linux/kernel/rcu/tree_plugin.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/smpboot.h>
  31#include "../time/tick-internal.h"
  32
  33#ifdef CONFIG_RCU_BOOST
  34
  35#include "../locking/rtmutex_common.h"
  36
  37/*
  38 * Control variables for per-CPU and per-rcu_node kthreads.  These
  39 * handle all flavors of RCU.
  40 */
  41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  44DEFINE_PER_CPU(char, rcu_cpu_has_work);
  45
  46#else /* #ifdef CONFIG_RCU_BOOST */
  47
  48/*
  49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  50 * all uses are in dead code.  Provide a definition to keep the compiler
  51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  52 * This probably needs to be excluded from -rt builds.
  53 */
  54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  55
  56#endif /* #else #ifdef CONFIG_RCU_BOOST */
  57
  58#ifdef CONFIG_RCU_NOCB_CPU
  59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  60static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
  61static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  63
  64/*
  65 * Check the RCU kernel configuration parameters and print informative
  66 * messages about anything out of the ordinary.  If you like #ifdef, you
  67 * will love this function.
  68 */
  69static void __init rcu_bootup_announce_oddness(void)
  70{
  71        if (IS_ENABLED(CONFIG_RCU_TRACE))
  72                pr_info("\tRCU debugfs-based tracing is enabled.\n");
  73        if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  74            (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  75                pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  76                       RCU_FANOUT);
  77        if (rcu_fanout_exact)
  78                pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  79        if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  80                pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  81        if (IS_ENABLED(CONFIG_PROVE_RCU))
  82                pr_info("\tRCU lockdep checking is enabled.\n");
  83        if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
  84                pr_info("\tRCU torture testing starts during boot.\n");
  85        if (RCU_NUM_LVLS >= 4)
  86                pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  87        if (RCU_FANOUT_LEAF != 16)
  88                pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  89                        RCU_FANOUT_LEAF);
  90        if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  91                pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  92        if (nr_cpu_ids != NR_CPUS)
  93                pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  94        if (IS_ENABLED(CONFIG_RCU_BOOST))
  95                pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  96}
  97
  98#ifdef CONFIG_PREEMPT_RCU
  99
 100RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
 101static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
 102static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 103
 104static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 105                               bool wake);
 106
 107/*
 108 * Tell them what RCU they are running.
 109 */
 110static void __init rcu_bootup_announce(void)
 111{
 112        pr_info("Preemptible hierarchical RCU implementation.\n");
 113        rcu_bootup_announce_oddness();
 114}
 115
 116/* Flags for rcu_preempt_ctxt_queue() decision table. */
 117#define RCU_GP_TASKS    0x8
 118#define RCU_EXP_TASKS   0x4
 119#define RCU_GP_BLKD     0x2
 120#define RCU_EXP_BLKD    0x1
 121
 122/*
 123 * Queues a task preempted within an RCU-preempt read-side critical
 124 * section into the appropriate location within the ->blkd_tasks list,
 125 * depending on the states of any ongoing normal and expedited grace
 126 * periods.  The ->gp_tasks pointer indicates which element the normal
 127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 128 * indicates which element the expedited grace period is waiting on (again,
 129 * NULL if none).  If a grace period is waiting on a given element in the
 130 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 131 * adding a task to the tail of the list blocks any grace period that is
 132 * already waiting on one of the elements.  In contrast, adding a task
 133 * to the head of the list won't block any grace period that is already
 134 * waiting on one of the elements.
 135 *
 136 * This queuing is imprecise, and can sometimes make an ongoing grace
 137 * period wait for a task that is not strictly speaking blocking it.
 138 * Given the choice, we needlessly block a normal grace period rather than
 139 * blocking an expedited grace period.
 140 *
 141 * Note that an endless sequence of expedited grace periods still cannot
 142 * indefinitely postpone a normal grace period.  Eventually, all of the
 143 * fixed number of preempted tasks blocking the normal grace period that are
 144 * not also blocking the expedited grace period will resume and complete
 145 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 146 * pointer will equal the ->exp_tasks pointer, at which point the end of
 147 * the corresponding expedited grace period will also be the end of the
 148 * normal grace period.
 149 */
 150static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
 151                                   unsigned long flags) __releases(rnp->lock)
 152{
 153        int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 154                         (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 155                         (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 156                         (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 157        struct task_struct *t = current;
 158
 159        /*
 160         * Decide where to queue the newly blocked task.  In theory,
 161         * this could be an if-statement.  In practice, when I tried
 162         * that, it was quite messy.
 163         */
 164        switch (blkd_state) {
 165        case 0:
 166        case                RCU_EXP_TASKS:
 167        case                RCU_EXP_TASKS + RCU_GP_BLKD:
 168        case RCU_GP_TASKS:
 169        case RCU_GP_TASKS + RCU_EXP_TASKS:
 170
 171                /*
 172                 * Blocking neither GP, or first task blocking the normal
 173                 * GP but not blocking the already-waiting expedited GP.
 174                 * Queue at the head of the list to avoid unnecessarily
 175                 * blocking the already-waiting GPs.
 176                 */
 177                list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 178                break;
 179
 180        case                                              RCU_EXP_BLKD:
 181        case                                RCU_GP_BLKD:
 182        case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 183        case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 184        case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 185        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 186
 187                /*
 188                 * First task arriving that blocks either GP, or first task
 189                 * arriving that blocks the expedited GP (with the normal
 190                 * GP already waiting), or a task arriving that blocks
 191                 * both GPs with both GPs already waiting.  Queue at the
 192                 * tail of the list to avoid any GP waiting on any of the
 193                 * already queued tasks that are not blocking it.
 194                 */
 195                list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 196                break;
 197
 198        case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 199        case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 200        case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 201
 202                /*
 203                 * Second or subsequent task blocking the expedited GP.
 204                 * The task either does not block the normal GP, or is the
 205                 * first task blocking the normal GP.  Queue just after
 206                 * the first task blocking the expedited GP.
 207                 */
 208                list_add(&t->rcu_node_entry, rnp->exp_tasks);
 209                break;
 210
 211        case RCU_GP_TASKS +                 RCU_GP_BLKD:
 212        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 213
 214                /*
 215                 * Second or subsequent task blocking the normal GP.
 216                 * The task does not block the expedited GP. Queue just
 217                 * after the first task blocking the normal GP.
 218                 */
 219                list_add(&t->rcu_node_entry, rnp->gp_tasks);
 220                break;
 221
 222        default:
 223
 224                /* Yet another exercise in excessive paranoia. */
 225                WARN_ON_ONCE(1);
 226                break;
 227        }
 228
 229        /*
 230         * We have now queued the task.  If it was the first one to
 231         * block either grace period, update the ->gp_tasks and/or
 232         * ->exp_tasks pointers, respectively, to reference the newly
 233         * blocked tasks.
 234         */
 235        if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 236                rnp->gp_tasks = &t->rcu_node_entry;
 237        if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 238                rnp->exp_tasks = &t->rcu_node_entry;
 239        raw_spin_unlock(&rnp->lock);
 240
 241        /*
 242         * Report the quiescent state for the expedited GP.  This expedited
 243         * GP should not be able to end until we report, so there should be
 244         * no need to check for a subsequent expedited GP.  (Though we are
 245         * still in a quiescent state in any case.)
 246         */
 247        if (blkd_state & RCU_EXP_BLKD &&
 248            t->rcu_read_unlock_special.b.exp_need_qs) {
 249                t->rcu_read_unlock_special.b.exp_need_qs = false;
 250                rcu_report_exp_rdp(rdp->rsp, rdp, true);
 251        } else {
 252                WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 253        }
 254        local_irq_restore(flags);
 255}
 256
 257/*
 258 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 259 * that this just means that the task currently running on the CPU is
 260 * not in a quiescent state.  There might be any number of tasks blocked
 261 * while in an RCU read-side critical section.
 262 *
 263 * As with the other rcu_*_qs() functions, callers to this function
 264 * must disable preemption.
 265 */
 266static void rcu_preempt_qs(void)
 267{
 268        if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 269                trace_rcu_grace_period(TPS("rcu_preempt"),
 270                                       __this_cpu_read(rcu_data_p->gpnum),
 271                                       TPS("cpuqs"));
 272                __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 273                barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 274                current->rcu_read_unlock_special.b.need_qs = false;
 275        }
 276}
 277
 278/*
 279 * We have entered the scheduler, and the current task might soon be
 280 * context-switched away from.  If this task is in an RCU read-side
 281 * critical section, we will no longer be able to rely on the CPU to
 282 * record that fact, so we enqueue the task on the blkd_tasks list.
 283 * The task will dequeue itself when it exits the outermost enclosing
 284 * RCU read-side critical section.  Therefore, the current grace period
 285 * cannot be permitted to complete until the blkd_tasks list entries
 286 * predating the current grace period drain, in other words, until
 287 * rnp->gp_tasks becomes NULL.
 288 *
 289 * Caller must disable preemption.
 290 */
 291static void rcu_preempt_note_context_switch(void)
 292{
 293        struct task_struct *t = current;
 294        unsigned long flags;
 295        struct rcu_data *rdp;
 296        struct rcu_node *rnp;
 297
 298        if (t->rcu_read_lock_nesting > 0 &&
 299            !t->rcu_read_unlock_special.b.blocked) {
 300
 301                /* Possibly blocking in an RCU read-side critical section. */
 302                rdp = this_cpu_ptr(rcu_state_p->rda);
 303                rnp = rdp->mynode;
 304                raw_spin_lock_irqsave(&rnp->lock, flags);
 305                smp_mb__after_unlock_lock();
 306                t->rcu_read_unlock_special.b.blocked = true;
 307                t->rcu_blocked_node = rnp;
 308
 309                /*
 310                 * Verify the CPU's sanity, trace the preemption, and
 311                 * then queue the task as required based on the states
 312                 * of any ongoing and expedited grace periods.
 313                 */
 314                WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 315                WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 316                trace_rcu_preempt_task(rdp->rsp->name,
 317                                       t->pid,
 318                                       (rnp->qsmask & rdp->grpmask)
 319                                       ? rnp->gpnum
 320                                       : rnp->gpnum + 1);
 321                rcu_preempt_ctxt_queue(rnp, rdp, flags);
 322        } else if (t->rcu_read_lock_nesting < 0 &&
 323                   t->rcu_read_unlock_special.s) {
 324
 325                /*
 326                 * Complete exit from RCU read-side critical section on
 327                 * behalf of preempted instance of __rcu_read_unlock().
 328                 */
 329                rcu_read_unlock_special(t);
 330        }
 331
 332        /*
 333         * Either we were not in an RCU read-side critical section to
 334         * begin with, or we have now recorded that critical section
 335         * globally.  Either way, we can now note a quiescent state
 336         * for this CPU.  Again, if we were in an RCU read-side critical
 337         * section, and if that critical section was blocking the current
 338         * grace period, then the fact that the task has been enqueued
 339         * means that we continue to block the current grace period.
 340         */
 341        rcu_preempt_qs();
 342}
 343
 344/*
 345 * Check for preempted RCU readers blocking the current grace period
 346 * for the specified rcu_node structure.  If the caller needs a reliable
 347 * answer, it must hold the rcu_node's ->lock.
 348 */
 349static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 350{
 351        return rnp->gp_tasks != NULL;
 352}
 353
 354/*
 355 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 356 * returning NULL if at the end of the list.
 357 */
 358static struct list_head *rcu_next_node_entry(struct task_struct *t,
 359                                             struct rcu_node *rnp)
 360{
 361        struct list_head *np;
 362
 363        np = t->rcu_node_entry.next;
 364        if (np == &rnp->blkd_tasks)
 365                np = NULL;
 366        return np;
 367}
 368
 369/*
 370 * Return true if the specified rcu_node structure has tasks that were
 371 * preempted within an RCU read-side critical section.
 372 */
 373static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 374{
 375        return !list_empty(&rnp->blkd_tasks);
 376}
 377
 378/*
 379 * Handle special cases during rcu_read_unlock(), such as needing to
 380 * notify RCU core processing or task having blocked during the RCU
 381 * read-side critical section.
 382 */
 383void rcu_read_unlock_special(struct task_struct *t)
 384{
 385        bool empty_exp;
 386        bool empty_norm;
 387        bool empty_exp_now;
 388        unsigned long flags;
 389        struct list_head *np;
 390        bool drop_boost_mutex = false;
 391        struct rcu_data *rdp;
 392        struct rcu_node *rnp;
 393        union rcu_special special;
 394
 395        /* NMI handlers cannot block and cannot safely manipulate state. */
 396        if (in_nmi())
 397                return;
 398
 399        local_irq_save(flags);
 400
 401        /*
 402         * If RCU core is waiting for this CPU to exit its critical section,
 403         * report the fact that it has exited.  Because irqs are disabled,
 404         * t->rcu_read_unlock_special cannot change.
 405         */
 406        special = t->rcu_read_unlock_special;
 407        if (special.b.need_qs) {
 408                rcu_preempt_qs();
 409                t->rcu_read_unlock_special.b.need_qs = false;
 410                if (!t->rcu_read_unlock_special.s) {
 411                        local_irq_restore(flags);
 412                        return;
 413                }
 414        }
 415
 416        /*
 417         * Respond to a request for an expedited grace period, but only if
 418         * we were not preempted, meaning that we were running on the same
 419         * CPU throughout.  If we were preempted, the exp_need_qs flag
 420         * would have been cleared at the time of the first preemption,
 421         * and the quiescent state would be reported when we were dequeued.
 422         */
 423        if (special.b.exp_need_qs) {
 424                WARN_ON_ONCE(special.b.blocked);
 425                t->rcu_read_unlock_special.b.exp_need_qs = false;
 426                rdp = this_cpu_ptr(rcu_state_p->rda);
 427                rcu_report_exp_rdp(rcu_state_p, rdp, true);
 428                if (!t->rcu_read_unlock_special.s) {
 429                        local_irq_restore(flags);
 430                        return;
 431                }
 432        }
 433
 434        /* Hardware IRQ handlers cannot block, complain if they get here. */
 435        if (in_irq() || in_serving_softirq()) {
 436                lockdep_rcu_suspicious(__FILE__, __LINE__,
 437                                       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 438                pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 439                         t->rcu_read_unlock_special.s,
 440                         t->rcu_read_unlock_special.b.blocked,
 441                         t->rcu_read_unlock_special.b.exp_need_qs,
 442                         t->rcu_read_unlock_special.b.need_qs);
 443                local_irq_restore(flags);
 444                return;
 445        }
 446
 447        /* Clean up if blocked during RCU read-side critical section. */
 448        if (special.b.blocked) {
 449                t->rcu_read_unlock_special.b.blocked = false;
 450
 451                /*
 452                 * Remove this task from the list it blocked on.  The task
 453                 * now remains queued on the rcu_node corresponding to
 454                 * the CPU it first blocked on, so the first attempt to
 455                 * acquire the task's rcu_node's ->lock will succeed.
 456                 * Keep the loop and add a WARN_ON() out of sheer paranoia.
 457                 */
 458                for (;;) {
 459                        rnp = t->rcu_blocked_node;
 460                        raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
 461                        smp_mb__after_unlock_lock();
 462                        if (rnp == t->rcu_blocked_node)
 463                                break;
 464                        WARN_ON_ONCE(1);
 465                        raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 466                }
 467                empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 468                empty_exp = sync_rcu_preempt_exp_done(rnp);
 469                smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 470                np = rcu_next_node_entry(t, rnp);
 471                list_del_init(&t->rcu_node_entry);
 472                t->rcu_blocked_node = NULL;
 473                trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 474                                                rnp->gpnum, t->pid);
 475                if (&t->rcu_node_entry == rnp->gp_tasks)
 476                        rnp->gp_tasks = np;
 477                if (&t->rcu_node_entry == rnp->exp_tasks)
 478                        rnp->exp_tasks = np;
 479                if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 480                        if (&t->rcu_node_entry == rnp->boost_tasks)
 481                                rnp->boost_tasks = np;
 482                        /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 483                        drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 484                }
 485
 486                /*
 487                 * If this was the last task on the current list, and if
 488                 * we aren't waiting on any CPUs, report the quiescent state.
 489                 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 490                 * so we must take a snapshot of the expedited state.
 491                 */
 492                empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 493                if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 494                        trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 495                                                         rnp->gpnum,
 496                                                         0, rnp->qsmask,
 497                                                         rnp->level,
 498                                                         rnp->grplo,
 499                                                         rnp->grphi,
 500                                                         !!rnp->gp_tasks);
 501                        rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 502                } else {
 503                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 504                }
 505
 506                /* Unboost if we were boosted. */
 507                if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 508                        rt_mutex_unlock(&rnp->boost_mtx);
 509
 510                /*
 511                 * If this was the last task on the expedited lists,
 512                 * then we need to report up the rcu_node hierarchy.
 513                 */
 514                if (!empty_exp && empty_exp_now)
 515                        rcu_report_exp_rnp(rcu_state_p, rnp, true);
 516        } else {
 517                local_irq_restore(flags);
 518        }
 519}
 520
 521/*
 522 * Dump detailed information for all tasks blocking the current RCU
 523 * grace period on the specified rcu_node structure.
 524 */
 525static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 526{
 527        unsigned long flags;
 528        struct task_struct *t;
 529
 530        raw_spin_lock_irqsave(&rnp->lock, flags);
 531        if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 532                raw_spin_unlock_irqrestore(&rnp->lock, flags);
 533                return;
 534        }
 535        t = list_entry(rnp->gp_tasks->prev,
 536                       struct task_struct, rcu_node_entry);
 537        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 538                sched_show_task(t);
 539        raw_spin_unlock_irqrestore(&rnp->lock, flags);
 540}
 541
 542/*
 543 * Dump detailed information for all tasks blocking the current RCU
 544 * grace period.
 545 */
 546static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 547{
 548        struct rcu_node *rnp = rcu_get_root(rsp);
 549
 550        rcu_print_detail_task_stall_rnp(rnp);
 551        rcu_for_each_leaf_node(rsp, rnp)
 552                rcu_print_detail_task_stall_rnp(rnp);
 553}
 554
 555static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 556{
 557        pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 558               rnp->level, rnp->grplo, rnp->grphi);
 559}
 560
 561static void rcu_print_task_stall_end(void)
 562{
 563        pr_cont("\n");
 564}
 565
 566/*
 567 * Scan the current list of tasks blocked within RCU read-side critical
 568 * sections, printing out the tid of each.
 569 */
 570static int rcu_print_task_stall(struct rcu_node *rnp)
 571{
 572        struct task_struct *t;
 573        int ndetected = 0;
 574
 575        if (!rcu_preempt_blocked_readers_cgp(rnp))
 576                return 0;
 577        rcu_print_task_stall_begin(rnp);
 578        t = list_entry(rnp->gp_tasks->prev,
 579                       struct task_struct, rcu_node_entry);
 580        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 581                pr_cont(" P%d", t->pid);
 582                ndetected++;
 583        }
 584        rcu_print_task_stall_end();
 585        return ndetected;
 586}
 587
 588/*
 589 * Scan the current list of tasks blocked within RCU read-side critical
 590 * sections, printing out the tid of each that is blocking the current
 591 * expedited grace period.
 592 */
 593static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 594{
 595        struct task_struct *t;
 596        int ndetected = 0;
 597
 598        if (!rnp->exp_tasks)
 599                return 0;
 600        t = list_entry(rnp->exp_tasks->prev,
 601                       struct task_struct, rcu_node_entry);
 602        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 603                pr_cont(" P%d", t->pid);
 604                ndetected++;
 605        }
 606        return ndetected;
 607}
 608
 609/*
 610 * Check that the list of blocked tasks for the newly completed grace
 611 * period is in fact empty.  It is a serious bug to complete a grace
 612 * period that still has RCU readers blocked!  This function must be
 613 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 614 * must be held by the caller.
 615 *
 616 * Also, if there are blocked tasks on the list, they automatically
 617 * block the newly created grace period, so set up ->gp_tasks accordingly.
 618 */
 619static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 620{
 621        WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 622        if (rcu_preempt_has_tasks(rnp))
 623                rnp->gp_tasks = rnp->blkd_tasks.next;
 624        WARN_ON_ONCE(rnp->qsmask);
 625}
 626
 627/*
 628 * Check for a quiescent state from the current CPU.  When a task blocks,
 629 * the task is recorded in the corresponding CPU's rcu_node structure,
 630 * which is checked elsewhere.
 631 *
 632 * Caller must disable hard irqs.
 633 */
 634static void rcu_preempt_check_callbacks(void)
 635{
 636        struct task_struct *t = current;
 637
 638        if (t->rcu_read_lock_nesting == 0) {
 639                rcu_preempt_qs();
 640                return;
 641        }
 642        if (t->rcu_read_lock_nesting > 0 &&
 643            __this_cpu_read(rcu_data_p->core_needs_qs) &&
 644            __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 645                t->rcu_read_unlock_special.b.need_qs = true;
 646}
 647
 648#ifdef CONFIG_RCU_BOOST
 649
 650static void rcu_preempt_do_callbacks(void)
 651{
 652        rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 653}
 654
 655#endif /* #ifdef CONFIG_RCU_BOOST */
 656
 657/*
 658 * Queue a preemptible-RCU callback for invocation after a grace period.
 659 */
 660void call_rcu(struct rcu_head *head, rcu_callback_t func)
 661{
 662        __call_rcu(head, func, rcu_state_p, -1, 0);
 663}
 664EXPORT_SYMBOL_GPL(call_rcu);
 665
 666/**
 667 * synchronize_rcu - wait until a grace period has elapsed.
 668 *
 669 * Control will return to the caller some time after a full grace
 670 * period has elapsed, in other words after all currently executing RCU
 671 * read-side critical sections have completed.  Note, however, that
 672 * upon return from synchronize_rcu(), the caller might well be executing
 673 * concurrently with new RCU read-side critical sections that began while
 674 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 675 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 676 *
 677 * See the description of synchronize_sched() for more detailed information
 678 * on memory ordering guarantees.
 679 */
 680void synchronize_rcu(void)
 681{
 682        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 683                         lock_is_held(&rcu_lock_map) ||
 684                         lock_is_held(&rcu_sched_lock_map),
 685                         "Illegal synchronize_rcu() in RCU read-side critical section");
 686        if (!rcu_scheduler_active)
 687                return;
 688        if (rcu_gp_is_expedited())
 689                synchronize_rcu_expedited();
 690        else
 691                wait_rcu_gp(call_rcu);
 692}
 693EXPORT_SYMBOL_GPL(synchronize_rcu);
 694
 695/*
 696 * Remote handler for smp_call_function_single().  If there is an
 697 * RCU read-side critical section in effect, request that the
 698 * next rcu_read_unlock() record the quiescent state up the
 699 * ->expmask fields in the rcu_node tree.  Otherwise, immediately
 700 * report the quiescent state.
 701 */
 702static void sync_rcu_exp_handler(void *info)
 703{
 704        struct rcu_data *rdp;
 705        struct rcu_state *rsp = info;
 706        struct task_struct *t = current;
 707
 708        /*
 709         * Within an RCU read-side critical section, request that the next
 710         * rcu_read_unlock() report.  Unless this RCU read-side critical
 711         * section has already blocked, in which case it is already set
 712         * up for the expedited grace period to wait on it.
 713         */
 714        if (t->rcu_read_lock_nesting > 0 &&
 715            !t->rcu_read_unlock_special.b.blocked) {
 716                t->rcu_read_unlock_special.b.exp_need_qs = true;
 717                return;
 718        }
 719
 720        /*
 721         * We are either exiting an RCU read-side critical section (negative
 722         * values of t->rcu_read_lock_nesting) or are not in one at all
 723         * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
 724         * read-side critical section that blocked before this expedited
 725         * grace period started.  Either way, we can immediately report
 726         * the quiescent state.
 727         */
 728        rdp = this_cpu_ptr(rsp->rda);
 729        rcu_report_exp_rdp(rsp, rdp, true);
 730}
 731
 732/**
 733 * synchronize_rcu_expedited - Brute-force RCU grace period
 734 *
 735 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 736 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 737 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 738 * significant time on all CPUs and is unfriendly to real-time workloads,
 739 * so is thus not recommended for any sort of common-case code.
 740 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 741 * please restructure your code to batch your updates, and then Use a
 742 * single synchronize_rcu() instead.
 743 */
 744void synchronize_rcu_expedited(void)
 745{
 746        struct rcu_node *rnp;
 747        struct rcu_node *rnp_unlock;
 748        struct rcu_state *rsp = rcu_state_p;
 749        unsigned long s;
 750
 751        s = rcu_exp_gp_seq_snap(rsp);
 752
 753        rnp_unlock = exp_funnel_lock(rsp, s);
 754        if (rnp_unlock == NULL)
 755                return;  /* Someone else did our work for us. */
 756
 757        rcu_exp_gp_seq_start(rsp);
 758
 759        /* Initialize the rcu_node tree in preparation for the wait. */
 760        sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
 761
 762        /* Wait for snapshotted ->blkd_tasks lists to drain. */
 763        rnp = rcu_get_root(rsp);
 764        synchronize_sched_expedited_wait(rsp);
 765
 766        /* Clean up and exit. */
 767        rcu_exp_gp_seq_end(rsp);
 768        mutex_unlock(&rnp_unlock->exp_funnel_mutex);
 769}
 770EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 771
 772/**
 773 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 774 *
 775 * Note that this primitive does not necessarily wait for an RCU grace period
 776 * to complete.  For example, if there are no RCU callbacks queued anywhere
 777 * in the system, then rcu_barrier() is within its rights to return
 778 * immediately, without waiting for anything, much less an RCU grace period.
 779 */
 780void rcu_barrier(void)
 781{
 782        _rcu_barrier(rcu_state_p);
 783}
 784EXPORT_SYMBOL_GPL(rcu_barrier);
 785
 786/*
 787 * Initialize preemptible RCU's state structures.
 788 */
 789static void __init __rcu_init_preempt(void)
 790{
 791        rcu_init_one(rcu_state_p, rcu_data_p);
 792}
 793
 794/*
 795 * Check for a task exiting while in a preemptible-RCU read-side
 796 * critical section, clean up if so.  No need to issue warnings,
 797 * as debug_check_no_locks_held() already does this if lockdep
 798 * is enabled.
 799 */
 800void exit_rcu(void)
 801{
 802        struct task_struct *t = current;
 803
 804        if (likely(list_empty(&current->rcu_node_entry)))
 805                return;
 806        t->rcu_read_lock_nesting = 1;
 807        barrier();
 808        t->rcu_read_unlock_special.b.blocked = true;
 809        __rcu_read_unlock();
 810}
 811
 812#else /* #ifdef CONFIG_PREEMPT_RCU */
 813
 814static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 815static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
 816
 817/*
 818 * Tell them what RCU they are running.
 819 */
 820static void __init rcu_bootup_announce(void)
 821{
 822        pr_info("Hierarchical RCU implementation.\n");
 823        rcu_bootup_announce_oddness();
 824}
 825
 826/*
 827 * Because preemptible RCU does not exist, we never have to check for
 828 * CPUs being in quiescent states.
 829 */
 830static void rcu_preempt_note_context_switch(void)
 831{
 832}
 833
 834/*
 835 * Because preemptible RCU does not exist, there are never any preempted
 836 * RCU readers.
 837 */
 838static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 839{
 840        return 0;
 841}
 842
 843/*
 844 * Because there is no preemptible RCU, there can be no readers blocked.
 845 */
 846static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 847{
 848        return false;
 849}
 850
 851/*
 852 * Because preemptible RCU does not exist, we never have to check for
 853 * tasks blocked within RCU read-side critical sections.
 854 */
 855static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 856{
 857}
 858
 859/*
 860 * Because preemptible RCU does not exist, we never have to check for
 861 * tasks blocked within RCU read-side critical sections.
 862 */
 863static int rcu_print_task_stall(struct rcu_node *rnp)
 864{
 865        return 0;
 866}
 867
 868/*
 869 * Because preemptible RCU does not exist, we never have to check for
 870 * tasks blocked within RCU read-side critical sections that are
 871 * blocking the current expedited grace period.
 872 */
 873static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 874{
 875        return 0;
 876}
 877
 878/*
 879 * Because there is no preemptible RCU, there can be no readers blocked,
 880 * so there is no need to check for blocked tasks.  So check only for
 881 * bogus qsmask values.
 882 */
 883static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 884{
 885        WARN_ON_ONCE(rnp->qsmask);
 886}
 887
 888/*
 889 * Because preemptible RCU does not exist, it never has any callbacks
 890 * to check.
 891 */
 892static void rcu_preempt_check_callbacks(void)
 893{
 894}
 895
 896/*
 897 * Wait for an rcu-preempt grace period, but make it happen quickly.
 898 * But because preemptible RCU does not exist, map to rcu-sched.
 899 */
 900void synchronize_rcu_expedited(void)
 901{
 902        synchronize_sched_expedited();
 903}
 904EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 905
 906/*
 907 * Because preemptible RCU does not exist, rcu_barrier() is just
 908 * another name for rcu_barrier_sched().
 909 */
 910void rcu_barrier(void)
 911{
 912        rcu_barrier_sched();
 913}
 914EXPORT_SYMBOL_GPL(rcu_barrier);
 915
 916/*
 917 * Because preemptible RCU does not exist, it need not be initialized.
 918 */
 919static void __init __rcu_init_preempt(void)
 920{
 921}
 922
 923/*
 924 * Because preemptible RCU does not exist, tasks cannot possibly exit
 925 * while in preemptible RCU read-side critical sections.
 926 */
 927void exit_rcu(void)
 928{
 929}
 930
 931#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 932
 933#ifdef CONFIG_RCU_BOOST
 934
 935#include "../locking/rtmutex_common.h"
 936
 937#ifdef CONFIG_RCU_TRACE
 938
 939static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 940{
 941        if (!rcu_preempt_has_tasks(rnp))
 942                rnp->n_balk_blkd_tasks++;
 943        else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
 944                rnp->n_balk_exp_gp_tasks++;
 945        else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
 946                rnp->n_balk_boost_tasks++;
 947        else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
 948                rnp->n_balk_notblocked++;
 949        else if (rnp->gp_tasks != NULL &&
 950                 ULONG_CMP_LT(jiffies, rnp->boost_time))
 951                rnp->n_balk_notyet++;
 952        else
 953                rnp->n_balk_nos++;
 954}
 955
 956#else /* #ifdef CONFIG_RCU_TRACE */
 957
 958static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 959{
 960}
 961
 962#endif /* #else #ifdef CONFIG_RCU_TRACE */
 963
 964static void rcu_wake_cond(struct task_struct *t, int status)
 965{
 966        /*
 967         * If the thread is yielding, only wake it when this
 968         * is invoked from idle
 969         */
 970        if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 971                wake_up_process(t);
 972}
 973
 974/*
 975 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 976 * or ->boost_tasks, advancing the pointer to the next task in the
 977 * ->blkd_tasks list.
 978 *
 979 * Note that irqs must be enabled: boosting the task can block.
 980 * Returns 1 if there are more tasks needing to be boosted.
 981 */
 982static int rcu_boost(struct rcu_node *rnp)
 983{
 984        unsigned long flags;
 985        struct task_struct *t;
 986        struct list_head *tb;
 987
 988        if (READ_ONCE(rnp->exp_tasks) == NULL &&
 989            READ_ONCE(rnp->boost_tasks) == NULL)
 990                return 0;  /* Nothing left to boost. */
 991
 992        raw_spin_lock_irqsave(&rnp->lock, flags);
 993        smp_mb__after_unlock_lock();
 994
 995        /*
 996         * Recheck under the lock: all tasks in need of boosting
 997         * might exit their RCU read-side critical sections on their own.
 998         */
 999        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1000                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001                return 0;
1002        }
1003
1004        /*
1005         * Preferentially boost tasks blocking expedited grace periods.
1006         * This cannot starve the normal grace periods because a second
1007         * expedited grace period must boost all blocked tasks, including
1008         * those blocking the pre-existing normal grace period.
1009         */
1010        if (rnp->exp_tasks != NULL) {
1011                tb = rnp->exp_tasks;
1012                rnp->n_exp_boosts++;
1013        } else {
1014                tb = rnp->boost_tasks;
1015                rnp->n_normal_boosts++;
1016        }
1017        rnp->n_tasks_boosted++;
1018
1019        /*
1020         * We boost task t by manufacturing an rt_mutex that appears to
1021         * be held by task t.  We leave a pointer to that rt_mutex where
1022         * task t can find it, and task t will release the mutex when it
1023         * exits its outermost RCU read-side critical section.  Then
1024         * simply acquiring this artificial rt_mutex will boost task
1025         * t's priority.  (Thanks to tglx for suggesting this approach!)
1026         *
1027         * Note that task t must acquire rnp->lock to remove itself from
1028         * the ->blkd_tasks list, which it will do from exit() if from
1029         * nowhere else.  We therefore are guaranteed that task t will
1030         * stay around at least until we drop rnp->lock.  Note that
1031         * rnp->lock also resolves races between our priority boosting
1032         * and task t's exiting its outermost RCU read-side critical
1033         * section.
1034         */
1035        t = container_of(tb, struct task_struct, rcu_node_entry);
1036        rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1037        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1038        /* Lock only for side effect: boosts task t's priority. */
1039        rt_mutex_lock(&rnp->boost_mtx);
1040        rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1041
1042        return READ_ONCE(rnp->exp_tasks) != NULL ||
1043               READ_ONCE(rnp->boost_tasks) != NULL;
1044}
1045
1046/*
1047 * Priority-boosting kthread, one per leaf rcu_node.
1048 */
1049static int rcu_boost_kthread(void *arg)
1050{
1051        struct rcu_node *rnp = (struct rcu_node *)arg;
1052        int spincnt = 0;
1053        int more2boost;
1054
1055        trace_rcu_utilization(TPS("Start boost kthread@init"));
1056        for (;;) {
1057                rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1058                trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1059                rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1060                trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1061                rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1062                more2boost = rcu_boost(rnp);
1063                if (more2boost)
1064                        spincnt++;
1065                else
1066                        spincnt = 0;
1067                if (spincnt > 10) {
1068                        rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1069                        trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1070                        schedule_timeout_interruptible(2);
1071                        trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1072                        spincnt = 0;
1073                }
1074        }
1075        /* NOTREACHED */
1076        trace_rcu_utilization(TPS("End boost kthread@notreached"));
1077        return 0;
1078}
1079
1080/*
1081 * Check to see if it is time to start boosting RCU readers that are
1082 * blocking the current grace period, and, if so, tell the per-rcu_node
1083 * kthread to start boosting them.  If there is an expedited grace
1084 * period in progress, it is always time to boost.
1085 *
1086 * The caller must hold rnp->lock, which this function releases.
1087 * The ->boost_kthread_task is immortal, so we don't need to worry
1088 * about it going away.
1089 */
1090static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1091        __releases(rnp->lock)
1092{
1093        struct task_struct *t;
1094
1095        if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1096                rnp->n_balk_exp_gp_tasks++;
1097                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098                return;
1099        }
1100        if (rnp->exp_tasks != NULL ||
1101            (rnp->gp_tasks != NULL &&
1102             rnp->boost_tasks == NULL &&
1103             rnp->qsmask == 0 &&
1104             ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1105                if (rnp->exp_tasks == NULL)
1106                        rnp->boost_tasks = rnp->gp_tasks;
1107                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108                t = rnp->boost_kthread_task;
1109                if (t)
1110                        rcu_wake_cond(t, rnp->boost_kthread_status);
1111        } else {
1112                rcu_initiate_boost_trace(rnp);
1113                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1114        }
1115}
1116
1117/*
1118 * Wake up the per-CPU kthread to invoke RCU callbacks.
1119 */
1120static void invoke_rcu_callbacks_kthread(void)
1121{
1122        unsigned long flags;
1123
1124        local_irq_save(flags);
1125        __this_cpu_write(rcu_cpu_has_work, 1);
1126        if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1127            current != __this_cpu_read(rcu_cpu_kthread_task)) {
1128                rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1129                              __this_cpu_read(rcu_cpu_kthread_status));
1130        }
1131        local_irq_restore(flags);
1132}
1133
1134/*
1135 * Is the current CPU running the RCU-callbacks kthread?
1136 * Caller must have preemption disabled.
1137 */
1138static bool rcu_is_callbacks_kthread(void)
1139{
1140        return __this_cpu_read(rcu_cpu_kthread_task) == current;
1141}
1142
1143#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1144
1145/*
1146 * Do priority-boost accounting for the start of a new grace period.
1147 */
1148static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1149{
1150        rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1151}
1152
1153/*
1154 * Create an RCU-boost kthread for the specified node if one does not
1155 * already exist.  We only create this kthread for preemptible RCU.
1156 * Returns zero if all is well, a negated errno otherwise.
1157 */
1158static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1159                                       struct rcu_node *rnp)
1160{
1161        int rnp_index = rnp - &rsp->node[0];
1162        unsigned long flags;
1163        struct sched_param sp;
1164        struct task_struct *t;
1165
1166        if (rcu_state_p != rsp)
1167                return 0;
1168
1169        if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1170                return 0;
1171
1172        rsp->boost = 1;
1173        if (rnp->boost_kthread_task != NULL)
1174                return 0;
1175        t = kthread_create(rcu_boost_kthread, (void *)rnp,
1176                           "rcub/%d", rnp_index);
1177        if (IS_ERR(t))
1178                return PTR_ERR(t);
1179        raw_spin_lock_irqsave(&rnp->lock, flags);
1180        smp_mb__after_unlock_lock();
1181        rnp->boost_kthread_task = t;
1182        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183        sp.sched_priority = kthread_prio;
1184        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1185        wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1186        return 0;
1187}
1188
1189static void rcu_kthread_do_work(void)
1190{
1191        rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1192        rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1193        rcu_preempt_do_callbacks();
1194}
1195
1196static void rcu_cpu_kthread_setup(unsigned int cpu)
1197{
1198        struct sched_param sp;
1199
1200        sp.sched_priority = kthread_prio;
1201        sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1202}
1203
1204static void rcu_cpu_kthread_park(unsigned int cpu)
1205{
1206        per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1207}
1208
1209static int rcu_cpu_kthread_should_run(unsigned int cpu)
1210{
1211        return __this_cpu_read(rcu_cpu_has_work);
1212}
1213
1214/*
1215 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1216 * RCU softirq used in flavors and configurations of RCU that do not
1217 * support RCU priority boosting.
1218 */
1219static void rcu_cpu_kthread(unsigned int cpu)
1220{
1221        unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1222        char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1223        int spincnt;
1224
1225        for (spincnt = 0; spincnt < 10; spincnt++) {
1226                trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1227                local_bh_disable();
1228                *statusp = RCU_KTHREAD_RUNNING;
1229                this_cpu_inc(rcu_cpu_kthread_loops);
1230                local_irq_disable();
1231                work = *workp;
1232                *workp = 0;
1233                local_irq_enable();
1234                if (work)
1235                        rcu_kthread_do_work();
1236                local_bh_enable();
1237                if (*workp == 0) {
1238                        trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1239                        *statusp = RCU_KTHREAD_WAITING;
1240                        return;
1241                }
1242        }
1243        *statusp = RCU_KTHREAD_YIELDING;
1244        trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1245        schedule_timeout_interruptible(2);
1246        trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1247        *statusp = RCU_KTHREAD_WAITING;
1248}
1249
1250/*
1251 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1252 * served by the rcu_node in question.  The CPU hotplug lock is still
1253 * held, so the value of rnp->qsmaskinit will be stable.
1254 *
1255 * We don't include outgoingcpu in the affinity set, use -1 if there is
1256 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1257 * this function allows the kthread to execute on any CPU.
1258 */
1259static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1260{
1261        struct task_struct *t = rnp->boost_kthread_task;
1262        unsigned long mask = rcu_rnp_online_cpus(rnp);
1263        cpumask_var_t cm;
1264        int cpu;
1265
1266        if (!t)
1267                return;
1268        if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1269                return;
1270        for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1271                if ((mask & 0x1) && cpu != outgoingcpu)
1272                        cpumask_set_cpu(cpu, cm);
1273        if (cpumask_weight(cm) == 0)
1274                cpumask_setall(cm);
1275        set_cpus_allowed_ptr(t, cm);
1276        free_cpumask_var(cm);
1277}
1278
1279static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1280        .store                  = &rcu_cpu_kthread_task,
1281        .thread_should_run      = rcu_cpu_kthread_should_run,
1282        .thread_fn              = rcu_cpu_kthread,
1283        .thread_comm            = "rcuc/%u",
1284        .setup                  = rcu_cpu_kthread_setup,
1285        .park                   = rcu_cpu_kthread_park,
1286};
1287
1288/*
1289 * Spawn boost kthreads -- called as soon as the scheduler is running.
1290 */
1291static void __init rcu_spawn_boost_kthreads(void)
1292{
1293        struct rcu_node *rnp;
1294        int cpu;
1295
1296        for_each_possible_cpu(cpu)
1297                per_cpu(rcu_cpu_has_work, cpu) = 0;
1298        BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1299        rcu_for_each_leaf_node(rcu_state_p, rnp)
1300                (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1301}
1302
1303static void rcu_prepare_kthreads(int cpu)
1304{
1305        struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1306        struct rcu_node *rnp = rdp->mynode;
1307
1308        /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1309        if (rcu_scheduler_fully_active)
1310                (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1311}
1312
1313#else /* #ifdef CONFIG_RCU_BOOST */
1314
1315static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1316        __releases(rnp->lock)
1317{
1318        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1319}
1320
1321static void invoke_rcu_callbacks_kthread(void)
1322{
1323        WARN_ON_ONCE(1);
1324}
1325
1326static bool rcu_is_callbacks_kthread(void)
1327{
1328        return false;
1329}
1330
1331static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1332{
1333}
1334
1335static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1336{
1337}
1338
1339static void __init rcu_spawn_boost_kthreads(void)
1340{
1341}
1342
1343static void rcu_prepare_kthreads(int cpu)
1344{
1345}
1346
1347#endif /* #else #ifdef CONFIG_RCU_BOOST */
1348
1349#if !defined(CONFIG_RCU_FAST_NO_HZ)
1350
1351/*
1352 * Check to see if any future RCU-related work will need to be done
1353 * by the current CPU, even if none need be done immediately, returning
1354 * 1 if so.  This function is part of the RCU implementation; it is -not-
1355 * an exported member of the RCU API.
1356 *
1357 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1358 * any flavor of RCU.
1359 */
1360int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1361{
1362        *nextevt = KTIME_MAX;
1363        return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1364               ? 0 : rcu_cpu_has_callbacks(NULL);
1365}
1366
1367/*
1368 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1369 * after it.
1370 */
1371static void rcu_cleanup_after_idle(void)
1372{
1373}
1374
1375/*
1376 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1377 * is nothing.
1378 */
1379static void rcu_prepare_for_idle(void)
1380{
1381}
1382
1383/*
1384 * Don't bother keeping a running count of the number of RCU callbacks
1385 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1386 */
1387static void rcu_idle_count_callbacks_posted(void)
1388{
1389}
1390
1391#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1392
1393/*
1394 * This code is invoked when a CPU goes idle, at which point we want
1395 * to have the CPU do everything required for RCU so that it can enter
1396 * the energy-efficient dyntick-idle mode.  This is handled by a
1397 * state machine implemented by rcu_prepare_for_idle() below.
1398 *
1399 * The following three proprocessor symbols control this state machine:
1400 *
1401 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1402 *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1403 *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1404 *      benchmarkers who might otherwise be tempted to set this to a large
1405 *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1406 *      system.  And if you are -that- concerned about energy efficiency,
1407 *      just power the system down and be done with it!
1408 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1409 *      permitted to sleep in dyntick-idle mode with only lazy RCU
1410 *      callbacks pending.  Setting this too high can OOM your system.
1411 *
1412 * The values below work well in practice.  If future workloads require
1413 * adjustment, they can be converted into kernel config parameters, though
1414 * making the state machine smarter might be a better option.
1415 */
1416#define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1417#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1418
1419static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1420module_param(rcu_idle_gp_delay, int, 0644);
1421static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1422module_param(rcu_idle_lazy_gp_delay, int, 0644);
1423
1424/*
1425 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1426 * only if it has been awhile since the last time we did so.  Afterwards,
1427 * if there are any callbacks ready for immediate invocation, return true.
1428 */
1429static bool __maybe_unused rcu_try_advance_all_cbs(void)
1430{
1431        bool cbs_ready = false;
1432        struct rcu_data *rdp;
1433        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1434        struct rcu_node *rnp;
1435        struct rcu_state *rsp;
1436
1437        /* Exit early if we advanced recently. */
1438        if (jiffies == rdtp->last_advance_all)
1439                return false;
1440        rdtp->last_advance_all = jiffies;
1441
1442        for_each_rcu_flavor(rsp) {
1443                rdp = this_cpu_ptr(rsp->rda);
1444                rnp = rdp->mynode;
1445
1446                /*
1447                 * Don't bother checking unless a grace period has
1448                 * completed since we last checked and there are
1449                 * callbacks not yet ready to invoke.
1450                 */
1451                if ((rdp->completed != rnp->completed ||
1452                     unlikely(READ_ONCE(rdp->gpwrap))) &&
1453                    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1454                        note_gp_changes(rsp, rdp);
1455
1456                if (cpu_has_callbacks_ready_to_invoke(rdp))
1457                        cbs_ready = true;
1458        }
1459        return cbs_ready;
1460}
1461
1462/*
1463 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1464 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1465 * caller to set the timeout based on whether or not there are non-lazy
1466 * callbacks.
1467 *
1468 * The caller must have disabled interrupts.
1469 */
1470int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1471{
1472        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1473        unsigned long dj;
1474
1475        if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1476                *nextevt = KTIME_MAX;
1477                return 0;
1478        }
1479
1480        /* Snapshot to detect later posting of non-lazy callback. */
1481        rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1482
1483        /* If no callbacks, RCU doesn't need the CPU. */
1484        if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1485                *nextevt = KTIME_MAX;
1486                return 0;
1487        }
1488
1489        /* Attempt to advance callbacks. */
1490        if (rcu_try_advance_all_cbs()) {
1491                /* Some ready to invoke, so initiate later invocation. */
1492                invoke_rcu_core();
1493                return 1;
1494        }
1495        rdtp->last_accelerate = jiffies;
1496
1497        /* Request timer delay depending on laziness, and round. */
1498        if (!rdtp->all_lazy) {
1499                dj = round_up(rcu_idle_gp_delay + jiffies,
1500                               rcu_idle_gp_delay) - jiffies;
1501        } else {
1502                dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1503        }
1504        *nextevt = basemono + dj * TICK_NSEC;
1505        return 0;
1506}
1507
1508/*
1509 * Prepare a CPU for idle from an RCU perspective.  The first major task
1510 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1511 * The second major task is to check to see if a non-lazy callback has
1512 * arrived at a CPU that previously had only lazy callbacks.  The third
1513 * major task is to accelerate (that is, assign grace-period numbers to)
1514 * any recently arrived callbacks.
1515 *
1516 * The caller must have disabled interrupts.
1517 */
1518static void rcu_prepare_for_idle(void)
1519{
1520        bool needwake;
1521        struct rcu_data *rdp;
1522        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1523        struct rcu_node *rnp;
1524        struct rcu_state *rsp;
1525        int tne;
1526
1527        if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1528                return;
1529
1530        /* Handle nohz enablement switches conservatively. */
1531        tne = READ_ONCE(tick_nohz_active);
1532        if (tne != rdtp->tick_nohz_enabled_snap) {
1533                if (rcu_cpu_has_callbacks(NULL))
1534                        invoke_rcu_core(); /* force nohz to see update. */
1535                rdtp->tick_nohz_enabled_snap = tne;
1536                return;
1537        }
1538        if (!tne)
1539                return;
1540
1541        /* If this is a no-CBs CPU, no callbacks, just return. */
1542        if (rcu_is_nocb_cpu(smp_processor_id()))
1543                return;
1544
1545        /*
1546         * If a non-lazy callback arrived at a CPU having only lazy
1547         * callbacks, invoke RCU core for the side-effect of recalculating
1548         * idle duration on re-entry to idle.
1549         */
1550        if (rdtp->all_lazy &&
1551            rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1552                rdtp->all_lazy = false;
1553                rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1554                invoke_rcu_core();
1555                return;
1556        }
1557
1558        /*
1559         * If we have not yet accelerated this jiffy, accelerate all
1560         * callbacks on this CPU.
1561         */
1562        if (rdtp->last_accelerate == jiffies)
1563                return;
1564        rdtp->last_accelerate = jiffies;
1565        for_each_rcu_flavor(rsp) {
1566                rdp = this_cpu_ptr(rsp->rda);
1567                if (!*rdp->nxttail[RCU_DONE_TAIL])
1568                        continue;
1569                rnp = rdp->mynode;
1570                raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1571                smp_mb__after_unlock_lock();
1572                needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1573                raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1574                if (needwake)
1575                        rcu_gp_kthread_wake(rsp);
1576        }
1577}
1578
1579/*
1580 * Clean up for exit from idle.  Attempt to advance callbacks based on
1581 * any grace periods that elapsed while the CPU was idle, and if any
1582 * callbacks are now ready to invoke, initiate invocation.
1583 */
1584static void rcu_cleanup_after_idle(void)
1585{
1586        if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1587            rcu_is_nocb_cpu(smp_processor_id()))
1588                return;
1589        if (rcu_try_advance_all_cbs())
1590                invoke_rcu_core();
1591}
1592
1593/*
1594 * Keep a running count of the number of non-lazy callbacks posted
1595 * on this CPU.  This running counter (which is never decremented) allows
1596 * rcu_prepare_for_idle() to detect when something out of the idle loop
1597 * posts a callback, even if an equal number of callbacks are invoked.
1598 * Of course, callbacks should only be posted from within a trace event
1599 * designed to be called from idle or from within RCU_NONIDLE().
1600 */
1601static void rcu_idle_count_callbacks_posted(void)
1602{
1603        __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1604}
1605
1606/*
1607 * Data for flushing lazy RCU callbacks at OOM time.
1608 */
1609static atomic_t oom_callback_count;
1610static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1611
1612/*
1613 * RCU OOM callback -- decrement the outstanding count and deliver the
1614 * wake-up if we are the last one.
1615 */
1616static void rcu_oom_callback(struct rcu_head *rhp)
1617{
1618        if (atomic_dec_and_test(&oom_callback_count))
1619                wake_up(&oom_callback_wq);
1620}
1621
1622/*
1623 * Post an rcu_oom_notify callback on the current CPU if it has at
1624 * least one lazy callback.  This will unnecessarily post callbacks
1625 * to CPUs that already have a non-lazy callback at the end of their
1626 * callback list, but this is an infrequent operation, so accept some
1627 * extra overhead to keep things simple.
1628 */
1629static void rcu_oom_notify_cpu(void *unused)
1630{
1631        struct rcu_state *rsp;
1632        struct rcu_data *rdp;
1633
1634        for_each_rcu_flavor(rsp) {
1635                rdp = raw_cpu_ptr(rsp->rda);
1636                if (rdp->qlen_lazy != 0) {
1637                        atomic_inc(&oom_callback_count);
1638                        rsp->call(&rdp->oom_head, rcu_oom_callback);
1639                }
1640        }
1641}
1642
1643/*
1644 * If low on memory, ensure that each CPU has a non-lazy callback.
1645 * This will wake up CPUs that have only lazy callbacks, in turn
1646 * ensuring that they free up the corresponding memory in a timely manner.
1647 * Because an uncertain amount of memory will be freed in some uncertain
1648 * timeframe, we do not claim to have freed anything.
1649 */
1650static int rcu_oom_notify(struct notifier_block *self,
1651                          unsigned long notused, void *nfreed)
1652{
1653        int cpu;
1654
1655        /* Wait for callbacks from earlier instance to complete. */
1656        wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1657        smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1658
1659        /*
1660         * Prevent premature wakeup: ensure that all increments happen
1661         * before there is a chance of the counter reaching zero.
1662         */
1663        atomic_set(&oom_callback_count, 1);
1664
1665        for_each_online_cpu(cpu) {
1666                smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1667                cond_resched_rcu_qs();
1668        }
1669
1670        /* Unconditionally decrement: no need to wake ourselves up. */
1671        atomic_dec(&oom_callback_count);
1672
1673        return NOTIFY_OK;
1674}
1675
1676static struct notifier_block rcu_oom_nb = {
1677        .notifier_call = rcu_oom_notify
1678};
1679
1680static int __init rcu_register_oom_notifier(void)
1681{
1682        register_oom_notifier(&rcu_oom_nb);
1683        return 0;
1684}
1685early_initcall(rcu_register_oom_notifier);
1686
1687#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1688
1689#ifdef CONFIG_RCU_FAST_NO_HZ
1690
1691static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1692{
1693        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1694        unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1695
1696        sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1697                rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1698                ulong2long(nlpd),
1699                rdtp->all_lazy ? 'L' : '.',
1700                rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1701}
1702
1703#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1704
1705static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1706{
1707        *cp = '\0';
1708}
1709
1710#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1711
1712/* Initiate the stall-info list. */
1713static void print_cpu_stall_info_begin(void)
1714{
1715        pr_cont("\n");
1716}
1717
1718/*
1719 * Print out diagnostic information for the specified stalled CPU.
1720 *
1721 * If the specified CPU is aware of the current RCU grace period
1722 * (flavor specified by rsp), then print the number of scheduling
1723 * clock interrupts the CPU has taken during the time that it has
1724 * been aware.  Otherwise, print the number of RCU grace periods
1725 * that this CPU is ignorant of, for example, "1" if the CPU was
1726 * aware of the previous grace period.
1727 *
1728 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1729 */
1730static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1731{
1732        char fast_no_hz[72];
1733        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1734        struct rcu_dynticks *rdtp = rdp->dynticks;
1735        char *ticks_title;
1736        unsigned long ticks_value;
1737
1738        if (rsp->gpnum == rdp->gpnum) {
1739                ticks_title = "ticks this GP";
1740                ticks_value = rdp->ticks_this_gp;
1741        } else {
1742                ticks_title = "GPs behind";
1743                ticks_value = rsp->gpnum - rdp->gpnum;
1744        }
1745        print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1746        pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1747               cpu,
1748               "O."[!!cpu_online(cpu)],
1749               "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1750               "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1751               ticks_value, ticks_title,
1752               atomic_read(&rdtp->dynticks) & 0xfff,
1753               rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1754               rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1755               READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1756               fast_no_hz);
1757}
1758
1759/* Terminate the stall-info list. */
1760static void print_cpu_stall_info_end(void)
1761{
1762        pr_err("\t");
1763}
1764
1765/* Zero ->ticks_this_gp for all flavors of RCU. */
1766static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1767{
1768        rdp->ticks_this_gp = 0;
1769        rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1770}
1771
1772/* Increment ->ticks_this_gp for all flavors of RCU. */
1773static void increment_cpu_stall_ticks(void)
1774{
1775        struct rcu_state *rsp;
1776
1777        for_each_rcu_flavor(rsp)
1778                raw_cpu_inc(rsp->rda->ticks_this_gp);
1779}
1780
1781#ifdef CONFIG_RCU_NOCB_CPU
1782
1783/*
1784 * Offload callback processing from the boot-time-specified set of CPUs
1785 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1786 * kthread created that pulls the callbacks from the corresponding CPU,
1787 * waits for a grace period to elapse, and invokes the callbacks.
1788 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1789 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1790 * has been specified, in which case each kthread actively polls its
1791 * CPU.  (Which isn't so great for energy efficiency, but which does
1792 * reduce RCU's overhead on that CPU.)
1793 *
1794 * This is intended to be used in conjunction with Frederic Weisbecker's
1795 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1796 * running CPU-bound user-mode computations.
1797 *
1798 * Offloading of callback processing could also in theory be used as
1799 * an energy-efficiency measure because CPUs with no RCU callbacks
1800 * queued are more aggressive about entering dyntick-idle mode.
1801 */
1802
1803
1804/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1805static int __init rcu_nocb_setup(char *str)
1806{
1807        alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1808        have_rcu_nocb_mask = true;
1809        cpulist_parse(str, rcu_nocb_mask);
1810        return 1;
1811}
1812__setup("rcu_nocbs=", rcu_nocb_setup);
1813
1814static int __init parse_rcu_nocb_poll(char *arg)
1815{
1816        rcu_nocb_poll = 1;
1817        return 0;
1818}
1819early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1820
1821/*
1822 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1823 * grace period.
1824 */
1825static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1826{
1827        wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1828}
1829
1830/*
1831 * Set the root rcu_node structure's ->need_future_gp field
1832 * based on the sum of those of all rcu_node structures.  This does
1833 * double-count the root rcu_node structure's requests, but this
1834 * is necessary to handle the possibility of a rcu_nocb_kthread()
1835 * having awakened during the time that the rcu_node structures
1836 * were being updated for the end of the previous grace period.
1837 */
1838static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1839{
1840        rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1841}
1842
1843static void rcu_init_one_nocb(struct rcu_node *rnp)
1844{
1845        init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1846        init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1847}
1848
1849#ifndef CONFIG_RCU_NOCB_CPU_ALL
1850/* Is the specified CPU a no-CBs CPU? */
1851bool rcu_is_nocb_cpu(int cpu)
1852{
1853        if (have_rcu_nocb_mask)
1854                return cpumask_test_cpu(cpu, rcu_nocb_mask);
1855        return false;
1856}
1857#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1858
1859/*
1860 * Kick the leader kthread for this NOCB group.
1861 */
1862static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1863{
1864        struct rcu_data *rdp_leader = rdp->nocb_leader;
1865
1866        if (!READ_ONCE(rdp_leader->nocb_kthread))
1867                return;
1868        if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1869                /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1870                WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1871                wake_up(&rdp_leader->nocb_wq);
1872        }
1873}
1874
1875/*
1876 * Does the specified CPU need an RCU callback for the specified flavor
1877 * of rcu_barrier()?
1878 */
1879static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1880{
1881        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1882        unsigned long ret;
1883#ifdef CONFIG_PROVE_RCU
1884        struct rcu_head *rhp;
1885#endif /* #ifdef CONFIG_PROVE_RCU */
1886
1887        /*
1888         * Check count of all no-CBs callbacks awaiting invocation.
1889         * There needs to be a barrier before this function is called,
1890         * but associated with a prior determination that no more
1891         * callbacks would be posted.  In the worst case, the first
1892         * barrier in _rcu_barrier() suffices (but the caller cannot
1893         * necessarily rely on this, not a substitute for the caller
1894         * getting the concurrency design right!).  There must also be
1895         * a barrier between the following load an posting of a callback
1896         * (if a callback is in fact needed).  This is associated with an
1897         * atomic_inc() in the caller.
1898         */
1899        ret = atomic_long_read(&rdp->nocb_q_count);
1900
1901#ifdef CONFIG_PROVE_RCU
1902        rhp = READ_ONCE(rdp->nocb_head);
1903        if (!rhp)
1904                rhp = READ_ONCE(rdp->nocb_gp_head);
1905        if (!rhp)
1906                rhp = READ_ONCE(rdp->nocb_follower_head);
1907
1908        /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1909        if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1910            rcu_scheduler_fully_active) {
1911                /* RCU callback enqueued before CPU first came online??? */
1912                pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1913                       cpu, rhp->func);
1914                WARN_ON_ONCE(1);
1915        }
1916#endif /* #ifdef CONFIG_PROVE_RCU */
1917
1918        return !!ret;
1919}
1920
1921/*
1922 * Enqueue the specified string of rcu_head structures onto the specified
1923 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1924 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1925 * counts are supplied by rhcount and rhcount_lazy.
1926 *
1927 * If warranted, also wake up the kthread servicing this CPUs queues.
1928 */
1929static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1930                                    struct rcu_head *rhp,
1931                                    struct rcu_head **rhtp,
1932                                    int rhcount, int rhcount_lazy,
1933                                    unsigned long flags)
1934{
1935        int len;
1936        struct rcu_head **old_rhpp;
1937        struct task_struct *t;
1938
1939        /* Enqueue the callback on the nocb list and update counts. */
1940        atomic_long_add(rhcount, &rdp->nocb_q_count);
1941        /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1942        old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1943        WRITE_ONCE(*old_rhpp, rhp);
1944        atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1945        smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1946
1947        /* If we are not being polled and there is a kthread, awaken it ... */
1948        t = READ_ONCE(rdp->nocb_kthread);
1949        if (rcu_nocb_poll || !t) {
1950                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1951                                    TPS("WakeNotPoll"));
1952                return;
1953        }
1954        len = atomic_long_read(&rdp->nocb_q_count);
1955        if (old_rhpp == &rdp->nocb_head) {
1956                if (!irqs_disabled_flags(flags)) {
1957                        /* ... if queue was empty ... */
1958                        wake_nocb_leader(rdp, false);
1959                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1960                                            TPS("WakeEmpty"));
1961                } else {
1962                        rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1963                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1964                                            TPS("WakeEmptyIsDeferred"));
1965                }
1966                rdp->qlen_last_fqs_check = 0;
1967        } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1968                /* ... or if many callbacks queued. */
1969                if (!irqs_disabled_flags(flags)) {
1970                        wake_nocb_leader(rdp, true);
1971                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1972                                            TPS("WakeOvf"));
1973                } else {
1974                        rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1975                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1976                                            TPS("WakeOvfIsDeferred"));
1977                }
1978                rdp->qlen_last_fqs_check = LONG_MAX / 2;
1979        } else {
1980                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1981        }
1982        return;
1983}
1984
1985/*
1986 * This is a helper for __call_rcu(), which invokes this when the normal
1987 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1988 * function returns failure back to __call_rcu(), which can complain
1989 * appropriately.
1990 *
1991 * Otherwise, this function queues the callback where the corresponding
1992 * "rcuo" kthread can find it.
1993 */
1994static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1995                            bool lazy, unsigned long flags)
1996{
1997
1998        if (!rcu_is_nocb_cpu(rdp->cpu))
1999                return false;
2000        __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2001        if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2002                trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2003                                         (unsigned long)rhp->func,
2004                                         -atomic_long_read(&rdp->nocb_q_count_lazy),
2005                                         -atomic_long_read(&rdp->nocb_q_count));
2006        else
2007                trace_rcu_callback(rdp->rsp->name, rhp,
2008                                   -atomic_long_read(&rdp->nocb_q_count_lazy),
2009                                   -atomic_long_read(&rdp->nocb_q_count));
2010
2011        /*
2012         * If called from an extended quiescent state with interrupts
2013         * disabled, invoke the RCU core in order to allow the idle-entry
2014         * deferred-wakeup check to function.
2015         */
2016        if (irqs_disabled_flags(flags) &&
2017            !rcu_is_watching() &&
2018            cpu_online(smp_processor_id()))
2019                invoke_rcu_core();
2020
2021        return true;
2022}
2023
2024/*
2025 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2026 * not a no-CBs CPU.
2027 */
2028static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2029                                                     struct rcu_data *rdp,
2030                                                     unsigned long flags)
2031{
2032        long ql = rsp->qlen;
2033        long qll = rsp->qlen_lazy;
2034
2035        /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2036        if (!rcu_is_nocb_cpu(smp_processor_id()))
2037                return false;
2038        rsp->qlen = 0;
2039        rsp->qlen_lazy = 0;
2040
2041        /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2042        if (rsp->orphan_donelist != NULL) {
2043                __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2044                                        rsp->orphan_donetail, ql, qll, flags);
2045                ql = qll = 0;
2046                rsp->orphan_donelist = NULL;
2047                rsp->orphan_donetail = &rsp->orphan_donelist;
2048        }
2049        if (rsp->orphan_nxtlist != NULL) {
2050                __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2051                                        rsp->orphan_nxttail, ql, qll, flags);
2052                ql = qll = 0;
2053                rsp->orphan_nxtlist = NULL;
2054                rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2055        }
2056        return true;
2057}
2058
2059/*
2060 * If necessary, kick off a new grace period, and either way wait
2061 * for a subsequent grace period to complete.
2062 */
2063static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2064{
2065        unsigned long c;
2066        bool d;
2067        unsigned long flags;
2068        bool needwake;
2069        struct rcu_node *rnp = rdp->mynode;
2070
2071        raw_spin_lock_irqsave(&rnp->lock, flags);
2072        smp_mb__after_unlock_lock();
2073        needwake = rcu_start_future_gp(rnp, rdp, &c);
2074        raw_spin_unlock_irqrestore(&rnp->lock, flags);
2075        if (needwake)
2076                rcu_gp_kthread_wake(rdp->rsp);
2077
2078        /*
2079         * Wait for the grace period.  Do so interruptibly to avoid messing
2080         * up the load average.
2081         */
2082        trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2083        for (;;) {
2084                wait_event_interruptible(
2085                        rnp->nocb_gp_wq[c & 0x1],
2086                        (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2087                if (likely(d))
2088                        break;
2089                WARN_ON(signal_pending(current));
2090                trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2091        }
2092        trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2093        smp_mb(); /* Ensure that CB invocation happens after GP end. */
2094}
2095
2096/*
2097 * Leaders come here to wait for additional callbacks to show up.
2098 * This function does not return until callbacks appear.
2099 */
2100static void nocb_leader_wait(struct rcu_data *my_rdp)
2101{
2102        bool firsttime = true;
2103        bool gotcbs;
2104        struct rcu_data *rdp;
2105        struct rcu_head **tail;
2106
2107wait_again:
2108
2109        /* Wait for callbacks to appear. */
2110        if (!rcu_nocb_poll) {
2111                trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2112                wait_event_interruptible(my_rdp->nocb_wq,
2113                                !READ_ONCE(my_rdp->nocb_leader_sleep));
2114                /* Memory barrier handled by smp_mb() calls below and repoll. */
2115        } else if (firsttime) {
2116                firsttime = false; /* Don't drown trace log with "Poll"! */
2117                trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2118        }
2119
2120        /*
2121         * Each pass through the following loop checks a follower for CBs.
2122         * We are our own first follower.  Any CBs found are moved to
2123         * nocb_gp_head, where they await a grace period.
2124         */
2125        gotcbs = false;
2126        for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2127                rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2128                if (!rdp->nocb_gp_head)
2129                        continue;  /* No CBs here, try next follower. */
2130
2131                /* Move callbacks to wait-for-GP list, which is empty. */
2132                WRITE_ONCE(rdp->nocb_head, NULL);
2133                rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2134                gotcbs = true;
2135        }
2136
2137        /*
2138         * If there were no callbacks, sleep a bit, rescan after a
2139         * memory barrier, and go retry.
2140         */
2141        if (unlikely(!gotcbs)) {
2142                if (!rcu_nocb_poll)
2143                        trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2144                                            "WokeEmpty");
2145                WARN_ON(signal_pending(current));
2146                schedule_timeout_interruptible(1);
2147
2148                /* Rescan in case we were a victim of memory ordering. */
2149                my_rdp->nocb_leader_sleep = true;
2150                smp_mb();  /* Ensure _sleep true before scan. */
2151                for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2152                        if (READ_ONCE(rdp->nocb_head)) {
2153                                /* Found CB, so short-circuit next wait. */
2154                                my_rdp->nocb_leader_sleep = false;
2155                                break;
2156                        }
2157                goto wait_again;
2158        }
2159
2160        /* Wait for one grace period. */
2161        rcu_nocb_wait_gp(my_rdp);
2162
2163        /*
2164         * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2165         * We set it now, but recheck for new callbacks while
2166         * traversing our follower list.
2167         */
2168        my_rdp->nocb_leader_sleep = true;
2169        smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2170
2171        /* Each pass through the following loop wakes a follower, if needed. */
2172        for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2173                if (READ_ONCE(rdp->nocb_head))
2174                        my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2175                if (!rdp->nocb_gp_head)
2176                        continue; /* No CBs, so no need to wake follower. */
2177
2178                /* Append callbacks to follower's "done" list. */
2179                tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2180                *tail = rdp->nocb_gp_head;
2181                smp_mb__after_atomic(); /* Store *tail before wakeup. */
2182                if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2183                        /*
2184                         * List was empty, wake up the follower.
2185                         * Memory barriers supplied by atomic_long_add().
2186                         */
2187                        wake_up(&rdp->nocb_wq);
2188                }
2189        }
2190
2191        /* If we (the leader) don't have CBs, go wait some more. */
2192        if (!my_rdp->nocb_follower_head)
2193                goto wait_again;
2194}
2195
2196/*
2197 * Followers come here to wait for additional callbacks to show up.
2198 * This function does not return until callbacks appear.
2199 */
2200static void nocb_follower_wait(struct rcu_data *rdp)
2201{
2202        bool firsttime = true;
2203
2204        for (;;) {
2205                if (!rcu_nocb_poll) {
2206                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2207                                            "FollowerSleep");
2208                        wait_event_interruptible(rdp->nocb_wq,
2209                                                 READ_ONCE(rdp->nocb_follower_head));
2210                } else if (firsttime) {
2211                        /* Don't drown trace log with "Poll"! */
2212                        firsttime = false;
2213                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2214                }
2215                if (smp_load_acquire(&rdp->nocb_follower_head)) {
2216                        /* ^^^ Ensure CB invocation follows _head test. */
2217                        return;
2218                }
2219                if (!rcu_nocb_poll)
2220                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221                                            "WokeEmpty");
2222                WARN_ON(signal_pending(current));
2223                schedule_timeout_interruptible(1);
2224        }
2225}
2226
2227/*
2228 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2229 * callbacks queued by the corresponding no-CBs CPU, however, there is
2230 * an optional leader-follower relationship so that the grace-period
2231 * kthreads don't have to do quite so many wakeups.
2232 */
2233static int rcu_nocb_kthread(void *arg)
2234{
2235        int c, cl;
2236        struct rcu_head *list;
2237        struct rcu_head *next;
2238        struct rcu_head **tail;
2239        struct rcu_data *rdp = arg;
2240
2241        /* Each pass through this loop invokes one batch of callbacks */
2242        for (;;) {
2243                /* Wait for callbacks. */
2244                if (rdp->nocb_leader == rdp)
2245                        nocb_leader_wait(rdp);
2246                else
2247                        nocb_follower_wait(rdp);
2248
2249                /* Pull the ready-to-invoke callbacks onto local list. */
2250                list = READ_ONCE(rdp->nocb_follower_head);
2251                BUG_ON(!list);
2252                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2253                WRITE_ONCE(rdp->nocb_follower_head, NULL);
2254                tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2255
2256                /* Each pass through the following loop invokes a callback. */
2257                trace_rcu_batch_start(rdp->rsp->name,
2258                                      atomic_long_read(&rdp->nocb_q_count_lazy),
2259                                      atomic_long_read(&rdp->nocb_q_count), -1);
2260                c = cl = 0;
2261                while (list) {
2262                        next = list->next;
2263                        /* Wait for enqueuing to complete, if needed. */
2264                        while (next == NULL && &list->next != tail) {
2265                                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2266                                                    TPS("WaitQueue"));
2267                                schedule_timeout_interruptible(1);
2268                                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2269                                                    TPS("WokeQueue"));
2270                                next = list->next;
2271                        }
2272                        debug_rcu_head_unqueue(list);
2273                        local_bh_disable();
2274                        if (__rcu_reclaim(rdp->rsp->name, list))
2275                                cl++;
2276                        c++;
2277                        local_bh_enable();
2278                        list = next;
2279                }
2280                trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2281                smp_mb__before_atomic();  /* _add after CB invocation. */
2282                atomic_long_add(-c, &rdp->nocb_q_count);
2283                atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2284                rdp->n_nocbs_invoked += c;
2285        }
2286        return 0;
2287}
2288
2289/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2290static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2291{
2292        return READ_ONCE(rdp->nocb_defer_wakeup);
2293}
2294
2295/* Do a deferred wakeup of rcu_nocb_kthread(). */
2296static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2297{
2298        int ndw;
2299
2300        if (!rcu_nocb_need_deferred_wakeup(rdp))
2301                return;
2302        ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2303        WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2304        wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2305        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2306}
2307
2308void __init rcu_init_nohz(void)
2309{
2310        int cpu;
2311        bool need_rcu_nocb_mask = true;
2312        struct rcu_state *rsp;
2313
2314#ifdef CONFIG_RCU_NOCB_CPU_NONE
2315        need_rcu_nocb_mask = false;
2316#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2317
2318#if defined(CONFIG_NO_HZ_FULL)
2319        if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2320                need_rcu_nocb_mask = true;
2321#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2322
2323        if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2324                if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2325                        pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2326                        return;
2327                }
2328                have_rcu_nocb_mask = true;
2329        }
2330        if (!have_rcu_nocb_mask)
2331                return;
2332
2333#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2334        pr_info("\tOffload RCU callbacks from CPU 0\n");
2335        cpumask_set_cpu(0, rcu_nocb_mask);
2336#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2337#ifdef CONFIG_RCU_NOCB_CPU_ALL
2338        pr_info("\tOffload RCU callbacks from all CPUs\n");
2339        cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2340#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2341#if defined(CONFIG_NO_HZ_FULL)
2342        if (tick_nohz_full_running)
2343                cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2344#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2345
2346        if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2347                pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2348                cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2349                            rcu_nocb_mask);
2350        }
2351        pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2352                cpumask_pr_args(rcu_nocb_mask));
2353        if (rcu_nocb_poll)
2354                pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2355
2356        for_each_rcu_flavor(rsp) {
2357                for_each_cpu(cpu, rcu_nocb_mask)
2358                        init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2359                rcu_organize_nocb_kthreads(rsp);
2360        }
2361}
2362
2363/* Initialize per-rcu_data variables for no-CBs CPUs. */
2364static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2365{
2366        rdp->nocb_tail = &rdp->nocb_head;
2367        init_waitqueue_head(&rdp->nocb_wq);
2368        rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2369}
2370
2371/*
2372 * If the specified CPU is a no-CBs CPU that does not already have its
2373 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2374 * brought online out of order, this can require re-organizing the
2375 * leader-follower relationships.
2376 */
2377static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2378{
2379        struct rcu_data *rdp;
2380        struct rcu_data *rdp_last;
2381        struct rcu_data *rdp_old_leader;
2382        struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2383        struct task_struct *t;
2384
2385        /*
2386         * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2387         * then nothing to do.
2388         */
2389        if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2390                return;
2391
2392        /* If we didn't spawn the leader first, reorganize! */
2393        rdp_old_leader = rdp_spawn->nocb_leader;
2394        if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2395                rdp_last = NULL;
2396                rdp = rdp_old_leader;
2397                do {
2398                        rdp->nocb_leader = rdp_spawn;
2399                        if (rdp_last && rdp != rdp_spawn)
2400                                rdp_last->nocb_next_follower = rdp;
2401                        if (rdp == rdp_spawn) {
2402                                rdp = rdp->nocb_next_follower;
2403                        } else {
2404                                rdp_last = rdp;
2405                                rdp = rdp->nocb_next_follower;
2406                                rdp_last->nocb_next_follower = NULL;
2407                        }
2408                } while (rdp);
2409                rdp_spawn->nocb_next_follower = rdp_old_leader;
2410        }
2411
2412        /* Spawn the kthread for this CPU and RCU flavor. */
2413        t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2414                        "rcuo%c/%d", rsp->abbr, cpu);
2415        BUG_ON(IS_ERR(t));
2416        WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2417}
2418
2419/*
2420 * If the specified CPU is a no-CBs CPU that does not already have its
2421 * rcuo kthreads, spawn them.
2422 */
2423static void rcu_spawn_all_nocb_kthreads(int cpu)
2424{
2425        struct rcu_state *rsp;
2426
2427        if (rcu_scheduler_fully_active)
2428                for_each_rcu_flavor(rsp)
2429                        rcu_spawn_one_nocb_kthread(rsp, cpu);
2430}
2431
2432/*
2433 * Once the scheduler is running, spawn rcuo kthreads for all online
2434 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2435 * non-boot CPUs come online -- if this changes, we will need to add
2436 * some mutual exclusion.
2437 */
2438static void __init rcu_spawn_nocb_kthreads(void)
2439{
2440        int cpu;
2441
2442        for_each_online_cpu(cpu)
2443                rcu_spawn_all_nocb_kthreads(cpu);
2444}
2445
2446/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2447static int rcu_nocb_leader_stride = -1;
2448module_param(rcu_nocb_leader_stride, int, 0444);
2449
2450/*
2451 * Initialize leader-follower relationships for all no-CBs CPU.
2452 */
2453static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2454{
2455        int cpu;
2456        int ls = rcu_nocb_leader_stride;
2457        int nl = 0;  /* Next leader. */
2458        struct rcu_data *rdp;
2459        struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2460        struct rcu_data *rdp_prev = NULL;
2461
2462        if (!have_rcu_nocb_mask)
2463                return;
2464        if (ls == -1) {
2465                ls = int_sqrt(nr_cpu_ids);
2466                rcu_nocb_leader_stride = ls;
2467        }
2468
2469        /*
2470         * Each pass through this loop sets up one rcu_data structure and
2471         * spawns one rcu_nocb_kthread().
2472         */
2473        for_each_cpu(cpu, rcu_nocb_mask) {
2474                rdp = per_cpu_ptr(rsp->rda, cpu);
2475                if (rdp->cpu >= nl) {
2476                        /* New leader, set up for followers & next leader. */
2477                        nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2478                        rdp->nocb_leader = rdp;
2479                        rdp_leader = rdp;
2480                } else {
2481                        /* Another follower, link to previous leader. */
2482                        rdp->nocb_leader = rdp_leader;
2483                        rdp_prev->nocb_next_follower = rdp;
2484                }
2485                rdp_prev = rdp;
2486        }
2487}
2488
2489/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2490static bool init_nocb_callback_list(struct rcu_data *rdp)
2491{
2492        if (!rcu_is_nocb_cpu(rdp->cpu))
2493                return false;
2494
2495        /* If there are early-boot callbacks, move them to nocb lists. */
2496        if (rdp->nxtlist) {
2497                rdp->nocb_head = rdp->nxtlist;
2498                rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2499                atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2500                atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2501                rdp->nxtlist = NULL;
2502                rdp->qlen = 0;
2503                rdp->qlen_lazy = 0;
2504        }
2505        rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2506        return true;
2507}
2508
2509#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2512{
2513        WARN_ON_ONCE(1); /* Should be dead code. */
2514        return false;
2515}
2516
2517static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2518{
2519}
2520
2521static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2522{
2523}
2524
2525static void rcu_init_one_nocb(struct rcu_node *rnp)
2526{
2527}
2528
2529static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2530                            bool lazy, unsigned long flags)
2531{
2532        return false;
2533}
2534
2535static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2536                                                     struct rcu_data *rdp,
2537                                                     unsigned long flags)
2538{
2539        return false;
2540}
2541
2542static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2543{
2544}
2545
2546static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2547{
2548        return false;
2549}
2550
2551static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2552{
2553}
2554
2555static void rcu_spawn_all_nocb_kthreads(int cpu)
2556{
2557}
2558
2559static void __init rcu_spawn_nocb_kthreads(void)
2560{
2561}
2562
2563static bool init_nocb_callback_list(struct rcu_data *rdp)
2564{
2565        return false;
2566}
2567
2568#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2569
2570/*
2571 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2572 * arbitrarily long period of time with the scheduling-clock tick turned
2573 * off.  RCU will be paying attention to this CPU because it is in the
2574 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2575 * machine because the scheduling-clock tick has been disabled.  Therefore,
2576 * if an adaptive-ticks CPU is failing to respond to the current grace
2577 * period and has not be idle from an RCU perspective, kick it.
2578 */
2579static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2580{
2581#ifdef CONFIG_NO_HZ_FULL
2582        if (tick_nohz_full_cpu(cpu))
2583                smp_send_reschedule(cpu);
2584#endif /* #ifdef CONFIG_NO_HZ_FULL */
2585}
2586
2587
2588#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2589
2590static int full_sysidle_state;          /* Current system-idle state. */
2591#define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2592#define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2593#define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2594#define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2595#define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2596
2597/*
2598 * Invoked to note exit from irq or task transition to idle.  Note that
2599 * usermode execution does -not- count as idle here!  After all, we want
2600 * to detect full-system idle states, not RCU quiescent states and grace
2601 * periods.  The caller must have disabled interrupts.
2602 */
2603static void rcu_sysidle_enter(int irq)
2604{
2605        unsigned long j;
2606        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2607
2608        /* If there are no nohz_full= CPUs, no need to track this. */
2609        if (!tick_nohz_full_enabled())
2610                return;
2611
2612        /* Adjust nesting, check for fully idle. */
2613        if (irq) {
2614                rdtp->dynticks_idle_nesting--;
2615                WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2616                if (rdtp->dynticks_idle_nesting != 0)
2617                        return;  /* Still not fully idle. */
2618        } else {
2619                if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2620                    DYNTICK_TASK_NEST_VALUE) {
2621                        rdtp->dynticks_idle_nesting = 0;
2622                } else {
2623                        rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2624                        WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2625                        return;  /* Still not fully idle. */
2626                }
2627        }
2628
2629        /* Record start of fully idle period. */
2630        j = jiffies;
2631        WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2632        smp_mb__before_atomic();
2633        atomic_inc(&rdtp->dynticks_idle);
2634        smp_mb__after_atomic();
2635        WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2636}
2637
2638/*
2639 * Unconditionally force exit from full system-idle state.  This is
2640 * invoked when a normal CPU exits idle, but must be called separately
2641 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2642 * is that the timekeeping CPU is permitted to take scheduling-clock
2643 * interrupts while the system is in system-idle state, and of course
2644 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2645 * interrupt from any other type of interrupt.
2646 */
2647void rcu_sysidle_force_exit(void)
2648{
2649        int oldstate = READ_ONCE(full_sysidle_state);
2650        int newoldstate;
2651
2652        /*
2653         * Each pass through the following loop attempts to exit full
2654         * system-idle state.  If contention proves to be a problem,
2655         * a trylock-based contention tree could be used here.
2656         */
2657        while (oldstate > RCU_SYSIDLE_SHORT) {
2658                newoldstate = cmpxchg(&full_sysidle_state,
2659                                      oldstate, RCU_SYSIDLE_NOT);
2660                if (oldstate == newoldstate &&
2661                    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2662                        rcu_kick_nohz_cpu(tick_do_timer_cpu);
2663                        return; /* We cleared it, done! */
2664                }
2665                oldstate = newoldstate;
2666        }
2667        smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2668}
2669
2670/*
2671 * Invoked to note entry to irq or task transition from idle.  Note that
2672 * usermode execution does -not- count as idle here!  The caller must
2673 * have disabled interrupts.
2674 */
2675static void rcu_sysidle_exit(int irq)
2676{
2677        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2678
2679        /* If there are no nohz_full= CPUs, no need to track this. */
2680        if (!tick_nohz_full_enabled())
2681                return;
2682
2683        /* Adjust nesting, check for already non-idle. */
2684        if (irq) {
2685                rdtp->dynticks_idle_nesting++;
2686                WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2687                if (rdtp->dynticks_idle_nesting != 1)
2688                        return; /* Already non-idle. */
2689        } else {
2690                /*
2691                 * Allow for irq misnesting.  Yes, it really is possible
2692                 * to enter an irq handler then never leave it, and maybe
2693                 * also vice versa.  Handle both possibilities.
2694                 */
2695                if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2696                        rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2697                        WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2698                        return; /* Already non-idle. */
2699                } else {
2700                        rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2701                }
2702        }
2703
2704        /* Record end of idle period. */
2705        smp_mb__before_atomic();
2706        atomic_inc(&rdtp->dynticks_idle);
2707        smp_mb__after_atomic();
2708        WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2709
2710        /*
2711         * If we are the timekeeping CPU, we are permitted to be non-idle
2712         * during a system-idle state.  This must be the case, because
2713         * the timekeeping CPU has to take scheduling-clock interrupts
2714         * during the time that the system is transitioning to full
2715         * system-idle state.  This means that the timekeeping CPU must
2716         * invoke rcu_sysidle_force_exit() directly if it does anything
2717         * more than take a scheduling-clock interrupt.
2718         */
2719        if (smp_processor_id() == tick_do_timer_cpu)
2720                return;
2721
2722        /* Update system-idle state: We are clearly no longer fully idle! */
2723        rcu_sysidle_force_exit();
2724}
2725
2726/*
2727 * Check to see if the current CPU is idle.  Note that usermode execution
2728 * does not count as idle.  The caller must have disabled interrupts,
2729 * and must be running on tick_do_timer_cpu.
2730 */
2731static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2732                                  unsigned long *maxj)
2733{
2734        int cur;
2735        unsigned long j;
2736        struct rcu_dynticks *rdtp = rdp->dynticks;
2737
2738        /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2739        if (!tick_nohz_full_enabled())
2740                return;
2741
2742        /*
2743         * If some other CPU has already reported non-idle, if this is
2744         * not the flavor of RCU that tracks sysidle state, or if this
2745         * is an offline or the timekeeping CPU, nothing to do.
2746         */
2747        if (!*isidle || rdp->rsp != rcu_state_p ||
2748            cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2749                return;
2750        /* Verify affinity of current kthread. */
2751        WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2752
2753        /* Pick up current idle and NMI-nesting counter and check. */
2754        cur = atomic_read(&rdtp->dynticks_idle);
2755        if (cur & 0x1) {
2756                *isidle = false; /* We are not idle! */
2757                return;
2758        }
2759        smp_mb(); /* Read counters before timestamps. */
2760
2761        /* Pick up timestamps. */
2762        j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2763        /* If this CPU entered idle more recently, update maxj timestamp. */
2764        if (ULONG_CMP_LT(*maxj, j))
2765                *maxj = j;
2766}
2767
2768/*
2769 * Is this the flavor of RCU that is handling full-system idle?
2770 */
2771static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2772{
2773        return rsp == rcu_state_p;
2774}
2775
2776/*
2777 * Return a delay in jiffies based on the number of CPUs, rcu_node
2778 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2779 * systems more time to transition to full-idle state in order to
2780 * avoid the cache thrashing that otherwise occur on the state variable.
2781 * Really small systems (less than a couple of tens of CPUs) should
2782 * instead use a single global atomically incremented counter, and later
2783 * versions of this will automatically reconfigure themselves accordingly.
2784 */
2785static unsigned long rcu_sysidle_delay(void)
2786{
2787        if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2788                return 0;
2789        return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2790}
2791
2792/*
2793 * Advance the full-system-idle state.  This is invoked when all of
2794 * the non-timekeeping CPUs are idle.
2795 */
2796static void rcu_sysidle(unsigned long j)
2797{
2798        /* Check the current state. */
2799        switch (READ_ONCE(full_sysidle_state)) {
2800        case RCU_SYSIDLE_NOT:
2801
2802                /* First time all are idle, so note a short idle period. */
2803                WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2804                break;
2805
2806        case RCU_SYSIDLE_SHORT:
2807
2808                /*
2809                 * Idle for a bit, time to advance to next state?
2810                 * cmpxchg failure means race with non-idle, let them win.
2811                 */
2812                if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2813                        (void)cmpxchg(&full_sysidle_state,
2814                                      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2815                break;
2816
2817        case RCU_SYSIDLE_LONG:
2818
2819                /*
2820                 * Do an additional check pass before advancing to full.
2821                 * cmpxchg failure means race with non-idle, let them win.
2822                 */
2823                if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2824                        (void)cmpxchg(&full_sysidle_state,
2825                                      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2826                break;
2827
2828        default:
2829                break;
2830        }
2831}
2832
2833/*
2834 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2835 * back to the beginning.
2836 */
2837static void rcu_sysidle_cancel(void)
2838{
2839        smp_mb();
2840        if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2841                WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2842}
2843
2844/*
2845 * Update the sysidle state based on the results of a force-quiescent-state
2846 * scan of the CPUs' dyntick-idle state.
2847 */
2848static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2849                               unsigned long maxj, bool gpkt)
2850{
2851        if (rsp != rcu_state_p)
2852                return;  /* Wrong flavor, ignore. */
2853        if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2854                return;  /* Running state machine from timekeeping CPU. */
2855        if (isidle)
2856                rcu_sysidle(maxj);    /* More idle! */
2857        else
2858                rcu_sysidle_cancel(); /* Idle is over. */
2859}
2860
2861/*
2862 * Wrapper for rcu_sysidle_report() when called from the grace-period
2863 * kthread's context.
2864 */
2865static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2866                                  unsigned long maxj)
2867{
2868        /* If there are no nohz_full= CPUs, no need to track this. */
2869        if (!tick_nohz_full_enabled())
2870                return;
2871
2872        rcu_sysidle_report(rsp, isidle, maxj, true);
2873}
2874
2875/* Callback and function for forcing an RCU grace period. */
2876struct rcu_sysidle_head {
2877        struct rcu_head rh;
2878        int inuse;
2879};
2880
2881static void rcu_sysidle_cb(struct rcu_head *rhp)
2882{
2883        struct rcu_sysidle_head *rshp;
2884
2885        /*
2886         * The following memory barrier is needed to replace the
2887         * memory barriers that would normally be in the memory
2888         * allocator.
2889         */
2890        smp_mb();  /* grace period precedes setting inuse. */
2891
2892        rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2893        WRITE_ONCE(rshp->inuse, 0);
2894}
2895
2896/*
2897 * Check to see if the system is fully idle, other than the timekeeping CPU.
2898 * The caller must have disabled interrupts.  This is not intended to be
2899 * called unless tick_nohz_full_enabled().
2900 */
2901bool rcu_sys_is_idle(void)
2902{
2903        static struct rcu_sysidle_head rsh;
2904        int rss = READ_ONCE(full_sysidle_state);
2905
2906        if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2907                return false;
2908
2909        /* Handle small-system case by doing a full scan of CPUs. */
2910        if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2911                int oldrss = rss - 1;
2912
2913                /*
2914                 * One pass to advance to each state up to _FULL.
2915                 * Give up if any pass fails to advance the state.
2916                 */
2917                while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2918                        int cpu;
2919                        bool isidle = true;
2920                        unsigned long maxj = jiffies - ULONG_MAX / 4;
2921                        struct rcu_data *rdp;
2922
2923                        /* Scan all the CPUs looking for nonidle CPUs. */
2924                        for_each_possible_cpu(cpu) {
2925                                rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2926                                rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2927                                if (!isidle)
2928                                        break;
2929                        }
2930                        rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2931                        oldrss = rss;
2932                        rss = READ_ONCE(full_sysidle_state);
2933                }
2934        }
2935
2936        /* If this is the first observation of an idle period, record it. */
2937        if (rss == RCU_SYSIDLE_FULL) {
2938                rss = cmpxchg(&full_sysidle_state,
2939                              RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2940                return rss == RCU_SYSIDLE_FULL;
2941        }
2942
2943        smp_mb(); /* ensure rss load happens before later caller actions. */
2944
2945        /* If already fully idle, tell the caller (in case of races). */
2946        if (rss == RCU_SYSIDLE_FULL_NOTED)
2947                return true;
2948
2949        /*
2950         * If we aren't there yet, and a grace period is not in flight,
2951         * initiate a grace period.  Either way, tell the caller that
2952         * we are not there yet.  We use an xchg() rather than an assignment
2953         * to make up for the memory barriers that would otherwise be
2954         * provided by the memory allocator.
2955         */
2956        if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2957            !rcu_gp_in_progress(rcu_state_p) &&
2958            !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2959                call_rcu(&rsh.rh, rcu_sysidle_cb);
2960        return false;
2961}
2962
2963/*
2964 * Initialize dynticks sysidle state for CPUs coming online.
2965 */
2966static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2967{
2968        rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2969}
2970
2971#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2972
2973static void rcu_sysidle_enter(int irq)
2974{
2975}
2976
2977static void rcu_sysidle_exit(int irq)
2978{
2979}
2980
2981static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2982                                  unsigned long *maxj)
2983{
2984}
2985
2986static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2987{
2988        return false;
2989}
2990
2991static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2992                                  unsigned long maxj)
2993{
2994}
2995
2996static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2997{
2998}
2999
3000#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3001
3002/*
3003 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3004 * grace-period kthread will do force_quiescent_state() processing?
3005 * The idea is to avoid waking up RCU core processing on such a
3006 * CPU unless the grace period has extended for too long.
3007 *
3008 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3009 * CONFIG_RCU_NOCB_CPU CPUs.
3010 */
3011static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3012{
3013#ifdef CONFIG_NO_HZ_FULL
3014        if (tick_nohz_full_cpu(smp_processor_id()) &&
3015            (!rcu_gp_in_progress(rsp) ||
3016             ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3017                return true;
3018#endif /* #ifdef CONFIG_NO_HZ_FULL */
3019        return false;
3020}
3021
3022/*
3023 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3024 * timekeeping CPU.
3025 */
3026static void rcu_bind_gp_kthread(void)
3027{
3028        int __maybe_unused cpu;
3029
3030        if (!tick_nohz_full_enabled())
3031                return;
3032#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3033        cpu = tick_do_timer_cpu;
3034        if (cpu >= 0 && cpu < nr_cpu_ids)
3035                set_cpus_allowed_ptr(current, cpumask_of(cpu));
3036#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3037        housekeeping_affine(current);
3038#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3039}
3040
3041/* Record the current task on dyntick-idle entry. */
3042static void rcu_dynticks_task_enter(void)
3043{
3044#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3045        WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3046#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3047}
3048
3049/* Record no current task on dyntick-idle exit. */
3050static void rcu_dynticks_task_exit(void)
3051{
3052#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3053        WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3054#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3055}
3056