(queue);                          \
2752                     skb = tmp, tmp = skb->next)
2753
2754#define skb_queue_walk_from(queue, skb)                                         \
2755                for (; skb != (struct sk_buff *)(queue);                        \
2756                     skb = skb->next)
2757
2758#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
2759                for (tmp = skb->next;                                           \
2760                     skb != (struct sk_buff *)(queue);                          \
2761                     skb = tmp, tmp = skb->next)
2762
2763#define skb_queue_reverse_walk(queue, skb) \
2764                for (skb = (queue)->prev;                                       \
2765                     skb != (struct sk_buff *)(queue);                          \
2766                     skb = skb->prev)
2767
2768#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
2769                for (skb = (queue)->prev, tmp = skb->prev;                      \
2770                     skb != (struct sk_buff *)(queue);                          \
2771                     skb = tmp, tmp = skb->prev)
2772
2773#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
2774                for (tmp = skb->prev;                                           \
2775                     skb != (struct sk_buff *)(queue);                          \
2776                     skb = tmp, tmp = skb->prev)
2777
2778static inline bool skb_has_frag_list(const struct sk_buff *skb)
2779{
2780        return skb_shinfo(skb)->frag_list != NULL;
2781}
2782
2783static inline void skb_frag_list_init(struct sk_buff *skb)
2784{
2785        skb_shinfo(skb)->frag_list = NULL;
2786}
2787
2788#define skb_walk_frags(skb, iter)       \
2789        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2790
2791struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2792                                    int *peeked, int *off, int *err);
2793struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2794                                  int *err);
2795unsigned int datagram_poll(struct file *file, struct socket *sock,
2796                           struct poll_table_struct *wait);
2797int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2798                           struct iov_iter *to, int size);
2799static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2800                                        struct msghdr *msg, int size)
2801{
2802        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2803}
2804int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2805                                   struct msghdr *msg);
2806int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2807                                 struct iov_iter *from, int len);
2808int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2809void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2810void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2811int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2812int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2813int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2814__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2815                              int len, __wsum csum);
2816ssize_t skb_socket_splice(struct sock *sk,
2817                          struct pipe_inode_info *pipe,
2818                          struct splice_pipe_desc *spd);
2819int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2820                    struct pipe_inode_info *pipe, unsigned int len,
2821                    unsigned int flags,
2822                    ssize_t (*splice_cb)(struct sock *,
2823                                         struct pipe_inode_info *,
2824                                         struct splice_pipe_desc *));
2825void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2826unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2827int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2828                 int len, int hlen);
2829void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2830int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2831void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2832unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2833struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2834struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2835int skb_ensure_writable(struct sk_buff *skb, int write_len);
2836int skb_vlan_pop(struct sk_buff *skb);
2837int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2838
2839static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2840{
2841        return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2842}
2843
2844static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2845{
2846        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2847}
2848
2849struct skb_checksum_ops {
2850        __wsum (*update)(const void *mem, int len, __wsum wsum);
2851        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2852};
2853
2854__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2855                      __wsum csum, const struct skb_checksum_ops *ops);
2856__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2857                    __wsum csum);
2858
2859static inline void * __must_check
2860__skb_header_pointer(const struct sk_buff *skb, int offset,
2861                     int len, void *data, int hlen, void *buffer)
2862{
2863        if (hlen - offset >= len)
2864                return data + offset;
2865
2866        if (!skb ||
2867            skb_copy_bits(skb, offset, buffer, len) < 0)
2868                return NULL;
2869
2870        return buffer;
2871}
2872
2873static inline void * __must_check
2874skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2875{
2876        return __skb_header_pointer(skb, offset, len, skb->data,
2877                                    skb_headlen(skb), buffer);
2878}
2879
2880/**
2881 *      skb_needs_linearize - check if we need to linearize a given skb
2882 *                            depending on the given device features.
2883 *      @skb: socket buffer to check
2884 *      @features: net device features
2885 *
2886 *      Returns true if either:
2887 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
2888 *      2. skb is fragmented and the device does not support SG.
2889 */
2890static inline bool skb_needs_linearize(struct sk_buff *skb,
2891                                       netdev_features_t features)
2892{
2893        return skb_is_nonlinear(skb) &&
2894               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2895                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2896}
2897
2898static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2899                                             void *to,
2900                                             const unsigned int len)
2901{
2902        memcpy(to, skb->data, len);
2903}
2904
2905static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2906                                                    const int offset, void *to,
2907                                                    const unsigned int len)
2908{
2909        memcpy(to, skb->data + offset, len);
2910}
2911
2912static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2913                                           const void *from,
2914                                           const unsigned int len)
2915{
2916        memcpy(skb->data, from, len);
2917}
2918
2919static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2920                                                  const int offset,
2921                                                  const void *from,
2922                                                  const unsigned int len)
2923{
2924        memcpy(skb->data + offset, from, len);
2925}
2926
2927void skb_init(void);
2928
2929static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2930{
2931        return skb->tstamp;
2932}
2933
2934/**
2935 *      skb_get_timestamp - get timestamp from a skb
2936 *      @skb: skb to get stamp from
2937 *      @stamp: pointer to struct timeval to store stamp in
2938 *
2939 *      Timestamps are stored in the skb as offsets to a base timestamp.
2940 *      This function converts the offset back to a struct timeval and stores
2941 *      it in stamp.
2942 */
2943static inline void skb_get_timestamp(const struct sk_buff *skb,
2944                                     struct timeval *stamp)
2945{
2946        *stamp = ktime_to_timeval(skb->tstamp);
2947}
2948
2949static inline void skb_get_timestampns(const struct sk_buff *skb,
2950                                       struct timespec *stamp)
2951{
2952        *stamp = ktime_to_timespec(skb->tstamp);
2953}
2954
2955static inline void __net_timestamp(struct sk_buff *skb)
2956{
2957        skb->tstamp = ktime_get_real();
2958}
2959
2960static inline ktime_t net_timedelta(ktime_t t)
2961{
2962        return ktime_sub(ktime_get_real(), t);
2963}
2964
2965static inline ktime_t net_invalid_timestamp(void)
2966{
2967        return ktime_set(0, 0);
2968}
2969
2970struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2971
2972#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2973
2974void skb_clone_tx_timestamp(struct sk_buff *skb);
2975bool skb_defer_rx_timestamp(struct sk_buff *skb);
2976
2977#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2978
2979static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2980{
2981}
2982
2983static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2984{
2985        return false;
2986}
2987
2988#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2989
2990/**
2991 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2992 *
2993 * PHY drivers may accept clones of transmitted packets for
2994 * timestamping via their phy_driver.txtstamp method. These drivers
2995 * must call this function to return the skb back to the stack with a
2996 * timestamp.
2997 *
2998 * @skb: clone of the the original outgoing packet
2999 * @hwtstamps: hardware time stamps
3000 *
3001 */
3002void skb_complete_tx_timestamp(struct sk_buff *skb,
3003                               struct skb_shared_hwtstamps *hwtstamps);
3004
3005void __skb_tstamp_tx(struct sk_buff *orig_skb,
3006                     struct skb_shared_hwtstamps *hwtstamps,
3007                     struct sock *sk, int tstype);
3008
3009/**
3010 * skb_tstamp_tx - queue clone of skb with send time stamps
3011 * @orig_skb:   the original outgoing packet
3012 * @hwtstamps:  hardware time stamps, may be NULL if not available
3013 *
3014 * If the skb has a socket associated, then this function clones the
3015 * skb (thus sharing the actual data and optional structures), stores
3016 * the optional hardware time stamping information (if non NULL) or
3017 * generates a software time stamp (otherwise), then queues the clone
3018 * to the error queue of the socket.  Errors are silently ignored.
3019 */
3020void skb_tstamp_tx(struct sk_buff *orig_skb,
3021                   struct skb_shared_hwtstamps *hwtstamps);
3022
3023static inline void sw_tx_timestamp(struct sk_buff *skb)
3024{
3025        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3026            !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3027                skb_tstamp_tx(skb, NULL);
3028}
3029
3030/**
3031 * skb_tx_timestamp() - Driver hook for transmit timestamping
3032 *
3033 * Ethernet MAC Drivers should call this function in their hard_xmit()
3034 * function immediately before giving the sk_buff to the MAC hardware.
3035 *
3036 * Specifically, one should make absolutely sure that this function is
3037 * called before TX completion of this packet can trigger.  Otherwise
3038 * the packet could potentially already be freed.
3039 *
3040 * @skb: A socket buffer.
3041 */
3042static inline void skb_tx_timestamp(struct sk_buff *skb)
3043{
3044        skb_clone_tx_timestamp(skb);
3045        sw_tx_timestamp(skb);
3046}
3047
3048/**
3049 * skb_complete_wifi_ack - deliver skb with wifi status
3050 *
3051 * @skb: the original outgoing packet
3052 * @acked: ack status
3053 *
3054 */
3055void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3056
3057__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3058__sum16 __skb_checksum_complete(struct sk_buff *skb);
3059
3060static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3061{
3062        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3063                skb->csum_valid ||
3064                (skb->ip_summed == CHECKSUM_PARTIAL &&
3065                 skb_checksum_start_offset(skb) >= 0));
3066}
3067
3068/**
3069 *      skb_checksum_complete - Calculate checksum of an entire packet
3070 *      @skb: packet to process
3071 *
3072 *      This function calculates the checksum over the entire packet plus
3073 *      the value of skb->csum.  The latter can be used to supply the
3074 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3075 *      checksum.
3076 *
3077 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3078 *      this function can be used to verify that checksum on received
3079 *      packets.  In that case the function should return zero if the
3080 *      checksum is correct.  In particular, this function will return zero
3081 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3082 *      hardware has already verified the correctness of the checksum.
3083 */
3084static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3085{
3086        return skb_csum_unnecessary(skb) ?
3087               0 : __skb_checksum_complete(skb);
3088}
3089
3090static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3091{
3092        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3093                if (skb->csum_level == 0)
3094                        skb->ip_summed = CHECKSUM_NONE;
3095                else
3096                        skb->csum_level--;
3097        }
3098}
3099
3100static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3101{
3102        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3103                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3104                        skb->csum_level++;
3105        } else if (skb->ip_summed == CHECKSUM_NONE) {
3106                skb->ip_summed = CHECKSUM_UNNECESSARY;
3107                skb->csum_level = 0;
3108        }
3109}
3110
3111static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3112{
3113        /* Mark current checksum as bad (typically called from GRO
3114         * path). In the case that ip_summed is CHECKSUM_NONE
3115         * this must be the first checksum encountered in the packet.
3116         * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3117         * checksum after the last one validated. For UDP, a zero
3118         * checksum can not be marked as bad.
3119         */
3120
3121        if (skb->ip_summed == CHECKSUM_NONE ||
3122            skb->ip_summed == CHECKSUM_UNNECESSARY)
3123                skb->csum_bad = 1;
3124}
3125
3126/* Check if we need to perform checksum complete validation.
3127 *
3128 * Returns true if checksum complete is needed, false otherwise
3129 * (either checksum is unnecessary or zero checksum is allowed).
3130 */
3131static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3132                                                  bool zero_okay,
3133                                                  __sum16 check)
3134{
3135        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3136                skb->csum_valid = 1;
3137                __skb_decr_checksum_unnecessary(skb);
3138                return false;
3139        }
3140
3141        return true;
3142}
3143
3144/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3145 * in checksum_init.
3146 */
3147#define CHECKSUM_BREAK 76
3148
3149/* Unset checksum-complete
3150 *
3151 * Unset checksum complete can be done when packet is being modified
3152 * (uncompressed for instance) and checksum-complete value is
3153 * invalidated.
3154 */
3155static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3156{
3157        if (skb->ip_summed == CHECKSUM_COMPLETE)
3158                skb->ip_summed = CHECKSUM_NONE;
3159}
3160
3161/* Validate (init) checksum based on checksum complete.
3162 *
3163 * Return values:
3164 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3165 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3166 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3167 *   non-zero: value of invalid checksum
3168 *
3169 */
3170static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3171                                                       bool complete,
3172                                                       __wsum psum)
3173{
3174        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3175                if (!csum_fold(csum_add(psum, skb->csum))) {
3176                        skb->csum_valid = 1;
3177                        return 0;
3178                }
3179        } else if (skb->csum_bad) {
3180                /* ip_summed == CHECKSUM_NONE in this case */
3181                return (__force __sum16)1;
3182        }
3183
3184        skb->csum = psum;
3185
3186        if (complete || skb->len <= CHECKSUM_BREAK) {
3187                __sum16 csum;
3188
3189                csum = __skb_checksum_complete(skb);
3190                skb->csum_valid = !csum;
3191                return csum;
3192        }
3193
3194        return 0;
3195}
3196
3197static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3198{
3199        return 0;
3200}
3201
3202/* Perform checksum validate (init). Note that this is a macro since we only
3203 * want to calculate the pseudo header which is an input function if necessary.
3204 * First we try to validate without any computation (checksum unnecessary) and
3205 * then calculate based on checksum complete calling the function to compute
3206 * pseudo header.
3207 *
3208 * Return values:
3209 *   0: checksum is validated or try to in skb_checksum_complete
3210 *   non-zero: value of invalid checksum
3211 */
3212#define __skb_checksum_validate(skb, proto, complete,                   \
3213                                zero_okay, check, compute_pseudo)       \
3214({                                                                      \
3215        __sum16 __ret = 0;                                              \
3216        skb->csum_valid = 0;                                            \
3217        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3218                __ret = __skb_checksum_validate_complete(skb,           \
3219                                complete, compute_pseudo(skb, proto));  \
3220        __ret;                                                          \
3221})
3222
3223#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3224        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3225
3226#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3227        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3228
3229#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3230        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3231
3232#define skb_checksum_validate_zero_check(skb, proto, check,             \
3233                                         compute_pseudo)                \
3234        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3235
3236#define skb_checksum_simple_validate(skb)                               \
3237        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3238
3239static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3240{
3241        return (skb->ip_summed == CHECKSUM_NONE &&
3242                skb->csum_valid && !skb->csum_bad);
3243}
3244
3245static inline void __skb_checksum_convert(struct sk_buff *skb,
3246                                          __sum16 check, __wsum pseudo)
3247{
3248        skb->csum = ~pseudo;
3249        skb->ip_summed = CHECKSUM_COMPLETE;
3250}
3251
3252#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3253do {                                                                    \
3254        if (__skb_checksum_convert_check(skb))                          \
3255                __skb_checksum_convert(skb, check,                      \
3256                                       compute_pseudo(skb, proto));     \
3257} while (0)
3258
3259static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3260                                              u16 start, u16 offset)
3261{
3262        skb->ip_summed = CHECKSUM_PARTIAL;
3263        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3264        skb->csum_offset = offset - start;
3265}
3266
3267/* Update skbuf and packet to reflect the remote checksum offload operation.
3268 * When called, ptr indicates the starting point for skb->csum when
3269 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3270 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3271 */
3272static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3273                                       int start, int offset, bool nopartial)
3274{
3275        __wsum delta;
3276
3277        if (!nopartial) {
3278                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3279                return;
3280        }
3281
3282         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3283                __skb_checksum_complete(skb);
3284                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3285        }
3286
3287        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3288
3289        /* Adjust skb->csum since we changed the packet */
3290        skb->csum = csum_add(skb->csum, delta);
3291}
3292
3293#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3294void nf_conntrack_destroy(struct nf_conntrack *nfct);
3295static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3296{
3297        if (nfct && atomic_dec_and_test(&nfct->use))
3298                nf_conntrack_destroy(nfct);
3299}
3300static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3301{
3302        if (nfct)
3303                atomic_inc(&nfct->use);
3304}
3305#endif
3306#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3307static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3308{
3309        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3310                kfree(nf_bridge);
3311}
3312static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3313{
3314        if (nf_bridge)
3315                atomic_inc(&nf_bridge->use);
3316}
3317#endif /* CONFIG_BRIDGE_NETFILTER */
3318static inline void nf_reset(struct sk_buff *skb)
3319{
3320#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3321        nf_conntrack_put(skb->nfct);
3322        skb->nfct = NULL;
3323#endif
3324#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3325        nf_bridge_put(skb->nf_bridge);
3326        skb->nf_bridge = NULL;
3327#endif
3328}
3329
3330static inline void nf_reset_trace(struct sk_buff *skb)
3331{
3332#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3333        skb->nf_trace = 0;
3334#endif
3335}
3336
3337/* Note: This doesn't put any conntrack and bridge info in dst. */
3338static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3339                             bool copy)
3340{
3341#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3342        dst->nfct = src->nfct;
3343        nf_conntrack_get(src->nfct);
3344        if (copy)
3345                dst->nfctinfo = src->nfctinfo;
3346#endif
3347#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3348        dst->nf_bridge  = src->nf_bridge;
3349        nf_bridge_get(src->nf_bridge);
3350#endif
3351#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3352        if (copy)
3353                dst->nf_trace = src->nf_trace;
3354#endif
3355}
3356
3357static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3358{
3359#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3360        nf_conntrack_put(dst->nfct);
3361#endif
3362#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3363        nf_bridge_put(dst->nf_bridge);
3364#endif
3365        __nf_copy(dst, src, true);
3366}
3367
3368#ifdef CONFIG_NETWORK_SECMARK
3369static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3370{
3371        to->secmark = from->secmark;
3372}
3373
3374static inline void skb_init_secmark(struct sk_buff *skb)
3375{
3376        skb->secmark = 0;
3377}
3378#else
3379static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3380{ }
3381
3382static inline void skb_init_secmark(struct sk_buff *skb)
3383{ }
3384#endif
3385
3386static inline bool skb_irq_freeable(const struct sk_buff *skb)
3387{
3388        return !skb->destructor &&
3389#if IS_ENABLED(CONFIG_XFRM)
3390                !skb->sp &&
3391#endif
3392#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3393                !skb->nfct &&
3394#endif
3395                !skb->_skb_refdst &&
3396                !skb_has_frag_list(skb);
3397}
3398
3399static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3400{
3401        skb->queue_mapping = queue_mapping;
3402}
3403
3404static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3405{
3406        return skb->queue_mapping;
3407}
3408
3409static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3410{
3411        to->queue_mapping = from->queue_mapping;
3412}
3413
3414static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3415{
3416        skb->queue_mapping = rx_queue + 1;
3417}
3418
3419static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3420{
3421        return skb->queue_mapping - 1;
3422}
3423
3424static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3425{
3426        return skb->queue_mapping != 0;
3427}
3428
3429static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3430{
3431#ifdef CONFIG_XFRM
3432        return skb->sp;
3433#else
3434        return NULL;
3435#endif
3436}
3437
3438/* Keeps track of mac header offset relative to skb->head.
3439 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3440 * For non-tunnel skb it points to skb_mac_header() and for
3441 * tunnel skb it points to outer mac header.
3442 * Keeps track of level of encapsulation of network headers.
3443 */
3444struct skb_gso_cb {
3445        int     mac_offset;
3446        int     encap_level;
3447        __u16   csum_start;
3448};
3449#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3450
3451static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3452{
3453        return (skb_mac_header(inner_skb) - inner_skb->head) -
3454                SKB_GSO_CB(inner_skb)->mac_offset;
3455}
3456
3457static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3458{
3459        int new_headroom, headroom;
3460        int ret;
3461
3462        headroom = skb_headroom(skb);
3463        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3464        if (ret)
3465                return ret;
3466
3467        new_headroom = skb_headroom(skb);
3468        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3469        return 0;
3470}
3471
3472/* Compute the checksum for a gso segment. First compute the checksum value
3473 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3474 * then add in skb->csum (checksum from csum_start to end of packet).
3475 * skb->csum and csum_start are then updated to reflect the checksum of the
3476 * resultant packet starting from the transport header-- the resultant checksum
3477 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3478 * header.
3479 */
3480static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3481{
3482        int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3483                   skb_transport_offset(skb);
3484        __wsum partial;
3485
3486        partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3487        skb->csum = res;
3488        SKB_GSO_CB(skb)->csum_start -= plen;
3489
3490        return csum_fold(partial);
3491}
3492
3493static inline bool skb_is_gso(const struct sk_buff *skb)
3494{
3495        return skb_shinfo(skb)->gso_size;
3496}
3497
3498/* Note: Should be called only if skb_is_gso(skb) is true */
3499static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3500{
3501        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3502}
3503
3504void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3505
3506static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3507{
3508        /* LRO sets gso_size but not gso_type, whereas if GSO is really
3509         * wanted then gso_type will be set. */
3510        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3511
3512        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3513            unlikely(shinfo->gso_type == 0)) {
3514                __skb_warn_lro_forwarding(skb);
3515                return true;
3516        }
3517        return false;
3518}
3519
3520static inline void skb_forward_csum(struct sk_buff *skb)
3521{
3522        /* Unfortunately we don't support this one.  Any brave souls? */
3523        if (skb->ip_summed == CHECKSUM_COMPLETE)
3524                skb->ip_summed = CHECKSUM_NONE;
3525}
3526
3527/**
3528 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3529 * @skb: skb to check
3530 *
3531 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3532 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3533 * use this helper, to document places where we make this assertion.
3534 */
3535static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3536{
3537#ifdef DEBUG
3538        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3539#endif
3540}
3541
3542bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3543
3544int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3545struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3546                                     unsigned int transport_len,
3547                                     __sum16(*skb_chkf)(struct sk_buff *skb));
3548
3549/**
3550 * skb_head_is_locked - Determine if the skb->head is locked down
3551 * @skb: skb to check
3552 *
3553 * The head on skbs build around a head frag can be removed if they are
3554 * not cloned.  This function returns true if the skb head is locked down
3555 * due to either being allocated via kmalloc, or by being a clone with
3556 * multiple references to the head.
3557 */
3558static inline bool skb_head_is_locked(const struct sk_buff *skb)
3559{
3560        return !skb->head_frag || skb_cloned(skb);
3561}
3562
3563/**
3564 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3565 *
3566 * @skb: GSO skb
3567 *
3568 * skb_gso_network_seglen is used to determine the real size of the
3569 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3570 *
3571 * The MAC/L2 header is not accounted for.
3572 */
3573static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3574{
3575        unsigned int hdr_len = skb_transport_header(skb) -
3576                               skb_network_header(skb);
3577        return hdr_len + skb_gso_transport_seglen(skb);
3578}
3579
3580#endif  /* __KERNEL__ */
3581#endif  /* _LINUX_SKBUFF_H */
3582