1
2
3
4
5
6#include "sched.h"
7
8#include <linux/slab.h>
9#include <linux/irq_work.h>
10
11int sched_rr_timeslice = RR_TIMESLICE;
12
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
23
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
29
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
33 }
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63 }
64 raw_spin_unlock(&rt_b->rt_runtime_lock);
65}
66
67#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
68static void push_irq_work_func(struct irq_work *work);
69#endif
70
71void init_rt_rq(struct rt_rq *rt_rq)
72{
73 struct rt_prio_array *array;
74 int i;
75
76 array = &rt_rq->active;
77 for (i = 0; i < MAX_RT_PRIO; i++) {
78 INIT_LIST_HEAD(array->queue + i);
79 __clear_bit(i, array->bitmap);
80 }
81
82 __set_bit(MAX_RT_PRIO, array->bitmap);
83
84#if defined CONFIG_SMP
85 rt_rq->highest_prio.curr = MAX_RT_PRIO;
86 rt_rq->highest_prio.next = MAX_RT_PRIO;
87 rt_rq->rt_nr_migratory = 0;
88 rt_rq->overloaded = 0;
89 plist_head_init(&rt_rq->pushable_tasks);
90
91#ifdef HAVE_RT_PUSH_IPI
92 rt_rq->push_flags = 0;
93 rt_rq->push_cpu = nr_cpu_ids;
94 raw_spin_lock_init(&rt_rq->push_lock);
95 init_irq_work(&rt_rq->push_work, push_irq_work_func);
96#endif
97#endif
98
99 rt_rq->rt_queued = 0;
100
101 rt_rq->rt_time = 0;
102 rt_rq->rt_throttled = 0;
103 rt_rq->rt_runtime = 0;
104 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105}
106
107#ifdef CONFIG_RT_GROUP_SCHED
108static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109{
110 hrtimer_cancel(&rt_b->rt_period_timer);
111}
112
113#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116{
117#ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119#endif
120 return container_of(rt_se, struct task_struct, rt);
121}
122
123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124{
125 return rt_rq->rq;
126}
127
128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129{
130 return rt_se->rt_rq;
131}
132
133static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134{
135 struct rt_rq *rt_rq = rt_se->rt_rq;
136
137 return rt_rq->rq;
138}
139
140void free_rt_sched_group(struct task_group *tg)
141{
142 int i;
143
144 if (tg->rt_se)
145 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147 for_each_possible_cpu(i) {
148 if (tg->rt_rq)
149 kfree(tg->rt_rq[i]);
150 if (tg->rt_se)
151 kfree(tg->rt_se[i]);
152 }
153
154 kfree(tg->rt_rq);
155 kfree(tg->rt_se);
156}
157
158void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 struct sched_rt_entity *rt_se, int cpu,
160 struct sched_rt_entity *parent)
161{
162 struct rq *rq = cpu_rq(cpu);
163
164 rt_rq->highest_prio.curr = MAX_RT_PRIO;
165 rt_rq->rt_nr_boosted = 0;
166 rt_rq->rq = rq;
167 rt_rq->tg = tg;
168
169 tg->rt_rq[cpu] = rt_rq;
170 tg->rt_se[cpu] = rt_se;
171
172 if (!rt_se)
173 return;
174
175 if (!parent)
176 rt_se->rt_rq = &rq->rt;
177 else
178 rt_se->rt_rq = parent->my_q;
179
180 rt_se->my_q = rt_rq;
181 rt_se->parent = parent;
182 INIT_LIST_HEAD(&rt_se->run_list);
183}
184
185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186{
187 struct rt_rq *rt_rq;
188 struct sched_rt_entity *rt_se;
189 int i;
190
191 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192 if (!tg->rt_rq)
193 goto err;
194 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195 if (!tg->rt_se)
196 goto err;
197
198 init_rt_bandwidth(&tg->rt_bandwidth,
199 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201 for_each_possible_cpu(i) {
202 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_rq)
205 goto err;
206
207 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 GFP_KERNEL, cpu_to_node(i));
209 if (!rt_se)
210 goto err_free_rq;
211
212 init_rt_rq(rt_rq);
213 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 }
216
217 return 1;
218
219err_free_rq:
220 kfree(rt_rq);
221err:
222 return 0;
223}
224
225#else
226
227#define rt_entity_is_task(rt_se) (1)
228
229static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230{
231 return container_of(rt_se, struct task_struct, rt);
232}
233
234static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235{
236 return container_of(rt_rq, struct rq, rt);
237}
238
239static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240{
241 struct task_struct *p = rt_task_of(rt_se);
242
243 return task_rq(p);
244}
245
246static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247{
248 struct rq *rq = rq_of_rt_se(rt_se);
249
250 return &rq->rt;
251}
252
253void free_rt_sched_group(struct task_group *tg) { }
254
255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256{
257 return 1;
258}
259#endif
260
261#ifdef CONFIG_SMP
262
263static void pull_rt_task(struct rq *this_rq);
264
265static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266{
267
268 return rq->rt.highest_prio.curr > prev->prio;
269}
270
271static inline int rt_overloaded(struct rq *rq)
272{
273 return atomic_read(&rq->rd->rto_count);
274}
275
276static inline void rt_set_overload(struct rq *rq)
277{
278 if (!rq->online)
279 return;
280
281 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282
283
284
285
286
287
288
289
290
291 smp_wmb();
292 atomic_inc(&rq->rd->rto_count);
293}
294
295static inline void rt_clear_overload(struct rq *rq)
296{
297 if (!rq->online)
298 return;
299
300
301 atomic_dec(&rq->rd->rto_count);
302 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303}
304
305static void update_rt_migration(struct rt_rq *rt_rq)
306{
307 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308 if (!rt_rq->overloaded) {
309 rt_set_overload(rq_of_rt_rq(rt_rq));
310 rt_rq->overloaded = 1;
311 }
312 } else if (rt_rq->overloaded) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq));
314 rt_rq->overloaded = 0;
315 }
316}
317
318static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319{
320 struct task_struct *p;
321
322 if (!rt_entity_is_task(rt_se))
323 return;
324
325 p = rt_task_of(rt_se);
326 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328 rt_rq->rt_nr_total++;
329 if (p->nr_cpus_allowed > 1)
330 rt_rq->rt_nr_migratory++;
331
332 update_rt_migration(rt_rq);
333}
334
335static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336{
337 struct task_struct *p;
338
339 if (!rt_entity_is_task(rt_se))
340 return;
341
342 p = rt_task_of(rt_se);
343 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345 rt_rq->rt_nr_total--;
346 if (p->nr_cpus_allowed > 1)
347 rt_rq->rt_nr_migratory--;
348
349 update_rt_migration(rt_rq);
350}
351
352static inline int has_pushable_tasks(struct rq *rq)
353{
354 return !plist_head_empty(&rq->rt.pushable_tasks);
355}
356
357static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359
360static void push_rt_tasks(struct rq *);
361static void pull_rt_task(struct rq *);
362
363static inline void queue_push_tasks(struct rq *rq)
364{
365 if (!has_pushable_tasks(rq))
366 return;
367
368 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369}
370
371static inline void queue_pull_task(struct rq *rq)
372{
373 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374}
375
376static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377{
378 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 plist_node_init(&p->pushable_tasks, p->prio);
380 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381
382
383 if (p->prio < rq->rt.highest_prio.next)
384 rq->rt.highest_prio.next = p->prio;
385}
386
387static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388{
389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391
392 if (has_pushable_tasks(rq)) {
393 p = plist_first_entry(&rq->rt.pushable_tasks,
394 struct task_struct, pushable_tasks);
395 rq->rt.highest_prio.next = p->prio;
396 } else
397 rq->rt.highest_prio.next = MAX_RT_PRIO;
398}
399
400#else
401
402static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403{
404}
405
406static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407{
408}
409
410static inline
411void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412{
413}
414
415static inline
416void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417{
418}
419
420static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421{
422 return false;
423}
424
425static inline void pull_rt_task(struct rq *this_rq)
426{
427}
428
429static inline void queue_push_tasks(struct rq *rq)
430{
431}
432#endif
433
434static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436
437static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438{
439 return !list_empty(&rt_se->run_list);
440}
441
442#ifdef CONFIG_RT_GROUP_SCHED
443
444static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
445{
446 if (!rt_rq->tg)
447 return RUNTIME_INF;
448
449 return rt_rq->rt_runtime;
450}
451
452static inline u64 sched_rt_period(struct rt_rq *rt_rq)
453{
454 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
455}
456
457typedef struct task_group *rt_rq_iter_t;
458
459static inline struct task_group *next_task_group(struct task_group *tg)
460{
461 do {
462 tg = list_entry_rcu(tg->list.next,
463 typeof(struct task_group), list);
464 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
465
466 if (&tg->list == &task_groups)
467 tg = NULL;
468
469 return tg;
470}
471
472#define for_each_rt_rq(rt_rq, iter, rq) \
473 for (iter = container_of(&task_groups, typeof(*iter), list); \
474 (iter = next_task_group(iter)) && \
475 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
476
477#define for_each_sched_rt_entity(rt_se) \
478 for (; rt_se; rt_se = rt_se->parent)
479
480static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
481{
482 return rt_se->my_q;
483}
484
485static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
486static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
487
488static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
489{
490 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
491 struct rq *rq = rq_of_rt_rq(rt_rq);
492 struct sched_rt_entity *rt_se;
493
494 int cpu = cpu_of(rq);
495
496 rt_se = rt_rq->tg->rt_se[cpu];
497
498 if (rt_rq->rt_nr_running) {
499 if (!rt_se)
500 enqueue_top_rt_rq(rt_rq);
501 else if (!on_rt_rq(rt_se))
502 enqueue_rt_entity(rt_se, false);
503
504 if (rt_rq->highest_prio.curr < curr->prio)
505 resched_curr(rq);
506 }
507}
508
509static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
510{
511 struct sched_rt_entity *rt_se;
512 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
513
514 rt_se = rt_rq->tg->rt_se[cpu];
515
516 if (!rt_se)
517 dequeue_top_rt_rq(rt_rq);
518 else if (on_rt_rq(rt_se))
519 dequeue_rt_entity(rt_se);
520}
521
522static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523{
524 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525}
526
527static int rt_se_boosted(struct sched_rt_entity *rt_se)
528{
529 struct rt_rq *rt_rq = group_rt_rq(rt_se);
530 struct task_struct *p;
531
532 if (rt_rq)
533 return !!rt_rq->rt_nr_boosted;
534
535 p = rt_task_of(rt_se);
536 return p->prio != p->normal_prio;
537}
538
539#ifdef CONFIG_SMP
540static inline const struct cpumask *sched_rt_period_mask(void)
541{
542 return this_rq()->rd->span;
543}
544#else
545static inline const struct cpumask *sched_rt_period_mask(void)
546{
547 return cpu_online_mask;
548}
549#endif
550
551static inline
552struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553{
554 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555}
556
557static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558{
559 return &rt_rq->tg->rt_bandwidth;
560}
561
562#else
563
564static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565{
566 return rt_rq->rt_runtime;
567}
568
569static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570{
571 return ktime_to_ns(def_rt_bandwidth.rt_period);
572}
573
574typedef struct rt_rq *rt_rq_iter_t;
575
576#define for_each_rt_rq(rt_rq, iter, rq) \
577 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579#define for_each_sched_rt_entity(rt_se) \
580 for (; rt_se; rt_se = NULL)
581
582static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583{
584 return NULL;
585}
586
587static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588{
589 struct rq *rq = rq_of_rt_rq(rt_rq);
590
591 if (!rt_rq->rt_nr_running)
592 return;
593
594 enqueue_top_rt_rq(rt_rq);
595 resched_curr(rq);
596}
597
598static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599{
600 dequeue_top_rt_rq(rt_rq);
601}
602
603static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604{
605 return rt_rq->rt_throttled;
606}
607
608static inline const struct cpumask *sched_rt_period_mask(void)
609{
610 return cpu_online_mask;
611}
612
613static inline
614struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615{
616 return &cpu_rq(cpu)->rt;
617}
618
619static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620{
621 return &def_rt_bandwidth;
622}
623
624#endif
625
626bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627{
628 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630 return (hrtimer_active(&rt_b->rt_period_timer) ||
631 rt_rq->rt_time < rt_b->rt_runtime);
632}
633
634#ifdef CONFIG_SMP
635
636
637
638static void do_balance_runtime(struct rt_rq *rt_rq)
639{
640 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642 int i, weight;
643 u64 rt_period;
644
645 weight = cpumask_weight(rd->span);
646
647 raw_spin_lock(&rt_b->rt_runtime_lock);
648 rt_period = ktime_to_ns(rt_b->rt_period);
649 for_each_cpu(i, rd->span) {
650 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651 s64 diff;
652
653 if (iter == rt_rq)
654 continue;
655
656 raw_spin_lock(&iter->rt_runtime_lock);
657
658
659
660
661
662 if (iter->rt_runtime == RUNTIME_INF)
663 goto next;
664
665
666
667
668
669 diff = iter->rt_runtime - iter->rt_time;
670 if (diff > 0) {
671 diff = div_u64((u64)diff, weight);
672 if (rt_rq->rt_runtime + diff > rt_period)
673 diff = rt_period - rt_rq->rt_runtime;
674 iter->rt_runtime -= diff;
675 rt_rq->rt_runtime += diff;
676 if (rt_rq->rt_runtime == rt_period) {
677 raw_spin_unlock(&iter->rt_runtime_lock);
678 break;
679 }
680 }
681next:
682 raw_spin_unlock(&iter->rt_runtime_lock);
683 }
684 raw_spin_unlock(&rt_b->rt_runtime_lock);
685}
686
687
688
689
690static void __disable_runtime(struct rq *rq)
691{
692 struct root_domain *rd = rq->rd;
693 rt_rq_iter_t iter;
694 struct rt_rq *rt_rq;
695
696 if (unlikely(!scheduler_running))
697 return;
698
699 for_each_rt_rq(rt_rq, iter, rq) {
700 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701 s64 want;
702 int i;
703
704 raw_spin_lock(&rt_b->rt_runtime_lock);
705 raw_spin_lock(&rt_rq->rt_runtime_lock);
706
707
708
709
710
711 if (rt_rq->rt_runtime == RUNTIME_INF ||
712 rt_rq->rt_runtime == rt_b->rt_runtime)
713 goto balanced;
714 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715
716
717
718
719
720
721 want = rt_b->rt_runtime - rt_rq->rt_runtime;
722
723
724
725
726 for_each_cpu(i, rd->span) {
727 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728 s64 diff;
729
730
731
732
733 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734 continue;
735
736 raw_spin_lock(&iter->rt_runtime_lock);
737 if (want > 0) {
738 diff = min_t(s64, iter->rt_runtime, want);
739 iter->rt_runtime -= diff;
740 want -= diff;
741 } else {
742 iter->rt_runtime -= want;
743 want -= want;
744 }
745 raw_spin_unlock(&iter->rt_runtime_lock);
746
747 if (!want)
748 break;
749 }
750
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
752
753
754
755
756 BUG_ON(want);
757balanced:
758
759
760
761
762 rt_rq->rt_runtime = RUNTIME_INF;
763 rt_rq->rt_throttled = 0;
764 raw_spin_unlock(&rt_rq->rt_runtime_lock);
765 raw_spin_unlock(&rt_b->rt_runtime_lock);
766
767
768 sched_rt_rq_enqueue(rt_rq);
769 }
770}
771
772static void __enable_runtime(struct rq *rq)
773{
774 rt_rq_iter_t iter;
775 struct rt_rq *rt_rq;
776
777 if (unlikely(!scheduler_running))
778 return;
779
780
781
782
783 for_each_rt_rq(rt_rq, iter, rq) {
784 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785
786 raw_spin_lock(&rt_b->rt_runtime_lock);
787 raw_spin_lock(&rt_rq->rt_runtime_lock);
788 rt_rq->rt_runtime = rt_b->rt_runtime;
789 rt_rq->rt_time = 0;
790 rt_rq->rt_throttled = 0;
791 raw_spin_unlock(&rt_rq->rt_runtime_lock);
792 raw_spin_unlock(&rt_b->rt_runtime_lock);
793 }
794}
795
796static void balance_runtime(struct rt_rq *rt_rq)
797{
798 if (!sched_feat(RT_RUNTIME_SHARE))
799 return;
800
801 if (rt_rq->rt_time > rt_rq->rt_runtime) {
802 raw_spin_unlock(&rt_rq->rt_runtime_lock);
803 do_balance_runtime(rt_rq);
804 raw_spin_lock(&rt_rq->rt_runtime_lock);
805 }
806}
807#else
808static inline void balance_runtime(struct rt_rq *rt_rq) {}
809#endif
810
811static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812{
813 int i, idle = 1, throttled = 0;
814 const struct cpumask *span;
815
816 span = sched_rt_period_mask();
817#ifdef CONFIG_RT_GROUP_SCHED
818
819
820
821
822
823
824
825
826
827 if (rt_b == &root_task_group.rt_bandwidth)
828 span = cpu_online_mask;
829#endif
830 for_each_cpu(i, span) {
831 int enqueue = 0;
832 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833 struct rq *rq = rq_of_rt_rq(rt_rq);
834
835 raw_spin_lock(&rq->lock);
836 if (rt_rq->rt_time) {
837 u64 runtime;
838
839 raw_spin_lock(&rt_rq->rt_runtime_lock);
840 if (rt_rq->rt_throttled)
841 balance_runtime(rt_rq);
842 runtime = rt_rq->rt_runtime;
843 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
844 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
845 rt_rq->rt_throttled = 0;
846 enqueue = 1;
847
848
849
850
851
852
853
854
855 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
856 rq_clock_skip_update(rq, false);
857 }
858 if (rt_rq->rt_time || rt_rq->rt_nr_running)
859 idle = 0;
860 raw_spin_unlock(&rt_rq->rt_runtime_lock);
861 } else if (rt_rq->rt_nr_running) {
862 idle = 0;
863 if (!rt_rq_throttled(rt_rq))
864 enqueue = 1;
865 }
866 if (rt_rq->rt_throttled)
867 throttled = 1;
868
869 if (enqueue)
870 sched_rt_rq_enqueue(rt_rq);
871 raw_spin_unlock(&rq->lock);
872 }
873
874 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
875 return 1;
876
877 return idle;
878}
879
880static inline int rt_se_prio(struct sched_rt_entity *rt_se)
881{
882#ifdef CONFIG_RT_GROUP_SCHED
883 struct rt_rq *rt_rq = group_rt_rq(rt_se);
884
885 if (rt_rq)
886 return rt_rq->highest_prio.curr;
887#endif
888
889 return rt_task_of(rt_se)->prio;
890}
891
892static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
893{
894 u64 runtime = sched_rt_runtime(rt_rq);
895
896 if (rt_rq->rt_throttled)
897 return rt_rq_throttled(rt_rq);
898
899 if (runtime >= sched_rt_period(rt_rq))
900 return 0;
901
902 balance_runtime(rt_rq);
903 runtime = sched_rt_runtime(rt_rq);
904 if (runtime == RUNTIME_INF)
905 return 0;
906
907 if (rt_rq->rt_time > runtime) {
908 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
909
910
911
912
913
914 if (likely(rt_b->rt_runtime)) {
915 rt_rq->rt_throttled = 1;
916 printk_deferred_once("sched: RT throttling activated\n");
917 } else {
918
919
920
921
922
923 rt_rq->rt_time = 0;
924 }
925
926 if (rt_rq_throttled(rt_rq)) {
927 sched_rt_rq_dequeue(rt_rq);
928 return 1;
929 }
930 }
931
932 return 0;
933}
934
935
936
937
938
939static void update_curr_rt(struct rq *rq)
940{
941 struct task_struct *curr = rq->curr;
942 struct sched_rt_entity *rt_se = &curr->rt;
943 u64 delta_exec;
944
945 if (curr->sched_class != &rt_sched_class)
946 return;
947
948 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
949 if (unlikely((s64)delta_exec <= 0))
950 return;
951
952 schedstat_set(curr->se.statistics.exec_max,
953 max(curr->se.statistics.exec_max, delta_exec));
954
955 curr->se.sum_exec_runtime += delta_exec;
956 account_group_exec_runtime(curr, delta_exec);
957
958 curr->se.exec_start = rq_clock_task(rq);
959 cpuacct_charge(curr, delta_exec);
960
961 sched_rt_avg_update(rq, delta_exec);
962
963 if (!rt_bandwidth_enabled())
964 return;
965
966 for_each_sched_rt_entity(rt_se) {
967 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
968
969 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
970 raw_spin_lock(&rt_rq->rt_runtime_lock);
971 rt_rq->rt_time += delta_exec;
972 if (sched_rt_runtime_exceeded(rt_rq))
973 resched_curr(rq);
974 raw_spin_unlock(&rt_rq->rt_runtime_lock);
975 }
976 }
977}
978
979static void
980dequeue_top_rt_rq(struct rt_rq *rt_rq)
981{
982 struct rq *rq = rq_of_rt_rq(rt_rq);
983
984 BUG_ON(&rq->rt != rt_rq);
985
986 if (!rt_rq->rt_queued)
987 return;
988
989 BUG_ON(!rq->nr_running);
990
991 sub_nr_running(rq, rt_rq->rt_nr_running);
992 rt_rq->rt_queued = 0;
993}
994
995static void
996enqueue_top_rt_rq(struct rt_rq *rt_rq)
997{
998 struct rq *rq = rq_of_rt_rq(rt_rq);
999
1000 BUG_ON(&rq->rt != rt_rq);
1001
1002 if (rt_rq->rt_queued)
1003 return;
1004 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1005 return;
1006
1007 add_nr_running(rq, rt_rq->rt_nr_running);
1008 rt_rq->rt_queued = 1;
1009}
1010
1011#if defined CONFIG_SMP
1012
1013static void
1014inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1015{
1016 struct rq *rq = rq_of_rt_rq(rt_rq);
1017
1018#ifdef CONFIG_RT_GROUP_SCHED
1019
1020
1021
1022 if (&rq->rt != rt_rq)
1023 return;
1024#endif
1025 if (rq->online && prio < prev_prio)
1026 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1027}
1028
1029static void
1030dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1031{
1032 struct rq *rq = rq_of_rt_rq(rt_rq);
1033
1034#ifdef CONFIG_RT_GROUP_SCHED
1035
1036
1037
1038 if (&rq->rt != rt_rq)
1039 return;
1040#endif
1041 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1042 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1043}
1044
1045#else
1046
1047static inline
1048void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1049static inline
1050void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1051
1052#endif
1053
1054#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1055static void
1056inc_rt_prio(struct rt_rq *rt_rq, int prio)
1057{
1058 int prev_prio = rt_rq->highest_prio.curr;
1059
1060 if (prio < prev_prio)
1061 rt_rq->highest_prio.curr = prio;
1062
1063 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1064}
1065
1066static void
1067dec_rt_prio(struct rt_rq *rt_rq, int prio)
1068{
1069 int prev_prio = rt_rq->highest_prio.curr;
1070
1071 if (rt_rq->rt_nr_running) {
1072
1073 WARN_ON(prio < prev_prio);
1074
1075
1076
1077
1078
1079 if (prio == prev_prio) {
1080 struct rt_prio_array *array = &rt_rq->active;
1081
1082 rt_rq->highest_prio.curr =
1083 sched_find_first_bit(array->bitmap);
1084 }
1085
1086 } else
1087 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1088
1089 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1090}
1091
1092#else
1093
1094static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1095static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1096
1097#endif
1098
1099#ifdef CONFIG_RT_GROUP_SCHED
1100
1101static void
1102inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1103{
1104 if (rt_se_boosted(rt_se))
1105 rt_rq->rt_nr_boosted++;
1106
1107 if (rt_rq->tg)
1108 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1109}
1110
1111static void
1112dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1113{
1114 if (rt_se_boosted(rt_se))
1115 rt_rq->rt_nr_boosted--;
1116
1117 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1118}
1119
1120#else
1121
1122static void
1123inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124{
1125 start_rt_bandwidth(&def_rt_bandwidth);
1126}
1127
1128static inline
1129void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1130
1131#endif
1132
1133static inline
1134unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1135{
1136 struct rt_rq *group_rq = group_rt_rq(rt_se);
1137
1138 if (group_rq)
1139 return group_rq->rt_nr_running;
1140 else
1141 return 1;
1142}
1143
1144static inline
1145void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146{
1147 int prio = rt_se_prio(rt_se);
1148
1149 WARN_ON(!rt_prio(prio));
1150 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1151
1152 inc_rt_prio(rt_rq, prio);
1153 inc_rt_migration(rt_se, rt_rq);
1154 inc_rt_group(rt_se, rt_rq);
1155}
1156
1157static inline
1158void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1159{
1160 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1161 WARN_ON(!rt_rq->rt_nr_running);
1162 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1163
1164 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1165 dec_rt_migration(rt_se, rt_rq);
1166 dec_rt_group(rt_se, rt_rq);
1167}
1168
1169static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1170{
1171 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1172 struct rt_prio_array *array = &rt_rq->active;
1173 struct rt_rq *group_rq = group_rt_rq(rt_se);
1174 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1175
1176
1177
1178
1179
1180
1181
1182 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1183 return;
1184
1185 if (head)
1186 list_add(&rt_se->run_list, queue);
1187 else
1188 list_add_tail(&rt_se->run_list, queue);
1189 __set_bit(rt_se_prio(rt_se), array->bitmap);
1190
1191 inc_rt_tasks(rt_se, rt_rq);
1192}
1193
1194static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1195{
1196 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1197 struct rt_prio_array *array = &rt_rq->active;
1198
1199 list_del_init(&rt_se->run_list);
1200 if (list_empty(array->queue + rt_se_prio(rt_se)))
1201 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1202
1203 dec_rt_tasks(rt_se, rt_rq);
1204}
1205
1206
1207
1208
1209
1210static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1211{
1212 struct sched_rt_entity *back = NULL;
1213
1214 for_each_sched_rt_entity(rt_se) {
1215 rt_se->back = back;
1216 back = rt_se;
1217 }
1218
1219 dequeue_top_rt_rq(rt_rq_of_se(back));
1220
1221 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1222 if (on_rt_rq(rt_se))
1223 __dequeue_rt_entity(rt_se);
1224 }
1225}
1226
1227static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1228{
1229 struct rq *rq = rq_of_rt_se(rt_se);
1230
1231 dequeue_rt_stack(rt_se);
1232 for_each_sched_rt_entity(rt_se)
1233 __enqueue_rt_entity(rt_se, head);
1234 enqueue_top_rt_rq(&rq->rt);
1235}
1236
1237static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1238{
1239 struct rq *rq = rq_of_rt_se(rt_se);
1240
1241 dequeue_rt_stack(rt_se);
1242
1243 for_each_sched_rt_entity(rt_se) {
1244 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1245
1246 if (rt_rq && rt_rq->rt_nr_running)
1247 __enqueue_rt_entity(rt_se, false);
1248 }
1249 enqueue_top_rt_rq(&rq->rt);
1250}
1251
1252
1253
1254
1255static void
1256enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1257{
1258 struct sched_rt_entity *rt_se = &p->rt;
1259
1260 if (flags & ENQUEUE_WAKEUP)
1261 rt_se->timeout = 0;
1262
1263 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1264
1265 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1266 enqueue_pushable_task(rq, p);
1267}
1268
1269static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1270{
1271 struct sched_rt_entity *rt_se = &p->rt;
1272
1273 update_curr_rt(rq);
1274 dequeue_rt_entity(rt_se);
1275
1276 dequeue_pushable_task(rq, p);
1277}
1278
1279
1280
1281
1282
1283static void
1284requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1285{
1286 if (on_rt_rq(rt_se)) {
1287 struct rt_prio_array *array = &rt_rq->active;
1288 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1289
1290 if (head)
1291 list_move(&rt_se->run_list, queue);
1292 else
1293 list_move_tail(&rt_se->run_list, queue);
1294 }
1295}
1296
1297static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1298{
1299 struct sched_rt_entity *rt_se = &p->rt;
1300 struct rt_rq *rt_rq;
1301
1302 for_each_sched_rt_entity(rt_se) {
1303 rt_rq = rt_rq_of_se(rt_se);
1304 requeue_rt_entity(rt_rq, rt_se, head);
1305 }
1306}
1307
1308static void yield_task_rt(struct rq *rq)
1309{
1310 requeue_task_rt(rq, rq->curr, 0);
1311}
1312
1313#ifdef CONFIG_SMP
1314static int find_lowest_rq(struct task_struct *task);
1315
1316static int
1317select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1318{
1319 struct task_struct *curr;
1320 struct rq *rq;
1321
1322
1323 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1324 goto out;
1325
1326 rq = cpu_rq(cpu);
1327
1328 rcu_read_lock();
1329 curr = READ_ONCE(rq->curr);
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353 if (curr && unlikely(rt_task(curr)) &&
1354 (curr->nr_cpus_allowed < 2 ||
1355 curr->prio <= p->prio)) {
1356 int target = find_lowest_rq(p);
1357
1358
1359
1360
1361
1362 if (target != -1 &&
1363 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1364 cpu = target;
1365 }
1366 rcu_read_unlock();
1367
1368out:
1369 return cpu;
1370}
1371
1372static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1373{
1374
1375
1376
1377
1378 if (rq->curr->nr_cpus_allowed == 1 ||
1379 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1380 return;
1381
1382
1383
1384
1385
1386 if (p->nr_cpus_allowed != 1
1387 && cpupri_find(&rq->rd->cpupri, p, NULL))
1388 return;
1389
1390
1391
1392
1393
1394
1395 requeue_task_rt(rq, p, 1);
1396 resched_curr(rq);
1397}
1398
1399#endif
1400
1401
1402
1403
1404static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1405{
1406 if (p->prio < rq->curr->prio) {
1407 resched_curr(rq);
1408 return;
1409 }
1410
1411#ifdef CONFIG_SMP
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1425 check_preempt_equal_prio(rq, p);
1426#endif
1427}
1428
1429static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1430 struct rt_rq *rt_rq)
1431{
1432 struct rt_prio_array *array = &rt_rq->active;
1433 struct sched_rt_entity *next = NULL;
1434 struct list_head *queue;
1435 int idx;
1436
1437 idx = sched_find_first_bit(array->bitmap);
1438 BUG_ON(idx >= MAX_RT_PRIO);
1439
1440 queue = array->queue + idx;
1441 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1442
1443 return next;
1444}
1445
1446static struct task_struct *_pick_next_task_rt(struct rq *rq)
1447{
1448 struct sched_rt_entity *rt_se;
1449 struct task_struct *p;
1450 struct rt_rq *rt_rq = &rq->rt;
1451
1452 do {
1453 rt_se = pick_next_rt_entity(rq, rt_rq);
1454 BUG_ON(!rt_se);
1455 rt_rq = group_rt_rq(rt_se);
1456 } while (rt_rq);
1457
1458 p = rt_task_of(rt_se);
1459 p->se.exec_start = rq_clock_task(rq);
1460
1461 return p;
1462}
1463
1464static struct task_struct *
1465pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1466{
1467 struct task_struct *p;
1468 struct rt_rq *rt_rq = &rq->rt;
1469
1470 if (need_pull_rt_task(rq, prev)) {
1471
1472
1473
1474
1475
1476
1477 lockdep_unpin_lock(&rq->lock);
1478 pull_rt_task(rq);
1479 lockdep_pin_lock(&rq->lock);
1480
1481
1482
1483
1484
1485 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1486 rq->dl.dl_nr_running))
1487 return RETRY_TASK;
1488 }
1489
1490
1491
1492
1493
1494 if (prev->sched_class == &rt_sched_class)
1495 update_curr_rt(rq);
1496
1497 if (!rt_rq->rt_queued)
1498 return NULL;
1499
1500 put_prev_task(rq, prev);
1501
1502 p = _pick_next_task_rt(rq);
1503
1504
1505 dequeue_pushable_task(rq, p);
1506
1507 queue_push_tasks(rq);
1508
1509 return p;
1510}
1511
1512static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1513{
1514 update_curr_rt(rq);
1515
1516
1517
1518
1519
1520 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1521 enqueue_pushable_task(rq, p);
1522}
1523
1524#ifdef CONFIG_SMP
1525
1526
1527#define RT_MAX_TRIES 3
1528
1529static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1530{
1531 if (!task_running(rq, p) &&
1532 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1533 return 1;
1534 return 0;
1535}
1536
1537
1538
1539
1540
1541static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1542{
1543 struct plist_head *head = &rq->rt.pushable_tasks;
1544 struct task_struct *p;
1545
1546 if (!has_pushable_tasks(rq))
1547 return NULL;
1548
1549 plist_for_each_entry(p, head, pushable_tasks) {
1550 if (pick_rt_task(rq, p, cpu))
1551 return p;
1552 }
1553
1554 return NULL;
1555}
1556
1557static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1558
1559static int find_lowest_rq(struct task_struct *task)
1560{
1561 struct sched_domain *sd;
1562 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1563 int this_cpu = smp_processor_id();
1564 int cpu = task_cpu(task);
1565
1566
1567 if (unlikely(!lowest_mask))
1568 return -1;
1569
1570 if (task->nr_cpus_allowed == 1)
1571 return -1;
1572
1573 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1574 return -1;
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584 if (cpumask_test_cpu(cpu, lowest_mask))
1585 return cpu;
1586
1587
1588
1589
1590
1591 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1592 this_cpu = -1;
1593
1594 rcu_read_lock();
1595 for_each_domain(cpu, sd) {
1596 if (sd->flags & SD_WAKE_AFFINE) {
1597 int best_cpu;
1598
1599
1600
1601
1602
1603 if (this_cpu != -1 &&
1604 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1605 rcu_read_unlock();
1606 return this_cpu;
1607 }
1608
1609 best_cpu = cpumask_first_and(lowest_mask,
1610 sched_domain_span(sd));
1611 if (best_cpu < nr_cpu_ids) {
1612 rcu_read_unlock();
1613 return best_cpu;
1614 }
1615 }
1616 }
1617 rcu_read_unlock();
1618
1619
1620
1621
1622
1623
1624 if (this_cpu != -1)
1625 return this_cpu;
1626
1627 cpu = cpumask_any(lowest_mask);
1628 if (cpu < nr_cpu_ids)
1629 return cpu;
1630 return -1;
1631}
1632
1633
1634static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1635{
1636 struct rq *lowest_rq = NULL;
1637 int tries;
1638 int cpu;
1639
1640 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1641 cpu = find_lowest_rq(task);
1642
1643 if ((cpu == -1) || (cpu == rq->cpu))
1644 break;
1645
1646 lowest_rq = cpu_rq(cpu);
1647
1648 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1649
1650
1651
1652
1653
1654 lowest_rq = NULL;
1655 break;
1656 }
1657
1658
1659 if (double_lock_balance(rq, lowest_rq)) {
1660
1661
1662
1663
1664
1665
1666 if (unlikely(task_rq(task) != rq ||
1667 !cpumask_test_cpu(lowest_rq->cpu,
1668 tsk_cpus_allowed(task)) ||
1669 task_running(rq, task) ||
1670 !task_on_rq_queued(task))) {
1671
1672 double_unlock_balance(rq, lowest_rq);
1673 lowest_rq = NULL;
1674 break;
1675 }
1676 }
1677
1678
1679 if (lowest_rq->rt.highest_prio.curr > task->prio)
1680 break;
1681
1682
1683 double_unlock_balance(rq, lowest_rq);
1684 lowest_rq = NULL;
1685 }
1686
1687 return lowest_rq;
1688}
1689
1690static struct task_struct *pick_next_pushable_task(struct rq *rq)
1691{
1692 struct task_struct *p;
1693
1694 if (!has_pushable_tasks(rq))
1695 return NULL;
1696
1697 p = plist_first_entry(&rq->rt.pushable_tasks,
1698 struct task_struct, pushable_tasks);
1699
1700 BUG_ON(rq->cpu != task_cpu(p));
1701 BUG_ON(task_current(rq, p));
1702 BUG_ON(p->nr_cpus_allowed <= 1);
1703
1704 BUG_ON(!task_on_rq_queued(p));
1705 BUG_ON(!rt_task(p));
1706
1707 return p;
1708}
1709
1710
1711
1712
1713
1714
1715static int push_rt_task(struct rq *rq)
1716{
1717 struct task_struct *next_task;
1718 struct rq *lowest_rq;
1719 int ret = 0;
1720
1721 if (!rq->rt.overloaded)
1722 return 0;
1723
1724 next_task = pick_next_pushable_task(rq);
1725 if (!next_task)
1726 return 0;
1727
1728retry:
1729 if (unlikely(next_task == rq->curr)) {
1730 WARN_ON(1);
1731 return 0;
1732 }
1733
1734
1735
1736
1737
1738
1739 if (unlikely(next_task->prio < rq->curr->prio)) {
1740 resched_curr(rq);
1741 return 0;
1742 }
1743
1744
1745 get_task_struct(next_task);
1746
1747
1748 lowest_rq = find_lock_lowest_rq(next_task, rq);
1749 if (!lowest_rq) {
1750 struct task_struct *task;
1751
1752
1753
1754
1755
1756
1757
1758
1759 task = pick_next_pushable_task(rq);
1760 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1761
1762
1763
1764
1765
1766
1767 goto out;
1768 }
1769
1770 if (!task)
1771
1772 goto out;
1773
1774
1775
1776
1777 put_task_struct(next_task);
1778 next_task = task;
1779 goto retry;
1780 }
1781
1782 deactivate_task(rq, next_task, 0);
1783 set_task_cpu(next_task, lowest_rq->cpu);
1784 activate_task(lowest_rq, next_task, 0);
1785 ret = 1;
1786
1787 resched_curr(lowest_rq);
1788
1789 double_unlock_balance(rq, lowest_rq);
1790
1791out:
1792 put_task_struct(next_task);
1793
1794 return ret;
1795}
1796
1797static void push_rt_tasks(struct rq *rq)
1798{
1799
1800 while (push_rt_task(rq))
1801 ;
1802}
1803
1804#ifdef HAVE_RT_PUSH_IPI
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814static int rto_next_cpu(struct rq *rq)
1815{
1816 int prev_cpu = rq->rt.push_cpu;
1817 int cpu;
1818
1819 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1820
1821
1822
1823
1824
1825
1826 if (prev_cpu < rq->cpu) {
1827 if (cpu >= rq->cpu)
1828 return nr_cpu_ids;
1829
1830 } else if (cpu >= nr_cpu_ids) {
1831
1832
1833
1834
1835
1836 cpu = cpumask_first(rq->rd->rto_mask);
1837 if (cpu >= rq->cpu)
1838 return nr_cpu_ids;
1839 }
1840 rq->rt.push_cpu = cpu;
1841
1842
1843 return cpu;
1844}
1845
1846static int find_next_push_cpu(struct rq *rq)
1847{
1848 struct rq *next_rq;
1849 int cpu;
1850
1851 while (1) {
1852 cpu = rto_next_cpu(rq);
1853 if (cpu >= nr_cpu_ids)
1854 break;
1855 next_rq = cpu_rq(cpu);
1856
1857
1858 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1859 break;
1860 }
1861
1862 return cpu;
1863}
1864
1865#define RT_PUSH_IPI_EXECUTING 1
1866#define RT_PUSH_IPI_RESTART 2
1867
1868static void tell_cpu_to_push(struct rq *rq)
1869{
1870 int cpu;
1871
1872 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1873 raw_spin_lock(&rq->rt.push_lock);
1874
1875 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1876
1877
1878
1879
1880 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1881 raw_spin_unlock(&rq->rt.push_lock);
1882 return;
1883 }
1884 raw_spin_unlock(&rq->rt.push_lock);
1885 }
1886
1887
1888
1889 rq->rt.push_cpu = rq->cpu;
1890 cpu = find_next_push_cpu(rq);
1891 if (cpu >= nr_cpu_ids)
1892 return;
1893
1894 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1895
1896 irq_work_queue_on(&rq->rt.push_work, cpu);
1897}
1898
1899
1900static void try_to_push_tasks(void *arg)
1901{
1902 struct rt_rq *rt_rq = arg;
1903 struct rq *rq, *src_rq;
1904 int this_cpu;
1905 int cpu;
1906
1907 this_cpu = rt_rq->push_cpu;
1908
1909
1910 BUG_ON(this_cpu != smp_processor_id());
1911
1912 rq = cpu_rq(this_cpu);
1913 src_rq = rq_of_rt_rq(rt_rq);
1914
1915again:
1916 if (has_pushable_tasks(rq)) {
1917 raw_spin_lock(&rq->lock);
1918 push_rt_task(rq);
1919 raw_spin_unlock(&rq->lock);
1920 }
1921
1922
1923 raw_spin_lock(&rt_rq->push_lock);
1924
1925
1926
1927
1928 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1929 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1930 rt_rq->push_cpu = src_rq->cpu;
1931 }
1932
1933 cpu = find_next_push_cpu(src_rq);
1934
1935 if (cpu >= nr_cpu_ids)
1936 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1937 raw_spin_unlock(&rt_rq->push_lock);
1938
1939 if (cpu >= nr_cpu_ids)
1940 return;
1941
1942
1943
1944
1945
1946
1947 if (unlikely(cpu == rq->cpu))
1948 goto again;
1949
1950
1951 irq_work_queue_on(&rt_rq->push_work, cpu);
1952}
1953
1954static void push_irq_work_func(struct irq_work *work)
1955{
1956 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1957
1958 try_to_push_tasks(rt_rq);
1959}
1960#endif
1961
1962static void pull_rt_task(struct rq *this_rq)
1963{
1964 int this_cpu = this_rq->cpu, cpu;
1965 bool resched = false;
1966 struct task_struct *p;
1967 struct rq *src_rq;
1968
1969 if (likely(!rt_overloaded(this_rq)))
1970 return;
1971
1972
1973
1974
1975
1976 smp_rmb();
1977
1978#ifdef HAVE_RT_PUSH_IPI
1979 if (sched_feat(RT_PUSH_IPI)) {
1980 tell_cpu_to_push(this_rq);
1981 return;
1982 }
1983#endif
1984
1985 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1986 if (this_cpu == cpu)
1987 continue;
1988
1989 src_rq = cpu_rq(cpu);
1990
1991
1992
1993
1994
1995
1996
1997
1998 if (src_rq->rt.highest_prio.next >=
1999 this_rq->rt.highest_prio.curr)
2000 continue;
2001
2002
2003
2004
2005
2006
2007 double_lock_balance(this_rq, src_rq);
2008
2009
2010
2011
2012
2013 p = pick_highest_pushable_task(src_rq, this_cpu);
2014
2015
2016
2017
2018
2019 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2020 WARN_ON(p == src_rq->curr);
2021 WARN_ON(!task_on_rq_queued(p));
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031 if (p->prio < src_rq->curr->prio)
2032 goto skip;
2033
2034 resched = true;
2035
2036 deactivate_task(src_rq, p, 0);
2037 set_task_cpu(p, this_cpu);
2038 activate_task(this_rq, p, 0);
2039
2040
2041
2042
2043
2044
2045 }
2046skip:
2047 double_unlock_balance(this_rq, src_rq);
2048 }
2049
2050 if (resched)
2051 resched_curr(this_rq);
2052}
2053
2054
2055
2056
2057
2058static void task_woken_rt(struct rq *rq, struct task_struct *p)
2059{
2060 if (!task_running(rq, p) &&
2061 !test_tsk_need_resched(rq->curr) &&
2062 p->nr_cpus_allowed > 1 &&
2063 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2064 (rq->curr->nr_cpus_allowed < 2 ||
2065 rq->curr->prio <= p->prio))
2066 push_rt_tasks(rq);
2067}
2068
2069
2070static void rq_online_rt(struct rq *rq)
2071{
2072 if (rq->rt.overloaded)
2073 rt_set_overload(rq);
2074
2075 __enable_runtime(rq);
2076
2077 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2078}
2079
2080
2081static void rq_offline_rt(struct rq *rq)
2082{
2083 if (rq->rt.overloaded)
2084 rt_clear_overload(rq);
2085
2086 __disable_runtime(rq);
2087
2088 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2089}
2090
2091
2092
2093
2094
2095static void switched_from_rt(struct rq *rq, struct task_struct *p)
2096{
2097
2098
2099
2100
2101
2102
2103
2104 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2105 return;
2106
2107 queue_pull_task(rq);
2108}
2109
2110void __init init_sched_rt_class(void)
2111{
2112 unsigned int i;
2113
2114 for_each_possible_cpu(i) {
2115 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2116 GFP_KERNEL, cpu_to_node(i));
2117 }
2118}
2119#endif
2120
2121
2122
2123
2124
2125
2126static void switched_to_rt(struct rq *rq, struct task_struct *p)
2127{
2128
2129
2130
2131
2132
2133
2134
2135 if (task_on_rq_queued(p) && rq->curr != p) {
2136#ifdef CONFIG_SMP
2137 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2138 queue_push_tasks(rq);
2139#else
2140 if (p->prio < rq->curr->prio)
2141 resched_curr(rq);
2142#endif
2143 }
2144}
2145
2146
2147
2148
2149
2150static void
2151prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2152{
2153 if (!task_on_rq_queued(p))
2154 return;
2155
2156 if (rq->curr == p) {
2157#ifdef CONFIG_SMP
2158
2159
2160
2161
2162 if (oldprio < p->prio)
2163 queue_pull_task(rq);
2164
2165
2166
2167
2168
2169 if (p->prio > rq->rt.highest_prio.curr)
2170 resched_curr(rq);
2171#else
2172
2173 if (oldprio < p->prio)
2174 resched_curr(rq);
2175#endif
2176 } else {
2177
2178
2179
2180
2181
2182 if (p->prio < rq->curr->prio)
2183 resched_curr(rq);
2184 }
2185}
2186
2187static void watchdog(struct rq *rq, struct task_struct *p)
2188{
2189 unsigned long soft, hard;
2190
2191
2192 soft = task_rlimit(p, RLIMIT_RTTIME);
2193 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2194
2195 if (soft != RLIM_INFINITY) {
2196 unsigned long next;
2197
2198 if (p->rt.watchdog_stamp != jiffies) {
2199 p->rt.timeout++;
2200 p->rt.watchdog_stamp = jiffies;
2201 }
2202
2203 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2204 if (p->rt.timeout > next)
2205 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2206 }
2207}
2208
2209static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2210{
2211 struct sched_rt_entity *rt_se = &p->rt;
2212
2213 update_curr_rt(rq);
2214
2215 watchdog(rq, p);
2216
2217
2218
2219
2220
2221 if (p->policy != SCHED_RR)
2222 return;
2223
2224 if (--p->rt.time_slice)
2225 return;
2226
2227 p->rt.time_slice = sched_rr_timeslice;
2228
2229
2230
2231
2232
2233 for_each_sched_rt_entity(rt_se) {
2234 if (rt_se->run_list.prev != rt_se->run_list.next) {
2235 requeue_task_rt(rq, p, 0);
2236 resched_curr(rq);
2237 return;
2238 }
2239 }
2240}
2241
2242static void set_curr_task_rt(struct rq *rq)
2243{
2244 struct task_struct *p = rq->curr;
2245
2246 p->se.exec_start = rq_clock_task(rq);
2247
2248
2249 dequeue_pushable_task(rq, p);
2250}
2251
2252static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2253{
2254
2255
2256
2257 if (task->policy == SCHED_RR)
2258 return sched_rr_timeslice;
2259 else
2260 return 0;
2261}
2262
2263const struct sched_class rt_sched_class = {
2264 .next = &fair_sched_class,
2265 .enqueue_task = enqueue_task_rt,
2266 .dequeue_task = dequeue_task_rt,
2267 .yield_task = yield_task_rt,
2268
2269 .check_preempt_curr = check_preempt_curr_rt,
2270
2271 .pick_next_task = pick_next_task_rt,
2272 .put_prev_task = put_prev_task_rt,
2273
2274#ifdef CONFIG_SMP
2275 .select_task_rq = select_task_rq_rt,
2276
2277 .set_cpus_allowed = set_cpus_allowed_common,
2278 .rq_online = rq_online_rt,
2279 .rq_offline = rq_offline_rt,
2280 .task_woken = task_woken_rt,
2281 .switched_from = switched_from_rt,
2282#endif
2283
2284 .set_curr_task = set_curr_task_rt,
2285 .task_tick = task_tick_rt,
2286
2287 .get_rr_interval = get_rr_interval_rt,
2288
2289 .prio_changed = prio_changed_rt,
2290 .switched_to = switched_to_rt,
2291
2292 .update_curr = update_curr_rt,
2293};
2294
2295#ifdef CONFIG_SCHED_DEBUG
2296extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2297
2298void print_rt_stats(struct seq_file *m, int cpu)
2299{
2300 rt_rq_iter_t iter;
2301 struct rt_rq *rt_rq;
2302
2303 rcu_read_lock();
2304 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2305 print_rt_rq(m, cpu, rt_rq);
2306 rcu_read_unlock();
2307}
2308#endif
2309