linux/include/linux/usb.h
<<
>>
Prefs
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR                       180
   8#define USB_DEVICE_MAJOR                189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>        /* for mdelay() */
  15#include <linux/interrupt.h>    /* for in_interrupt() */
  16#include <linux/list.h>         /* for struct list_head */
  17#include <linux/kref.h>         /* for struct kref */
  18#include <linux/device.h>       /* for struct device */
  19#include <linux/fs.h>           /* for struct file_operations */
  20#include <linux/completion.h>   /* for struct completion */
  21#include <linux/sched.h>        /* for current && schedule_timeout */
  22#include <linux/mutex.h>        /* for struct mutex */
  23#include <linux/pm_runtime.h>   /* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  55 *      with one or more transfer descriptors (TDs) per urb
  56 * @ep_dev: ep_device for sysfs info
  57 * @extra: descriptors following this endpoint in the configuration
  58 * @extralen: how many bytes of "extra" are valid
  59 * @enabled: URBs may be submitted to this endpoint
  60 * @streams: number of USB-3 streams allocated on the endpoint
  61 *
  62 * USB requests are always queued to a given endpoint, identified by a
  63 * descriptor within an active interface in a given USB configuration.
  64 */
  65struct usb_host_endpoint {
  66        struct usb_endpoint_descriptor          desc;
  67        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  68        struct list_head                urb_list;
  69        void                            *hcpriv;
  70        struct ep_device                *ep_dev;        /* For sysfs info */
  71
  72        unsigned char *extra;   /* Extra descriptors */
  73        int extralen;
  74        int enabled;
  75        int streams;
  76};
  77
  78/* host-side wrapper for one interface setting's parsed descriptors */
  79struct usb_host_interface {
  80        struct usb_interface_descriptor desc;
  81
  82        int extralen;
  83        unsigned char *extra;   /* Extra descriptors */
  84
  85        /* array of desc.bNumEndpoints endpoints associated with this
  86         * interface setting.  these will be in no particular order.
  87         */
  88        struct usb_host_endpoint *endpoint;
  89
  90        char *string;           /* iInterface string, if present */
  91};
  92
  93enum usb_interface_condition {
  94        USB_INTERFACE_UNBOUND = 0,
  95        USB_INTERFACE_BINDING,
  96        USB_INTERFACE_BOUND,
  97        USB_INTERFACE_UNBINDING,
  98};
  99
 100/**
 101 * struct usb_interface - what usb device drivers talk to
 102 * @altsetting: array of interface structures, one for each alternate
 103 *      setting that may be selected.  Each one includes a set of
 104 *      endpoint configurations.  They will be in no particular order.
 105 * @cur_altsetting: the current altsetting.
 106 * @num_altsetting: number of altsettings defined.
 107 * @intf_assoc: interface association descriptor
 108 * @minor: the minor number assigned to this interface, if this
 109 *      interface is bound to a driver that uses the USB major number.
 110 *      If this interface does not use the USB major, this field should
 111 *      be unused.  The driver should set this value in the probe()
 112 *      function of the driver, after it has been assigned a minor
 113 *      number from the USB core by calling usb_register_dev().
 114 * @condition: binding state of the interface: not bound, binding
 115 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 116 * @sysfs_files_created: sysfs attributes exist
 117 * @ep_devs_created: endpoint child pseudo-devices exist
 118 * @unregistering: flag set when the interface is being unregistered
 119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 120 *      capability during autosuspend.
 121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 122 *      has been deferred.
 123 * @needs_binding: flag set when the driver should be re-probed or unbound
 124 *      following a reset or suspend operation it doesn't support.
 125 * @authorized: This allows to (de)authorize individual interfaces instead
 126 *      a whole device in contrast to the device authorization.
 127 * @dev: driver model's view of this device
 128 * @usb_dev: if an interface is bound to the USB major, this will point
 129 *      to the sysfs representation for that device.
 130 * @pm_usage_cnt: PM usage counter for this interface
 131 * @reset_ws: Used for scheduling resets from atomic context.
 132 * @resetting_device: USB core reset the device, so use alt setting 0 as
 133 *      current; needs bandwidth alloc after reset.
 134 *
 135 * USB device drivers attach to interfaces on a physical device.  Each
 136 * interface encapsulates a single high level function, such as feeding
 137 * an audio stream to a speaker or reporting a change in a volume control.
 138 * Many USB devices only have one interface.  The protocol used to talk to
 139 * an interface's endpoints can be defined in a usb "class" specification,
 140 * or by a product's vendor.  The (default) control endpoint is part of
 141 * every interface, but is never listed among the interface's descriptors.
 142 *
 143 * The driver that is bound to the interface can use standard driver model
 144 * calls such as dev_get_drvdata() on the dev member of this structure.
 145 *
 146 * Each interface may have alternate settings.  The initial configuration
 147 * of a device sets altsetting 0, but the device driver can change
 148 * that setting using usb_set_interface().  Alternate settings are often
 149 * used to control the use of periodic endpoints, such as by having
 150 * different endpoints use different amounts of reserved USB bandwidth.
 151 * All standards-conformant USB devices that use isochronous endpoints
 152 * will use them in non-default settings.
 153 *
 154 * The USB specification says that alternate setting numbers must run from
 155 * 0 to one less than the total number of alternate settings.  But some
 156 * devices manage to mess this up, and the structures aren't necessarily
 157 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 158 * look up an alternate setting in the altsetting array based on its number.
 159 */
 160struct usb_interface {
 161        /* array of alternate settings for this interface,
 162         * stored in no particular order */
 163        struct usb_host_interface *altsetting;
 164
 165        struct usb_host_interface *cur_altsetting;      /* the currently
 166                                         * active alternate setting */
 167        unsigned num_altsetting;        /* number of alternate settings */
 168
 169        /* If there is an interface association descriptor then it will list
 170         * the associated interfaces */
 171        struct usb_interface_assoc_descriptor *intf_assoc;
 172
 173        int minor;                      /* minor number this interface is
 174                                         * bound to */
 175        enum usb_interface_condition condition;         /* state of binding */
 176        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 177        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 178        unsigned unregistering:1;       /* unregistration is in progress */
 179        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 180        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 181        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 182        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 183        unsigned authorized:1;          /* used for interface authorization */
 184
 185        struct device dev;              /* interface specific device info */
 186        struct device *usb_dev;
 187        atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
 188        struct work_struct reset_ws;    /* for resets in atomic context */
 189};
 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 191
 192static inline void *usb_get_intfdata(struct usb_interface *intf)
 193{
 194        return dev_get_drvdata(&intf->dev);
 195}
 196
 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 198{
 199        dev_set_drvdata(&intf->dev, data);
 200}
 201
 202struct usb_interface *usb_get_intf(struct usb_interface *intf);
 203void usb_put_intf(struct usb_interface *intf);
 204
 205/* Hard limit */
 206#define USB_MAXENDPOINTS        30
 207/* this maximum is arbitrary */
 208#define USB_MAXINTERFACES       32
 209#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 210
 211/*
 212 * USB Resume Timer: Every Host controller driver should drive the resume
 213 * signalling on the bus for the amount of time defined by this macro.
 214 *
 215 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
 216 *
 217 * Note that the USB Specification states we should drive resume for *at least*
 218 * 20 ms, but it doesn't give an upper bound. This creates two possible
 219 * situations which we want to avoid:
 220 *
 221 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
 222 * us to fail USB Electrical Tests, thus failing Certification
 223 *
 224 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
 225 * and while we can argue that's against the USB Specification, we don't have
 226 * control over which devices a certification laboratory will be using for
 227 * certification. If CertLab uses a device which was tested against Windows and
 228 * that happens to have relaxed resume signalling rules, we might fall into
 229 * situations where we fail interoperability and electrical tests.
 230 *
 231 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
 232 * should cope with both LPJ calibration errors and devices not following every
 233 * detail of the USB Specification.
 234 */
 235#define USB_RESUME_TIMEOUT      40 /* ms */
 236
 237/**
 238 * struct usb_interface_cache - long-term representation of a device interface
 239 * @num_altsetting: number of altsettings defined.
 240 * @ref: reference counter.
 241 * @altsetting: variable-length array of interface structures, one for
 242 *      each alternate setting that may be selected.  Each one includes a
 243 *      set of endpoint configurations.  They will be in no particular order.
 244 *
 245 * These structures persist for the lifetime of a usb_device, unlike
 246 * struct usb_interface (which persists only as long as its configuration
 247 * is installed).  The altsetting arrays can be accessed through these
 248 * structures at any time, permitting comparison of configurations and
 249 * providing support for the /proc/bus/usb/devices pseudo-file.
 250 */
 251struct usb_interface_cache {
 252        unsigned num_altsetting;        /* number of alternate settings */
 253        struct kref ref;                /* reference counter */
 254
 255        /* variable-length array of alternate settings for this interface,
 256         * stored in no particular order */
 257        struct usb_host_interface altsetting[0];
 258};
 259#define ref_to_usb_interface_cache(r) \
 260                container_of(r, struct usb_interface_cache, ref)
 261#define altsetting_to_usb_interface_cache(a) \
 262                container_of(a, struct usb_interface_cache, altsetting[0])
 263
 264/**
 265 * struct usb_host_config - representation of a device's configuration
 266 * @desc: the device's configuration descriptor.
 267 * @string: pointer to the cached version of the iConfiguration string, if
 268 *      present for this configuration.
 269 * @intf_assoc: list of any interface association descriptors in this config
 270 * @interface: array of pointers to usb_interface structures, one for each
 271 *      interface in the configuration.  The number of interfaces is stored
 272 *      in desc.bNumInterfaces.  These pointers are valid only while the
 273 *      the configuration is active.
 274 * @intf_cache: array of pointers to usb_interface_cache structures, one
 275 *      for each interface in the configuration.  These structures exist
 276 *      for the entire life of the device.
 277 * @extra: pointer to buffer containing all extra descriptors associated
 278 *      with this configuration (those preceding the first interface
 279 *      descriptor).
 280 * @extralen: length of the extra descriptors buffer.
 281 *
 282 * USB devices may have multiple configurations, but only one can be active
 283 * at any time.  Each encapsulates a different operational environment;
 284 * for example, a dual-speed device would have separate configurations for
 285 * full-speed and high-speed operation.  The number of configurations
 286 * available is stored in the device descriptor as bNumConfigurations.
 287 *
 288 * A configuration can contain multiple interfaces.  Each corresponds to
 289 * a different function of the USB device, and all are available whenever
 290 * the configuration is active.  The USB standard says that interfaces
 291 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 292 * of devices get this wrong.  In addition, the interface array is not
 293 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 294 * look up an interface entry based on its number.
 295 *
 296 * Device drivers should not attempt to activate configurations.  The choice
 297 * of which configuration to install is a policy decision based on such
 298 * considerations as available power, functionality provided, and the user's
 299 * desires (expressed through userspace tools).  However, drivers can call
 300 * usb_reset_configuration() to reinitialize the current configuration and
 301 * all its interfaces.
 302 */
 303struct usb_host_config {
 304        struct usb_config_descriptor    desc;
 305
 306        char *string;           /* iConfiguration string, if present */
 307
 308        /* List of any Interface Association Descriptors in this
 309         * configuration. */
 310        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 311
 312        /* the interfaces associated with this configuration,
 313         * stored in no particular order */
 314        struct usb_interface *interface[USB_MAXINTERFACES];
 315
 316        /* Interface information available even when this is not the
 317         * active configuration */
 318        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 319
 320        unsigned char *extra;   /* Extra descriptors */
 321        int extralen;
 322};
 323
 324/* USB2.0 and USB3.0 device BOS descriptor set */
 325struct usb_host_bos {
 326        struct usb_bos_descriptor       *desc;
 327
 328        /* wireless cap descriptor is handled by wusb */
 329        struct usb_ext_cap_descriptor   *ext_cap;
 330        struct usb_ss_cap_descriptor    *ss_cap;
 331        struct usb_ssp_cap_descriptor   *ssp_cap;
 332        struct usb_ss_container_id_descriptor   *ss_id;
 333};
 334
 335int __usb_get_extra_descriptor(char *buffer, unsigned size,
 336        unsigned char type, void **ptr);
 337#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 338                                __usb_get_extra_descriptor((ifpoint)->extra, \
 339                                (ifpoint)->extralen, \
 340                                type, (void **)ptr)
 341
 342/* ----------------------------------------------------------------------- */
 343
 344/* USB device number allocation bitmap */
 345struct usb_devmap {
 346        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 347};
 348
 349/*
 350 * Allocated per bus (tree of devices) we have:
 351 */
 352struct usb_bus {
 353        struct device *controller;      /* host/master side hardware */
 354        int busnum;                     /* Bus number (in order of reg) */
 355        const char *bus_name;           /* stable id (PCI slot_name etc) */
 356        u8 uses_dma;                    /* Does the host controller use DMA? */
 357        u8 uses_pio_for_control;        /*
 358                                         * Does the host controller use PIO
 359                                         * for control transfers?
 360                                         */
 361        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 362        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 363        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 364        unsigned no_stop_on_short:1;    /*
 365                                         * Quirk: some controllers don't stop
 366                                         * the ep queue on a short transfer
 367                                         * with the URB_SHORT_NOT_OK flag set.
 368                                         */
 369        unsigned no_sg_constraint:1;    /* no sg constraint */
 370        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 371
 372        int devnum_next;                /* Next open device number in
 373                                         * round-robin allocation */
 374
 375        struct usb_devmap devmap;       /* device address allocation map */
 376        struct usb_device *root_hub;    /* Root hub */
 377        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 378        struct list_head bus_list;      /* list of busses */
 379
 380        struct mutex usb_address0_mutex; /* unaddressed device mutex */
 381
 382        int bandwidth_allocated;        /* on this bus: how much of the time
 383                                         * reserved for periodic (intr/iso)
 384                                         * requests is used, on average?
 385                                         * Units: microseconds/frame.
 386                                         * Limits: Full/low speed reserve 90%,
 387                                         * while high speed reserves 80%.
 388                                         */
 389        int bandwidth_int_reqs;         /* number of Interrupt requests */
 390        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 391
 392        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 393
 394#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 395        struct mon_bus *mon_bus;        /* non-null when associated */
 396        int monitored;                  /* non-zero when monitored */
 397#endif
 398};
 399
 400struct usb_dev_state;
 401
 402/* ----------------------------------------------------------------------- */
 403
 404struct usb_tt;
 405
 406enum usb_device_removable {
 407        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 408        USB_DEVICE_REMOVABLE,
 409        USB_DEVICE_FIXED,
 410};
 411
 412enum usb_port_connect_type {
 413        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 414        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 415        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 416        USB_PORT_NOT_USED,
 417};
 418
 419/*
 420 * USB 2.0 Link Power Management (LPM) parameters.
 421 */
 422struct usb2_lpm_parameters {
 423        /* Best effort service latency indicate how long the host will drive
 424         * resume on an exit from L1.
 425         */
 426        unsigned int besl;
 427
 428        /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 429         * When the timer counts to zero, the parent hub will initiate a LPM
 430         * transition to L1.
 431         */
 432        int timeout;
 433};
 434
 435/*
 436 * USB 3.0 Link Power Management (LPM) parameters.
 437 *
 438 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 439 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 440 * All three are stored in nanoseconds.
 441 */
 442struct usb3_lpm_parameters {
 443        /*
 444         * Maximum exit latency (MEL) for the host to send a packet to the
 445         * device (either a Ping for isoc endpoints, or a data packet for
 446         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 447         * in the path to transition the links to U0.
 448         */
 449        unsigned int mel;
 450        /*
 451         * Maximum exit latency for a device-initiated LPM transition to bring
 452         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 453         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 454         */
 455        unsigned int pel;
 456
 457        /*
 458         * The System Exit Latency (SEL) includes PEL, and three other
 459         * latencies.  After a device initiates a U0 transition, it will take
 460         * some time from when the device sends the ERDY to when it will finally
 461         * receive the data packet.  Basically, SEL should be the worse-case
 462         * latency from when a device starts initiating a U0 transition to when
 463         * it will get data.
 464         */
 465        unsigned int sel;
 466        /*
 467         * The idle timeout value that is currently programmed into the parent
 468         * hub for this device.  When the timer counts to zero, the parent hub
 469         * will initiate an LPM transition to either U1 or U2.
 470         */
 471        int timeout;
 472};
 473
 474/**
 475 * struct usb_device - kernel's representation of a USB device
 476 * @devnum: device number; address on a USB bus
 477 * @devpath: device ID string for use in messages (e.g., /port/...)
 478 * @route: tree topology hex string for use with xHCI
 479 * @state: device state: configured, not attached, etc.
 480 * @speed: device speed: high/full/low (or error)
 481 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 482 * @ttport: device port on that tt hub
 483 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 484 * @parent: our hub, unless we're the root
 485 * @bus: bus we're part of
 486 * @ep0: endpoint 0 data (default control pipe)
 487 * @dev: generic device interface
 488 * @descriptor: USB device descriptor
 489 * @bos: USB device BOS descriptor set
 490 * @config: all of the device's configs
 491 * @actconfig: the active configuration
 492 * @ep_in: array of IN endpoints
 493 * @ep_out: array of OUT endpoints
 494 * @rawdescriptors: raw descriptors for each config
 495 * @bus_mA: Current available from the bus
 496 * @portnum: parent port number (origin 1)
 497 * @level: number of USB hub ancestors
 498 * @can_submit: URBs may be submitted
 499 * @persist_enabled:  USB_PERSIST enabled for this device
 500 * @have_langid: whether string_langid is valid
 501 * @authorized: policy has said we can use it;
 502 *      (user space) policy determines if we authorize this device to be
 503 *      used or not. By default, wired USB devices are authorized.
 504 *      WUSB devices are not, until we authorize them from user space.
 505 *      FIXME -- complete doc
 506 * @authenticated: Crypto authentication passed
 507 * @wusb: device is Wireless USB
 508 * @lpm_capable: device supports LPM
 509 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 510 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 511 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 512 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 513 * @usb3_lpm_enabled: USB3 hardware LPM enabled
 514 * @string_langid: language ID for strings
 515 * @product: iProduct string, if present (static)
 516 * @manufacturer: iManufacturer string, if present (static)
 517 * @serial: iSerialNumber string, if present (static)
 518 * @filelist: usbfs files that are open to this device
 519 * @maxchild: number of ports if hub
 520 * @quirks: quirks of the whole device
 521 * @urbnum: number of URBs submitted for the whole device
 522 * @active_duration: total time device is not suspended
 523 * @connect_time: time device was first connected
 524 * @do_remote_wakeup:  remote wakeup should be enabled
 525 * @reset_resume: needs reset instead of resume
 526 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 527 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 528 *      specific data for the device.
 529 * @slot_id: Slot ID assigned by xHCI
 530 * @removable: Device can be physically removed from this port
 531 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 532 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 533 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 534 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 535 *      to keep track of the number of functions that require USB 3.0 Link Power
 536 *      Management to be disabled for this usb_device.  This count should only
 537 *      be manipulated by those functions, with the bandwidth_mutex is held.
 538 *
 539 * Notes:
 540 * Usbcore drivers should not set usbdev->state directly.  Instead use
 541 * usb_set_device_state().
 542 */
 543struct usb_device {
 544        int             devnum;
 545        char            devpath[16];
 546        u32             route;
 547        enum usb_device_state   state;
 548        enum usb_device_speed   speed;
 549
 550        struct usb_tt   *tt;
 551        int             ttport;
 552
 553        unsigned int toggle[2];
 554
 555        struct usb_device *parent;
 556        struct usb_bus *bus;
 557        struct usb_host_endpoint ep0;
 558
 559        struct device dev;
 560
 561        struct usb_device_descriptor descriptor;
 562        struct usb_host_bos *bos;
 563        struct usb_host_config *config;
 564
 565        struct usb_host_config *actconfig;
 566        struct usb_host_endpoint *ep_in[16];
 567        struct usb_host_endpoint *ep_out[16];
 568
 569        char **rawdescriptors;
 570
 571        unsigned short bus_mA;
 572        u8 portnum;
 573        u8 level;
 574
 575        unsigned can_submit:1;
 576        unsigned persist_enabled:1;
 577        unsigned have_langid:1;
 578        unsigned authorized:1;
 579        unsigned authenticated:1;
 580        unsigned wusb:1;
 581        unsigned lpm_capable:1;
 582        unsigned usb2_hw_lpm_capable:1;
 583        unsigned usb2_hw_lpm_besl_capable:1;
 584        unsigned usb2_hw_lpm_enabled:1;
 585        unsigned usb2_hw_lpm_allowed:1;
 586        unsigned usb3_lpm_enabled:1;
 587        int string_langid;
 588
 589        /* static strings from the device */
 590        char *product;
 591        char *manufacturer;
 592        char *serial;
 593
 594        struct list_head filelist;
 595
 596        int maxchild;
 597
 598        u32 quirks;
 599        atomic_t urbnum;
 600
 601        unsigned long active_duration;
 602
 603#ifdef CONFIG_PM
 604        unsigned long connect_time;
 605
 606        unsigned do_remote_wakeup:1;
 607        unsigned reset_resume:1;
 608        unsigned port_is_suspended:1;
 609#endif
 610        struct wusb_dev *wusb_dev;
 611        int slot_id;
 612        enum usb_device_removable removable;
 613        struct usb2_lpm_parameters l1_params;
 614        struct usb3_lpm_parameters u1_params;
 615        struct usb3_lpm_parameters u2_params;
 616        unsigned lpm_disable_count;
 617};
 618#define to_usb_device(d) container_of(d, struct usb_device, dev)
 619
 620static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 621{
 622        return to_usb_device(intf->dev.parent);
 623}
 624
 625extern struct usb_device *usb_get_dev(struct usb_device *dev);
 626extern void usb_put_dev(struct usb_device *dev);
 627extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 628        int port1);
 629
 630/**
 631 * usb_hub_for_each_child - iterate over all child devices on the hub
 632 * @hdev:  USB device belonging to the usb hub
 633 * @port1: portnum associated with child device
 634 * @child: child device pointer
 635 */
 636#define usb_hub_for_each_child(hdev, port1, child) \
 637        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 638                        port1 <= hdev->maxchild; \
 639                        child = usb_hub_find_child(hdev, ++port1)) \
 640                if (!child) continue; else
 641
 642/* USB device locking */
 643#define usb_lock_device(udev)           device_lock(&(udev)->dev)
 644#define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
 645#define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
 646extern int usb_lock_device_for_reset(struct usb_device *udev,
 647                                     const struct usb_interface *iface);
 648
 649/* USB port reset for device reinitialization */
 650extern int usb_reset_device(struct usb_device *dev);
 651extern void usb_queue_reset_device(struct usb_interface *dev);
 652
 653#ifdef CONFIG_ACPI
 654extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 655        bool enable);
 656extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 657#else
 658static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 659        bool enable) { return 0; }
 660static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 661        { return true; }
 662#endif
 663
 664/* USB autosuspend and autoresume */
 665#ifdef CONFIG_PM
 666extern void usb_enable_autosuspend(struct usb_device *udev);
 667extern void usb_disable_autosuspend(struct usb_device *udev);
 668
 669extern int usb_autopm_get_interface(struct usb_interface *intf);
 670extern void usb_autopm_put_interface(struct usb_interface *intf);
 671extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 672extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 673extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 674extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 675
 676static inline void usb_mark_last_busy(struct usb_device *udev)
 677{
 678        pm_runtime_mark_last_busy(&udev->dev);
 679}
 680
 681#else
 682
 683static inline int usb_enable_autosuspend(struct usb_device *udev)
 684{ return 0; }
 685static inline int usb_disable_autosuspend(struct usb_device *udev)
 686{ return 0; }
 687
 688static inline int usb_autopm_get_interface(struct usb_interface *intf)
 689{ return 0; }
 690static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 691{ return 0; }
 692
 693static inline void usb_autopm_put_interface(struct usb_interface *intf)
 694{ }
 695static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 696{ }
 697static inline void usb_autopm_get_interface_no_resume(
 698                struct usb_interface *intf)
 699{ }
 700static inline void usb_autopm_put_interface_no_suspend(
 701                struct usb_interface *intf)
 702{ }
 703static inline void usb_mark_last_busy(struct usb_device *udev)
 704{ }
 705#endif
 706
 707extern int usb_disable_lpm(struct usb_device *udev);
 708extern void usb_enable_lpm(struct usb_device *udev);
 709/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 710extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 711extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 712
 713extern int usb_disable_ltm(struct usb_device *udev);
 714extern void usb_enable_ltm(struct usb_device *udev);
 715
 716static inline bool usb_device_supports_ltm(struct usb_device *udev)
 717{
 718        if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 719                return false;
 720        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 721}
 722
 723static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 724{
 725        return udev && udev->bus && udev->bus->no_sg_constraint;
 726}
 727
 728
 729/*-------------------------------------------------------------------------*/
 730
 731/* for drivers using iso endpoints */
 732extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 733
 734/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 735extern int usb_alloc_streams(struct usb_interface *interface,
 736                struct usb_host_endpoint **eps, unsigned int num_eps,
 737                unsigned int num_streams, gfp_t mem_flags);
 738
 739/* Reverts a group of bulk endpoints back to not using stream IDs. */
 740extern int usb_free_streams(struct usb_interface *interface,
 741                struct usb_host_endpoint **eps, unsigned int num_eps,
 742                gfp_t mem_flags);
 743
 744/* used these for multi-interface device registration */
 745extern int usb_driver_claim_interface(struct usb_driver *driver,
 746                        struct usb_interface *iface, void *priv);
 747
 748/**
 749 * usb_interface_claimed - returns true iff an interface is claimed
 750 * @iface: the interface being checked
 751 *
 752 * Return: %true (nonzero) iff the interface is claimed, else %false
 753 * (zero).
 754 *
 755 * Note:
 756 * Callers must own the driver model's usb bus readlock.  So driver
 757 * probe() entries don't need extra locking, but other call contexts
 758 * may need to explicitly claim that lock.
 759 *
 760 */
 761static inline int usb_interface_claimed(struct usb_interface *iface)
 762{
 763        return (iface->dev.driver != NULL);
 764}
 765
 766extern void usb_driver_release_interface(struct usb_driver *driver,
 767                        struct usb_interface *iface);
 768const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 769                                         const struct usb_device_id *id);
 770extern int usb_match_one_id(struct usb_interface *interface,
 771                            const struct usb_device_id *id);
 772
 773extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 774extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 775                int minor);
 776extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 777                unsigned ifnum);
 778extern struct usb_host_interface *usb_altnum_to_altsetting(
 779                const struct usb_interface *intf, unsigned int altnum);
 780extern struct usb_host_interface *usb_find_alt_setting(
 781                struct usb_host_config *config,
 782                unsigned int iface_num,
 783                unsigned int alt_num);
 784
 785/* port claiming functions */
 786int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 787                struct usb_dev_state *owner);
 788int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 789                struct usb_dev_state *owner);
 790
 791/**
 792 * usb_make_path - returns stable device path in the usb tree
 793 * @dev: the device whose path is being constructed
 794 * @buf: where to put the string
 795 * @size: how big is "buf"?
 796 *
 797 * Return: Length of the string (> 0) or negative if size was too small.
 798 *
 799 * Note:
 800 * This identifier is intended to be "stable", reflecting physical paths in
 801 * hardware such as physical bus addresses for host controllers or ports on
 802 * USB hubs.  That makes it stay the same until systems are physically
 803 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 804 * controllers.  Adding and removing devices, including virtual root hubs
 805 * in host controller driver modules, does not change these path identifiers;
 806 * neither does rebooting or re-enumerating.  These are more useful identifiers
 807 * than changeable ("unstable") ones like bus numbers or device addresses.
 808 *
 809 * With a partial exception for devices connected to USB 2.0 root hubs, these
 810 * identifiers are also predictable.  So long as the device tree isn't changed,
 811 * plugging any USB device into a given hub port always gives it the same path.
 812 * Because of the use of "companion" controllers, devices connected to ports on
 813 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 814 * high speed, and a different one if they are full or low speed.
 815 */
 816static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 817{
 818        int actual;
 819        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 820                          dev->devpath);
 821        return (actual >= (int)size) ? -1 : actual;
 822}
 823
 824/*-------------------------------------------------------------------------*/
 825
 826#define USB_DEVICE_ID_MATCH_DEVICE \
 827                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 828#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 829                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 830#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 831                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 832#define USB_DEVICE_ID_MATCH_DEV_INFO \
 833                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 834                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 835                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 836#define USB_DEVICE_ID_MATCH_INT_INFO \
 837                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 838                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 839                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 840
 841/**
 842 * USB_DEVICE - macro used to describe a specific usb device
 843 * @vend: the 16 bit USB Vendor ID
 844 * @prod: the 16 bit USB Product ID
 845 *
 846 * This macro is used to create a struct usb_device_id that matches a
 847 * specific device.
 848 */
 849#define USB_DEVICE(vend, prod) \
 850        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 851        .idVendor = (vend), \
 852        .idProduct = (prod)
 853/**
 854 * USB_DEVICE_VER - describe a specific usb device with a version range
 855 * @vend: the 16 bit USB Vendor ID
 856 * @prod: the 16 bit USB Product ID
 857 * @lo: the bcdDevice_lo value
 858 * @hi: the bcdDevice_hi value
 859 *
 860 * This macro is used to create a struct usb_device_id that matches a
 861 * specific device, with a version range.
 862 */
 863#define USB_DEVICE_VER(vend, prod, lo, hi) \
 864        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 865        .idVendor = (vend), \
 866        .idProduct = (prod), \
 867        .bcdDevice_lo = (lo), \
 868        .bcdDevice_hi = (hi)
 869
 870/**
 871 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 872 * @vend: the 16 bit USB Vendor ID
 873 * @prod: the 16 bit USB Product ID
 874 * @cl: bInterfaceClass value
 875 *
 876 * This macro is used to create a struct usb_device_id that matches a
 877 * specific interface class of devices.
 878 */
 879#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 880        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 881                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 882        .idVendor = (vend), \
 883        .idProduct = (prod), \
 884        .bInterfaceClass = (cl)
 885
 886/**
 887 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 888 * @vend: the 16 bit USB Vendor ID
 889 * @prod: the 16 bit USB Product ID
 890 * @pr: bInterfaceProtocol value
 891 *
 892 * This macro is used to create a struct usb_device_id that matches a
 893 * specific interface protocol of devices.
 894 */
 895#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 896        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 897                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 898        .idVendor = (vend), \
 899        .idProduct = (prod), \
 900        .bInterfaceProtocol = (pr)
 901
 902/**
 903 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 904 * @vend: the 16 bit USB Vendor ID
 905 * @prod: the 16 bit USB Product ID
 906 * @num: bInterfaceNumber value
 907 *
 908 * This macro is used to create a struct usb_device_id that matches a
 909 * specific interface number of devices.
 910 */
 911#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 912        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 913                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 914        .idVendor = (vend), \
 915        .idProduct = (prod), \
 916        .bInterfaceNumber = (num)
 917
 918/**
 919 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 920 * @cl: bDeviceClass value
 921 * @sc: bDeviceSubClass value
 922 * @pr: bDeviceProtocol value
 923 *
 924 * This macro is used to create a struct usb_device_id that matches a
 925 * specific class of devices.
 926 */
 927#define USB_DEVICE_INFO(cl, sc, pr) \
 928        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 929        .bDeviceClass = (cl), \
 930        .bDeviceSubClass = (sc), \
 931        .bDeviceProtocol = (pr)
 932
 933/**
 934 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 935 * @cl: bInterfaceClass value
 936 * @sc: bInterfaceSubClass value
 937 * @pr: bInterfaceProtocol value
 938 *
 939 * This macro is used to create a struct usb_device_id that matches a
 940 * specific class of interfaces.
 941 */
 942#define USB_INTERFACE_INFO(cl, sc, pr) \
 943        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 944        .bInterfaceClass = (cl), \
 945        .bInterfaceSubClass = (sc), \
 946        .bInterfaceProtocol = (pr)
 947
 948/**
 949 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 950 * @vend: the 16 bit USB Vendor ID
 951 * @prod: the 16 bit USB Product ID
 952 * @cl: bInterfaceClass value
 953 * @sc: bInterfaceSubClass value
 954 * @pr: bInterfaceProtocol value
 955 *
 956 * This macro is used to create a struct usb_device_id that matches a
 957 * specific device with a specific class of interfaces.
 958 *
 959 * This is especially useful when explicitly matching devices that have
 960 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 961 */
 962#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 963        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 964                | USB_DEVICE_ID_MATCH_DEVICE, \
 965        .idVendor = (vend), \
 966        .idProduct = (prod), \
 967        .bInterfaceClass = (cl), \
 968        .bInterfaceSubClass = (sc), \
 969        .bInterfaceProtocol = (pr)
 970
 971/**
 972 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 973 * @vend: the 16 bit USB Vendor ID
 974 * @cl: bInterfaceClass value
 975 * @sc: bInterfaceSubClass value
 976 * @pr: bInterfaceProtocol value
 977 *
 978 * This macro is used to create a struct usb_device_id that matches a
 979 * specific vendor with a specific class of interfaces.
 980 *
 981 * This is especially useful when explicitly matching devices that have
 982 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 983 */
 984#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 985        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 986                | USB_DEVICE_ID_MATCH_VENDOR, \
 987        .idVendor = (vend), \
 988        .bInterfaceClass = (cl), \
 989        .bInterfaceSubClass = (sc), \
 990        .bInterfaceProtocol = (pr)
 991
 992/* ----------------------------------------------------------------------- */
 993
 994/* Stuff for dynamic usb ids */
 995struct usb_dynids {
 996        spinlock_t lock;
 997        struct list_head list;
 998};
 999
1000struct usb_dynid {
1001        struct list_head node;
1002        struct usb_device_id id;
1003};
1004
1005extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1006                                const struct usb_device_id *id_table,
1007                                struct device_driver *driver,
1008                                const char *buf, size_t count);
1009
1010extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1011
1012/**
1013 * struct usbdrv_wrap - wrapper for driver-model structure
1014 * @driver: The driver-model core driver structure.
1015 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1016 */
1017struct usbdrv_wrap {
1018        struct device_driver driver;
1019        int for_devices;
1020};
1021
1022/**
1023 * struct usb_driver - identifies USB interface driver to usbcore
1024 * @name: The driver name should be unique among USB drivers,
1025 *      and should normally be the same as the module name.
1026 * @probe: Called to see if the driver is willing to manage a particular
1027 *      interface on a device.  If it is, probe returns zero and uses
1028 *      usb_set_intfdata() to associate driver-specific data with the
1029 *      interface.  It may also use usb_set_interface() to specify the
1030 *      appropriate altsetting.  If unwilling to manage the interface,
1031 *      return -ENODEV, if genuine IO errors occurred, an appropriate
1032 *      negative errno value.
1033 * @disconnect: Called when the interface is no longer accessible, usually
1034 *      because its device has been (or is being) disconnected or the
1035 *      driver module is being unloaded.
1036 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1037 *      the "usbfs" filesystem.  This lets devices provide ways to
1038 *      expose information to user space regardless of where they
1039 *      do (or don't) show up otherwise in the filesystem.
1040 * @suspend: Called when the device is going to be suspended by the
1041 *      system either from system sleep or runtime suspend context. The
1042 *      return value will be ignored in system sleep context, so do NOT
1043 *      try to continue using the device if suspend fails in this case.
1044 *      Instead, let the resume or reset-resume routine recover from
1045 *      the failure.
1046 * @resume: Called when the device is being resumed by the system.
1047 * @reset_resume: Called when the suspended device has been reset instead
1048 *      of being resumed.
1049 * @pre_reset: Called by usb_reset_device() when the device is about to be
1050 *      reset.  This routine must not return until the driver has no active
1051 *      URBs for the device, and no more URBs may be submitted until the
1052 *      post_reset method is called.
1053 * @post_reset: Called by usb_reset_device() after the device
1054 *      has been reset
1055 * @id_table: USB drivers use ID table to support hotplugging.
1056 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1057 *      or your driver's probe function will never get called.
1058 * @dynids: used internally to hold the list of dynamically added device
1059 *      ids for this driver.
1060 * @drvwrap: Driver-model core structure wrapper.
1061 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1062 *      added to this driver by preventing the sysfs file from being created.
1063 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1064 *      for interfaces bound to this driver.
1065 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1066 *      endpoints before calling the driver's disconnect method.
1067 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1068 *      to initiate lower power link state transitions when an idle timeout
1069 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1070 *
1071 * USB interface drivers must provide a name, probe() and disconnect()
1072 * methods, and an id_table.  Other driver fields are optional.
1073 *
1074 * The id_table is used in hotplugging.  It holds a set of descriptors,
1075 * and specialized data may be associated with each entry.  That table
1076 * is used by both user and kernel mode hotplugging support.
1077 *
1078 * The probe() and disconnect() methods are called in a context where
1079 * they can sleep, but they should avoid abusing the privilege.  Most
1080 * work to connect to a device should be done when the device is opened,
1081 * and undone at the last close.  The disconnect code needs to address
1082 * concurrency issues with respect to open() and close() methods, as
1083 * well as forcing all pending I/O requests to complete (by unlinking
1084 * them as necessary, and blocking until the unlinks complete).
1085 */
1086struct usb_driver {
1087        const char *name;
1088
1089        int (*probe) (struct usb_interface *intf,
1090                      const struct usb_device_id *id);
1091
1092        void (*disconnect) (struct usb_interface *intf);
1093
1094        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1095                        void *buf);
1096
1097        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1098        int (*resume) (struct usb_interface *intf);
1099        int (*reset_resume)(struct usb_interface *intf);
1100
1101        int (*pre_reset)(struct usb_interface *intf);
1102        int (*post_reset)(struct usb_interface *intf);
1103
1104        const struct usb_device_id *id_table;
1105
1106        struct usb_dynids dynids;
1107        struct usbdrv_wrap drvwrap;
1108        unsigned int no_dynamic_id:1;
1109        unsigned int supports_autosuspend:1;
1110        unsigned int disable_hub_initiated_lpm:1;
1111        unsigned int soft_unbind:1;
1112};
1113#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1114
1115/**
1116 * struct usb_device_driver - identifies USB device driver to usbcore
1117 * @name: The driver name should be unique among USB drivers,
1118 *      and should normally be the same as the module name.
1119 * @probe: Called to see if the driver is willing to manage a particular
1120 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1121 *      to associate driver-specific data with the device.  If unwilling
1122 *      to manage the device, return a negative errno value.
1123 * @disconnect: Called when the device is no longer accessible, usually
1124 *      because it has been (or is being) disconnected or the driver's
1125 *      module is being unloaded.
1126 * @suspend: Called when the device is going to be suspended by the system.
1127 * @resume: Called when the device is being resumed by the system.
1128 * @drvwrap: Driver-model core structure wrapper.
1129 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1130 *      for devices bound to this driver.
1131 *
1132 * USB drivers must provide all the fields listed above except drvwrap.
1133 */
1134struct usb_device_driver {
1135        const char *name;
1136
1137        int (*probe) (struct usb_device *udev);
1138        void (*disconnect) (struct usb_device *udev);
1139
1140        int (*suspend) (struct usb_device *udev, pm_message_t message);
1141        int (*resume) (struct usb_device *udev, pm_message_t message);
1142        struct usbdrv_wrap drvwrap;
1143        unsigned int supports_autosuspend:1;
1144};
1145#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1146                drvwrap.driver)
1147
1148extern struct bus_type usb_bus_type;
1149
1150/**
1151 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1152 * @name: the usb class device name for this driver.  Will show up in sysfs.
1153 * @devnode: Callback to provide a naming hint for a possible
1154 *      device node to create.
1155 * @fops: pointer to the struct file_operations of this driver.
1156 * @minor_base: the start of the minor range for this driver.
1157 *
1158 * This structure is used for the usb_register_dev() and
1159 * usb_unregister_dev() functions, to consolidate a number of the
1160 * parameters used for them.
1161 */
1162struct usb_class_driver {
1163        char *name;
1164        char *(*devnode)(struct device *dev, umode_t *mode);
1165        const struct file_operations *fops;
1166        int minor_base;
1167};
1168
1169/*
1170 * use these in module_init()/module_exit()
1171 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1172 */
1173extern int usb_register_driver(struct usb_driver *, struct module *,
1174                               const char *);
1175
1176/* use a define to avoid include chaining to get THIS_MODULE & friends */
1177#define usb_register(driver) \
1178        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1179
1180extern void usb_deregister(struct usb_driver *);
1181
1182/**
1183 * module_usb_driver() - Helper macro for registering a USB driver
1184 * @__usb_driver: usb_driver struct
1185 *
1186 * Helper macro for USB drivers which do not do anything special in module
1187 * init/exit. This eliminates a lot of boilerplate. Each module may only
1188 * use this macro once, and calling it replaces module_init() and module_exit()
1189 */
1190#define module_usb_driver(__usb_driver) \
1191        module_driver(__usb_driver, usb_register, \
1192                       usb_deregister)
1193
1194extern int usb_register_device_driver(struct usb_device_driver *,
1195                        struct module *);
1196extern void usb_deregister_device_driver(struct usb_device_driver *);
1197
1198extern int usb_register_dev(struct usb_interface *intf,
1199                            struct usb_class_driver *class_driver);
1200extern void usb_deregister_dev(struct usb_interface *intf,
1201                               struct usb_class_driver *class_driver);
1202
1203extern int usb_disabled(void);
1204
1205/* ----------------------------------------------------------------------- */
1206
1207/*
1208 * URB support, for asynchronous request completions
1209 */
1210
1211/*
1212 * urb->transfer_flags:
1213 *
1214 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1215 */
1216#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1217#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1218                                         * slot in the schedule */
1219#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1220#define URB_NO_FSBR             0x0020  /* UHCI-specific */
1221#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1222#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1223                                         * needed */
1224#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1225
1226/* The following flags are used internally by usbcore and HCDs */
1227#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1228#define URB_DIR_OUT             0
1229#define URB_DIR_MASK            URB_DIR_IN
1230
1231#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1232#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1233#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1234#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1235#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1236#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1237#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1238#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1239
1240struct usb_iso_packet_descriptor {
1241        unsigned int offset;
1242        unsigned int length;            /* expected length */
1243        unsigned int actual_length;
1244        int status;
1245};
1246
1247struct urb;
1248
1249struct usb_anchor {
1250        struct list_head urb_list;
1251        wait_queue_head_t wait;
1252        spinlock_t lock;
1253        atomic_t suspend_wakeups;
1254        unsigned int poisoned:1;
1255};
1256
1257static inline void init_usb_anchor(struct usb_anchor *anchor)
1258{
1259        memset(anchor, 0, sizeof(*anchor));
1260        INIT_LIST_HEAD(&anchor->urb_list);
1261        init_waitqueue_head(&anchor->wait);
1262        spin_lock_init(&anchor->lock);
1263}
1264
1265typedef void (*usb_complete_t)(struct urb *);
1266
1267/**
1268 * struct urb - USB Request Block
1269 * @urb_list: For use by current owner of the URB.
1270 * @anchor_list: membership in the list of an anchor
1271 * @anchor: to anchor URBs to a common mooring
1272 * @ep: Points to the endpoint's data structure.  Will eventually
1273 *      replace @pipe.
1274 * @pipe: Holds endpoint number, direction, type, and more.
1275 *      Create these values with the eight macros available;
1276 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1277 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1278 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1279 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1280 *      is a different endpoint (and pipe) from "out" endpoint two.
1281 *      The current configuration controls the existence, type, and
1282 *      maximum packet size of any given endpoint.
1283 * @stream_id: the endpoint's stream ID for bulk streams
1284 * @dev: Identifies the USB device to perform the request.
1285 * @status: This is read in non-iso completion functions to get the
1286 *      status of the particular request.  ISO requests only use it
1287 *      to tell whether the URB was unlinked; detailed status for
1288 *      each frame is in the fields of the iso_frame-desc.
1289 * @transfer_flags: A variety of flags may be used to affect how URB
1290 *      submission, unlinking, or operation are handled.  Different
1291 *      kinds of URB can use different flags.
1292 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1293 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1294 *      (however, do not leave garbage in transfer_buffer even then).
1295 *      This buffer must be suitable for DMA; allocate it with
1296 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1297 *      of this buffer will be modified.  This buffer is used for the data
1298 *      stage of control transfers.
1299 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1300 *      the device driver is saying that it provided this DMA address,
1301 *      which the host controller driver should use in preference to the
1302 *      transfer_buffer.
1303 * @sg: scatter gather buffer list, the buffer size of each element in
1304 *      the list (except the last) must be divisible by the endpoint's
1305 *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1306 * @num_mapped_sgs: (internal) number of mapped sg entries
1307 * @num_sgs: number of entries in the sg list
1308 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1309 *      be broken up into chunks according to the current maximum packet
1310 *      size for the endpoint, which is a function of the configuration
1311 *      and is encoded in the pipe.  When the length is zero, neither
1312 *      transfer_buffer nor transfer_dma is used.
1313 * @actual_length: This is read in non-iso completion functions, and
1314 *      it tells how many bytes (out of transfer_buffer_length) were
1315 *      transferred.  It will normally be the same as requested, unless
1316 *      either an error was reported or a short read was performed.
1317 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1318 *      short reads be reported as errors.
1319 * @setup_packet: Only used for control transfers, this points to eight bytes
1320 *      of setup data.  Control transfers always start by sending this data
1321 *      to the device.  Then transfer_buffer is read or written, if needed.
1322 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1323 *      this field; setup_packet must point to a valid buffer.
1324 * @start_frame: Returns the initial frame for isochronous transfers.
1325 * @number_of_packets: Lists the number of ISO transfer buffers.
1326 * @interval: Specifies the polling interval for interrupt or isochronous
1327 *      transfers.  The units are frames (milliseconds) for full and low
1328 *      speed devices, and microframes (1/8 millisecond) for highspeed
1329 *      and SuperSpeed devices.
1330 * @error_count: Returns the number of ISO transfers that reported errors.
1331 * @context: For use in completion functions.  This normally points to
1332 *      request-specific driver context.
1333 * @complete: Completion handler. This URB is passed as the parameter to the
1334 *      completion function.  The completion function may then do what
1335 *      it likes with the URB, including resubmitting or freeing it.
1336 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1337 *      collect the transfer status for each buffer.
1338 *
1339 * This structure identifies USB transfer requests.  URBs must be allocated by
1340 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1341 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1342 * are submitted using usb_submit_urb(), and pending requests may be canceled
1343 * using usb_unlink_urb() or usb_kill_urb().
1344 *
1345 * Data Transfer Buffers:
1346 *
1347 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1348 * taken from the general page pool.  That is provided by transfer_buffer
1349 * (control requests also use setup_packet), and host controller drivers
1350 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1351 * mapping operations can be expensive on some platforms (perhaps using a dma
1352 * bounce buffer or talking to an IOMMU),
1353 * although they're cheap on commodity x86 and ppc hardware.
1354 *
1355 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1356 * which tells the host controller driver that no such mapping is needed for
1357 * the transfer_buffer since
1358 * the device driver is DMA-aware.  For example, a device driver might
1359 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1360 * When this transfer flag is provided, host controller drivers will
1361 * attempt to use the dma address found in the transfer_dma
1362 * field rather than determining a dma address themselves.
1363 *
1364 * Note that transfer_buffer must still be set if the controller
1365 * does not support DMA (as indicated by bus.uses_dma) and when talking
1366 * to root hub. If you have to trasfer between highmem zone and the device
1367 * on such controller, create a bounce buffer or bail out with an error.
1368 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1369 * capable, assign NULL to it, so that usbmon knows not to use the value.
1370 * The setup_packet must always be set, so it cannot be located in highmem.
1371 *
1372 * Initialization:
1373 *
1374 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1375 * zero), and complete fields.  All URBs must also initialize
1376 * transfer_buffer and transfer_buffer_length.  They may provide the
1377 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1378 * to be treated as errors; that flag is invalid for write requests.
1379 *
1380 * Bulk URBs may
1381 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1382 * should always terminate with a short packet, even if it means adding an
1383 * extra zero length packet.
1384 *
1385 * Control URBs must provide a valid pointer in the setup_packet field.
1386 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1387 * beforehand.
1388 *
1389 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1390 * or, for highspeed devices, 125 microsecond units)
1391 * to poll for transfers.  After the URB has been submitted, the interval
1392 * field reflects how the transfer was actually scheduled.
1393 * The polling interval may be more frequent than requested.
1394 * For example, some controllers have a maximum interval of 32 milliseconds,
1395 * while others support intervals of up to 1024 milliseconds.
1396 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1397 * endpoints, as well as high speed interrupt endpoints, the encoding of
1398 * the transfer interval in the endpoint descriptor is logarithmic.
1399 * Device drivers must convert that value to linear units themselves.)
1400 *
1401 * If an isochronous endpoint queue isn't already running, the host
1402 * controller will schedule a new URB to start as soon as bandwidth
1403 * utilization allows.  If the queue is running then a new URB will be
1404 * scheduled to start in the first transfer slot following the end of the
1405 * preceding URB, if that slot has not already expired.  If the slot has
1406 * expired (which can happen when IRQ delivery is delayed for a long time),
1407 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1408 * is clear then the URB will be scheduled to start in the expired slot,
1409 * implying that some of its packets will not be transferred; if the flag
1410 * is set then the URB will be scheduled in the first unexpired slot,
1411 * breaking the queue's synchronization.  Upon URB completion, the
1412 * start_frame field will be set to the (micro)frame number in which the
1413 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1414 * and can go from as low as 256 to as high as 65536 frames.
1415 *
1416 * Isochronous URBs have a different data transfer model, in part because
1417 * the quality of service is only "best effort".  Callers provide specially
1418 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1419 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1420 * URBs are normally queued, submitted by drivers to arrange that
1421 * transfers are at least double buffered, and then explicitly resubmitted
1422 * in completion handlers, so
1423 * that data (such as audio or video) streams at as constant a rate as the
1424 * host controller scheduler can support.
1425 *
1426 * Completion Callbacks:
1427 *
1428 * The completion callback is made in_interrupt(), and one of the first
1429 * things that a completion handler should do is check the status field.
1430 * The status field is provided for all URBs.  It is used to report
1431 * unlinked URBs, and status for all non-ISO transfers.  It should not
1432 * be examined before the URB is returned to the completion handler.
1433 *
1434 * The context field is normally used to link URBs back to the relevant
1435 * driver or request state.
1436 *
1437 * When the completion callback is invoked for non-isochronous URBs, the
1438 * actual_length field tells how many bytes were transferred.  This field
1439 * is updated even when the URB terminated with an error or was unlinked.
1440 *
1441 * ISO transfer status is reported in the status and actual_length fields
1442 * of the iso_frame_desc array, and the number of errors is reported in
1443 * error_count.  Completion callbacks for ISO transfers will normally
1444 * (re)submit URBs to ensure a constant transfer rate.
1445 *
1446 * Note that even fields marked "public" should not be touched by the driver
1447 * when the urb is owned by the hcd, that is, since the call to
1448 * usb_submit_urb() till the entry into the completion routine.
1449 */
1450struct urb {
1451        /* private: usb core and host controller only fields in the urb */
1452        struct kref kref;               /* reference count of the URB */
1453        void *hcpriv;                   /* private data for host controller */
1454        atomic_t use_count;             /* concurrent submissions counter */
1455        atomic_t reject;                /* submissions will fail */
1456        int unlinked;                   /* unlink error code */
1457
1458        /* public: documented fields in the urb that can be used by drivers */
1459        struct list_head urb_list;      /* list head for use by the urb's
1460                                         * current owner */
1461        struct list_head anchor_list;   /* the URB may be anchored */
1462        struct usb_anchor *anchor;
1463        struct usb_device *dev;         /* (in) pointer to associated device */
1464        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1465        unsigned int pipe;              /* (in) pipe information */
1466        unsigned int stream_id;         /* (in) stream ID */
1467        int status;                     /* (return) non-ISO status */
1468        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1469        void *transfer_buffer;          /* (in) associated data buffer */
1470        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1471        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1472        int num_mapped_sgs;             /* (internal) mapped sg entries */
1473        int num_sgs;                    /* (in) number of entries in the sg list */
1474        u32 transfer_buffer_length;     /* (in) data buffer length */
1475        u32 actual_length;              /* (return) actual transfer length */
1476        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1477        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1478        int start_frame;                /* (modify) start frame (ISO) */
1479        int number_of_packets;          /* (in) number of ISO packets */
1480        int interval;                   /* (modify) transfer interval
1481                                         * (INT/ISO) */
1482        int error_count;                /* (return) number of ISO errors */
1483        void *context;                  /* (in) context for completion */
1484        usb_complete_t complete;        /* (in) completion routine */
1485        struct usb_iso_packet_descriptor iso_frame_desc[0];
1486                                        /* (in) ISO ONLY */
1487};
1488
1489/* ----------------------------------------------------------------------- */
1490
1491/**
1492 * usb_fill_control_urb - initializes a control urb
1493 * @urb: pointer to the urb to initialize.
1494 * @dev: pointer to the struct usb_device for this urb.
1495 * @pipe: the endpoint pipe
1496 * @setup_packet: pointer to the setup_packet buffer
1497 * @transfer_buffer: pointer to the transfer buffer
1498 * @buffer_length: length of the transfer buffer
1499 * @complete_fn: pointer to the usb_complete_t function
1500 * @context: what to set the urb context to.
1501 *
1502 * Initializes a control urb with the proper information needed to submit
1503 * it to a device.
1504 */
1505static inline void usb_fill_control_urb(struct urb *urb,
1506                                        struct usb_device *dev,
1507                                        unsigned int pipe,
1508                                        unsigned char *setup_packet,
1509                                        void *transfer_buffer,
1510                                        int buffer_length,
1511                                        usb_complete_t complete_fn,
1512                                        void *context)
1513{
1514        urb->dev = dev;
1515        urb->pipe = pipe;
1516        urb->setup_packet = setup_packet;
1517        urb->transfer_buffer = transfer_buffer;
1518        urb->transfer_buffer_length = buffer_length;
1519        urb->complete = complete_fn;
1520        urb->context = context;
1521}
1522
1523/**
1524 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1525 * @urb: pointer to the urb to initialize.
1526 * @dev: pointer to the struct usb_device for this urb.
1527 * @pipe: the endpoint pipe
1528 * @transfer_buffer: pointer to the transfer buffer
1529 * @buffer_length: length of the transfer buffer
1530 * @complete_fn: pointer to the usb_complete_t function
1531 * @context: what to set the urb context to.
1532 *
1533 * Initializes a bulk urb with the proper information needed to submit it
1534 * to a device.
1535 */
1536static inline void usb_fill_bulk_urb(struct urb *urb,
1537                                     struct usb_device *dev,
1538                                     unsigned int pipe,
1539                                     void *transfer_buffer,
1540                                     int buffer_length,
1541                                     usb_complete_t complete_fn,
1542                                     void *context)
1543{
1544        urb->dev = dev;
1545        urb->pipe = pipe;
1546        urb->transfer_buffer = transfer_buffer;
1547        urb->transfer_buffer_length = buffer_length;
1548        urb->complete = complete_fn;
1549        urb->context = context;
1550}
1551
1552/**
1553 * usb_fill_int_urb - macro to help initialize a interrupt urb
1554 * @urb: pointer to the urb to initialize.
1555 * @dev: pointer to the struct usb_device for this urb.
1556 * @pipe: the endpoint pipe
1557 * @transfer_buffer: pointer to the transfer buffer
1558 * @buffer_length: length of the transfer buffer
1559 * @complete_fn: pointer to the usb_complete_t function
1560 * @context: what to set the urb context to.
1561 * @interval: what to set the urb interval to, encoded like
1562 *      the endpoint descriptor's bInterval value.
1563 *
1564 * Initializes a interrupt urb with the proper information needed to submit
1565 * it to a device.
1566 *
1567 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1568 * encoding of the endpoint interval, and express polling intervals in
1569 * microframes (eight per millisecond) rather than in frames (one per
1570 * millisecond).
1571 *
1572 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1573 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1574 * through to the host controller, rather than being translated into microframe
1575 * units.
1576 */
1577static inline void usb_fill_int_urb(struct urb *urb,
1578                                    struct usb_device *dev,
1579                                    unsigned int pipe,
1580                                    void *transfer_buffer,
1581                                    int buffer_length,
1582                                    usb_complete_t complete_fn,
1583                                    void *context,
1584                                    int interval)
1585{
1586        urb->dev = dev;
1587        urb->pipe = pipe;
1588        urb->transfer_buffer = transfer_buffer;
1589        urb->transfer_buffer_length = buffer_length;
1590        urb->complete = complete_fn;
1591        urb->context = context;
1592
1593        if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1594                /* make sure interval is within allowed range */
1595                interval = clamp(interval, 1, 16);
1596
1597                urb->interval = 1 << (interval - 1);
1598        } else {
1599                urb->interval = interval;
1600        }
1601
1602        urb->start_frame = -1;
1603}
1604
1605extern void usb_init_urb(struct urb *urb);
1606extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1607extern void usb_free_urb(struct urb *urb);
1608#define usb_put_urb usb_free_urb
1609extern struct urb *usb_get_urb(struct urb *urb);
1610extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1611extern int usb_unlink_urb(struct urb *urb);
1612extern void usb_kill_urb(struct urb *urb);
1613extern void usb_poison_urb(struct urb *urb);
1614extern void usb_unpoison_urb(struct urb *urb);
1615extern void usb_block_urb(struct urb *urb);
1616extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1617extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1618extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1619extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1620extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1621extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1622extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1623extern void usb_unanchor_urb(struct urb *urb);
1624extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1625                                         unsigned int timeout);
1626extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1627extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1628extern int usb_anchor_empty(struct usb_anchor *anchor);
1629
1630#define usb_unblock_urb usb_unpoison_urb
1631
1632/**
1633 * usb_urb_dir_in - check if an URB describes an IN transfer
1634 * @urb: URB to be checked
1635 *
1636 * Return: 1 if @urb describes an IN transfer (device-to-host),
1637 * otherwise 0.
1638 */
1639static inline int usb_urb_dir_in(struct urb *urb)
1640{
1641        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1642}
1643
1644/**
1645 * usb_urb_dir_out - check if an URB describes an OUT transfer
1646 * @urb: URB to be checked
1647 *
1648 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1649 * otherwise 0.
1650 */
1651static inline int usb_urb_dir_out(struct urb *urb)
1652{
1653        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1654}
1655
1656void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1657        gfp_t mem_flags, dma_addr_t *dma);
1658void usb_free_coherent(struct usb_device *dev, size_t size,
1659        void *addr, dma_addr_t dma);
1660
1661#if 0
1662struct urb *usb_buffer_map(struct urb *urb);
1663void usb_buffer_dmasync(struct urb *urb);
1664void usb_buffer_unmap(struct urb *urb);
1665#endif
1666
1667struct scatterlist;
1668int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1669                      struct scatterlist *sg, int nents);
1670#if 0
1671void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1672                           struct scatterlist *sg, int n_hw_ents);
1673#endif
1674void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1675                         struct scatterlist *sg, int n_hw_ents);
1676
1677/*-------------------------------------------------------------------*
1678 *                         SYNCHRONOUS CALL SUPPORT                  *
1679 *-------------------------------------------------------------------*/
1680
1681extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1682        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1683        void *data, __u16 size, int timeout);
1684extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1685        void *data, int len, int *actual_length, int timeout);
1686extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1687        void *data, int len, int *actual_length,
1688        int timeout);
1689
1690/* wrappers around usb_control_msg() for the most common standard requests */
1691extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1692        unsigned char descindex, void *buf, int size);
1693extern int usb_get_status(struct usb_device *dev,
1694        int type, int target, void *data);
1695extern int usb_string(struct usb_device *dev, int index,
1696        char *buf, size_t size);
1697
1698/* wrappers that also update important state inside usbcore */
1699extern int usb_clear_halt(struct usb_device *dev, int pipe);
1700extern int usb_reset_configuration(struct usb_device *dev);
1701extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1702extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1703
1704/* this request isn't really synchronous, but it belongs with the others */
1705extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1706
1707/* choose and set configuration for device */
1708extern int usb_choose_configuration(struct usb_device *udev);
1709extern int usb_set_configuration(struct usb_device *dev, int configuration);
1710
1711/*
1712 * timeouts, in milliseconds, used for sending/receiving control messages
1713 * they typically complete within a few frames (msec) after they're issued
1714 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1715 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1716 */
1717#define USB_CTRL_GET_TIMEOUT    5000
1718#define USB_CTRL_SET_TIMEOUT    5000
1719
1720
1721/**
1722 * struct usb_sg_request - support for scatter/gather I/O
1723 * @status: zero indicates success, else negative errno
1724 * @bytes: counts bytes transferred.
1725 *
1726 * These requests are initialized using usb_sg_init(), and then are used
1727 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1728 * members of the request object aren't for driver access.
1729 *
1730 * The status and bytecount values are valid only after usb_sg_wait()
1731 * returns.  If the status is zero, then the bytecount matches the total
1732 * from the request.
1733 *
1734 * After an error completion, drivers may need to clear a halt condition
1735 * on the endpoint.
1736 */
1737struct usb_sg_request {
1738        int                     status;
1739        size_t                  bytes;
1740
1741        /* private:
1742         * members below are private to usbcore,
1743         * and are not provided for driver access!
1744         */
1745        spinlock_t              lock;
1746
1747        struct usb_device       *dev;
1748        int                     pipe;
1749
1750        int                     entries;
1751        struct urb              **urbs;
1752
1753        int                     count;
1754        struct completion       complete;
1755};
1756
1757int usb_sg_init(
1758        struct usb_sg_request   *io,
1759        struct usb_device       *dev,
1760        unsigned                pipe,
1761        unsigned                period,
1762        struct scatterlist      *sg,
1763        int                     nents,
1764        size_t                  length,
1765        gfp_t                   mem_flags
1766);
1767void usb_sg_cancel(struct usb_sg_request *io);
1768void usb_sg_wait(struct usb_sg_request *io);
1769
1770
1771/* ----------------------------------------------------------------------- */
1772
1773/*
1774 * For various legacy reasons, Linux has a small cookie that's paired with
1775 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1776 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1777 * an unsigned int encoded as:
1778 *
1779 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1780 *                                       1 = Device-to-Host [In] ...
1781 *                                      like endpoint bEndpointAddress)
1782 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1783 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1784 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1785 *                                       10 = control, 11 = bulk)
1786 *
1787 * Given the device address and endpoint descriptor, pipes are redundant.
1788 */
1789
1790/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1791/* (yet ... they're the values used by usbfs) */
1792#define PIPE_ISOCHRONOUS                0
1793#define PIPE_INTERRUPT                  1
1794#define PIPE_CONTROL                    2
1795#define PIPE_BULK                       3
1796
1797#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1798#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1799
1800#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1801#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1802
1803#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1804#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1805#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1806#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1807#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1808
1809static inline unsigned int __create_pipe(struct usb_device *dev,
1810                unsigned int endpoint)
1811{
1812        return (dev->devnum << 8) | (endpoint << 15);
1813}
1814
1815/* Create various pipes... */
1816#define usb_sndctrlpipe(dev, endpoint)  \
1817        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1818#define usb_rcvctrlpipe(dev, endpoint)  \
1819        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1820#define usb_sndisocpipe(dev, endpoint)  \
1821        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1822#define usb_rcvisocpipe(dev, endpoint)  \
1823        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824#define usb_sndbulkpipe(dev, endpoint)  \
1825        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1826#define usb_rcvbulkpipe(dev, endpoint)  \
1827        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828#define usb_sndintpipe(dev, endpoint)   \
1829        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1830#define usb_rcvintpipe(dev, endpoint)   \
1831        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1832
1833static inline struct usb_host_endpoint *
1834usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1835{
1836        struct usb_host_endpoint **eps;
1837        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1838        return eps[usb_pipeendpoint(pipe)];
1839}
1840
1841/*-------------------------------------------------------------------------*/
1842
1843static inline __u16
1844usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1845{
1846        struct usb_host_endpoint        *ep;
1847        unsigned                        epnum = usb_pipeendpoint(pipe);
1848
1849        if (is_out) {
1850                WARN_ON(usb_pipein(pipe));
1851                ep = udev->ep_out[epnum];
1852        } else {
1853                WARN_ON(usb_pipeout(pipe));
1854                ep = udev->ep_in[epnum];
1855        }
1856        if (!ep)
1857                return 0;
1858
1859        /* NOTE:  only 0x07ff bits are for packet size... */
1860        return usb_endpoint_maxp(&ep->desc);
1861}
1862
1863/* ----------------------------------------------------------------------- */
1864
1865/* translate USB error codes to codes user space understands */
1866static inline int usb_translate_errors(int error_code)
1867{
1868        switch (error_code) {
1869        case 0:
1870        case -ENOMEM:
1871        case -ENODEV:
1872        case -EOPNOTSUPP:
1873                return error_code;
1874        default:
1875                return -EIO;
1876        }
1877}
1878
1879/* Events from the usb core */
1880#define USB_DEVICE_ADD          0x0001
1881#define USB_DEVICE_REMOVE       0x0002
1882#define USB_BUS_ADD             0x0003
1883#define USB_BUS_REMOVE          0x0004
1884extern void usb_register_notify(struct notifier_block *nb);
1885extern void usb_unregister_notify(struct notifier_block *nb);
1886
1887/* debugfs stuff */
1888extern struct dentry *usb_debug_root;
1889
1890/* LED triggers */
1891enum usb_led_event {
1892        USB_LED_EVENT_HOST = 0,
1893        USB_LED_EVENT_GADGET = 1,
1894};
1895
1896#ifdef CONFIG_USB_LED_TRIG
1897extern void usb_led_activity(enum usb_led_event ev);
1898#else
1899static inline void usb_led_activity(enum usb_led_event ev) {}
1900#endif
1901
1902#endif  /* __KERNEL__ */
1903
1904#endif
1905