linux/lib/bitmap.c
<<
>>
Prefs
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/export.h>
   9#include <linux/thread_info.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15
  16#include <asm/page.h>
  17#include <asm/uaccess.h>
  18
  19/*
  20 * bitmaps provide an array of bits, implemented using an an
  21 * array of unsigned longs.  The number of valid bits in a
  22 * given bitmap does _not_ need to be an exact multiple of
  23 * BITS_PER_LONG.
  24 *
  25 * The possible unused bits in the last, partially used word
  26 * of a bitmap are 'don't care'.  The implementation makes
  27 * no particular effort to keep them zero.  It ensures that
  28 * their value will not affect the results of any operation.
  29 * The bitmap operations that return Boolean (bitmap_empty,
  30 * for example) or scalar (bitmap_weight, for example) results
  31 * carefully filter out these unused bits from impacting their
  32 * results.
  33 *
  34 * These operations actually hold to a slightly stronger rule:
  35 * if you don't input any bitmaps to these ops that have some
  36 * unused bits set, then they won't output any set unused bits
  37 * in output bitmaps.
  38 *
  39 * The byte ordering of bitmaps is more natural on little
  40 * endian architectures.  See the big-endian headers
  41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  42 * for the best explanations of this ordering.
  43 */
  44
  45int __bitmap_equal(const unsigned long *bitmap1,
  46                const unsigned long *bitmap2, unsigned int bits)
  47{
  48        unsigned int k, lim = bits/BITS_PER_LONG;
  49        for (k = 0; k < lim; ++k)
  50                if (bitmap1[k] != bitmap2[k])
  51                        return 0;
  52
  53        if (bits % BITS_PER_LONG)
  54                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  55                        return 0;
  56
  57        return 1;
  58}
  59EXPORT_SYMBOL(__bitmap_equal);
  60
  61void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  62{
  63        unsigned int k, lim = bits/BITS_PER_LONG;
  64        for (k = 0; k < lim; ++k)
  65                dst[k] = ~src[k];
  66
  67        if (bits % BITS_PER_LONG)
  68                dst[k] = ~src[k];
  69}
  70EXPORT_SYMBOL(__bitmap_complement);
  71
  72/**
  73 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  74 *   @dst : destination bitmap
  75 *   @src : source bitmap
  76 *   @shift : shift by this many bits
  77 *   @nbits : bitmap size, in bits
  78 *
  79 * Shifting right (dividing) means moving bits in the MS -> LS bit
  80 * direction.  Zeros are fed into the vacated MS positions and the
  81 * LS bits shifted off the bottom are lost.
  82 */
  83void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
  84                        unsigned shift, unsigned nbits)
  85{
  86        unsigned k, lim = BITS_TO_LONGS(nbits);
  87        unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  88        unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
  89        for (k = 0; off + k < lim; ++k) {
  90                unsigned long upper, lower;
  91
  92                /*
  93                 * If shift is not word aligned, take lower rem bits of
  94                 * word above and make them the top rem bits of result.
  95                 */
  96                if (!rem || off + k + 1 >= lim)
  97                        upper = 0;
  98                else {
  99                        upper = src[off + k + 1];
 100                        if (off + k + 1 == lim - 1)
 101                                upper &= mask;
 102                        upper <<= (BITS_PER_LONG - rem);
 103                }
 104                lower = src[off + k];
 105                if (off + k == lim - 1)
 106                        lower &= mask;
 107                lower >>= rem;
 108                dst[k] = lower | upper;
 109        }
 110        if (off)
 111                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 112}
 113EXPORT_SYMBOL(__bitmap_shift_right);
 114
 115
 116/**
 117 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 118 *   @dst : destination bitmap
 119 *   @src : source bitmap
 120 *   @shift : shift by this many bits
 121 *   @nbits : bitmap size, in bits
 122 *
 123 * Shifting left (multiplying) means moving bits in the LS -> MS
 124 * direction.  Zeros are fed into the vacated LS bit positions
 125 * and those MS bits shifted off the top are lost.
 126 */
 127
 128void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 129                        unsigned int shift, unsigned int nbits)
 130{
 131        int k;
 132        unsigned int lim = BITS_TO_LONGS(nbits);
 133        unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 134        for (k = lim - off - 1; k >= 0; --k) {
 135                unsigned long upper, lower;
 136
 137                /*
 138                 * If shift is not word aligned, take upper rem bits of
 139                 * word below and make them the bottom rem bits of result.
 140                 */
 141                if (rem && k > 0)
 142                        lower = src[k - 1] >> (BITS_PER_LONG - rem);
 143                else
 144                        lower = 0;
 145                upper = src[k] << rem;
 146                dst[k + off] = lower | upper;
 147        }
 148        if (off)
 149                memset(dst, 0, off*sizeof(unsigned long));
 150}
 151EXPORT_SYMBOL(__bitmap_shift_left);
 152
 153int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 154                                const unsigned long *bitmap2, unsigned int bits)
 155{
 156        unsigned int k;
 157        unsigned int lim = bits/BITS_PER_LONG;
 158        unsigned long result = 0;
 159
 160        for (k = 0; k < lim; k++)
 161                result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 162        if (bits % BITS_PER_LONG)
 163                result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 164                           BITMAP_LAST_WORD_MASK(bits));
 165        return result != 0;
 166}
 167EXPORT_SYMBOL(__bitmap_and);
 168
 169void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 170                                const unsigned long *bitmap2, unsigned int bits)
 171{
 172        unsigned int k;
 173        unsigned int nr = BITS_TO_LONGS(bits);
 174
 175        for (k = 0; k < nr; k++)
 176                dst[k] = bitmap1[k] | bitmap2[k];
 177}
 178EXPORT_SYMBOL(__bitmap_or);
 179
 180void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 181                                const unsigned long *bitmap2, unsigned int bits)
 182{
 183        unsigned int k;
 184        unsigned int nr = BITS_TO_LONGS(bits);
 185
 186        for (k = 0; k < nr; k++)
 187                dst[k] = bitmap1[k] ^ bitmap2[k];
 188}
 189EXPORT_SYMBOL(__bitmap_xor);
 190
 191int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 192                                const unsigned long *bitmap2, unsigned int bits)
 193{
 194        unsigned int k;
 195        unsigned int lim = bits/BITS_PER_LONG;
 196        unsigned long result = 0;
 197
 198        for (k = 0; k < lim; k++)
 199                result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 200        if (bits % BITS_PER_LONG)
 201                result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 202                           BITMAP_LAST_WORD_MASK(bits));
 203        return result != 0;
 204}
 205EXPORT_SYMBOL(__bitmap_andnot);
 206
 207int __bitmap_intersects(const unsigned long *bitmap1,
 208                        const unsigned long *bitmap2, unsigned int bits)
 209{
 210        unsigned int k, lim = bits/BITS_PER_LONG;
 211        for (k = 0; k < lim; ++k)
 212                if (bitmap1[k] & bitmap2[k])
 213                        return 1;
 214
 215        if (bits % BITS_PER_LONG)
 216                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 217                        return 1;
 218        return 0;
 219}
 220EXPORT_SYMBOL(__bitmap_intersects);
 221
 222int __bitmap_subset(const unsigned long *bitmap1,
 223                    const unsigned long *bitmap2, unsigned int bits)
 224{
 225        unsigned int k, lim = bits/BITS_PER_LONG;
 226        for (k = 0; k < lim; ++k)
 227                if (bitmap1[k] & ~bitmap2[k])
 228                        return 0;
 229
 230        if (bits % BITS_PER_LONG)
 231                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 232                        return 0;
 233        return 1;
 234}
 235EXPORT_SYMBOL(__bitmap_subset);
 236
 237int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 238{
 239        unsigned int k, lim = bits/BITS_PER_LONG;
 240        int w = 0;
 241
 242        for (k = 0; k < lim; k++)
 243                w += hweight_long(bitmap[k]);
 244
 245        if (bits % BITS_PER_LONG)
 246                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 247
 248        return w;
 249}
 250EXPORT_SYMBOL(__bitmap_weight);
 251
 252void bitmap_set(unsigned long *map, unsigned int start, int len)
 253{
 254        unsigned long *p = map + BIT_WORD(start);
 255        const unsigned int size = start + len;
 256        int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 257        unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 258
 259        while (len - bits_to_set >= 0) {
 260                *p |= mask_to_set;
 261                len -= bits_to_set;
 262                bits_to_set = BITS_PER_LONG;
 263                mask_to_set = ~0UL;
 264                p++;
 265        }
 266        if (len) {
 267                mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 268                *p |= mask_to_set;
 269        }
 270}
 271EXPORT_SYMBOL(bitmap_set);
 272
 273void bitmap_clear(unsigned long *map, unsigned int start, int len)
 274{
 275        unsigned long *p = map + BIT_WORD(start);
 276        const unsigned int size = start + len;
 277        int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 278        unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 279
 280        while (len - bits_to_clear >= 0) {
 281                *p &= ~mask_to_clear;
 282                len -= bits_to_clear;
 283                bits_to_clear = BITS_PER_LONG;
 284                mask_to_clear = ~0UL;
 285                p++;
 286        }
 287        if (len) {
 288                mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 289                *p &= ~mask_to_clear;
 290        }
 291}
 292EXPORT_SYMBOL(bitmap_clear);
 293
 294/**
 295 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 296 * @map: The address to base the search on
 297 * @size: The bitmap size in bits
 298 * @start: The bitnumber to start searching at
 299 * @nr: The number of zeroed bits we're looking for
 300 * @align_mask: Alignment mask for zero area
 301 * @align_offset: Alignment offset for zero area.
 302 *
 303 * The @align_mask should be one less than a power of 2; the effect is that
 304 * the bit offset of all zero areas this function finds plus @align_offset
 305 * is multiple of that power of 2.
 306 */
 307unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 308                                             unsigned long size,
 309                                             unsigned long start,
 310                                             unsigned int nr,
 311                                             unsigned long align_mask,
 312                                             unsigned long align_offset)
 313{
 314        unsigned long index, end, i;
 315again:
 316        index = find_next_zero_bit(map, size, start);
 317
 318        /* Align allocation */
 319        index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 320
 321        end = index + nr;
 322        if (end > size)
 323                return end;
 324        i = find_next_bit(map, end, index);
 325        if (i < end) {
 326                start = i + 1;
 327                goto again;
 328        }
 329        return index;
 330}
 331EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 332
 333/*
 334 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 335 * second version by Paul Jackson, third by Joe Korty.
 336 */
 337
 338#define CHUNKSZ                         32
 339#define nbits_to_hold_value(val)        fls(val)
 340#define BASEDEC 10              /* fancier cpuset lists input in decimal */
 341
 342/**
 343 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 344 * @buf: pointer to buffer containing string.
 345 * @buflen: buffer size in bytes.  If string is smaller than this
 346 *    then it must be terminated with a \0.
 347 * @is_user: location of buffer, 0 indicates kernel space
 348 * @maskp: pointer to bitmap array that will contain result.
 349 * @nmaskbits: size of bitmap, in bits.
 350 *
 351 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 352 * bits of the resultant bitmask.  No chunk may specify a value larger
 353 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 354 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 355 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 356 * Leading and trailing whitespace accepted, but not embedded whitespace.
 357 */
 358int __bitmap_parse(const char *buf, unsigned int buflen,
 359                int is_user, unsigned long *maskp,
 360                int nmaskbits)
 361{
 362        int c, old_c, totaldigits, ndigits, nchunks, nbits;
 363        u32 chunk;
 364        const char __user __force *ubuf = (const char __user __force *)buf;
 365
 366        bitmap_zero(maskp, nmaskbits);
 367
 368        nchunks = nbits = totaldigits = c = 0;
 369        do {
 370                chunk = 0;
 371                ndigits = totaldigits;
 372
 373                /* Get the next chunk of the bitmap */
 374                while (buflen) {
 375                        old_c = c;
 376                        if (is_user) {
 377                                if (__get_user(c, ubuf++))
 378                                        return -EFAULT;
 379                        }
 380                        else
 381                                c = *buf++;
 382                        buflen--;
 383                        if (isspace(c))
 384                                continue;
 385
 386                        /*
 387                         * If the last character was a space and the current
 388                         * character isn't '\0', we've got embedded whitespace.
 389                         * This is a no-no, so throw an error.
 390                         */
 391                        if (totaldigits && c && isspace(old_c))
 392                                return -EINVAL;
 393
 394                        /* A '\0' or a ',' signal the end of the chunk */
 395                        if (c == '\0' || c == ',')
 396                                break;
 397
 398                        if (!isxdigit(c))
 399                                return -EINVAL;
 400
 401                        /*
 402                         * Make sure there are at least 4 free bits in 'chunk'.
 403                         * If not, this hexdigit will overflow 'chunk', so
 404                         * throw an error.
 405                         */
 406                        if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 407                                return -EOVERFLOW;
 408
 409                        chunk = (chunk << 4) | hex_to_bin(c);
 410                        totaldigits++;
 411                }
 412                if (ndigits == totaldigits)
 413                        return -EINVAL;
 414                if (nchunks == 0 && chunk == 0)
 415                        continue;
 416
 417                __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 418                *maskp |= chunk;
 419                nchunks++;
 420                nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 421                if (nbits > nmaskbits)
 422                        return -EOVERFLOW;
 423        } while (buflen && c == ',');
 424
 425        return 0;
 426}
 427EXPORT_SYMBOL(__bitmap_parse);
 428
 429/**
 430 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 431 *
 432 * @ubuf: pointer to user buffer containing string.
 433 * @ulen: buffer size in bytes.  If string is smaller than this
 434 *    then it must be terminated with a \0.
 435 * @maskp: pointer to bitmap array that will contain result.
 436 * @nmaskbits: size of bitmap, in bits.
 437 *
 438 * Wrapper for __bitmap_parse(), providing it with user buffer.
 439 *
 440 * We cannot have this as an inline function in bitmap.h because it needs
 441 * linux/uaccess.h to get the access_ok() declaration and this causes
 442 * cyclic dependencies.
 443 */
 444int bitmap_parse_user(const char __user *ubuf,
 445                        unsigned int ulen, unsigned long *maskp,
 446                        int nmaskbits)
 447{
 448        if (!access_ok(VERIFY_READ, ubuf, ulen))
 449                return -EFAULT;
 450        return __bitmap_parse((const char __force *)ubuf,
 451                                ulen, 1, maskp, nmaskbits);
 452
 453}
 454EXPORT_SYMBOL(bitmap_parse_user);
 455
 456/**
 457 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 458 * @list: indicates whether the bitmap must be list
 459 * @buf: page aligned buffer into which string is placed
 460 * @maskp: pointer to bitmap to convert
 461 * @nmaskbits: size of bitmap, in bits
 462 *
 463 * Output format is a comma-separated list of decimal numbers and
 464 * ranges if list is specified or hex digits grouped into comma-separated
 465 * sets of 8 digits/set. Returns the number of characters written to buf.
 466 *
 467 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
 468 * sufficient storage remains at @buf to accommodate the
 469 * bitmap_print_to_pagebuf() output.
 470 */
 471int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 472                            int nmaskbits)
 473{
 474        ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
 475        int n = 0;
 476
 477        if (len > 1)
 478                n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 479                           scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 480        return n;
 481}
 482EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 483
 484/**
 485 * __bitmap_parselist - convert list format ASCII string to bitmap
 486 * @buf: read nul-terminated user string from this buffer
 487 * @buflen: buffer size in bytes.  If string is smaller than this
 488 *    then it must be terminated with a \0.
 489 * @is_user: location of buffer, 0 indicates kernel space
 490 * @maskp: write resulting mask here
 491 * @nmaskbits: number of bits in mask to be written
 492 *
 493 * Input format is a comma-separated list of decimal numbers and
 494 * ranges.  Consecutively set bits are shown as two hyphen-separated
 495 * decimal numbers, the smallest and largest bit numbers set in
 496 * the range.
 497 *
 498 * Returns 0 on success, -errno on invalid input strings.
 499 * Error values:
 500 *    %-EINVAL: second number in range smaller than first
 501 *    %-EINVAL: invalid character in string
 502 *    %-ERANGE: bit number specified too large for mask
 503 */
 504static int __bitmap_parselist(const char *buf, unsigned int buflen,
 505                int is_user, unsigned long *maskp,
 506                int nmaskbits)
 507{
 508        unsigned a, b;
 509        int c, old_c, totaldigits, ndigits;
 510        const char __user __force *ubuf = (const char __user __force *)buf;
 511        int at_start, in_range;
 512
 513        totaldigits = c = 0;
 514        bitmap_zero(maskp, nmaskbits);
 515        do {
 516                at_start = 1;
 517                in_range = 0;
 518                a = b = 0;
 519                ndigits = totaldigits;
 520
 521                /* Get the next cpu# or a range of cpu#'s */
 522                while (buflen) {
 523                        old_c = c;
 524                        if (is_user) {
 525                                if (__get_user(c, ubuf++))
 526                                        return -EFAULT;
 527                        } else
 528                                c = *buf++;
 529                        buflen--;
 530                        if (isspace(c))
 531                                continue;
 532
 533                        /* A '\0' or a ',' signal the end of a cpu# or range */
 534                        if (c == '\0' || c == ',')
 535                                break;
 536                        /*
 537                        * whitespaces between digits are not allowed,
 538                        * but it's ok if whitespaces are on head or tail.
 539                        * when old_c is whilespace,
 540                        * if totaldigits == ndigits, whitespace is on head.
 541                        * if whitespace is on tail, it should not run here.
 542                        * as c was ',' or '\0',
 543                        * the last code line has broken the current loop.
 544                        */
 545                        if ((totaldigits != ndigits) && isspace(old_c))
 546                                return -EINVAL;
 547
 548                        if (c == '-') {
 549                                if (at_start || in_range)
 550                                        return -EINVAL;
 551                                b = 0;
 552                                in_range = 1;
 553                                at_start = 1;
 554                                continue;
 555                        }
 556
 557                        if (!isdigit(c))
 558                                return -EINVAL;
 559
 560                        b = b * 10 + (c - '0');
 561                        if (!in_range)
 562                                a = b;
 563                        at_start = 0;
 564                        totaldigits++;
 565                }
 566                if (ndigits == totaldigits)
 567                        continue;
 568                /* if no digit is after '-', it's wrong*/
 569                if (at_start && in_range)
 570                        return -EINVAL;
 571                if (!(a <= b))
 572                        return -EINVAL;
 573                if (b >= nmaskbits)
 574                        return -ERANGE;
 575                while (a <= b) {
 576                        set_bit(a, maskp);
 577                        a++;
 578                }
 579        } while (buflen && c == ',');
 580        return 0;
 581}
 582
 583int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 584{
 585        char *nl  = strchrnul(bp, '\n');
 586        int len = nl - bp;
 587
 588        return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
 589}
 590EXPORT_SYMBOL(bitmap_parselist);
 591
 592
 593/**
 594 * bitmap_parselist_user()
 595 *
 596 * @ubuf: pointer to user buffer containing string.
 597 * @ulen: buffer size in bytes.  If string is smaller than this
 598 *    then it must be terminated with a \0.
 599 * @maskp: pointer to bitmap array that will contain result.
 600 * @nmaskbits: size of bitmap, in bits.
 601 *
 602 * Wrapper for bitmap_parselist(), providing it with user buffer.
 603 *
 604 * We cannot have this as an inline function in bitmap.h because it needs
 605 * linux/uaccess.h to get the access_ok() declaration and this causes
 606 * cyclic dependencies.
 607 */
 608int bitmap_parselist_user(const char __user *ubuf,
 609                        unsigned int ulen, unsigned long *maskp,
 610                        int nmaskbits)
 611{
 612        if (!access_ok(VERIFY_READ, ubuf, ulen))
 613                return -EFAULT;
 614        return __bitmap_parselist((const char __force *)ubuf,
 615                                        ulen, 1, maskp, nmaskbits);
 616}
 617EXPORT_SYMBOL(bitmap_parselist_user);
 618
 619
 620/**
 621 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 622 *      @buf: pointer to a bitmap
 623 *      @pos: a bit position in @buf (0 <= @pos < @nbits)
 624 *      @nbits: number of valid bit positions in @buf
 625 *
 626 * Map the bit at position @pos in @buf (of length @nbits) to the
 627 * ordinal of which set bit it is.  If it is not set or if @pos
 628 * is not a valid bit position, map to -1.
 629 *
 630 * If for example, just bits 4 through 7 are set in @buf, then @pos
 631 * values 4 through 7 will get mapped to 0 through 3, respectively,
 632 * and other @pos values will get mapped to -1.  When @pos value 7
 633 * gets mapped to (returns) @ord value 3 in this example, that means
 634 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 635 *
 636 * The bit positions 0 through @bits are valid positions in @buf.
 637 */
 638static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 639{
 640        if (pos >= nbits || !test_bit(pos, buf))
 641                return -1;
 642
 643        return __bitmap_weight(buf, pos);
 644}
 645
 646/**
 647 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 648 *      @buf: pointer to bitmap
 649 *      @ord: ordinal bit position (n-th set bit, n >= 0)
 650 *      @nbits: number of valid bit positions in @buf
 651 *
 652 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 653 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 654 * >= weight(buf), returns @nbits.
 655 *
 656 * If for example, just bits 4 through 7 are set in @buf, then @ord
 657 * values 0 through 3 will get mapped to 4 through 7, respectively,
 658 * and all other @ord values returns @nbits.  When @ord value 3
 659 * gets mapped to (returns) @pos value 7 in this example, that means
 660 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 661 *
 662 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 663 */
 664unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 665{
 666        unsigned int pos;
 667
 668        for (pos = find_first_bit(buf, nbits);
 669             pos < nbits && ord;
 670             pos = find_next_bit(buf, nbits, pos + 1))
 671                ord--;
 672
 673        return pos;
 674}
 675
 676/**
 677 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 678 *      @dst: remapped result
 679 *      @src: subset to be remapped
 680 *      @old: defines domain of map
 681 *      @new: defines range of map
 682 *      @nbits: number of bits in each of these bitmaps
 683 *
 684 * Let @old and @new define a mapping of bit positions, such that
 685 * whatever position is held by the n-th set bit in @old is mapped
 686 * to the n-th set bit in @new.  In the more general case, allowing
 687 * for the possibility that the weight 'w' of @new is less than the
 688 * weight of @old, map the position of the n-th set bit in @old to
 689 * the position of the m-th set bit in @new, where m == n % w.
 690 *
 691 * If either of the @old and @new bitmaps are empty, or if @src and
 692 * @dst point to the same location, then this routine copies @src
 693 * to @dst.
 694 *
 695 * The positions of unset bits in @old are mapped to themselves
 696 * (the identify map).
 697 *
 698 * Apply the above specified mapping to @src, placing the result in
 699 * @dst, clearing any bits previously set in @dst.
 700 *
 701 * For example, lets say that @old has bits 4 through 7 set, and
 702 * @new has bits 12 through 15 set.  This defines the mapping of bit
 703 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 704 * bit positions unchanged.  So if say @src comes into this routine
 705 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 706 * 13 and 15 set.
 707 */
 708void bitmap_remap(unsigned long *dst, const unsigned long *src,
 709                const unsigned long *old, const unsigned long *new,
 710                unsigned int nbits)
 711{
 712        unsigned int oldbit, w;
 713
 714        if (dst == src)         /* following doesn't handle inplace remaps */
 715                return;
 716        bitmap_zero(dst, nbits);
 717
 718        w = bitmap_weight(new, nbits);
 719        for_each_set_bit(oldbit, src, nbits) {
 720                int n = bitmap_pos_to_ord(old, oldbit, nbits);
 721
 722                if (n < 0 || w == 0)
 723                        set_bit(oldbit, dst);   /* identity map */
 724                else
 725                        set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 726        }
 727}
 728EXPORT_SYMBOL(bitmap_remap);
 729
 730/**
 731 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 732 *      @oldbit: bit position to be mapped
 733 *      @old: defines domain of map
 734 *      @new: defines range of map
 735 *      @bits: number of bits in each of these bitmaps
 736 *
 737 * Let @old and @new define a mapping of bit positions, such that
 738 * whatever position is held by the n-th set bit in @old is mapped
 739 * to the n-th set bit in @new.  In the more general case, allowing
 740 * for the possibility that the weight 'w' of @new is less than the
 741 * weight of @old, map the position of the n-th set bit in @old to
 742 * the position of the m-th set bit in @new, where m == n % w.
 743 *
 744 * The positions of unset bits in @old are mapped to themselves
 745 * (the identify map).
 746 *
 747 * Apply the above specified mapping to bit position @oldbit, returning
 748 * the new bit position.
 749 *
 750 * For example, lets say that @old has bits 4 through 7 set, and
 751 * @new has bits 12 through 15 set.  This defines the mapping of bit
 752 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 753 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 754 * returns 13.
 755 */
 756int bitmap_bitremap(int oldbit, const unsigned long *old,
 757                                const unsigned long *new, int bits)
 758{
 759        int w = bitmap_weight(new, bits);
 760        int n = bitmap_pos_to_ord(old, oldbit, bits);
 761        if (n < 0 || w == 0)
 762                return oldbit;
 763        else
 764                return bitmap_ord_to_pos(new, n % w, bits);
 765}
 766EXPORT_SYMBOL(bitmap_bitremap);
 767
 768/**
 769 * bitmap_onto - translate one bitmap relative to another
 770 *      @dst: resulting translated bitmap
 771 *      @orig: original untranslated bitmap
 772 *      @relmap: bitmap relative to which translated
 773 *      @bits: number of bits in each of these bitmaps
 774 *
 775 * Set the n-th bit of @dst iff there exists some m such that the
 776 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 777 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 778 * (If you understood the previous sentence the first time your
 779 * read it, you're overqualified for your current job.)
 780 *
 781 * In other words, @orig is mapped onto (surjectively) @dst,
 782 * using the map { <n, m> | the n-th bit of @relmap is the
 783 * m-th set bit of @relmap }.
 784 *
 785 * Any set bits in @orig above bit number W, where W is the
 786 * weight of (number of set bits in) @relmap are mapped nowhere.
 787 * In particular, if for all bits m set in @orig, m >= W, then
 788 * @dst will end up empty.  In situations where the possibility
 789 * of such an empty result is not desired, one way to avoid it is
 790 * to use the bitmap_fold() operator, below, to first fold the
 791 * @orig bitmap over itself so that all its set bits x are in the
 792 * range 0 <= x < W.  The bitmap_fold() operator does this by
 793 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 794 *
 795 * Example [1] for bitmap_onto():
 796 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 797 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 798 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 799 *
 800 *  When bit 0 is set in @orig, it means turn on the bit in
 801 *  @dst corresponding to whatever is the first bit (if any)
 802 *  that is turned on in @relmap.  Since bit 0 was off in the
 803 *  above example, we leave off that bit (bit 30) in @dst.
 804 *
 805 *  When bit 1 is set in @orig (as in the above example), it
 806 *  means turn on the bit in @dst corresponding to whatever
 807 *  is the second bit that is turned on in @relmap.  The second
 808 *  bit in @relmap that was turned on in the above example was
 809 *  bit 31, so we turned on bit 31 in @dst.
 810 *
 811 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 812 *  because they were the 4th, 6th, 8th and 10th set bits
 813 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 814 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 815 *
 816 *  When bit 11 is set in @orig, it means turn on the bit in
 817 *  @dst corresponding to whatever is the twelfth bit that is
 818 *  turned on in @relmap.  In the above example, there were
 819 *  only ten bits turned on in @relmap (30..39), so that bit
 820 *  11 was set in @orig had no affect on @dst.
 821 *
 822 * Example [2] for bitmap_fold() + bitmap_onto():
 823 *  Let's say @relmap has these ten bits set:
 824 *              40 41 42 43 45 48 53 61 74 95
 825 *  (for the curious, that's 40 plus the first ten terms of the
 826 *  Fibonacci sequence.)
 827 *
 828 *  Further lets say we use the following code, invoking
 829 *  bitmap_fold() then bitmap_onto, as suggested above to
 830 *  avoid the possibility of an empty @dst result:
 831 *
 832 *      unsigned long *tmp;     // a temporary bitmap's bits
 833 *
 834 *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 835 *      bitmap_onto(dst, tmp, relmap, bits);
 836 *
 837 *  Then this table shows what various values of @dst would be, for
 838 *  various @orig's.  I list the zero-based positions of each set bit.
 839 *  The tmp column shows the intermediate result, as computed by
 840 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 841 *  (the weight of @relmap).
 842 *
 843 *      @orig           tmp            @dst
 844 *      0                0             40
 845 *      1                1             41
 846 *      9                9             95
 847 *      10               0             40 (*)
 848 *      1 3 5 7          1 3 5 7       41 43 48 61
 849 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 850 *      0 9 18 27        0 9 8 7       40 61 74 95
 851 *      0 10 20 30       0             40
 852 *      0 11 22 33       0 1 2 3       40 41 42 43
 853 *      0 12 24 36       0 2 4 6       40 42 45 53
 854 *      78 102 211       1 2 8         41 42 74 (*)
 855 *
 856 * (*) For these marked lines, if we hadn't first done bitmap_fold()
 857 *     into tmp, then the @dst result would have been empty.
 858 *
 859 * If either of @orig or @relmap is empty (no set bits), then @dst
 860 * will be returned empty.
 861 *
 862 * If (as explained above) the only set bits in @orig are in positions
 863 * m where m >= W, (where W is the weight of @relmap) then @dst will
 864 * once again be returned empty.
 865 *
 866 * All bits in @dst not set by the above rule are cleared.
 867 */
 868void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 869                        const unsigned long *relmap, unsigned int bits)
 870{
 871        unsigned int n, m;      /* same meaning as in above comment */
 872
 873        if (dst == orig)        /* following doesn't handle inplace mappings */
 874                return;
 875        bitmap_zero(dst, bits);
 876
 877        /*
 878         * The following code is a more efficient, but less
 879         * obvious, equivalent to the loop:
 880         *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 881         *              n = bitmap_ord_to_pos(orig, m, bits);
 882         *              if (test_bit(m, orig))
 883         *                      set_bit(n, dst);
 884         *      }
 885         */
 886
 887        m = 0;
 888        for_each_set_bit(n, relmap, bits) {
 889                /* m == bitmap_pos_to_ord(relmap, n, bits) */
 890                if (test_bit(m, orig))
 891                        set_bit(n, dst);
 892                m++;
 893        }
 894}
 895EXPORT_SYMBOL(bitmap_onto);
 896
 897/**
 898 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 899 *      @dst: resulting smaller bitmap
 900 *      @orig: original larger bitmap
 901 *      @sz: specified size
 902 *      @nbits: number of bits in each of these bitmaps
 903 *
 904 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 905 * Clear all other bits in @dst.  See further the comment and
 906 * Example [2] for bitmap_onto() for why and how to use this.
 907 */
 908void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 909                        unsigned int sz, unsigned int nbits)
 910{
 911        unsigned int oldbit;
 912
 913        if (dst == orig)        /* following doesn't handle inplace mappings */
 914                return;
 915        bitmap_zero(dst, nbits);
 916
 917        for_each_set_bit(oldbit, orig, nbits)
 918                set_bit(oldbit % sz, dst);
 919}
 920EXPORT_SYMBOL(bitmap_fold);
 921
 922/*
 923 * Common code for bitmap_*_region() routines.
 924 *      bitmap: array of unsigned longs corresponding to the bitmap
 925 *      pos: the beginning of the region
 926 *      order: region size (log base 2 of number of bits)
 927 *      reg_op: operation(s) to perform on that region of bitmap
 928 *
 929 * Can set, verify and/or release a region of bits in a bitmap,
 930 * depending on which combination of REG_OP_* flag bits is set.
 931 *
 932 * A region of a bitmap is a sequence of bits in the bitmap, of
 933 * some size '1 << order' (a power of two), aligned to that same
 934 * '1 << order' power of two.
 935 *
 936 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 937 * Returns 0 in all other cases and reg_ops.
 938 */
 939
 940enum {
 941        REG_OP_ISFREE,          /* true if region is all zero bits */
 942        REG_OP_ALLOC,           /* set all bits in region */
 943        REG_OP_RELEASE,         /* clear all bits in region */
 944};
 945
 946static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
 947{
 948        int nbits_reg;          /* number of bits in region */
 949        int index;              /* index first long of region in bitmap */
 950        int offset;             /* bit offset region in bitmap[index] */
 951        int nlongs_reg;         /* num longs spanned by region in bitmap */
 952        int nbitsinlong;        /* num bits of region in each spanned long */
 953        unsigned long mask;     /* bitmask for one long of region */
 954        int i;                  /* scans bitmap by longs */
 955        int ret = 0;            /* return value */
 956
 957        /*
 958         * Either nlongs_reg == 1 (for small orders that fit in one long)
 959         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 960         */
 961        nbits_reg = 1 << order;
 962        index = pos / BITS_PER_LONG;
 963        offset = pos - (index * BITS_PER_LONG);
 964        nlongs_reg = BITS_TO_LONGS(nbits_reg);
 965        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 966
 967        /*
 968         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 969         * overflows if nbitsinlong == BITS_PER_LONG.
 970         */
 971        mask = (1UL << (nbitsinlong - 1));
 972        mask += mask - 1;
 973        mask <<= offset;
 974
 975        switch (reg_op) {
 976        case REG_OP_ISFREE:
 977                for (i = 0; i < nlongs_reg; i++) {
 978                        if (bitmap[index + i] & mask)
 979                                goto done;
 980                }
 981                ret = 1;        /* all bits in region free (zero) */
 982                break;
 983
 984        case REG_OP_ALLOC:
 985                for (i = 0; i < nlongs_reg; i++)
 986                        bitmap[index + i] |= mask;
 987                break;
 988
 989        case REG_OP_RELEASE:
 990                for (i = 0; i < nlongs_reg; i++)
 991                        bitmap[index + i] &= ~mask;
 992                break;
 993        }
 994done:
 995        return ret;
 996}
 997
 998/**
 999 * bitmap_find_free_region - find a contiguous aligned mem region
1000 *      @bitmap: array of unsigned longs corresponding to the bitmap
1001 *      @bits: number of bits in the bitmap
1002 *      @order: region size (log base 2 of number of bits) to find
1003 *
1004 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1005 * allocate them (set them to one).  Only consider regions of length
1006 * a power (@order) of two, aligned to that power of two, which
1007 * makes the search algorithm much faster.
1008 *
1009 * Return the bit offset in bitmap of the allocated region,
1010 * or -errno on failure.
1011 */
1012int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1013{
1014        unsigned int pos, end;          /* scans bitmap by regions of size order */
1015
1016        for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1017                if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1018                        continue;
1019                __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1020                return pos;
1021        }
1022        return -ENOMEM;
1023}
1024EXPORT_SYMBOL(bitmap_find_free_region);
1025
1026/**
1027 * bitmap_release_region - release allocated bitmap region
1028 *      @bitmap: array of unsigned longs corresponding to the bitmap
1029 *      @pos: beginning of bit region to release
1030 *      @order: region size (log base 2 of number of bits) to release
1031 *
1032 * This is the complement to __bitmap_find_free_region() and releases
1033 * the found region (by clearing it in the bitmap).
1034 *
1035 * No return value.
1036 */
1037void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1038{
1039        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1040}
1041EXPORT_SYMBOL(bitmap_release_region);
1042
1043/**
1044 * bitmap_allocate_region - allocate bitmap region
1045 *      @bitmap: array of unsigned longs corresponding to the bitmap
1046 *      @pos: beginning of bit region to allocate
1047 *      @order: region size (log base 2 of number of bits) to allocate
1048 *
1049 * Allocate (set bits in) a specified region of a bitmap.
1050 *
1051 * Return 0 on success, or %-EBUSY if specified region wasn't
1052 * free (not all bits were zero).
1053 */
1054int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1055{
1056        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1057                return -EBUSY;
1058        return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1059}
1060EXPORT_SYMBOL(bitmap_allocate_region);
1061
1062/**
1063 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1064 * @dst:   destination buffer
1065 * @src:   bitmap to copy
1066 * @nbits: number of bits in the bitmap
1067 *
1068 * Require nbits % BITS_PER_LONG == 0.
1069 */
1070#ifdef __BIG_ENDIAN
1071void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1072{
1073        unsigned int i;
1074
1075        for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1076                if (BITS_PER_LONG == 64)
1077                        dst[i] = cpu_to_le64(src[i]);
1078                else
1079                        dst[i] = cpu_to_le32(src[i]);
1080        }
1081}
1082EXPORT_SYMBOL(bitmap_copy_le);
1083#endif
1084